
Time delays in a genetic positive-feedback circuit
Alessandro Borri, Senior Member, IEEE, Pasquale Palumbo, Member, IEEE, Abhyudai Singh, Member, IEEE

Abstract—Many principles of feedback control can be found
implemented in complex biological networks. Dealing with tran-
scription networks, positive feedbacks have been shown to fre-
quently occur, providing biological toggle switches eventually
leading a cell to its correct fate according to the proper stimu-
lation. This note investigates the effects of delays related to the
positive feedback of a basic transcription network. Motivation
stems from the fact that, in spite of its toy-model features,
the chosen transcription network is exploited to model the Tat
feedback circuit that drives the HIV infected cells fate from active
viral replication to latency. The delay is modeled by means of a
cascade of transformations required to activate the transcription
factor deputed to control: similar expedients are known to be
exploited in cellular activities to schedule different biological
functions at different timings. Our investigation is carried out
by means of the stochastic approach, shown to be unavoidable
to catch the noise-induced bimodality fashion of the circuit: by
properly tuning the stochastic delay parameters, the regulatory
circuit loses bimodality, and the transcription factor probability
distribution converges to a Poisson distribution.

Index Terms—Chemical Master Equations, Positive feedback,
Stochastic Systems, Systems Biology

I. INTRODUCTION

SYSTEMS Biology investigates the emergent properties of
natural networks. To this end, system and control theory

provide mathematical tools to tackle the extreme complexity
of the biological systems by means of simplifying paradigms.
Among these, the concept of feedback seems to be ubiquitous
at every level of cellular investigation and, nowadays, there can
be found different and diverse biological functions explained
in terms of feedback loops, see e.g. [1], [25], [3] and refer-
ences therein. Within this framework, similarly to the control-
theoretic framework, positive feedbacks are known to produce
bistability and biological toggle switches, eventually leading
a cell to its correct fate according to the proper stimulation
(see, e.g. [19], [9], [30], [12]).

This note investigates the effects of a delay in the positive
feedback of a basic transcription network consisting of a gene
whose expression is positively regulated by its own transcript.
This kind of feedback occurs in the Tat protein circuit that
regulates the switch between viral replication or latency in
HIV infected cells. In more detail, after the HIV infection of
a host cell and the consequent integration of the HIV RNA
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into the cellular DNA, the HIV enters a quiescent or an active
replication state. Both cases are well known and clinically
relevant (see, e.g. [20], [18] and references therein). The
aforementioned cell fate is triggered by the Tat protein circuit:
low Tat levels mean latency, whilst high Tat levels mean viral
replication. Previous works have shown that such bimodal
behavior can be explained only according to a stochastic
approach since the deterministic model lacks bistability for
physiologically relevant parameter regimes (see [27], [29],
[28], [24], [24], [21]). Within the literature dealing with the
analysis of the effects of noise in stochastic biological circuits,
one can refer e.g. to [2], [5], [13], [15], [14] and references
therein.

The novelty of the present work is to extend the modeling
assumptions by assuming the existence of a delay in the
positive feedback loop. In more detail, we assume that the
Tat protein needs to be activated before exerting its feedback
control role, and that such activation occurs at the end of a
cascade of chemical modifications. Examples of cascades of
activations are given by multisite phosphorylations, known to
be involved in many cellular functions, e.g. whenever a specific
timing is required for a sequence of scheduled biological
activities such as the ones that regulate cell cycle (see, e.g.
[17], [6] and also [14] as an example of cascade activation
model with a priori unknown length). With regards to the
delay, the use of a cascade characterizes the delay average
value and coefficient of variation by means of independent
parameters. This fact may be useful within a Synthetic Biol-
ogy framework, whenever the goal is to investigate how to
design synthetic circuits performing specific biological tasks
(see, e.g. [8], [7] or the recent review [11] and references
therein). Within this framework, different wirings such as a
longer/shorter cascade or the presence/absence of a feedback
loop may provide a different noise propagation eventually
affecting the fluctuations of the average circuit outcomes, and
a correct stochastic investigation may suggest which model
parameters need to be varied (and how) in order to reduce the
impact of noise [16], [4].

Similarly to the delay-free case discussed in [24], [21],
also in the present framework bimodality may arise (consis-
tently with experimental observations) and is a noise-induced
phenomenon because the deterministic Ordinary Differential
Equations (ODE) associated to the average value dynamics of
the stochastic Chemical Master Equations (CME) exploited
to model the transcription network under investigation fail
to catch any bistable behaviors. CMEs are written for the
general case but, as usual, they cannot be exploited to achieve
the explicit solutions because of the curse of dimensionality
[26]. Therefore, general results are provided by means of the
Gillespie Stochastic Simulation Algorithm (SSA) [10], the
numerical golden standard to solve CMEs by means of Monte
Carlo simulations. The whole campaign of SSA simulations



TABLE I
CHEMICAL REACTIONS

Event Reset Propensity
S0 production, n0 7→ n0 + j, f(np)P(β = j)

j bursts, j = 1, 2, . . .
Si transformation, ni 7→ ni − 1 λini

i = 0, 1, . . . , p− 1 ni+1 7→ ni+1 + 1
Sp degradation np 7→ np − 1 γnp

is carried out by varying the cascade parameters and results
show that the delay plays a crucial role in determining whether
bimodality arises or not: by increasing the delay, bimodality
is definitively lost and the transcription factor stationary dis-
tribution converges to a Poisson distribution. Although being
achieved by simulations, these results are supported by a
theoretical analysis carried out on a reduced-order model
obtained by fixing the length of the cascade to the smallest
possible value.

II. MODEL SETTING

Consider protein S0 undergoing a cascade of p functional
modifications, ultimately allowing its final activation as Sp,
Fig. 1. According to the stochastic approach, the state of the
system is given by the copy number of the different protein
modifications (namely, n0, . . ., np). Sp controls in positive
feedback S0 production, which occurs in noisy bursts [22],
where the size burst β (i.e. the burst copy number) is a
geometric random variable with probability distribution:

P(β = j) = α(1− α)j−1, α ∈ (0, 1), j = 1, . . . (1)

The positive feedback is modeled by the Hill function:

f(np) = km
b+ cnHp
1 + cnHp

with 0 < b < 1. (2)

Production, degradation and modifications resets are described
in Table I.

Fig. 1. Cascade of biochemical reactions

The mathematical model here reported is exploited to de-
scribe the Tat feedback circuit, where Tat is a protein essential
for HIV replication, since it controls in positive feedback the
expression of the gene deputed to its production. Experimental
evidence has shown that the Tat feedback circuit has a unitary
Hill coefficient [29], [28], [24], i.e. H = 1 in (2). Such a model
has been investigated according to both the deterministic and
stochastic approach in [21], where no cascade was considered
(i.e. p = 0). In that case, for H = 1, the ODE model
shows a unique stable equilibrium point regardless of the other
parameter values, whilst the stochastic approach provides a
stationary unimodal or bimodal distribution (the latter case
with one of the two modes in zero) according to different
parameter values. Therefore, bimodality is a noise-induced
phenomenon [24].

Here we generalize the framework according to the scheme
of Fig. 1, and investigate the role of the delay in terms of
the length of the cascade (parameter p) and of the strength of
the protein modifications (parameters λi). Aiming to exploit
the model to investigate the Tat protein circuit, we assume
H = 1 in the positive feedback. With respect to the stochastic
delay, we suppose that λi = pλ for any i = 0, 1, . . . , p − 1.
This way, we constrain the time delay associated to any
copy number that is transformed from Si into Si+1 to the
length of the cascade. Indeed, according to the CME stochastic
approach [26], the waiting time for species Si, i < p, to transit
from ni to ni − 1 copy numbers because of the intermediate
transformation Si 7→ Si+1 (regardless of any other possible
reactions) is an exponential random variable with average
value 1/(λini) = 1/(pλni). Therefore, dealing with a specific
molecule of the ni copies of Si, its waiting time before being
transformed into a molecule of Si+1 will be ni-times longer,
i.e. an exponential random variable with average value 1/(pλ).
As a matter of fact, the time delay associated to the cascade
of protein transformations ultimately leading a molecule of S0

to be activated into Sp is the sum of p exponentials, each of
average value 1/(pλ), i.e. a Gamma distribution Γ(p, θ) with
θ = 1/(pλ), average value 1/λ and Coefficient of Variation
CV 2 = 1/p. This way, we can vary independently the average
time delay (by means of the rate λ) and its CV (by means of
the length of the cascade p).

III. DETERMINISTIC ODE MODEL

This section studies the qualitative behavior of the ODE
model associated to the positive feedback scheme under in-
vestigation, in particular with respect to bistability.

Obtained by the first-order approximation of the average
value dynamics, the ODE model is below reported, with the
average copy numbers denoted by overbars:

ṅ0(t) = −pλn0(t) +
1

α
f(np)

ṅi(t) = −pλni(t) + pλni−1, i = 1, 2, . . . , p− 1

ṅp(t) = pλnp−1(t)− γnp

(3)

In case of H = 1 in (2), the ODE system (3) is monostable,
since it admits a unique equilibrium point, regardless of the
other parameter values. Indeed, by setting equal to zero the
ODE dynamics in (3), one gets

n0 = · · · = np−1 =
1

pαλ
f(np), np =

1

αγ
f(np). (4)

By construction, the Hill function in the right-hand-side of (4)
starts with a positive value in zero (i.e. f(np = 0) = kmb >
0), it is monotonically increasing (because f ′(np) > 0 for
np > 0), and it asymptotically reaches a plateau for np 7→ +∞
(since limnp 7→+∞ f(np) = km). Moreover, for H = 1, the Hill
function does not change its convexity (its second derivative is
negative for np > 0), therefore it admits a unique intersection
with the straight line at the left-hand-side of (4).

Remark 1: It is apparent from the steady-state equation (4)
that, although intermediate stationary states depend on the de-
lay introduced by the cascade, the final product accumulation
does not depend on the delay (either in terms of the cascade



length p, or in terms of the rate λ). In other words, the delay
does not affect the qualitative behavior of the deterministic
ODE model (that lacks bistability for H = 1), nor it affects
the average value of the accumulation of the final product n̄p.

IV. STOCHASTIC CME MODEL

This section is devoted to studying the stationary distribu-
tion associated to the marginal probability of the final product
Sp, investigating whether bimodality arises or not despite the
lack of bistability in the ODE model.

Let P0,··· ,p(n0, . . . , np) denote the joint probability distri-
bution associated to the CME. For the sake of a more compact
notation, in the following formulas, we explicitly report entry
i, for i = 0, . . . , p, in P0,··· ,p only if different than ni. Then,
the CME associated to a generic point (n0, . . . , np) is:

dP0,1,··· ,p

dt
= γ(np + 1)P0,··· ,p(. . . , np + 1)− γnpP0,··· ,p

+pλ(n0 + 1)P0,··· ,p(n0 + 1, n1 − 1, . . .) + · · ·
+pλ(np−1 + 1)P0,··· ,p(. . . , np−1 + 1, np − 1)

−p(λn0 + · · ·+ λnp−1)P0,··· ,p

+

n0∑
j=1

(1− α)j−1αf(np)P0,··· ,p(n0 − j, . . .)

−
+∞∑
j=1

(1− α)j−1αf(np)P0,··· ,p

(5)
Since we are interested in the final product stationary

distribution, we need to set the CME equal to zero and
compute the stationary marginal distribution Pss,p(np) by
properly summing the joint distribution with respect to all
other entries n0, n1, . . . , np−1. After computations, we obtain
the following constraint:

γ(np + 1)Pss,p(np + 1)− γnpPss,p(np)

= pλ

+∞∑
np−1=1

np−1
(
Pss,p−1,p(np−1, np)

−Pss,p−1,p(np−1, np − 1)
)

(6)
where Pss,p−1,p denotes the stationary joint distribution with
respect to the pair (np−1, np). The presence of such joint
probability prevents the possibility to carry out exact com-
putation without moment closure techniques. Therefore, in
order to provide most general results, the investigation is
carried out according to a large campaign of Monte Carlo
simulations achieved by means of the Gillespie SSA [10],
the numerical approach usually exploited for approximating
the CME solution, since it provides accurate estimates of the
probability distributions associated to the reaction network,
and is useful even when the average copy number becomes
high and explicit CME computations [31] are unfeasible.

Except for the cascade parameters p and λ (supposed to
vary), the other parameter values have been fixed to the ones
reported in Table II, complying with the constraints provided
in [21] that ensure bimodality for the delay-free case. The
following simulation results, obtained via SSA exploiting the

TABLE II
MODEL PARAMETERS

Parameter b H c km γ α
Value 0.05 1 0.6162 0.15 0.075 0.0375

apparent ergodicity of the stochastic model (see Table I and
reference [31] for further details), are obtained:
• the np stationary marginal distribution definitively loses

its bimodal fashion for sufficiently small values of λ (i.e.
large values of average delay), as shown in Fig. 2, where
it seems to approach the same (Poisson) distribution,
independently of the length of the cascade (hence, for any
p ≥ 1). This fact is coherent with the results achieved in
Section III, where it is shown that the stationary average
value of np does not depend of the delay parameters,
since for a Poisson distribution the average value unequiv-
ocally determines the shape of the distribution;

• for a fixed length of the cascade p, computations of
moments for λni, i < p, highlight that 〈λni〉 = λ 〈ni〉
is approximately constant with respect to λ, and the
variance of λni goes to zero when λ decreases. As a
consequence, for λ 7→ 0, the random variable λni tends to
a finite deterministic value λ 〈ni〉, although 〈ni〉 becomes
larger and larger. Moreover, from the ODE model (4) at
the equilibrium, one further obtains that λ 〈ni〉 ' γ 〈np〉;

• with regards to the case p = 1, the marginal Poisson
distribution achieved for λ 7→ 0 characterizes a 1D
continuous-time Markov process with one-step linear
clearance γn1 and one-step constant birth propensity
equal to γ 〈n1〉, which approximately holds for small λ
(as discussed above). Fig. 3 shows the stationary marginal
distributions for p = 1 getting closer to the Poisson
distribution as long as λ decreases.
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Fig. 2. Stationary distribution for small λ (= 2 · 10−4) and varying p.

Since Fig. 2 seems to imply that mono-modality holds for
sufficiently small λ, independently of p, it is of interest to
study (via SSA) the minimum λ to recover the bi-modal
behavior, which we will call λbimodmin (p). This time, the results
seem to depend on p and are summarized in Table III.



Number of stages p λbimod
min (p)

1 0.042
2 0.040
3 0.036
4 0.033

TABLE III
MINIMUM VALUE OF λ INDUCING A BIMODAL BEHAVIOR, AS A FUNCTION

OF THE NUMBER OF CASCADE STAGES p
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Fig. 3. Stationary distribution of n1 for varying λ.

V. STATIONARY MARGINAL DISTRIBUTION FOR p = 1

The aim of the Section is to theoretically support the
previous numerical results in the simplified case of p = 1.

For p = 1, then the CME (5) reduces to:

dP0,1

dt
= γ(n1 + 1)P0,1(n0, n1 + 1)− γn1P0,1(n0, n1)

+λ(n0 + 1)P0,1(n0 + 1, n1 − 1)− λn0P0,1(n0, n1)

+

n0∑
j=1

(1− α)j−1αf(n1)P0,1(n0 − j, n1)

−
+∞∑
j=1

(1− α)j−1αf(n1)P0,1(n0, n1)

(7)
and the constraint in (6) reduces to:

γ(n1 + 1)Pss,1(n1 + 1)− γn1Pss,1(n1)

= λ

+∞∑
n0=1

n0
(
Pss,0,1(n0, n1)− Pss,0,1(n0, n1 − 1)

)
.

(8)
Before stating the main result of the Section, we introduce

the following notation for a class of moments associated to
the joint distribution

Ξk(n1) =

+∞∑
n0=1

nk0P0,1(n0, n1)

=

(
+∞∑
n0=1

nk0P0|1(n0|n1)

)
P1(n1) =

〈
nk0 |n1

〉
P1(n1),

(9)

where the brackets in (9) shortly denote the conditional
expectation. Then, the following preliminary result is provided.

Proposition 1: The stationary marginal distribution
Pss,1(n1) satisfies the following constraints

Pss,1(n1+1) =
λ

γ(n1 + 1)
Ξ1
ss(n1), n1 = 0, 1, . . . , (10)

where Ξ1
ss(n1) is the stationary value of the first-order moment

defined in (9) and fulfills the following constraints:

γ
(

(n1 + 1)Ξ1
ss(n1 + 1)− n1Ξ1

ss(n1)
)

+λ
(

Ξ2
ss(n1 − 1)− Ξ2

ss(n1)− Ξ1
ss(n1 − 1)

)
+
f(n1)

α
Pss,1(n1), n1 > 0

(11)

with the initial condition

γΞ1
ss(1)− λΞ2

ss(0) +
f(0)

α
Pss,1(0). (12)

Proof. Because of (9), the constraint in (8) becomes

γ(n1 + 1)Pss,1(n1 + 1)− γn1Pss,1(n1)

= λ
(
Ξ1
ss(n1)− Ξ1

ss(n1 − 1)
) (13)

for n1 > 0, and reduces to

γPss,1(1) = λΞ1
ss(0) (14)

for n1 = 0. According to iterative substitutions, we have that
(14) can be generalized into (10). In order to derive a recursive
equation for Ξ1

ss(n1), and couple it to (10), we compute the
dynamics of Ξ1(n1) from the CME (7):

dΞ1(n1)

dt
=

+∞∑
n0=1

n0
dP0,1(n0, n1)

dt

= γ

+∞∑
n0=1

n0(n1 + 1)P0,1(n0, n1 + 1)

− γ
+∞∑
n0=1

n0n1P0,1(n0, n1)

+ λ

+∞∑
n0=1

n0(n0 + 1)P0,1(n0 + 1, n1 − 1)

− λ
+∞∑
n0=1

n20P0,1(n0, n1)

+

+∞∑
n0=1

n0∑
j=1

(1− α)j−1αn0f(n1)P0,1(n0 − j, n1)

−
+∞∑
n0=1

+∞∑
j=1

(1− α)j−1αn0f(n1)P0,1(n0, n1).

(15)



Notice that by changing the order of the sums in the second-
to-last terms in (15) we have

+∞∑
j=1

+∞∑
n0=j

(1− α)j−1αn0f(n1)P0,1(n0 − j, n1)

=

+∞∑
j=1

+∞∑
n0=0

(1− α)j−1α(n0 + j)f(n1)P0,1(n0, n1)

=

+∞∑
n0=1

+∞∑
j=1

(1− α)j−1αn0f(n1)P0,1(n0, n1)

+
f(n1)

α
P1(n1)

(16)
so that the sum of the last two terms in (15) simplifies
into f(n1)

α P1(n1). In summary, after further computations, we
obtain the stationary solution provided by (11)-(12). �

Unfortunately, eq. (11) cannot be straightforwardly ex-
ploited, since it involves the second order conditional moments
Ξ2
ss(n1). This is a typical drawback arising in CMEs, deal-

ing with non-closed moment equations, whenever nonlinear
propensities are exploited. Different approximations can be
found in the literature in order to close the moment equations:
the approach we follow somewhat resembles the one that
allows to write first-order moment equations by substituting
higher-order moments as nonlinear functions of first-order
moments [23], [26]. In fact, according to the definition in (9),
one has:

Ξ2(n1) =
〈
n20|n1

〉
P1(n1). (17)

If we expand with Taylor n20 around its conditional expectation
value 〈n0|n1〉 =

∑+∞
n0=1 n0P0|1(n0|n1), and approximate it up

to the linear terms, we have

n20 '
(
〈n0|n1〉

)2
+ 2 〈n0|n1〉

(
n0 − 〈n0|n1〉

)
. (18)

By substituting (18) into
〈
n20|n1

〉
, we obtain:〈

n20|n1
〉
'
(
〈n0|n1〉

)2
(19)

and so

Ξ2(n1) '
(
〈n0|n1〉

)2
P1(n1) =

(
Ξ1(n1)

)2
/P1(n1). (20)

Remark 2: It is worth noticing that the approximation
(19) is closer and closer to reality for conditional probability
distributions of n0|n1 with a smaller and smaller variance.
This information could be a-posteriori exploited by Monte
Carlo simulations (SSA) to assess the validity of (19), which
approximately holds in our case for the chosen set of param-
eters and p = 1.

Plug the approximation (20) into the stationary equation
coming from (11). Then, after computations, one gets:

γ
(

(n1 + 1)Ξ(n1 + 1)− n1Ξ(n1)
)

+
f(n1)

α
P1(n1)

+λ

((
Ξ(n1 − 1)

)2
P1(n1 − 1)

−
(
Ξ(n1)

)2
P1(n1)

− Ξ(n1 − 1)

)
= 0

(21)
where Ξ1

ss(·) and Pss,1(·) have been substituted by Ξ(·) and
P1(·) for short. Then, by further substituting (10) into (21)

we obtain the following recursive equation for the stationary
marginal distribution P1:

γ2

λ
n1

(
(n1 + 1)P1(n1 + 1)− (n1 − 1)P1(n1)

)
+ f(n1−1)

α P1(n1 − 1)

+γ

(
γ(n1−1)2

λ
P 2

1 (n1−1)
P1(n1−2) −

γn2
1

λ
P 2

1 (n1)
P1(n1−1)

−(n1 − 1)P1(n1 − 1)

)
= 0

(22)

recursively providing P1(n1 + 1) as a function of P1(n1),
P1(n1−1) and P1(n1−2). Initialization derives by substituting
(14) and (20) into (12), providing the constraint:

2γ2

λ
P1(2)− γ2

λ

P 2
1 (1)

P1(0)
+
f(0)

α
P1(0) = 0. (23)

It clearly comes from (22)-(23) that the whole marginal dis-
tribution P1(n1) may be written with respect to the unknown
probability pair P1(0), P1(1), that requires to be identified by
means of the usual normalization constraint

+∞∑
n1=0

P1(n1) = 1. (24)

Positive feedback circuits with extremely long delays

When substituting λ = 0 in the reset maps of Table
I, transformations from any S0 into S1 are forbidden, the
marginal distribution of n1 is a flat zero distribution for
n1 > 0 with Pss,1(n1 = 0) = 1, since only degradations
are admitted for S1, and n0 definitively increases without
reaching a stationary distribution since only n0 productions
are admitted. Such a behavior is lost when making the limit for
λ 7→ 0 in the CME solution. Numerical simulations reported
in the previous section suggest that the stationary probability
distribution Pss,p(np) converges to a Poisson distribution for
any value of p > 0 (see Fig. 2). As a matter of fact, bimodality
is lost by sufficiently increasing the average delay 1/λ. Below,
a theorem is reported that proves the correctness of this
conjecture for the approximated marginal distribution achieved
for p = 1.

Theorem 1: Let p = 1. Then, the marginal distribution
P1(n1) written according to approximation (20) converges to
a Poisson distribution for λ 7→ 0.
Proof. According to approximation (20), P1(n1) satisfies the
constraint in (22). By taking the limit for λ 7→ 0, terms
that do not have λ at the denominator in (22) are negligible
with respect to the others, therefore such a recursive equation
simplifies into:

n1

(
(n1 + 1)P1(n1 + 1)− (n1 − 1)P1(n1)

)
+ (n1 − 1)2

P 2
1 (n1 − 1)

P1(n1 − 2)
− n21

P 2
1 (n1)

P1(n1 − 1)
= 0. (25)

Analogously, (23) converges to the following constraint:

2P1(2)− P 2
1 (1)

P1(0)
= 0. (26)



Given the pair of initial conditions P1(0), P1(1), the pair
of recursive equations (25)-(26) clearly provides a unique
solution. Such solution writes as:

P1(n1) =
1

n!

Pn1
1 (1)

Pn1−1
1 (0)

, n1 = 2, 3, . . . (27)

The proof that (27) satisfies constraints (25)-(26) is readily
achieved by mathematical induction. By further considering
the normalization constraint (24), we have:

P1(0) + P1(1) +

+∞∑
n1=2

P1(n1)

=

+∞∑
n1=0

P1(0)

n!

(
P1(1)

P1(0)

)n1

= P1(0)e
P1(1)

P1(0) = 1

(28)

so that P1(0) and P1(1) are required to satisfy the constraint

P1(1) = −P1(0) ln
(
P1(0)

)
. (29)

By substituting (29) in (27) we have

P1(n1) =
1

n!
P1(0)

(
ln

(
1

P1(0)

))n1

, n1 = 2, 3, . . .

(30)
which is, actually, a Poisson distribution with parameter ρ =
− ln

(
P1(0)

)
. �

VI. CONCLUSIONS

This work has investigated the emergence of noise-induced
bimodality in a positive feedback circuit. From the application
viewpoint, this circuit represents the Tat-feedback circuit en-
coded by HIV, which has been shown to control the outcome
of a cellular infection between virus active replication and
latency, where the virus becomes dormant inside the cell.
Interestingly, while the Tat-feedback circuit is monostable (i.e.
it lacks bistability), it shows a bimodal distribution of Tat,
with high (respectively, low) Tat levels corresponding to virus
replication (respectively, latency). Here we have investigated
the presence of delays in the Tat-feedback circuit and have
shown that a delay can convert a bimodal distribution into a
Poisson distribution where Tat levels are always high. This
result has important implications for therapy – introducing
delays through decoy-binding sites or small molecule drugs
can prevent low Tat levels, and hence prevent cells from
becoming latent. Latency is currently considered the biggest
obstacle for purging the virus from the patient, as latently
infected cells cannot be targeted by antiretroviral drug therapy
or by the host’s immune response [24], [18].
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