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In this paper we consider a nonlinear model for the real economy described

by a multiplier-accelerator setup. The model comprises the government sector,

which influences the output dynamics by means of the fiscal policy, and the

money market, where the money supply depends upon the fluctuations in the

economic activity. Through rigorous analytical tools combined with numerical

simulations, we investigate the stability conditions of the unique steady state

and the emergence of different kinds of endogenous dynamics, which are the

results of the action of the fiscal and the monetary policy through their reac-
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the desired full employment target but, on the other hand, can also generate

endogenous fluctuations in the pace of the economic activity, associated with
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1. Introduction

It is well-known that macroeconomic variables, such as national income, in-

terest rates, inflation rates, money supply, etc. exhibit persistent and irregular

fluctuations. The models for explaining the evolutions of these variables are

widespread and come from any field of economics, with the aim of detecting

the endogenous sources of such fluctuations. In this respect, nonlinearity is a

key ingredient which is thought to be the source of endogenous cyclic behav-

ior. Accordingly, the literature that stems from this idea is widespread and

developed in the last decades. Among the milestones in the macro-dynamics

literature we can mention the paper by Kalecki [1], who stressed the crucial

role played by investments in a capitalist system and the issue of finding a well-

specified investment function to appease many problems within the considered

economy. More precisely, the issue of income distribution is one of the pillars of

Kalecki’s efforts to build a business cycle theory. His theory shows that output,

which is of course at the ground of income distribution, is completely deter-

mined by investments. He found that the problem of the change in output,

and hence the business cycle, is due to changes in the volume of investment,

which are the sources of fluctuations of a capitalist economy. During booms,

firms are able to produce more cash flow and obtain increases in profits. How-

ever, the increase in orders for capital investment increases the stock of capital,

until it becomes unprofitable to make more investments. Samuelson [2] built

a multiplier-accelerator model to analyze the business cycle, while Kaldor [3]

explicitly adopted a nonlinear investment function based on the profit principle.

In particular, Samuelson’s model analyzes the business cycle, and is based on

the Keynesian multiplier (i.e. consumption choices are affected by the level of

economic activity) and the accelerator theory of investment (i.e. investments

intentions depend on the economic activity growth). In [2], Samuelson proposed

a model in which cyclical fluctuations arise as a consequence of the interplay

between the accelerator and the multiplier. On the other hand, Kaldor’s idea is

related to the fact that an expansion in the demand and, consequently, in the
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production is the source of an increase in induced investments, which in turn

bolsters profits and encourages new investments. Finally, Hicks [4] extended

the Samuelson’s seminal model with the ideas of floor and ceiling to bound the

growth of investments. A drawback in the Samuelson model is the possibility

of unbounded dynamics. As discussed in [5], if the economy is, for instance,

in a depressed phase, in such model we would have a decrease in the capital

that could lead not only to negative investments but also to a possible capital

erosion. To overcome this phenomenon (and the complementary one related

to unbounded expansion), Hicks proposed the introduction of lower and upper

bounds (floor and ceiling) on the investments’ adjustment mechanism. After

these contributions embedded in the general economic thought, the original pa-

pers have been extended in several directions thanks to the application of the

tools from nonlinear dynamics and bifurcation theory, which allowed reconsid-

ering the various existing economic models. Many interesting improvements of

business cycle modeling spread during the recent decades, frequently exhibiting

complex dynamics, nonlocal bifurcations and transitions from order to chaos,

as in [6]-[10].

The Samuelsonian multiplier-accelerator modelling approach, which is con-

sidered a benchmark to explain business cycle fluctuations, has been developed

and extended in different ways (see, e.g., [11]-[17]), where the birth of persistent

oscillations is discussed through the analysis of the role of different elements,

such as the presence of an income ceiling and an investment floor, or the intro-

duction of delays in the consumption or investments function. In particular, the

papers in [11]-[13] are developed within a discrete-time framework, while the

papers in [14]-[17] are casted into a continuous-time setup, especially to analyze

the role of time delays in consumption, saving and investment decisions.

Nonetheless, a usual objection to business cycle models based on the interac-

tion of the multiplier and the accelerator is that they neglect monetary factors

and, when the latter are considered, are not an integral part of the model.

Only few papers examined the role of the introduction of the monetary policy

within a multiplier-accelerator framework, even if the monetary factors may
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be of relevance for understanding the emergence and evolution of the business

cycle. In this regard, we mention the paper by Smith in [18] who introduces

money in a simple and linear multiplier-accelerator model, showing that peri-

odic oscillations may arise and increase when monetary factors are considered.

In [19], Lovell and Prescott study the role of money supply in determining pe-

riods of stability and oscillations in the business cycle within the Samuelsonian

multiplier-accelerator setup and investigate the effects of alternative stabiliza-

tion strategies that might be activated by the monetary authority. The work

by Sordi in [20] tackles the issue of business cycle fluctuations in a discrete time

multiplier-accelerator model in which a floor and a ceiling are introduced into

the accelerator component of the capital stock evolution. Also, the paper by

Sordi and Vercelli [21] studies in depth the multiplier-accelerator framework in

a context of a monetary economy where the multiplier effects are closely related

to the monetary transactions. In fact, as noted in [21], money is an exchange

medium that intrinsically introduces a temporal separation between the mo-

ment of the expenditure and the realization of the income. This leads to an

alternation between these two phenomena, alternation that is further lagged by

the effect of money. This in turn affects income dynamics through the multiplier

mechanism. Finally, more recently, Karpetis and Varelas in [22] introduced a

money market and a balanced government expenditure rule in a linear, discrete-

time multiplier-accelerator to study their interaction and how they affect the

overall economic stability.

The idea of including the money market in this framework, together with the

fiscal policy, fits into the debate on the proper degree of activism in fiscal and

monetary policy making. The main question to give an answer is of how much

to vary monetary and fiscal instruments to reduce market turmoil and whether

a good fiscal policy is more or less effective than a good monetary policy for sta-

bilization purposes. In fact, the economic literature looking at the mix between

the two policies mostly dates back to the early 80s and grew during the 90s.

Sargent and Wallace ([23]) proved that monetary policy has to lead the fiscal

one, in order to guarantee control on inflation. More recently, numerous au-
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thors, for instance Schmitt-Grohe and Uribe, ([24]) and Benigno and Woodford

([25]), used DSGE models to investigate the interaction between monetary and

fiscal policies. Finally, Eusepi and Preston ([26]) highlighted that the particular

choice of monetary policy leads to a constraint on the possible fiscal policies

that are compatible with macroeconomic stability requirement. In particular,

the Taylor rule can introduce instabilities due to expectation formation mech-

anisms. The above mentioned contributions mainly focus on the activism of

the two policies in order to control inflation and obtain a stable macroeconomic

environment.

In the present paper we enrich the discrete time multiplier-accelerator set-

ting considered in [27] by taking into account a money market. The aim is to

examine the effects of making monetary factors a relevant part of the economic

setup under investigation in order to understand the interplay between these

factors and the fiscal policy instruments may give rise, reduce or foster the os-

cillations in the business cycle. The multiplier-accelerator model encompasses

a nonlinear investment function which takes into account the presence of the

monetary sector through the interest rate which, in turn, is determined by the

equilibrium condition on the money market. The money supply is influenced

by the discrepancy between the full employment national income level and the

more recent output realizations. Moreover, the public sector may influence the

possibility of the economy to reach a full employment output level through a

level-adjusting rule. Therefore, it turns out to be relevant to study whether

the interplay between these two policies can render the overall system stable or,

instead, endogenous fluctuations arise at the ground of the business cycle.

To this end, we analytically obtain the local asymptotic stability conditions of

the unique steady state, and, with the help of numerical investigations, we in-

vestigate the possible kinds of bifurcations, showing the consequent emergence

of periodic, quasi-periodic and chaotic dynamics.

We find that the introduction of the monetary policy is capable of leading the

economy toward the targeted level of output.

In general, there is not an unambiguous role played by the two policies since both
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can be either the source of endogenous fluctuations, arising when they induce

overreaction to real economy signals, or lead to a stabilization of the dynam-

ics. Indeed, there is a certain role played by both policies for the stabilization

purposes. For example, instabilities spreading from the money market can be

deadened by the activation of a convenient fiscal policy, as well as stability goals

can be achieved through an appropriate cautionary monetary policy, grounded

on a suitably inertial response to fluctuations in target variables. However,

overreactive policies are not beneficial and may generate complex dynamics in

the evolution of the national income in the long run. From the mathemati-

cal viewpoint, this is described by endogenous fluctuations that arise due to

Neimark-Sacker or period doubling bifurcations. In particular, the interplay

between fiscal and monetary policies may be the source of quasi-periodic oscil-

lations, resembling the emergence of business cycle, which are not possible, as

shown in [27], when the money market is not considered and only a level ad-

justing fiscal policy is taken into account. Moreover, the effect of endogenizing

the money market may imply multistability. Results, containing a variety of

dynamic features, are discussed through the analysis of local bifurcations and

through numerical examples that give insights about global dynamics.

The rest of the paper is organized as follows: Section 2 introduces the model,

Section 3 presents analytical results on the stability of the unique steady state

and the conditions for its asymptotic stability, Section 4 reports the numeri-

cal simulations showing how the relevant parameters of the two policies may

give rise to complex dynamics. Finally, Section 5 collects conclusions and some

possible future research perspectives.

2. The baseline model

We present a closed economy model consisting of a real sector, described by

a multiplier-accelerator setup, and of a monetary sector. The macroeconomic

equilibrium condition, at any time t ∈ N, is given by

Yt = Ct + It +Gt, (1)
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where Yt represents the national income, Ct denotes consumption, It invest-

ments and Gt public expenditures. Consumption linearly depends on the last

realization of national income, i.e.

Ct = C̄ + cYt−1, (2)

where C̄ is the autonomous consumption and c ∈ (0, 1) is the marginal propen-

sity to consume.

We assume that government intervenes into the real market to stabilize the

economy by means of a level-adjusting rule. In other words, the government

has to establish a full employment income Y F and modifies its expenditures

according to the gap between the full employment income and the national

income, namely

Gt = Ḡ+ g(Y F − Yt−1). (3)

Government expenditures depends on an autonomous component Ḡ > 0 and on

a discretionary expenditure g(Y F − Yt−1) where g > 0 measures the reactivity

of the fiscal policy with respect to deviations from the target Y F .

The principle of acceleration determines investments. Precisely, we assume

the investments function is made up by three components. Besides an au-

tonomous component, a second component is increasing in the national income

variation between period t−1 and t−2 and is described by a bounded S-shaped

function according to the hypothesis that investments can not reach too high or

too low values (see [27]). Such a function is continuous and differentiable at each

point and it makes this second component constant when the national income

does not change for two consecutive periods. A third component is also included

to highlight the negative dependence of investments to the interest rate. Thus,

the investments function can be summarized as

It = Ī + γa2

(

a1 + a2
a1e−(Yt−1−Yt−2) + a2

− 1

)

+ ϕRt, (4)

where Ī is the autonomous component of investments, γ > 0 relates to the

accelerator component, a1 and a2 are positive parameters that determine the

investment function variation range and ϕ ≤ 0. It is worth noting that a
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functional form as the one proposed here for the investments function is in line

with the classic macroeconomic literature of the 1930s-1950s (see, e.g., [1], [3],

[28]). Moreover, the motivation for considering a sigmoid function to model

a component of the investments comes from the Hicks’ idea of embodying a

floor and a ceiling in the evolution of investments, in order to take into account

the impossibility of an indefinite growth and disinvestment due to resource and

physical constraints (see [5, 13, 29] and [30]). Finally, expression (4) also states

that investments negatively depend on the interest rate, being ϕ ≤ 0. In fact,

the interest rate reflects the cost of borrowing in order to finance investment

projects and, other things being equal, as the interest rates rise, financing new

investment projects becomes more expensive.

Let us now introduce the money market, for which we the equilibrium con-

dition reads as
MS

t

P̄
=

MD
t

P̄
, (5)

that is, the real money demand MD
t /P̄ equals the real money supply MS

t /P̄ .

In general, see e.g. [31], the equilibrium on the money market implies that the

supply equals the real demand of money balances M/P̄ , where P̄ represents is

the constant price level, normally set equal to one, acting as a numéraire. In

the short run, prices are assumed to be constant, while they are supposed to

adjust in the medium or in the long run. For this reason, in what follows we set

P̄ = 1 and we consider the real money demand function

MD
t = d1Yt−1 + d2Rt, (6)

which is determined, in accordance with the liquidity preference1 theory (see e.g.

1Keynes proposed the notion of liquidity preference (i.e. of demand of money, which is the

most liquid asset) in [32], to provide explanation of interest rates, in terms of “a reward for

parting with liquidity for a specified period”. The two terms in the right-hand side of money

demand (6) encompass the three motives identified by Keynes for determining the demand

of money: the transactive and precautionary motives are represented by d1Yt−1, while the

speculative one by d2Rt, with the sign of the two coefficients d1 and d2 that accounts for the

effects respectively played by income and interest rate.
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[33] and [19]), by the national income and the interest rate Rt, where d1 > 0

and d2 < 0 accounts for the income and the interest rate effects on real money

demand, respectively. As concerns the money supply, the total money quantity

at time t is defined by the money creation policy of the monetary authority. For

instance, one can suppose that the authority focuses on the money variation

with the aim of moderating fluctuations in the economic activity with respect

to the benchmark of full employment income Y F . Accordingly, we shall assume

the following target adjusting monetary policy

MS
t = MS

t−1 + µ(Y F − (1− θ)Yt−1 − θYt−2), (7)

where µ > 0 represents the reaction of the monetary policy with respect to devi-

ation of the full employment output to the last observed income variation, while

θ ∈ [0, 1) weights the past realization of national income. We stress that the

supply rule in (7) is in line with similar rules that respond both to the existing

money stock and the last levels of output (see e.g. [40]). In (7) the stock money

variation depends on the difference between a target income level and a weighted

average of the two last income levels. The monetary authority focuses on the

money variation with the aim of moderating fluctuations in the economic activ-

ity with respect to the benchmark of a full employment income, by responding

through some form of inertia to fluctuations in the target variables, so that the

policy will continue for some time to depend upon past variable realizations.

When θ = 0, only the last output realization is considered by the money

supply rule in reacting to the deviations from the full employment income,

while when 0 < θ < 1/2 the two most recent output observations are taken

into account, giving more relevance to the closest one. For θ = 1/2, both

Yt and Yt+1 are equally weighted while for θ > 1/2 a greater importance is

assigned to farther output realizations, accounting for a higher level of inertia

or cautionary response2. Thus, according to (7), the money supply will move

2We would like to remark that the fiscal policy, and thus the changes in the government

expenditures, affects income more rapidly than the monetary policy and it is reasonable to
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cyclically or counter-cyclically in order to moderate adjustments in interest rates

as output changes. In particular, when the economic activity is low (namely

when Y F > (1−θ)Yt−1+θYt−2), the aim of the monetary policy is to stimulate

the economy through an increase of the money supply. This has the effect of

reducing the interest rate, as also evident by making explicit Rt through (5),

(6) and (7), which provides

Rt =
1

d2
(MS

t−1 + µ(Y F − (1 − θ)Yt−1 − θYt−2)− d1Yt−1). (8)

As a consequence, reduced interest rates have a positive effect on investments

and, therefore, on the level of the national income.

Plugging (8) in (4) we obtain the expression of investments

It = Ī+γta2

(

a1 + a2
a1e−(Yt−1−Yt−2) + a2

− 1

)

+
ϕ

d2
(MS

t−1+µ(Y F−(1−θ)Yt−1−θYt−2)−d1Yt−1),

which, inserted in (1) together with (2) and (3) and coupled with the monetary

policy equation (7), leads to the model























Yt = A+ Yt−1c− g(Yt−1 − Y F ) + a2γ
(

a1+a2

a2+a1e
−(Yt−1−Yt−2) − 1

)

+
ϕ

d2
(MS

t−1 + µ(Y F − (1− θ)Yt−1 − θYt−2)− d1Yt−1)

Mt = MS
t−1 + µ(Y F − (1 − θ)Yt−1 − θYt−2).

Then, by introducing Zt ≡ Yt−1 in view of the subsequent analysis, we can define

the function T = (T1, T2, T3) : R
3
+ → R3, (Yt,Mt, Zt) 7→ (T1(Yt,Mt, Zt), T2(Yt,Mt, Zt), T3(Yt,Mt, Zt)),

which describes the functioning of the whole economy3 as a the three-dimensional

assume only one lag in its response to the deviation of the full employment income from the

last realization. On the contrary, as argued by Woodford in [35], it is generally optimal for

the monetary policy to respond inertially to fluctuations in the target variables and/or their

determinants, so that the policy will continue for some time to depend upon past variable

realizations, even when these are irrelevant to the determination of the future values of the

target variables. See also Gramlich ([36]) for a discussion of monetary versus fiscal policy and

the role of time lags in shaping stabilization strategies.
3From now on, we drop the superscript S in variable M.
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system

T :



































Yt = T1(Yt−1,Mt−1, Zt−1) = A+ Yt−1c− g(Yt−1 − Y F ) + a2γ
(

a1+a2

a2+a1e
−(Yt−1−Zt−1) − 1

)

+
ϕ

d2
(Mt−1 + µ(Y F − (1− θ)Yt−1 − θZt−1)− d1Yt−1),

Mt = T2(Yt−1,Mt−1, Zt−1) = Mt−1 + µ(Y F − (1 − θ)Yt−1 − θZt−1),

Zt = T3(Yt−1,Mt−1, Zt−1) = Yt−1.

(9)

We stress that economically meaningful values for variables (Yt,Mt, Zt) are those

belonging to [0,+∞)3. However, not all the possible parameter configurations

and initial conditions give rise to significant economic scenarios. In the follow-

ing analysis we implicitly limit to the feasible configurations and initial data

for which (Yt,Mt, Zt) ∈ [0,+∞)3, for any t ≥ 0. Accordingly, the simulations

reported in Section 4 are consistent with this restriction.

3. Analytical results on the existence of the steady state and local

stability properties

In this section we shall investigate the existence of steady states for the

system in (9) and we shall analyze how the relevant monetary and fiscal policy

parameters affect stability. Firstly, we study the number and the analytical

expression of possible steady states for the map in (9), ending up with the

following:

Proposition 1. The system in (9) has a unique steady state given by

(Y ∗,M∗, Z∗) =



Y F ,
d2

(

Y F (1− c)−A+ Y F d1ϕ
d2

)

ϕ
, Y F





to which corresponds the interest rate

R∗ =
Y F (1− c)−A

ϕ
.

Moreover, the values of (Y ∗,M∗, Z∗) are positive provided that

A

(1− c) + d1ϕ/d2
< Y F <

A

(1− c)
.
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The previous Proposition states that the equilibrium level of the national

income coincides with the targeted full employment level of output. We observe

that the steady state values of the money quantity positively depends on the full

employment output level Y F in accordance to the money supply rule, and on the

parameter d1, signaling a positive relationship with the increase of the output

level; moreover, it negatively depends on the parameter |ϕ| since, when it grows,

it makes the investments less attractive and, accordingly, the national income

grows less with a consequent contraction in the money demand. On the other

hand, M∗ positively depends on |d2|, since it reduces the speculative component

of the money demand (the interest rate) and thus stimulates the economic ac-

tivity through investments and national income, with a consequent high level of

money in equilibrium. We also highlight that the steady state output Y ∗ = Y F

lies between a value associated with the absence of money A/((1− c)+d1ϕ/d2),

corresponding to a situation in which no Keynesian functions of money would

be considered, and the Samuelsonian steady state A/(1−c), where no policy in-

terventions are taken into account. Finally, we stress that in [27], where only the

fiscal policy was considered, the national income steady state does not coincide

with the targeted national income level. This means that the combined action

of the two policies can be able to drive the economy toward the full employment

national income. In what follows, the analysis as well as the numerical simula-

tions will be performed assuming parameters’ settings that fulfill the positivity

condition reported in Proposition 1.

We recall that the existence of a unique steady state has been widely ob-

served even when nonlinear elements have been introduced to produce more

realistic dynamics for the investments. In particular, if we compare our model

those considering the role of money within a multiplier-accelerator framework,

they exhibit a unique equilibrium (see e.g. [22]). Conversely, the emergence of

multiple equilibria has been observed when the role of individual expectations

has been considered within the multiplier-accelerator framework, see e.g. [37]-

[38], or when the role of the debt cycle is coupled with the multiplier-accelerator

setup, see [39].
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In the next propositions we study the stability of the equilibrium with respect

to the reactivity of the monetary policy µ. To this end, we say that we are in

an unconditionally unstable, mixed or destabilizing scenario if (Y ∗,M∗, Z∗)

is respectively unstable for any µ > 0, locally asymptotically stable for µ ∈
(µ̄1, µ̄2) or locally asymptotically stable for µ ∈ (0, µ̄2), for some 0 < µ̄1 < µ̄2.

Finally, we do not discuss cases in which stability occurs for single values of the

parameters. Before studying the model in (9), it is worth recalling the stability

condition of the steady state for the model studied in [27, Prop 3.], in which

only the fiscal policy is considered and money is not present4 In this regard,

henceforth, we shall make use of substitution γ̃ ≡ γ(a1 + a2)/(a1a2).

Proposition 2. When no monetary policy is considered, the steady state (Y ∗, Z∗)

is locally asymptotically stable provided that γ̃ < 1 and

g < c+ 2γ̃ + 1. (10)

When the money market is not considered, the fiscal policy should be set in

a way such that it does not react too aggressively5 to deviations of output real-

izations with respect to the full employment income target, otherwise periodic

fluctuations arise in the business cycle.

Now we move the analysis to the study of the monetary policy parameters on

the steady state stability. The following Proposition, in which we make use of

4The corresponding system is actually a two-dimensional reduction of system (9), when

the second equation is neglected as well as any influence of the monetary sector on the invest-

ments (ϕ = 0.) The resulting stability conditions can be studied in terms of the trace and

determinant of the two-dimensional map.
5Through the fiscal policy in (3) the government acts to compensate the difference between

the effective demand and some desired level (i.e. the full employment). In this respect, it turns

out to be relevant the magnitude through which such a policy is designed, since it can both

mitigate and exacerbate economic fluctuations. The fiscal policy is addressed as “aggressive”

when the government firmly and strongly react to these discrepancies in order, for instance,

to fight a recession.
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ϕ̃ ≡ ϕ/d2 to collect the joint effect of the interest rate on investments and money

demand, reports the stability conditions for the steady state (Y ∗,M∗, Z∗).

Proposition 3. The local stability conditions for (Y ∗,M∗, Z∗) are given by:



















−ϕ̃(1− 2θ)µ+ 4γ̃ − 2(g + d1ϕ̃− c) + 2 > 0,

−ϕ̃(γ̃(1− θ) + θ)µ+ (g + d1ϕ̃− c)− γ̃ − (g + d1ϕ̃− c)γ̃ + 1 > 0,

−ϕ̃θµ+ g + d1ϕ̃− c− 2γ̃ + 3 > 0.

(11)

Then, since we are interested in the role that the monetary policy parameter

µ plays on the steady state stability, in the next Proposition we make explicit

the role of such a parameter. Thus the following result holds:

Proposition 4. The steady state (Y ∗,M∗, Z∗) is locally asymptotically stable

provided that γ̃ < 1 and

• when 0 ≤ θ <
1

2
if

0 ≤ µ < s2 provided that g < c+ 4γ̃ − 1 + 4θ(1− γ̃)− d1ϕ̃ (12a)

0 ≤ µ < s1 provided that c+ 4γ̃ − 1 + 4θ(1− γ̃)− d1ϕ̃ ≤ g < 2γ̃ + 1 + c− d1ϕ̃

(12b)

• when
1

2
≤ θ ≤ 1 if

0 ≤ µ < s2 provided that g < c+ 2γ̃ + 1− d1ϕ̃ (13a)

s1 < µ < s2 provided that 2γ̃ + 1 + c− d1ϕ̃ < g < c+ 4γ̃ − 1 + 4θ(1− γ̃)− d1ϕ̃

(13b)

where

s1 =
2ϕ̃(2γ̃ − (g − c+ d1ϕ̃) + 1)

1− 2θ
and s2 =

ϕ̃(g − c+ d1ϕ̃+ 1)(1− γ̃)

(γ̃(1− θ) + θ)
. (14)

Conditions (12) and (13a) give rise to destabilizing scenarios with respect to

µ, while condition (13b) gives rise to a mixed scenario. For all the remaining

parameters’ configurations we have unconditionally unstable scenarios.
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Proposition 4 allows us to understand the effect of the accelerator mechanism

and of the policies on the stability of (Y ∗,M∗, Z∗). The first comment is about

the role of the accelerator parameter. If the reactivity of investments to income

variations is too strong (γ̃ > 1), neither fiscal nor monetary policy intervention

is able to stabilize the system, and the source of endogenous fluctuations is

ascribed to the accelerator mechanism, in agreement with the setting studied in

Proposition 2. Conversely, when γ̃ < 1 and the money supply is adjusted giving

more relevance to the most recent real economy signals, the money market can

be the source of instability. This can be understood by comparing the stability

condition (10) with those in (12). If (10) holds true, conditions in (12) can be

violated either due to an overreaction of the monetary policy (when µ > si)

or when the parameters characterizing the money market (d1 and d2) and its

effects on investments (φ) are too large, so that g < 2γ̃+1+ c− d1ϕ̃. This may

happen also when more relevance is given to the least recent real economy signal,

but in this case there is some space for a stabilizing role of the monetary policy,

the steady state can be stable even if (10) is violated (as evident from (13b))

and hence the fiscal policy is the source of endogenous fluctuations. This is a

scenario in which the monetary authority, by sufficiently adjusting the level of

money supply, is able to stabilize an otherwise unstable scenario up to a certain

level, beyond which the steady state becomes unstable again. To summarize, the

reaction of the monetary authority in changing the money supply is not always

stabilizing since when such a reactivity is sufficiently large, the steady state may

turn unstable. Thus, from the stability analysis it is clear that if the monetary

policy is not considered, the stability condition of the equilibrium reduces to

the one in [27]. Additionally, comparing the previous results with the paper by

Lovell and Prescott ([19]), they provided a double stability threshold for the

monetary policy parameter in order to get stability of the unique equilibrium,

but their model does not consider the presence of a fiscal policy that acts at the

same time. For this reason, our stability conditions can be seen an improvement

of the latter, as we jointly consider the reactivity of the two policies together

with the accelerator parameter.
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We now comment more in detail the joint role of µ, g and θ on the stability of

(Y ∗,M∗, Z∗) with the help of Figures 1 and 2. In Figure 1 we report the stability

regions of the steady state in the (µ, g) plane, obtained by setting c = 0.7, γ̃ =

0.5, d1 = 1 and ϕ̃ = 1, for different values of θ. In Figure 1 (a) the stability region

is represented using yellow color and shows, in accordance with the result of

Proposition 4, how the steady state become unstable as µ sufficiently increases.

Moreover, for small values of µ, increasing g has a destabilizing effect, as in

[27] while if µ increases, we find that introducing a fiscal policy has an initial

stabilizing effect, which is thwarted by increasing the degree of its reactivity

g. In other words, there exists a double stability threshold, which arises due

to the intervention of the monetary policy and makes the fiscal policy able to

stabilize the economy if its reactivity is not too strong. Figures 1 (b-c) highlight

the evolution of the stability region as long as an additional weight is assigned

to the past level of national income on determining the money supply. If we

compare the stability regions when 0 ≤ θ ≤ 1/2 and when 1/2 ≤ θ ≤ 1, we

note that the two stability thresholds, s1 (lower lines) and s2 (upper lines),

move upward, signaling that, in order to get stability when a higher weight is

assigned to the past levels of national income, a stronger reaction of the fiscal

policy is required. However, when 0 ≤ θ ≤ 1/2 the unique possible scenarios

on increasing µ are those destabilizing (for small enough reactivity of the fiscal

policy) and unconditionally unstable, while when 1/2 < θ ≤ 1 a sufficiently

reactive monetary policy can counterbalance the destabilizing effects of the fiscal

policy, provided that it is not too overreactive. In this case we have a mixed

scenario for µ.

In Figure 2 we report the stability region of the steady state in the (θ, µ)

parameter plane for different values of g, where the red and the blue curves are

related to the first two stability conditions of Proposition 3. The parameters

are the same used for Figure 1, with the exception of d1 = 0.1. These panels

allow us to appraise the role that the two parameters of the monetary policy

exert on the stability of (Y ∗,M∗, Z∗). In the left panel the case of a weakly

reactive fiscal policy is depicted and the region of parameters that guarantees



17

(a)

0 1 2
0

0.5

1

1.5

2
 = 0,  0.25,  0.5

(b)

0 1 2
0

1

2

3
 = 0.5,  0.75,  1

(c)

Figure 1: (a) Stability region (yellow color) of (Y ∗,M∗, Z∗) for θ = 0, on varying µ and

g. The stability thresholds s1 and s2, defined in (14), are represented by a red and

blue line, respectively. (b-c) Evolution of the stability region, bounded by the vertical

axis and by the lines with the same color, for increasing values of θ.

the stability of (Y ∗,M∗, Z∗) is represented by yellow color. In this case, when µ

is sufficiently small, the steady state is always stable while it can be destabilized

for increasing values of θ as long as the monetary authority reacts slightly more

to the deviations of the income realizations to its full employment level. On

the other hand, if the reaction parameter µ grows more, there are no means

of stabilization even if a growing weight is assigned to the past income levels.

Such behavior occurs for all values of g that preserve the stability of the economy

when no monetary policy is used (i.e. when µ = 0), which, in the present setting,

corresponds6 to g < 2.6, as noticeable also from Figure 2 (b), where, for g = 0.5

and g = 2, stability is achieved in the regions below the solid and the dashed

lines, respectively. When the degree of the fiscal policy reactivity increases, if µ

is not too large, the steady state is stable for any value of θ, while there exists

a double stability threshold on increasing the reactivity of the monetary policy

µ. Moreover, also recalling Figure 2 (a), we can note that the stability region

increases in size due to the impact played by the fiscal policy.

Conversely, if the reactivity of the fiscal policy is too large, (i.e. g ≥ 2.6),

6The threshold is obtained from condition (12a) when θ = 0.
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Figure 2: (a) Stability region (yellow color) of (Y ∗,M∗, Z∗) for g = 0.2, on varying θ

and µ. Middle and right panels show the evolution of stability regions for couples of

increasing values of g. The red and blue colors are related to the thresholds defined by

the first and the second condition in Proposition 3, respectively. Stability is guaranteed

for θ and µ belonging to the regions lying below (b) or between (c) stability thresholds.

as in Figure 2 (c), it turns out to be useful to introduce a form of inertia in the

response of the monetary policy (θ > 1/2) in order to gain stability. In this case,

the size of the stability region diminishes as g increases and a certain degree of

reactivity is needed to preserve stability, even if we note that increasing values

of µ are not always beneficial since the stability region may shrink as long as

the reactivity of the monetary policy gets more aggressive.

Finally, before investigating the behavior of model (9) through numerical

simulations, we analytically study the kind of local bifurcations occurring when

the steady state loses its stability on increasing µ. To do this, by standard

homeomorphic change of variable f(Y,M,Z) = (Y − Y ∗,M − M∗, Z − Z∗),

we rewrite the original model (9) into the topologically conjugate System T0 :

(Yt−1,Mt−1, Zt−1) 7→ (Yt,Mt, Zt) defined by























Yt = Yt−1c− Yt−1g − a2γ +
a22γ + a1a2γ

a2 + a1eZt−1−Yt−1
+ ϕ

Mt−1 − Yt−1(d1 + µ− µθ)− Zt−1µθ

d2
,

Mt = Mt − µ(Yt(1 − θ) + Ztθ),

Zt = Yt−1,

(15)

for which the origin is the unique steady state. The next two propositions



19

allow connecting critical values s1 and s2 provided by Proposition 4 to the

corresponding kind of bifurcation. We start studying the emergence of a flip

bifurcation.

Proposition 5. Let

g − c+ d1ϕ̃+ 1− 4γ̃ − 4θ + 4γ̃θ

1− 2θ
> 0. (16)

For values of the parameter µ belonging to a suitable neighborhood of s1 (defined

in (14)), there exists a one-dimensional invariant manifold Wµ such that Ws1

is the center manifold at the bifurcation value. The restriction of System (15)

to Ws1 around the origin (0, 0, 0) is locally topologically conjugate (in suitable

coordinates) to the map

ξ 7→ −ξ + χξ3 +O(ξ4), (17)

where

χ =
8γ̃(1 − 2θ)(a21 − 4a1a2 + a22)

3(a1 + a2)2(g − c+ d1ϕ̃+ 1− 4γ̃ − 4θ + 4γ̃θ)
. (18)

Proposition 5 shows that at µ = s1 a flip bifurcation occurs. Since con-

dition (16) guarantees that the sign of (18) is uniquely determined by the

factor a21 − 4a1a2 + a22, we can conclude that the flip bifurcation is supercrit-

ical when 0 < a1/a2 < 2 −
√
3 ∨ a1/a2 > 2 +

√
3 and a subcritical when

2 −
√
3 < a1/a2 < 2 +

√
3. Moreover, recalling Proposition 4, we have that

for θ < 1/2 we have a period-doubling bifurcation, while for θ > 1/2 a period-

halving bifurcation occurs.

We stress that the subcritical (respectively, supercritical) case occurs when the

bounds of the investment variation range are suitably close (respectively, far)

to a symmetric configuration with a1 = a2. To understand the economic ra-

tionale underlying these behaviors we assume that we have θ < 1/2, so that a

flip bifurcation results in period-doubling one and we set µ ' s1. In this case,

instabilities arising due to the reactive monetary policy lead to oscillating dy-

namics around M∗, which, in turn, affect the trajectories of Y. When responses

of investments to positive and negative variations of the national income are
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not too different (i.e. when a1/a2 ∈ (2−
√
3, 2+

√
3)), both upward and down-

ward oscillations around Y F induced by instabilities in the money market are

reinforced to a similar extent by the investment function, leading to divergence.

We extensively checked through simulations that when a1/a2 ∈ (2−
√
3, 2+

√
3)

and a subcritical flip bifurcation occurs, this leads to diverging trajectories (and

no coexisting attractor has been identified). Since this is indeed not interesting

from an economical viewpoint, in the next Section we will only focus on the

supercritical case, in which, conversely, strongly asymmetric responses in in-

vestments partially counterbalance monetary oscillations, giving rise to a stable

period-2 cycle.

In the next proposition we study what happens when µ = s2.

Proposition 6. Let

g − c+ d1ϕ̃+ 1− 4γ̃ − 4θ + 4γ̃θ < 0 (19)

and that nonresonance conditions

g − c− d1ϕ̃+ 1 6= k(γ̃ + θ − γ̃θ), k = 2, 3, (20)

hold true. For values of the parameter µ belonging to a suitable neighborhood

of s2 (defined in (14)) there exists a two-dimensional invariant manifold Wµ

such that Ws2 is the center manifold at the bifurcation value. The restriction of

System (15) to Ws2 around the origin (0, 0, 0) is locally topologically conjugate

(in suitable complex coordinates) to the map

z 7→ eiω0z(1 + δ)|z|2 +O(|z|4), (21)

in which eiω0 is the complex eigenvalue of J∗ with 0 < ω0 < π and

Re(δ) = b2(g − c− d1ϕ̃+ 1)2 + b1(g − c− d1ϕ̃+ 1) + b0, (22)

where

b2 =
2a21a

2
2γ(θ − 1)2

a1 + a2
,
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b1 = −a1a2γ(1− θ)2(a1θ + a2θ + a1a2γ − a1a2γθ)

(a1 + a2)3

· (−γa31a2 + a31 + 2γa21a
2
2 + 7a21a2 − γa1a

3
2 + 7a1a

2
2 + a32),

and

b0 =
(1 − θ)2(a1θ + a2θ + a1a2γ − a1a2γθ)

2

(a1 + a2)4
·[−3a41a

2
2γ

2+2a41a2γ+a41+4a31a
3
2γ

2

+ 2a31a
2
2γ − 2a31a2 − 3a21a

4
2γ

2 + 2a21a
3
2γ − 6a21a

2
2 + 2a1a

4
2γ − 2a1a

3
2 + a42].

Proposition 6 shows that at µ = s2 a Neimark-Sacker bifurcation can take

place, which is supercritical (resp. subcritical) if the sign of (22) is negative

(resp. positive). We shall deepen the investigation of the possible unstable

dynamics through numerical simulations, focusing on their economic relevance.

The main focus is to catch the economic insight about the interplay between

policies. We remark that due to the peculiarity of the parameter configurations

for which flip and Neimark-Sacker bifurcations degenerate, we avoid deepening

the investigation of such scenarios, as this would not add significant additional

information.

4. Numerical simulations

In this section we present some numerical simulations in order to complement

the previous analysis and check whether complex dynamics may arise when the

steady state turns unstable, as a consequence of the joint actions of the two

policies. Unless differently stated, we shall make use of these parameter values:

γ = 1.11, A = 100, Y F = 205, ϕ = −20, d1 = 1, d2 = −20, a1 = 4.5, a2 =

0.5 and c = 0.7. The parameters are set according to what done in [27], in

order to compare results, and to get reasonable and economically meaningful

values for the interest rate in percentage, which does not exceed 5%. We point

out that in the two dimensional bifurcation diagrams reported in Figures 3-

7 the white color refers to convergence toward the steady state, while other

colors are used to represent attractors consisting of more than a single point.

Moreover, hatched regions correspond to parameter configurations characterized
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by divergence or unfeasibility. Finally, the initial datum is chosen in a suitably

small neighborhood of the steady state.

Figures 3 (a) -5 (a) report the two-dimensional bifurcation diagrams in the

(µ, g) parameter plane for different values of θ.

The first consideration that can be inferred from such diagrams is the different

kind of dynamics arising when stability is lost, in accordance with Propositions

5 and 6. In fact, when the white region is crossed through its upper border

(corresponding to the line defined by µ = s1 in Proposition 4, see also Figure 1)

convergence to the steady state is replaced by convergence to a period two cycle,

as we enter the red region. Conversely, for the parameter configuration used for

each simulation in Figures 3-7 (a), when µ = s2 and condition (19) holds true,

the left hand side of (22) is always positive, so a subcritical Neimark-Sacker

occurs. However, in such cases, for values of µ suitably close to s1, trajecto-

ries converge toward coexisting stable attractors (see e.g. the leftmost parts of

one-dimensional bifurcation diagrams reported in Figures 3-7 (b)), giving rise

to economically significant dynamics.

To enter more into details about the role of the reactivity of the monetary pol-

icy on overall dynamics, we can observe the two examples of one-dimensional

bifurcation diagrams with respect to µ, reported in Figure 3 (b-c), obtained for

two different values of g. In Figure 3 (b), there is no intervention of the fiscal

policy nor degree of inertia in the monetary policy. Observing the black bifurca-

tion diagram, we can see that when µ increases, the steady state loses stability

through a subcritical Neimark-Sacker bifurcation when µ = s2. However, when

the reactivity µ of the monetary policy is not too strong, the steady state also

coexists with a cycle of period 3 (red bifurcation diagram7.). In this case, the

actual final outcome of the economy depends not only on its parameters but also

7Throughout this section, red bifurcation diagrams are computed following the attractor

along a sequence {xi} of parameter values. This means that the initial datum for the simu-

lation related to parameter value xi+1 is chosen suitably close to the attractor toward which

convergence occurred for parameter value xi
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on the initial level of national income, whose evolution is then significantly path

dependent. When the steady state becomes unstable, trajectories converge to

the periodic attractor, which then evolves through a cascade of period doubling

bifurcations leading to complex dynamics.

The previous phenomena also emerge with the introduction of a small de-

gree of inertia (θ ≤ 0.5) in the money supply rule, as exemplified by the two-

dimensional bifurcation diagram obtained for θ = 0.25 and reported in Figure

4 (a). It is worth to remark that, when a certain degree of intervention of the

government is encompassed, the intervention of the public authority in reaction

to the deviation of the income from the full employment level is able to drive

the economy toward the objective of the policy, even for large values of the

monetary policy reactivity µ. However, we note that the parameter g has an

ambiguous effect on the stability of the steady state, for a given value of µ. In

fact, an increase of g has the effect of reducing the complexity of the orbits,

and lets the steady state gain stability; however, as g keeps increasing, we cross

the upper bound of the stability region, associated with the white color, and

the steady state undergoes a period doubling bifurcation. With this respect

we consider Figure 4 (b), in which the one dimensional bifurcation diagram is

computed with respect to g. When the fiscal policy is not sufficiently strong, the

dynamics of the output are not convergent toward the steady state, being the

latter associated with the occurrence of a Neimark-Sacker bifurcation. On the

other hand, when the policy acts sufficiently strong, it is able to stabilize the

dynamics, leading the economy to the desired output level or, at least, to a re-

duction of the qualitative complexity of the trajectories, with the occurrence of

a cycle of period two. We stress that when the money market is considered, the

interplay of both monetary and fiscal policies gives rise to possibly high levels

of complexity, differently from [27], in which it is shown that on changing the

reactivity of a level targeting fiscal policy the steady state could lose stability

just giving rise to a period 2 cycle.

The same qualitative behaviors are observed also when the parameter θ is

further increased (Figure 5 (a)). In particular, comparing the two dimensional
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(a) (b) (c)

Figure 3: (a) Two-dimensional bifurcation diagram in the (µ, g) plane for θ = 0. White

color refers to convergence toward the steady state, while other colors are used to

represent attractors consisting of more than a single point. The hatched region stands

for divergence or unfeasible economic values of the variables. (b-c) Bifurcation dia-

grams with respect to µ for different values of g, showing the possibility of attractors

coexistence, even when the steady state is locally stable (b). For the red bifurcation

diagram we modified the initial value of variables Y and Z, setting Y0 = Z0 = 210.

bifurcation diagrams in Figures 3- 5, we can observe that when the two bi-

furcation curves move upward, the size of the region associated with complex

dynamics increases. It is worth to note that, when the inertia in the money sup-

ply grows, a sufficiently large degree of the fiscal policy reaction is necessary to

get the stability of the steady state if the monetary authority overreacts to the

deviations of the full employment income to its recent realizations. Moreover,

in the case reported in Figure 5, as predicted by Proposition 4, if we consider a

high level of reactivity in the fiscal policy, we have the appearance of a double

stability threshold, as already commented before, and the steady state is locally

asymptotically stable only for intermediate values of the policy parameter µ.

This is also evident from the one dimensional bifurcation diagram reported in

Figure 5 (b), from which we can additionally observe a situation of multista-

bility for increasing values of µ, where the steady state coexists with cycles,

making again crucial the choice of the national income to consider when setting

the policy intervention.

Figures 6 and 7 represent the two-dimensional bifurcation diagram in the
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Figure 4: (a) Two-dimensional bifurcation diagrams in the (µ, g) plane for θ = 0.25.

White color refers to convergence toward the steady state, while other colors are used

to represent attractors consisting of more than a single point. The hatched region

stands for divergence or unfeasible economic values of the variables.(b) Bifurcation

diagram on varying g.

(θ, µ) parameter plane for different values of the fiscal policy parameter g. In

Figure 6 we consider the situation in which the fiscal policy does not intervene.

We observe that the steady state is locally stable if the degree of the monetary

policy reaction is not too large. In fact, for increasing values of µ, and for any

θ, the steady state turns unstable and complex dynamics arise with consequent

endogenous fluctuations that characterize the course of the business cycle. In

Figure 6 (b) we report a bifurcation diagram on increasing parameter θ in order

to show how the degree of inertia in the money supply rule may generate different

dynamic scenarios. In this case, when there is no space for the fiscal policy and

the reaction of the monetary authority is set at an intermediate level, the steady

state is locally asymptotically stable when more weight is assigned to the most

recent output observations while the steady state loses stability via a Neimark-

Sacker bifurcation when θ increases, with the consequent emergence of complex

dynamics. Hence, in this case, an increase in the degree of inertia in the money

supply rule is not necessarily an advantage in terms of reaching the desired

output level.

When the economy accounts for a certain level of fiscal policy intervention
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Figure 5: (a) Two-dimensional bifurcation diagram in the (µ, g) plane for θ = 0.75.

White color refers to convergence toward the steady state, while other colors are used

to represent attractors consisting of more than a single point. The hatched region

stands for divergence or unfeasible economic values of the variables. (b) Bifurcation

diagram with respect to µ and reveals the possibility of different coexisting business

cycles for a sufficiently high level of the reactivity parameter µ. The red bifurcation

diagram is computed following the attractor along a decreasing sequence of parameter

values ranging from µ = 2.3 to µ = 1.84.

(Figure 7 (a)), we note a general increase in the white region, which is asso-

ciated with the stability of the steady state. Moreover, there exists a double

stability threshold when the monetary policy aggressively reacts. In fact, on one

hand, when the degree of inertia θ is very low, the dynamics are periodic while

a sufficient degree of inertia in the response of the monetary authority is able to

stabilize the economy; on the other hand, when the policy assigns more weights

to the past output realization, the coupling with the reaction to the deviation of

the output from its full employment level renders the steady state unstable and

complex dynamics arise again. Looking at the bifurcation diagram in Figure 7

(b), we can see that θ is able to stabilize the dynamics by reducing the com-

plexity of the orbits through a reverted Neimark-Sacker bifurcation followed by

a period halving bifurcation. Nonetheless, the range of parameters θ for which

the steady state remains locally stable is quite narrow and a Neimark-Sacker

bifurcation of the steady state occurs, with dynamics that start oscillating in a

complex and intricate manner.



27

(a) (b)

Figure 6: (a) Two-dimensional bifurcation diagram in the (θ, µ) plane for g = 0. White

color refers to convergence toward the steady state, while other colors are used to

represent attractors consisting of more than a single point. The hatched region stands

for divergence or unfeasible economic values of variables. (b) Bifurcation diagram with

respect to θ in the absence of fiscal policy.

Finally, in Figure 8 (a) we show a bifurcation diagram with respect to the

parameter µ when the fiscal policy is not considered (g = 0) and there is no

inertia in the money supply rule (θ = 0). As it is clearly visible from the pic-

ture, when the reactivity of the monetary policy increases, the steady state loses

stability confirming all the previous analytical results; moreover, when it is still

locally stable, it may coexist with a closed invariant curve associated with orbits

that largely oscillates above and below the steady state output level. It is worth

stressing the evidence that the introduction of the monetary policy in this sim-

ple multiplier-accelerator setting is the responsible for generating the business

cycle with fluctuations in the national income dynamics, in a context in which

the same qualitative dynamics would not occur if only the fiscal policy were

considered (see [27]). This may be due to the fact that an excessive tightening

of monetary policy may lead to instability in other sectors of the economy, with

a negative effect on economic actors’ behavior by weakening their assessment

of the future state of the economy. Moreover, as evident from the bifurcation

diagram and the times series reported in Figure 8 (b), there can be the possi-

bility of coexisting business cycles in which, being the national income different
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Figure 7: (a) Two-dimensional bifurcation diagram in the (θ, µ) plane for g = 1. White

color refers to convergence toward the steady state, while other colors are used to

represent attractors consisting of more than a single point. The hatched region stands

for divergence or unfeasible economic values of variables. (b) Bifurcation diagram

with respect to θ when also the fiscal policy is present, and shows the double stability

threshold for the steady state.

from its desired level, the final state of the economy can be characterized by

persistent higher or lower level of output.

The corresponding basins of attraction of this multistability situation is de-

picted in Figure 9 where we highlight the evolution of the two coexisting at-

tractors as long as µ increases. In particular, the basin of the steady state is

colored in blue while the basin of the closed curve is represented in yellow. In

the first row, moving from left to right, which corresponds to an increase of the

value of the reactivity parameter µ, we observe a quite sharp shrink in the basin

of the steady state. Such a shrinking is even more evident in the bottom-left

panel where a higher value of µ is considered. For this value, the steady state

is unstable and another closed curve coexists with the previously existing one.

The enlargement of Figure 8 (d) allows us to appraise the smallest of the two

coexisting curves and the corresponding basins. This situation, in which one

basin is extremely small, is associated with the consequent unpredictability of

the asymptotic state of the economy in a wide region of the state variables.
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Figure 8: (a) Bifurcation diagram on varying µ showing the coexistence of different

attractors. (b) Times series of Yt showing coexisting business cycles. Parameters are

set as declared at the beginning of the section except for γ = 1.7 and d2 = −200.. The

red diagram is obtained with initial datum suitably close to the steady state while the

black diagram is obtained with Y0 = Z0 = 220,M0 = 88.

5. Concluding remarks

In this paper we have shown how a rich variety of dynamical outcomes may

arise in a real economy described by a nonlinear multiplier-accelerator model

when the public authority influences the dynamics of the national income either

via fiscal or monetary policy. The consideration of the two policy instruments

fits into the debate on which of the two instruments is better able to purse the

stabilization objective. Most of the times the issue is studied having in mind

the problem of controlling inflation and regulatory programs (see [26]-[40]). The

investigation of the effects of these policies is pertinent not only for deepening

the discussion on the potential implications of the different fiscal and monetary

programs, but also with respect to the dynamical outcomes that they can give
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Figure 9: Basins of attraction for different values of the reactivity parameter µ. The

yellow color refers to the basin of the closed invariant curve surrounding the steady

state (a-b), whose basin is depicted in blue, and the other closed curve (c-d) arising

when the steady state loses stability, whose basin is still represented in blue.

rise. In this respect, one of the papers that bear resemblance with the present

one is the work in [22]. Both setups are grounded on a multiplier-accelerator

framework, but the couples of policy rules are different. In particular, in the

present work we study the capability of policies to drive the economy toward the

full employment level. Moreover, since the model considered in [22] is essentially

linear, the possible endogenous dynamics are just convergent or divergent, and

thus stable cyclical fluctuations around the steady state (business cycle) are not

possible. Conversely, the present model is nonlinear and hence complex dynam-
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ics can arise. In particular, the dynamics basically depend on two parameters,

one related to the reactivity of the fiscal policy in adjusting the deviation of the

output realizations from its full employment level, and another linked to the

responsiveness of the money supply with respect to the variation between the

full employment income and the two last output realizations.

It is firstly shown that, from a static viewpoint, the introduction of the mone-

tary policy is able to lead the economy to the desired output equilibrium level.

Secondly, from a dynamic point of view, the interaction of the two policy instru-

ments causes a variety of local bifurcation scenarios (Neimark-Sacker and period

doubling), multistability, as well as complex dynamics that are not possible for

the model considered in [22]. In particular, the introduction of the monetary

policy can have beneficial effects in reducing the complexity of the orbits and in

leading the economy toward the full employment income, if it is not too aggres-

sive. Otherwise endogenous oscillations in the national income dynamics can

take place along an attractive closed invariant curve, which is interpreted as a

business cycle in economics. Both the government and the monetary authority

are able to influence the size and the persistence of the oscillations by properly

tuning their policy instruments. Finally, from a global analysis perspective, we

have shown the coexistence of different attractors, occurring even when the na-

tional income steady state is locally stable, and thus making the choices of policy

makers crucial to shift the output in the desired direction. Within the present

framework, the introduction of the monetary policy allowed us to thoroughly

investigate the dynamics of the economic activity, which can exhibit interesting

dynamic features that would not be present in a context where only the fiscal

policy is present. In particular, the role of the monetary policy has to be read in

terms of the possibility of stabilizing the national income dynamics but, at the

same time, it can also be responsible for the generation of the business cycle.

This confirms the importance of the role played by the monetary sector and the

relevance of studying how manipulating and targeting the money supply (and,

ultimately, the interest rate) influences the real economic variables. The present

setting can be extended in several directions that take into account the role of
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the monetary policy: firstly, the introduction of the financial sector would add

realism in order to contribute to the debate on whether the monetary author-

ity should respond to financial factors, such as asset prices, in monetary policy

rules; secondly, the introduction of an asset market would allow to account for

different agents’ expectations, whose interaction would affect the overall eco-

nomic stability; thirdly, the role of expectation can also be considered on the

real side, as the consumption choices can also be affected by individual percep-

tions on the output level which, in turn, may contribute to the amplification of

business cycle fluctuations.
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Appendix

Proof of Proposition 1. The assert follows by setting Yt−1 = Yt = Y ∗, Zt =

Zt−1 = Z∗ and Mt = Mt−1 = M∗. From the second equation in (9) we immedi-

ately obtain Y ∗ = Y F , which indeed provides Z∗ = Y F from the third equation

in (9). Setting Y ∗ = Z∗ = Y F in the first equation in (9) we find M∗.

Then, setting Mt−1 = M∗ and Yt−1 = Y ∗ in (8) we obtain R∗. Recalling that

d2 < 0 and ϕ < 0, imposing M∗ > 0 and R∗ > 0 and solving with respect to

Y F we easily find the positivity conditions.

Proof of Proposition 2. See [27].

Proof of Propositions 3-4. The Jacobian matrix of the system is given by

J =











c− g − ϕ̃(d1 − µ(θ − 1)) + γ̃eZ−Y (a1+a2)
2

(a2+a1eZ−Y )2 ϕ̃ −ϕ̃µθ − γ̃eZ−Y (a1+a2)
2

(a2+a1eZ−Y )2

µ(θ − 1) 1 −µθ

1 0 0











,
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which, evaluated at the steady state (Y ∗,M∗, Z∗), becomes

J∗ =











c− g + γ̃ − ϕ̃(d1 + µ(1− θ)) ϕ̃ −γ̃ − ϕ̃µθ

−µ(1− θ) 1 −µθ

1 0 0











.

The characteristic polynomial P (λ) = λ3+C1λ
2+C2λ+C3 associated to matrix

J∗ is defined by

C1 = g − c− γ̃ + d1ϕ̃+ ϕ̃µ− ϕ̃µθ− 1, C2 = c− g + 2γ̃ − d1ϕ̃+ ϕ̃µθ, C3 = −γ̃.

The stability conditions (see [41]) require































1 + C1 + C2 + C3 > 0,

1− C1 + C2 − C3 > 0,

1− C2 + C1C3 − (C3)
2 > 0,

C2 < 3,

namely































ϕ̃µ > 0,

2c− 2g + 4γ̃ − 2d1ϕ̃− ϕ̃µ+ 2ϕ̃µθ + 2 > 0,

g − c− γ̃ + cγ̃ + d1ϕ̃− gγ̃ − d1ϕ̃γ̃ − ϕ̃γ̃µ− ϕ̃µθ + ϕ̃γ̃µθ + 1 > 0,

g − c− 2γ̃ + d1ϕ̃− ϕ̃µθ + 3 > 0.

The first condition is always true. Introducing α = g − c+ d1ϕ̃ we can rewrite

the last three condition of the previous system as



















−ϕ̃(1− 2θ)µ+ 4γ̃ − 2α+ 2 > 0,

−ϕ̃(γ̃(1− θ) + θ)µ+ α− γ̃ − αγ̃ + 1 > 0,

−ϕ̃θµ+ α− 2γ̃ + 3 > 0.

(23)

Before making the stability conditions explicit from System (23), we collect

some identities and inequalities that will be used in the rest of the proof. Let

us define

s3 =
α− 2γ̃ + 3

ϕ̃θ
.
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and note that since c < 1, we have α > −1. We have

s1 > 0 ⇔







0 ≤ θ < 1/2,

α < 2γ̃ + 1,
∪







1/2 < θ ≤ 1,

α > 2γ̃ + 1,

s2 > 0 ⇔ γ̃ < 1,

θ 6= 0 and s2 > 0 ⇒ s3 > 0,

(24)

where the last implication is due to the fact that, when θ 6= 0, s3 > 0 is

equivalent to α > 2γ̃ − 3, but 2γ̃ − 3 < −1 when γ̃ < 1.

Moreover, we have

s1 − s2 =
(γ̃ + 1)(−α+ 4γ̃ + 4θ − 4γ̃θ − 1)

ϕ̃(1− 2θ)(γ̃(1− θ) + θ)
, (25)

and

θ 6= 0 and s2 > 0 ⇒ s2 − s3 < 0 (26)

since

s2 − s3 =
−3γ̃ − 2θ − αγ̃ + 4γ̃θ − 2γ̃2θ + 2γ̃2

ϕ̃θ(γ̃(1− θ) + θ)
< 0

is equivalent to

α >
−3γ̃ − 2θ + 4γ̃θ − 2γ̃2θ + 2γ̃2

γ̃
=

2γ2 − 3γ̃ − 2θ(1− γ̃)2

γ̃
,

in which the rightmost term is smaller than −1, since when s2 > 0 we have

γ̃ < 1 and consequently

2γ2 − 3γ̃ − 2θ(1− γ̃)2

γ̃
< −1 ⇔ −2γ̃(1− γ̃)− 2θ(1− γ̃)2 < 0.

We can now make (23) explicit with respect to µ. In particular, we distinguish

different cases depending on the values of µ.

• θ = 0

System (23) becomes



















−ϕ̃µ+ 4γ̃ − 2α+ 2 > 0,

−ϕ̃γ̃µ+ α− γ̃ − αγ̃ + 1 > 0,

α− 2γ̃ + 3 > 0,

(27)
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in which the last condition requires α > 2γ̃ − 3, while the first and the second

one respectively become µ < s1 and µ < s2. Hence, we can write



















θ = 0,

α > 2γ̃ − 3,

0 ≤ µ < min{s1, s2}.

To have a non-empty stability interval we need s1 > 0 and s2 > 0, which, setting

θ = 0 in (24), respectively provide α < 2γ̃ + 1 and γ̃ < 1 (so α > 2γ̃ − 3 holds

true). Moreover, setting θ = 0 in (25) we have that s1 < s2 when α > 4γ̃ − 1.

System (27) then becomes

0 ≤ µ < s2when



















θ = 0,

−1 < α < 4γ̃ − 1,

γ̃ < 1,

(28)

and

0 ≤ µ < s1when



















θ = 0,

4γ̃ − 1 ≤ α < 2γ̃ + 1,

γ̃ < 1.

(29)

• 0 < θ < 1/2

Conditions in (23) respectively become µ < s1, µ < s2 and µ < s3. Thus, to

have a non-empty stability interval, we need s1 > 0, i.e. α < 2γ̃+1 and s2 > 0,

i.e. γ̃ < 1. Recalling (24) and (26), this last condition guarantees that s3 > 0

and s2 < s3. Hence, we can write































0 < θ < 1/2,

−1 < α < 2γ̃ + 1,

γ̃ < 1,

0 ≤ µ < min{s1, s2}.

Since from (25) we have s1 < s2 when α > 4γ̃ − 1 + 4θ(1− γ̃) and noting that

4γ̃ − 1 + 4θ(1− γ̃) < 2γ̃ + 1 ⇔ 2(1− γ̃)(2θ − 1) (30)
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is negative for γ̃ < 1 and 0 < θ < 1/2, we can conclude

0 ≤ µ < s2 when



















0 < θ < 1/2,

−1 < α < 4γ̃ − 1 + 4θ(1− γ̃),

γ̃ < 1,

(31)

and

0 ≤ µ < s1 when



















0 < θ < 1/2,

4γ̃ − 1 + 4θ(1− γ̃) ≤ α < 2γ̃ + 1,

γ̃ < 1.

(32)

Combining (28) and (31) we obtain condition (12a), while (29) and (32) together

provides (12b).

• θ = 1/2

The first condition in (23) is α < 2γ̃+1, the second one requires µ < s2 and

the third one requires µ < s3. Thus, to have a non-empty stability interval we

need s2 > 0, i.e. γ̃ < 1, which guarantees s3 > 0 and s2 < s3. The system (23)

then becomes

0 ≤ µ < s2 when



















θ = 1/2,

−1 < α < 2γ̃ + 1,

γ̃ < 1.

(33)

• 1/2 < θ ≤ 1

The first condition in (23) is α > s1, the second one requires µ < s2 and the

third one requires µ < s3. Thus, to have a non-empty stability interval we need

s2 > 0, i.e. γ̃ < 1, which again guarantees that s3 > 0 and s2 < s3. The system

(23) becomes


















1/2 < θ ≤ 1,

γ̃ < 1,

s1 < µ < s2.

(34)

To have a non-empty stability interval we need s1 < s2. Recalling (25), we have

α < 4γ̃ − 1 + 4θ(1− γ̃),
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where it is easy to the see that the right-hand side is greater than −1.

In particular, a destabilizing scenario occurs when s1 ≤ 0, i.e. from (24)

when α < 2γ̃ + 1, which allows writing

0 ≤ µ < s2 when



















1/2 < θ ≤ 1,

−1 < α ≤ 2γ̃ + 1,

γ̃ < 1,

which combined with (33) provides condition (13a). Finally, we have a mixed

scenario when s1 > 0, i.e. from (24) when α > 2γ̃ + 1, which allows rewriting

System (34) as (13b). We stress that, thanks to (30), the second condition in

the rightmost system is always fulfilled by some α.

Proof of Proposition 5. We follow the projection method described in [42, Chap-

ter 5.4 ]. Since computations are long but standard, we just report a sketch

of the main steps of the proof. As in the proof of Proposition 4, we set

α = g − c+ d1ϕ̃+ 1.

To have an eigenvalue λ1 = −1 and the remaining couple of eigenvalues λ2,3

inside the unitary circle8 we need







−ϕ̃(1− 2θ)µ+ 4γ̃ − 2α = 0,

−ϕ̃(γ̃(1− θ) + θ)µ+ α− γ̃ − αγ̃ > 0,
⇔







µ = s1,
α− 4γ̃ − 4θ + 4γ̃θ

1− 2θ
> 0,

from which we have condition (16).

After noting that the Jacobian matrix of System (15) evaluated at the origin

actually coincides with J∗, let q ∈ R3 and p ∈ R3 be two eigenvectors related

to eigenvalue λ1 for J∗ and (J∗)T , respectively. We choose p, q so that the

normalization condition 〈p, q〉 = 1 is satisfied, where 〈, 〉 is the Euclidean scalar

product in R3. The Taylor series expansion of System (15) can be written as

T0(x) = J∗x+
1

2
B(x, x) +

1

6
C(x, x, x) +O

(

‖x‖4), (35)

8We recall that (proof of Proposition 4) in (11) the left hand side in first condition corre-

sponds to p(−1), where p is the characteristic polynomial of J
∗

.
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where x = (Y,M,Z)T and the multilinear functions B(x, y) and C(x, y, z) cor-

respond to

Bi(x, y) =

3
∑

j,k=1

∂T0,i(ξ)

∂ξj∂ξk

∣

∣

∣

∣

ξ=0

xiyk, Ci(x, y, z) =

3
∑

j,k,l=1

∂T0,i(ξ)

∂ξj∂ξkδξl

∣

∣

∣

∣

ξ=0

xiykzl,

for i = 1, 2 and 3. The center manifold Ws1 for T0 can be then represented by a

function whose restriction on Ws1 is topologically conjugate to the normal form

(17) of the flip bifurcation, where

χ =
1

6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A − I)−1B(q, q))〉

and I is the three-dimensional identity matrix. Computing quantities involved

in the previous identity leads to (18).

Proof of Proposition 6. We follow the projection method described in [42, Chap-

ter 5.4 ]. As before, we only report a sketch of the main steps of the proof.

We note that all the eigenvalues of J∗ lie inside (respectively outside) the

unitary circle if and only if each condition in (11) holds true (respectively holds

with the opposite inequality). When the left hand side in the first condition in

(11) becomes null, we know that we have an eigenvalue equal to −1, while in

the proof of Proposition 4 we proved that the third condition in (11) is implied

by the first two conditions. So, the unique possibility to have a (real) eigenvalue

λ1 inside the unit circle and a couple of complex eigenvalues λ2,3 on the unitary

circumference is






−ϕ̃(1− 2θ)µ+ 4γ̃ − 2α > 0,

−ϕ̃(γ̃(1− θ) + θ)µ+ α− γ̃ − αγ̃ = 0,
⇔











− (γ̃ + 1)(α− 4γ̃ − 4θ + 4γ̃θ)

γ̃ + θ − γ̃θ
> 0,

µ = s2.

(36)

It is easy to see that computing the eigenvalues of J∗ and evaluating them at

µ = s2, we find λ1 = γ̃ < 1 and, setting β = γ̃ + θ − γ̃θ > 0, the couple of

complex conjugated eigenvalues

λ2,3 =
2β − α± i

√

α(4β − α)

2β
.

Note that |λ2,3| = 1 and, from the first condition in (36), we have 4β > α.
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Strong resonances are avoided provided that (2β − α)/2β 6= 1 (i.e. α 6= 0,

guaranteed by α > 0), (2β − α)/2β 6= 0 (i.e. α 6= 2β), (2β − α)/2β 6= −1 (i.e.

α 6= 4β, guaranteed by 4β > α), (2β − α)/2β 6= −1/2 (i.e. α 6= 3β)

Let q ∈ C3 and p ∈ C3 be two eigenvectors related to eigenvalue λ2 for J∗

and (J∗)T , respectively. We choose p, q such that the normalization condition

< p, q >= 1 is satisfied, where <,> is the Euclidean scalar product in C3.

Recalling the Taylor expansion of T0 in (35), the center manifold Ws2 for T0

can be then represented by a function whose restriction on Ws2 is topologically

conjugate to the normal form (21) of the Neimark-Sacker bifurcation, where

Re(δ) =
1

2
Re{λ3[〈p, C(q, q, q̄)〉+2〈p,B(q, (A−I)−1B(q, q̄))〉+〈p,B(q̄, (λ2

2I−J∗)−1B(q, q))〉]}

in which I is the three-dimensional identity matrix. Computing quantities in-

volved in the previous identity leads to Re(δ) = N/D where

N = α2γ̃(1 − θ)2(β − θ){2a1a2(β − θ)(1− θ)α2 − β(β − θ)[(a1 − a2)
2(1− β)

+ 8a1a2(1− θ)]α+ β2(1− β)[(1− β)(a21 − 4a1a2 + a22) + 4(a1 − a2)
2(β − θ)]}

and

D = 2β(a1+a2)
2((β−θ)(1−θ)α+β(1−β)2)(α(4β−α)(β−θ)(1−θ)+β2(β−1)2)

Recalling that β > θ, 0 < β < 1, α > 0 and θ < 1 we have that D > 0, as well as

α2γ̃(1−θ)2(β−θ) > 0, so non-degeneracy is guaranteed by b2α
2+ b1α+ b0 6= 0,

where

b2 = 2a1a2(β−θ)(1−θ)α2 > 0, b1 = −β(β−θ)[(a1−a2)
2(1−β)+8a1a2(1−θ)]α < 0

while b0 can be either positive or negative. The parabola b2α
2 + b1α + b0 is

then convex with vertex having positive abscissa, so both a supercritical and a

subcritical bifurcation are possible. Replacing the original expressions of α, β

and γ̃ allows concluding.
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