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Abstract. A tumor growth model accounting for angiogenic stimulation and

inhibition is here considered, and a closed-loop control law is presented with the

aim of tumor volume reduction by means of anti-angiogenic administration. To
this end the output-feedback linearization theory is exploited, with the feedback

designed on the basis of a state observer for nonlinear systems. Measurements

are supposed to be acquired at discrete sampling times, and a novel theoretical
development in the area of time-delay systems is applied in order to derive a
continuous-time observer in spite of the presence of sampled measurements.
The overall control scheme allows to set independently the control and the
observer parameters thanks to the structural properties of the tumor growth

model. Simulations are carried out in order to mimic a real experimental
framework on mice. These results seem extremely promising: they provide very

good performances according to the measurements sampling interval suggested
by the experimental literature, and show a noticeable level of robustness against
the observer initial estimate, as well as against the uncertainties affecting the
model parameters.
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1. Introduction. Anti-angiogenic therapies are cancer treatments, proposed at
first by Folkman [5] in the early seventies, consolidated along the nineties by sev-
eral discoveries on the main principles regulating tumor angiogenesis [6] and widely
debated in several theoretical and experimental studies throughout the last decade.
Anti-angiogenic treatments aim at inhibiting the development of the vascular net-
work necessary to support tumor growth during the vascular phase, so providing
a way to control the heterogeneous and growth-unconstrained tumor population
throughout the control of the homogeneous and growth-constrained population of
endothelial cells [8, 24]. Tumors have the capability to develop resistance to the
conventional chemotherapeutic drugs mainly because of the rapidity of tumor cells
in evolving towards new resistant phenotypes. Due to the indirect action of the
anti-angiogenic drugs, the outcome of the therapy should not be impaired by the
capability of tumor cells to generate resistant phenotypic variants [7, 9], and the
effectiveness of anti-angiogenic treatments on the control and possible remission of
experimental tumors has been demonstrated [9]. Moreover, anti-angiogenic thera-
pies have limited side effects respect to the conventional chemotherapies and radio-
therapies. Conventional chemotherapies may also have anti-angiogenic effects on
the vascular network [10, 11, 12].

This note aims to investigate and design a closed-loop model-based anti-angiogenic
therapy. The adopted model refers to [4], where a quantitative model describing
the growth of experimental tumors under the control of the vascular network is
presented. In [4], Hahnfeldt and coworkers introduced the concept of the carrying
capacity of the vasculature, i.e. the tumor volume potentially sustainable by the
vasculature, in order to account for the vascular control on the tumor growth. As
the carrying capacity is strictly dependent on the vasculature extension, its dynam-
ics can be assumed to represent the dynamics of the vascular network. Moreover,
the effect on the carrying capacity of stimulatory and inhibitory angiogenic signals
produced by the tumor itself and of administered anti-angiogenic drugs are explic-
itly accounted by the model formulation. The paper represents one of the first
attempts to model, with a minimal number of parameters, the interplay between
the dynamics of the tumor volume and of the carrying capacity, with or without ad-
ministration of anti-angiogenic drugs. In [4] the predictions of the model have also
been successfully compared with experimental data on anti-angiogenically treated
and untreated Lewis lung tumors in mice.

Besides experimental frameworks, the model proposed in [4] has been widely
exploited in theoretical studies in order to predict the effectiveness of new anti-
angiogenic therapies and some model extensions have also been proposed in the
related scientific literature. In [13] some model modifications are proposed and
conditions for the eradication of the tumor under a periodic anti-angiogenic treat-
ment are provided. In [16, 17] problems addressing the optimal scheduling of a
given amount of angiogenic inhibitors are presented. Anti-angiogenic therapies are
nowadays investigated for their use in combination with chemotherapy, within the
framework of a multidrug cancer therapy, and the Hahnfeldt model is still a land-
mark to synthesize and validate both combined or pure anti-angiogenic drug thera-
pies. In [15] the optimal scheduling problem of a combined radiotherapy and anti-
angiogenic treatment is formulated by exploiting a suitable modified version of the
original model. Further extensions are also proposed in [14], where the authors aim
at describing the interplay between the populations of tumor cells and endothelial
cells subject to a combined therapy of chemotherapeutic and anti-angiogenic drugs.
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In [18] an optimal scheduling problem for the combined chemotherapeutic/anti-
angiogenic treatment is presented. The reader may refer also to the very recent
[2], where a modified version of [4] accounting for multiple control delays related to
pharmacodynamic/pharmacokinetic drug absorption is exploited, in order to inves-
tigate local controllability and optimal control on a finite treatment horizon utilizing
anti-angiogenic therapy combined to chemotherapy. On the other hand, pure anti-
angiogenic approaches are still investigated in the recent literature, like in [19, 3],
where optimal and robust control strategies are applied to the linearized version of
[4].

By suitably exploiting the Hahnfeldt model [4], tumor volume reduction is here
pursued according to a closed-loop, model-based approach, with the control strategy
making use of the feedback linearization theory [23]. To this end only available
tumor volume measurements are exploited, with the carrying capacity estimated by
means of a state observer for nonlinear systems [20, 1], and the regulator synthesized
as a feedback from the observed state. As known, the purpose of anti-angiogenic
treatment is to keep the tumor volume below a safe level and for this reason the
closed-loop control law is designed to track a desired volume level smaller than the
safety value, possibly starting from a high level situation.

Preliminary results have been presented in [26], where a continuous stream of
measurements has been considered. Instead, in a realistic therapeutic setting, mea-
surements are acquired at discrete sampling times. In order to comply with this issue
without resorting to an approximate discretization scheme, we exploit recent devel-
opments in the theory of time-delay systems [25] where sampled measurements are
modeled as continuous-time outputs affected by time-varying delays [22], according
to which the continuous-discrete control problem can be reformulated as a contin-
uous problem with delayed measurements. We pursue this approach to design the
state observer for the tumor-growth control algorithm.

It is proven that the control scheme allows to set independently the control and
the observer parameters, thanks to the structural properties of the tumor growth
model that guarantee the separability of estimation and feedback control algorithms.

Simulations are carried out in order to mimic a real experimental framework on
mice. These results seem extremely promising with respect to both the reduction
of the tumor growth level and to the bound on the average drug administration,
required to make feasible the proposed drug delivery therapy. More in details, sim-
ulations provide very good performances according to the measurements sampling
intervals suggested by the experimental literature, and show a noticeable level of
robustness against the observer initial estimate, as well as against the uncertainties
affecting the model parameters.

The paper is organized as follows. The next section is devoted to detail the tumor
growth mathematical model chosen to design the closed-loop control law, which is
defined in Section 3, where the main results are provided. Simulations are reported
in Section 4. Conclusions follow.

2. The tumor growth model. The model under investigation is a nonlinear
model accounting for angiogenic stimulation and inhibition [4], and is given by the
following Ordinary Differential Equations (ODE) system:

ẋ1 = −λx1 ln
(
x1

x2

)
,

ẋ2 = bx1 − (µ+ dx
2/3
1 )x2 − cx2x3,

(1)



4 F. CACACE, V. CUSIMANO, A. GERMANI, P. PALUMBO AND F. PAPA

where x1, [mm3], and x2, [mm3], denote the tumor volume and the carrying capac-
ity of the vasculature, respectively. The first equation describes the phenomenology
of tumor growth slowdown, as the tumor grows and resorts its available support
with λ, [day−1], denoting the tumor growth rate constant. In the second equation
the first term (bx1) represents the stimulatory capacity of the tumor upon the in-
ducible vasculature, the second term accounts for spontaneous loss (µx2) and for

tumor-dependent endogenous inhibition (dx
2/3
1 x2) of previously generated vascula-

ture, and the third term refers to the vasculature inhibitory action performed by an
exogenous drug administration (cx2x3) with x3, [mg/kg], denoting the serum level
of the administered angiogenic inhibitor. As far as the parameters, b, [day−1], is the
vascular birth rate constant, d, [day−1mm−2], represents the endothelial cell death,
µ, [day−1], is the rate constant of the spontaneous vascular inactivation, and c,
[day−1(mg/kg)−1], is the sensitivity to the drug. According to the model literature
[4], without loss of generality, parameter µ will be set equal to zero in the following,
because it was found to be negligible (i.e., constitutive endothelial cell loss does not
play a major role in this system).

Being the anti-angiogenic drug not directly administered in vein, a further com-
partment is considered to account for drug diffusion:

x3(t) =

∫ t

0

e−η(t−t′)u(t′)dt′, (2)

with u, [day−1(mg/kg)], being the actual control law and η, [day−1], being the
degradation rate constant. As a matter of fact, the whole system (1)-(2) (with
µ = 0) may be written in a compact ODE form:

ẋ1 = −λx1 ln
(
x1

x2

)
,

ẋ2 = bx1 − dx2/3
1 x2 − cx2x3,

ẋ3 = −ηx3 + u,

(3)

where u stands for the anti-angiogenic drug administration rate, supposed to be
delivered continuously.

We assume that the only available measurement, exploited to design the control
law, is the size of the tumor, that is, the first component of the state vector x.
These measurements are acquired at discrete sampling times. With this assumption,
system (3) can be represented as

ẋ =f(x) + g(x)u, (4)

yk =h
(
x(kT )

)
, k = 1, 2, . . . , (5)

where T is the sampling time and f : R3 → R3, g : R3 → R3×1 and h : R3 → R are
defined by

f(x) =

 −λx1 ln
(
x1

x2

)
bx1 − dx2/3

1 x2 − cx2x3

−ηx3

, g(x) =

0
0
1

 , (6)

h(x) = x1 = Cbx, Cb = [1 0 0]. (7)

3. The control algorithm. Without a control input (i.e. with u(t) = 0), the
open loop system described by (3) exhibits an asymptotically stable non-trivial
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equilibrium point, given by

x1,ss = x2,ss = (b/d)
3
2 = ρ. (8)

The goal of the proposed control scheme is to design a feedback control law u that
allows to reduce the tumor volume (state variable x1) down to a desired level r,
with 0 < r < ρ. By requiring ẋ1 = ẋ2 = ẋ3 = 0 in (3) it follows that the desired
setting point x1 = r implies

x2 = r, x3 =
b− dr2/3

c
, u =

η

c
(b− dr2/3). (9)

The aim of steering system (3) to the equilibrium (9) can be achieved by properly
exploiting the output feedback linearization theory to synthesize a state-feedback
control law and by using a state observer to provide an estimate of the state. Indeed,
we do not have a complete knowledge of the state, but we assume to measure only
the tumor size, i.e. the first component of x1. Because of the discrete feature of
the output, measurements are preliminary restated as continuous delayed outputs,
and then an exponential observer for such systems is applied [25]. A proper post-
processing of the available measurement is as well considered, in order to obtain a
separation principle that allows to independently design the control and observer
parameters. In summary, we define the following delayed output:

h(x) = ln(x1), (10)

yδ(t) =h
(
x(t− δ(t))

)
= ln

(
x1

(
t− δ(t)

))
= ln(yk), t ∈ [kT, (k + 1)T ) (11)

where the last equality is obtained from δ(t) = t − kT . The basic idea, origi-
nally formulated in [22], is that the sampled output can be considered as a delayed
measurement with a non-continuous delay function that grows together with t in
[kT, (k + 1)T ) and is reset to 0 at each sampling point. In this way t − δ(t) is a
constant time point kT in the interval [kT, (k+1)T ) between pairs of measurements.
It is worth noticing that system (4) endowed with the post-processing function h
has full observation degree since

Lgh(x) = LgLfh(x) = 0, (12)

LgL
2
fh(x) = −λc 6= 0, (13)

where Ljfh(x) stands for the Lie derivative of order j of the scalar function h along

the vector field f : Rn → Rn, [23]

Lfh =
dh

dx
f, Ljfh =

dfLj−1
f h

dx
f, j = 2, 3, . . . . (14)

In order to define the observer-based control, we use a nonlinear change of coor-
dinates based on the drift-observability map [1], which in our case is

z = Θ(x) =

h(x)− ln(r)

Lfh(x)

L2
fh(x)

 =

 ln(x1)− ln(r)
−λ ln x1

x2

λ2 ln x1

x2
+ bλx1

x2
− dλx2/3

1 − cλx3

 , (15)

and we consider the hypotheses needed by the observer based on this map.

H1) The system is Globally Uniformly Lipschitz Drift-Observable (GULDO), i.e.
Θ is a diffeomorphism in the domain of interest D and the maps Θ, Θ−1 are
uniformly Lipschitz in D.

H2) The function L3
fh
(
Θ−1(z)

)
is uniformly Lipschitz in D.
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H3) The function LgL
2
fh(x) is a constant.

H4) The system has full observation degree.

In [25] it has been proven that, if H1-H4 are satisfied, then there exists a bound
∆ for the time-varying delay and a positive βc > 0 such that there exist matrices
Ko, Kc and a scalar β > βc ensuring that the observer-based control law defined by

u(t) =
L3
fh(x̂)−Kcẑ

λc
, ẑ = Θ(x̂), (16)

where x̂(t) is the observer estimate computed as

˙̂x = f(x̂) + g(x̂)u(t) + JΘ(x̂)−1e−βδ(t)Ko

(
yδ(t)− h

(
x̂(t− δ(t))

))
, (17)

provides a closed-loop system with the origin of the state space (z, ẑ) globally asymp-
totically stable for any initial condition of the system and of the observer estimate,
and for any delay δ(t) < ∆. From (15) it is easy to check that z = [0, 0, 0]T is the
desired setting point defined in (9).

Hypotheses H3 and H4 have been previously discussed and we have shown they
are satisfied. Actually, the post-processing output (11) has been introduced to
obtain H3.

As for H1-H2, the natural domain of interest is

[0, ρ]× [0, ρ]× [0, x3], (18)

where x3 can be set equal to u/η with u an upper bound for the input u. Indeed,
model (3) associated to the real system under consideration has a physical meaning
only for x1, x2 > 0. Past literature has shown that system (3) has positive solutions
for positive initial conditions and positive input function (see, e.g., [3]). Moreover,
the model equations have been derived in order to exhibit, without a control action,
a monotone increase of the pair (x1, x2) to a plateau (ρ, ρ) when the initial carrying
capacity is larger than the tumor size, i.e. 0 < x1(0) < x2(0), [4]. By adding a
positive input we introduce a decreasing term in the carrying capacity equation,
thus preventing the higher uncontrolled steady-state to be reached. In summary,
(18) is an invariant domain for the system solutions.

Unfortunately, (18) cannot be chosen as the domain of interest D. Indeed, to
comply with H1, consider the Jacobian of Θ:

JΘ =
dΘ

dx
=

 1
x1

0 0

− λ
x1

λ
x2

0

J31 J32 −cλ

 , (19)

where

J31(x) = λ

(
λ

x1
+

b

x2
− 2

3

d

x
1/3
1

)
, J32(x) = −λ (bx1 + λx2)

x2
2

. (20)

The properties needed by H1 require to restrict the domain of interest to the set

D = [ε, ρ]× [ε, ρ]× [0, x3], (21)

where ε is any arbitrarily small value satisfying 0 < ε < r < ρ. Such a domain of
interest D contains the desired equilibrium point (9) and complies with H2, since:

L3
fh(x) = λ2a(x) log

(
x1

x2

)
− λ

(
bx1 + x2

x2
2

)
ξ(x) + cηλx3, (22)
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with

a(x) = λ+ b
x1

x2
− 2

3
dx

2/3
1 , ξ(x) = bx1 − dx

2
3
1 x2 − cx2x3, (23)

and Θ−1 is uniformly Lipschitz in D.
In order to make D invariant for system (3), we have to ensure that all the system

trajectories are contained in D for any input. To this aim the following issues will
be considered.

h1) The time-horizon is limited. This point allows to weaken the invariant prop-
erty of D to ensure that x(t) ∈ D only for t ∈ [0, tf ], where tf is the time
period in which the anti-angiogenic therapy is applied: it is not, clearly, a loss
of generality from a clinical viewpoint.

h2) The initial condition x1(0) > r is known whilst, regards to x2(0) we assume
that x2(0) > x1(0) holds. Also this point is not a loss of generality, since x1 is
the measured variable, and condition x2(0) > x1(0) has been shown to exist
according to a physically meaningful initialization.

These additional hypotheses allow to state the following proposition.

Proposition 1. Consider system (4) with initial conditions complying with h2.
Then, according to a physiologically meaningful choice of the model parameters, for
any chosen time instant tf > 0 and for any positive ε such that (2/3)3 < ε < r,
there can be found an upper bound u for the input u(t), such that the domain

D = [ε, ρ]× [ε, ρ]× [0, u/η] (24)

is invariant in the interval [0, tf ] for any initial condition in D, with x2(0) > x1(0),
and any input u(t) ≤ u.
Proof. We have already stated that the domain [0, ρ] × [0, ρ] × [0, u/η] is invari-
ant for any positive initial condition and any positive input upper bounded by u.
The main step of the proof is to show that for any chosen time instant tf > 0
and for any positive ε such that (2/3)3 < ε < r, there can be found a con-
stant input u(t) = u, such that the evolution X(X0,u) associated to the initial
condition X0 = (x1(0), x2(0), 0) ∈ D with x2(0) > x1(0) is lower bounded by
X(X̃0,u) = (x̃1(t), x̃2(t), x̃3(t)), the evolution associated to the initial condition

X̃0 = (x1(0), x1(0), 0) ∈ D. The continuity of the solution ensures that there
exists a non-trivial interval (0, t0], with 0 < t0 ≤ tf such that x1(t) > x̃1(t) and
x2(t) > x̃2(t) in (0, t0]. Now, assume that X(X0,u) is not lower bounded by X(X̃0,u)

in [0, tf ]. Then, it would mean that there exists a time instant t̄ ∈ (t0, tf ] such that

i) x1(t̄) = x̃1(t̄) and x2(t̄) > x̃2(t̄) with ẋ1(t̄) ≤ ˙̃x1(t̄), or

ii) x2(t̄) = x̃2(t̄) and x1(t̄) > x̃1(t̄) with ẋ2(t̄) ≤ ˙̃x2(t̄).

We will show that u can be set in order to make both these statements false. Indeed,
assume i) is true. That means:

− λx1(t̄) ln

(
x1(t̄)

x2(t̄)

)
≤ −λx̃1(t̄) ln

(
x̃1(t̄)

x̃2(t̄)

)
=⇒ x2(t̄) ≤ x̃2(t̄) (25)

which is a contradiction. Similarly, assume ii) is true. That means:

bx1(t̄)− dx2/3
1 (t̄)x2(t̄)− cx2(t̄)x3(t̄) ≤ bx̃1(t̄)− dx̃2/3

1 (t̄)x̃2(t̄)− cx̃2(t̄)x̃3(t̄) (26)

and, after straightforward simplifications:

x1(t̄)− x̃1(t̄)

x
2/3
1 (t̄)− x̃2/3

1 (t̄)
≤ dx̃2(t̄)

b
. (27)
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Because of the sub-linear growth of x2/3, it comes that the left-hand-side of (27)
is greater than 1 whenever x̃1 > (2/3)3 which is rather a small value if compared
to the usual amounts related to x1 and x2, about 3 orders of magnitude higher [4].
Therefore, according to the constraint on x1(0) > ε > (2/3)3, it is reasonable to
find a value for ū that ensures x̃1 > (2/3)3. On the other hand, a proper choice
of u can set the right-hand-side of (27) small enough to make inequality (27) false.
Indeed, according to a physiologically meaningful choice of the model parameters
suggested by Hanhfeldt [4], we have that the ratio b/d ' 0.0015 (see also Table
1). Again, it is reasonable to find (e.g. by simulation) a value for ū that ensures
an upper bound for x̃2 such that dx̃2(t̄)/b < 1: indeed, the usual target for r is
smaller than 1/0.0015 ' 667. Therefore, inequality (27) is false since, according to
the choice of u we have

x1(t̄)− x̃1(t̄)

x
2/3
1 (t̄)− x̃2/3

1 (t̄)
> 1 and

dx̃2(t̄)

b
< 1. (28)

In summary, we can tune u so that, for fixed inputs u(t) = u, the solution X(X0,u)

is lower bounded by X(X̃0,u). By allowing any other smaller input u(t) ≤ u we have

that the solution X(X0,u(t)) would still be lower bounded by X(X̃0,u). Indeed, we

would have smaller values of x3(t) and, by consequence, higher values of x1(t) and
x2(t).

This proves the invariance of D for any chosen ε > (2/3)3 provided that u(t) ≤ u.

Due to the presence of input saturation the regulation theorem provided by [25]
cannot be straightforwardly applied. Instead, the following result is provided.

Theorem 3.1. Consider the closed-loop system (4), (11), (16)-(17). Consider any
positive ε such that (2/3)3 < ε < r. Then, there exists a positive value u such that,
under the hypothesis that the feedback control law (16) complies with the bound
u(t) ≤ u, then, there exists a maximum value of the sampling interval T such that

(i) it is possible to design the observer parameters (Ko, β) in (17) in order to
ensure exponential convergence to zero of the observer error when tf →∞;

(ii) it is possible to design the control gain Kc in order to ensure asymptotic con-
vergence to zero of z(t) for tf →∞.

Proof. According to Proposition 1 there exists an upper bound u such that the
domainD defined in (24) is invariant for the system solution, provided that u(t) ≤ u.
Moreover, as previously stated H1-H4 are satisfied in D. According to the drift-
observability map, it is therefore possible to write system (4) endowed with output
yδ(t) in the z coordinates,

ż(t) =Abz(t) +Bb
(
(L3

fh
(
Θ−1(z(t))

)
− cλu(t)

)
, (29)

yδ(t) =Cbz(t− δ(t)), (30)

where Ab, Bb are the Brunowski matrices

Ab =

0 1 0
0 0 1
0 0 0

 , Bb =

0
0
1

 . (31)
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Let us define the error ez = z − ẑ. By substituting the control input in the error
dynamics we obtain

ėz(t) = Abez(t)+Bb

(
L3
fh
(
Θ−1(z(t))

)
−L3

fh
(
Θ−1(ẑ(t))

))
−e−βδ(t)KoCbez

(
t−δ(t)

)
.

(32)
Denoting γL the Lipschitz coefficient of L3

fh
(
Θ−1(·)

)
, which is bounded by H2,∥∥∥L3

fh
(

Θ−1
(
z(t)

))
− L3

fh
(

Θ−1
(
ẑ(t)

))∥∥∥ ≤ γL ‖z(t)− ẑ(t)‖ = γL‖ez(t)‖ . (33)

Eq. (32) does not contain Kc, and the convergence to 0 of the observer error ez(t) is
independent from the choice of the control gain. Indeed, by choosing Ko to assign
eigenvalues with arbitrary negative real parts to Ab−KoCb the existence of T ≥ δ(t)
that ensures the exponential stability of ez(t) has been proved in [25]. The bound
on T depends on β, γL and the norm of Ko. As a consequence, for any Ko that
makes stable Ab −KoCb there is a maximum delay value T , that depends also on
β, for which (32) is exponentially stable.

In closed loop, assuming u(t) ≤ u the equation for z(t) is obtained by replacing
(16) in (29)

ż = Abz +BbKcz −BbKcez +Bb

(
L3
fh
(
Θ−1(z)

)
− L3

fh
(
Θ−1(z − ez)

))
. (34)

If Ko and β have been designed in order to ensure the exponential convergence to
0 of ez, the solution of (34) converges exponentially to the solution of

ζ̇ = (Ab +BbKc) ζ, ζ(0) = z(0). (35)

Hence, by choosing Kc that assigns eigenvalues of Ab + BbKc with negative real
parts it follows that ζ and z are exponentially stable [26].

Corollary 1. Hypothesis H1 guarantees that Θ−1 is uniformly Lipschitz and, conse-
quently, the exponential convergence to 0 of z(t) implies the exponential convergence
of x(t) to the desired setting point.

4. Simulation results. The aim of the simulations reported in this section is
to investigate the performance of the proposed algorithm on the ground of the
experiments carried out in [4] on mice. Taking into account the results in [4], the
following parameter values, constraints and initial conditions have been considered.

The desired level for the tumor size is fixed at r = 135 mm3 with the end of
treatment at tf = 13 days. All the simulations have been performed by fixing the
model parameters to the values reported in the Table 1, which are related to a
Lewis lung carcinoma. The value of the drug sensitivity c refers to a treatment
with endostatin, for which a maximal tolerable daily level has been fixed to 20
mg/kg/day. Initial conditions are set by x1(0) = 200 mm3 and x2(0) = 625 mm3.

Table 1. Model parameters

λ b d c η
day−1 day−1 day−1 day−1 day−1

mm−2

0.192 5.85 0.00873 0.66 1.7

In the previous sections, it has been proved that the control scheme allows to set
independently the control and the observer parameters, since the structure of the
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tumor growth model guarantees the separability of estimation and feedback control
algorithms. This separation principle is followed in the setting of the observer-based
control parameters.

In particular, we set the observer parameters (K0, β) in (17) as

Ko = [1.20, 0.44, 0.05]T , β = 1. (36)

Ko assigns the eigenvalues [−0.2, −0.4, −0.6] to the matrix Ab −KoCb. The value
of β has been empirically chosen in order to have the convergence of the observer
for the desired sampling values and gain Ko. In the observer initialization we chose
x̂1(0) = x1(0) = 200 mm3, as we can reasonably assume to know the actual tumor
volume at the beginning of the simulation, and x̂3(0) = x3(0) = 0, because there
is no drug concentration at t = 0. Conversely, the only a priori knowledge on the
initial value of the carrying capacity is that it must be higher than the initial tumor
volume, but we ignore its actual value. Simulations have been carried out for several
initial estimates of the kind x̂2(0) = αx2(0) with α ∈ [0.6, 2].

The feedback control gain in (16) is Kc = [20.25, 24.75, 9.00], that assigns the
eigenvalues [−1.5, −3.0, −4.5] to the matrix Ab +BbKc.

In order to evaluate the performance of the algorithm we define the following
goals.

1. x1(13) ∈ [0.9r, 1.1r],

2. m =
∫ 13

0
u(t)dt/13 ≤ 20 (mg/kg/day),

where the first goal ensures that the tumor size at the end of the treatment (day 13)
is close to the desired value r, within 10% of tolerance, and the second goal requires
that the average drug administration (m) is maintained below 20 mg/kg/day. Notice
that, from a clinical viewpoint, the item concerning the tumor growth at the end
of the treatment could be relaxed to have only an upper bound. The requirement
for x1(13) to be close to the reference level within 10% aims at evaluating the
performance of the control law, independently of clinical requirements.

Different simulation campaigns have been carried out according to different sam-
pling times, which have been set at 1, 2 and 3 days, that are the measurement
intervals used for the experiments reported in [4]. An example of the system dy-
namic is reported in Fig. 1, with the model parameters provided by Table 1 and
the sampling time fixed at 3 days. Notice that the observer converges within less
than 1 day.

In order to investigate the robustness of the algorithm efficiency for different
model parameter settings, we simulated the tumor growth for a “population” of
1000 different mice, each controlled by the same regulator keeping fixed both the
observer parameters (Ko, β), and the control gain Kc. In particular, each mouse
from the population is associated to:

• the initial condition x(0) uniformly sampled in the interval [0.4, 1.4] ∗ xN (0),
where xN (0) = (200, 625, 0) is the nominal initial condition given above;

• the initial value of the carrying capacity for the observer, x̂2(0), uniformly
sampled in the interval [0.6, 2] ∗ x2(0);

• a set of model parameters, with each parameter (namely pj) uniformly sam-
pled in the interval ∆p,j = [0.5, 1.5] ∗ pNj , where pNj represent the nominal
values of pj reported in Table 1.

Figure 2 shows the percentage of successes for the two proposed criteria for the
population. It is apparent that the performances of the closed-loop control do not
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Figure 1. Graphical comparison of the real and estimate state
under the action of the closed loop control law

Figure 2. Percentage of successes for the three criteria, in a pop-
ulation of 1000 mice treated with endostatin.

vary for sampling intervals in [1, 3] days. It is worthwhile to stress that, even for the
less-than-20% cases where the final x1 value exceeds the bound x1(13) > 149 = 1.1r
mm3, we have a strong reduction of the tumor growth, which is at most equal to
167 mm3 (the worst case).

5. Conclusions. Based on a mathematical model of tumor growth, this work pro-
poses a closed-loop control law aiming at reducing the tumor volume. The model
accounts for angiogenic stimulation and inhibition, and is one of the most adopted
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in the literature to simulate and predict the effects of anti-angiogenic drug deliv-
ery. Based on the feedback linearization theory, the control law makes use of an
observer for nonlinear systems in order to design the model-based control by means
of only available measurements. Theoretical results ensure that the control gain of
the regulator can be set independently of the observer gain, thanks to the structural
properties of the tumor growth model. Numerical simulations show the effective-
ness of the control law in spite of a wide range of variation of the (not measured)
carrying capacity as well as a noticeable level of robustness with the respect the
uncertainties affecting the model parameters.
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[19] L. Kovács, A. Szeles, J. Sápi, D. A. Drexler, I. Rudas, I. Harmati and Z. Sápi, Model-Based
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