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Abstract

This work investigates the state prediction problem for nonlinear stochastic dif-

ferential systems, affected by multiplicative state noise. This problem is relevant

in many state-estimation frameworks such as filtering of continuous-discrete sys-

tems (i.e. stochastic differential systems with discrete measurements) and time-

delay systems. A very common heuristic to achieve the state prediction exploits

the numerical integration of the deterministic nonlinear equation associated to

the noise-free system. Unfortunately this methods provide the exact solution

only for linear systems. Instead here we provide the exact state prediction for

nonlinear system in term of the series expansion of the expected value of the

state conditioned to the value in a previous time instant, obtained according

to the Carleman embedding technique. The truncation of the infinite series al-

lows to compute the prediction at future times with an arbitrary approximation.

Simulations support the effectiveness of the proposed state-prediction algorithm

in comparison to the aforementioned heuristic method.
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1. Problem formulation and background

Consider the following nonlinear stochastic differential system in the Itô

formulation

dxt = f(xt)dt+

p∑
j=1

gj(xt)dWj,t (1)

defined on a probability space (Ω,F , P ), where xt is the state vector, f, gj :

Rn → Rn are nonlinear analytic maps and {Wj ∈ R, j = 1, · · · , p} is a set

of pairwise independent standard Wiener processes with respect to a family of

increasing σ-algebras {Ft, t ≥ 0}. The initial state x0 = x is an F0-measurable5

random vector, independent of the state noises Wj,t.

The problem here investigated is the prediction of xt given the value xs at

a previous time instant s < t, that is, the aim is to compute the conditional

expectation E(xt|xs). According to the explicit solution of (1), and to the

properties of the Itô integral [1] the expected value is given by

E(xt|xs) = xs +

∫ t

s

E(f(xξ)|xs)dξ. (2)

Predictions are broadly exploited in the more general setting of nonlinear

filters, according to the usual paradigm suggesting to write the filter equations as

a “prediction” + a “correction” term (see e.g. [1, 2]). The common denominator

of such approaches, that include the well known Extended Kalman-Bucy filter

for the continuous-time case, is that the prediction step is entrusted to the

following coarse simplification:

E(f(xξ)|xs) ' f
(
E(xξ|xs)

)
. (3)

Clearly, such an approximation is exact only in special cases, like linear systems

(see e.g. [3]). Such simplification provides an easy-to-handle heuristics since,

by exploiting (3), the prediction zt = E(xt|xs) of (2) can be computed as the

solution of the deterministic differential system

żt = f(zt), zs = xs. (4)

Motivation for the present note stems from the need to build up a theory

providing the solution to the state prediction problem that, in principle, could
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be applied to such a broad range of nonlinear filtering framework. This problem

is especially important when designing continuous-discrete (CD) filters, that is,

filters for stochastic differential systems with sampled measurements. CD filters

are ubiquitous in problems such as tracking [4], finance [1] and systems biology

[5], and they are receiving growing attention in recent years [6, 7, 8]. One reason

for this interest is that new application areas such as systems biology often

employ continuous-time models as in (1), coupled with sampled measurements

with large sampling intervals. There can be found many solutions to CD filters

in the literature, such as continuous-discrete extended Kalman filter CD-EKF [2,

9], CD unscented Kalman filter, CD-UKF [10], and CD cubature Kalman filter,

CD-CKF [11]. In the case of CD filters the crucial problem is the evolution of the

state moments during the sampling interval, since the optimal state estimate

over the inter-sampling period (e.g. for t ∈ [k∆, (k + 1)∆), where t = k∆,

k = 0, 1, . . . are the time instants when measurements are acquired) is provided

by the prediction E(xt|x̂k∆), formally defined by

E(xt|x̂k∆) = x̂k∆ +

∫ t

k∆

E(f(xξ)|x̂k∆)dξ. (5)

This is, clearly, the same problem introduced in (2) with s = k∆ and xs =

x̂(k∆). In the literature, CD filters share the same approach to solve the opti-

mal state prediction problem based on (3), and eq.(4) (written with s = k∆) en-

dowed with the equation of the covariance of the prediction error are also called10

differential moment equations: in this framework several recent works have been

devoted to propose precise and efficient methods to evaluate the solution of (4)

on small discretization intervals, see for example [6, 7, 8]. However, these meth-

ods provide precise solutions to the approximate equation (4), whereas the exact

prediction (2) cannot be obtained by solving an ordinary differential equation15

(see for example [2], p. 168). The right hand-side of (2) involves an expectation

that requires the whole conditional density for its evaluation. Stated differently,

the evaluation of the first two moments of the prediction depends on all the

other moments. It should be mentioned that when the discretization interval

is not negligible the solutions of (2) and (4) can be quite different even in the20
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simple case of scalar systems.

Furthermore, the application of state predictors for stochastic systems is not

limited to CD filters, for example they are useful in the area of stochastic delay

equations [12] as well as predictors and filters for stochastic systems with delays

in the input and/or the output [13, 14].25

From a theoretical viewpoint, the solution to the prediction problem can

be pursued by searching for the conditional density p(xt, t|xs, s) provided by

the solution of the Kolmogorov forward equation, and then use p to compute

the conditional expectation (2). Since the solution of the Kolmogorov forward

equation can be obtained by analytic means only in few cases, a number of30

numerical methods have been proposed to this aim, including finite-difference

method [15], finite elements [16], adaptive finite-elements ([17], pp. 115–123),

quadrature-based methods [18], the adjoint method [19], Galerkin’s method [20,

21], particle methods [22, 23, 24] and Markov chain Monte Carlo methods [25].

The computational complexity of solving the Kolmogorov equation increases35

exponentially with the dimension of the state vector. For this reason, this

approach is not well suited for the implementation of real-time predictors (or

filters) even for systems of moderate size.

In this work we introduce an approximation scheme for the state prediction

equation (2). The proposed solution has several positive features. In the first40

place we provide the exact solution to the correct problem statement: its an-

alytical form is expressed in terms of a Taylor series expansion, thus the state

prediction (2) can be computed with any arbitrary precision. In the second

place, and for the same reason, the prediction can be made precise on arbitrary

sampling intervals. A final advantage is that, because of the analytic expression45

provided by the method, the state prediction E(xt|xs) can be used for anal-

ysis purposes, and not only as a numerical value. As a drawback, it can be

mentioned that our method applies only to systems of the form (1), that is, to

time-invariant nonlinear systems, in contrast with other methods that include

also the time-varying case.50

The approximation scheme is in essence based on the Carleman embedding
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technique, already exploited in [26] for a slightly different stochastic differen-

tial system (nonlinear drift + additive Gaussian noise, instead of the more

general nonlinear diffusion term here considered) with the aim of continuous-

time filters. The Carleman technique results in the embedding of the original55

finite-dimensional nonlinear system into an infinite-dimensional bilinear one.

Differently from [26], where the state-estimation problem required a further

finite-dimensional approximation of the Carleman embedding, here we propose

the exact stochastic discretization of the Carleman embedding without any ap-

proximation, thus obtaining the optimal prediction as the sum of a series, that60

we name the Carleman prediction in analogy to the deterministic case [27, 28].

Section 2 describes the approach, while Section 3 is devoted to its evaluation.

In particular we consider a class of systems widely used in financial mathematics

and for which the solution of the prediction problem here described has impor-

tant applications. In a few cases the exact solution can be found by analytic65

tools. We consider one such cases, with the aim of comparing the exact solu-

tion of (2) with the standard approximation (4) and the one provided by our

method.

Notation. In denotes the identity matrix in Rn. 0n,m denotes a matrix

of zeros in Rn×m. The symbol ⊗ denotes the Kronecker matrix product, the70

notation A[i] is used for the Kronecker power of matrix A, that is A⊗A⊗· · ·⊗A,

repeated i times. The standard Jacobian of f : Rn → Rn can be formally

written as ∇x ⊗ f , where ∇x denotes the operator [∂/∂x1 . . . ∂/∂xn]. Higher-

order derivatives of f are represented as ∇[i]
x ⊗ f = ∇x ⊗

(
∇[i−1]
x ⊗ f

)
, where

∇[i]
x ⊗ f : Rn → Rn×ni

.75

2. Carleman predictor for stochastic systems

Consider the problem of computing the state prediction E(xt|x̄), with xs = x̄,

t ≥ s and xt that evolves according to (1). Whenever useful, the non negative

displacement t − s will be referred to as ∆ ≥ 0. The proposed prediction

algorithm is based on the following steps.80

5



1. Define the displacement

ϕt = xt − x. (6)

2. By using the Carleman embedding technique [27] we transform the non-

linear stochastic differential system for ϕt into an infinite-dimensional bi-

linear system (linear drift and multiplicative noise).

3. Since the system is bilinear, the exact prediction of the state in the embed-

ded space is obtained by integrating the corresponding linear drift without85

the noise terms.

4. Finally, we project the solution onto the original finite-dimensional space

to obtain E(xt|x).

To exploit the Carleman embedding, we shall make use of the representation

of the analytic maps f(xt) and gj(xt) as Taylor expansions around x, written

according to the Kronecker formalism (see [26] for details):

f(xt) =

∞∑
i=0

Ai(x)ϕ
[i]
t , gj(ϕt) =

∞∑
i=0

Gji (x)ϕ
[i]
t , (7)

Ai(x) =
∇[i]
x ⊗ f(x)

i!
|x=x ∈ Rn×n

i

, (8)

Gji (x) =
∇[i]
x ⊗ gj(x)

i!
|x=x ∈ Rn×n

i

. (9)

From (1),(6)-(9) we have the following stochastic differential system for ϕt,

with initial value ϕs = 0.

dϕt =

∞∑
i=0

Ai(x)ϕ
[i]
t dt+

p∑
j=1

∞∑
i=0

Gji (x)ϕ
[i]
t dWj,t. (10)

The Carleman embedding technique requires to express the stochastic differen-

tials d(ϕ
[h]
t ), h ≥ 1. This expression is provided by the following Theorem.90

Theorem 1. The differential d(ϕ
[h]
t ), for h ≥ 2, can be written as:

d(ϕ
[h]
t ) =Hh,h−2(x)ϕ

[h−2]
t dt

+

∞∑
k=h−1

(
Ah,k(x) +Hh,k(x)

)
ϕ

[k]
t dt

+

p∑
j=1

∞∑
k=h−1

G
j

h,k(x)ϕ
[k]
t dWj,t (11)
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where, for k ≥ h− 2:

Hh,k(x̄) =
1

2
Ohn

 p∑
j=1

Hj
k−h+2(x̄)⊗ Inh−2

 (12)

with

Hj
l (x̄) =

l∑
i=0

Gji (x̄)⊗Gjl−i(x̄), (13)

and, for k ≥ h− 1:

Ah,k(x) =Uhn (Ak−h+1(x)⊗ Inh−1) (14)

G
j

h,k(x) =Uhn

(
Gjk−h+1(x)⊗ Inh−1

)
, (15)

with matrices Ohn and Uhn defined in Lemma 5 in Appendix.

Proof. By using Theorem 5.2 in [29], differentials d(ϕ
[h]
t ) can be written as:

d(ϕ
[h]
t ) =

(
∇ϕ ⊗ ϕ[h]

t

) ∞∑
i=0

Ai(x)ϕ
[i]
t dt

+
1

2

(
∇[2]
ϕ ⊗ ϕ

[h]
t

) p∑
j=1

( ∞∑
i=0

Gji (x)ϕ
[i]
t

)[2]

dt

+
(
∇ϕ ⊗ ϕ[h]

t

) p∑
j=1

∞∑
i=0

Gji (x)ϕ
[i]
t dWj,t. (16)

According to Lemma 5 in Appendix, the first term in the right-hand-side of (16)

can be written as follows:(
∇ϕ ⊗ ϕ[h]

t

) ∞∑
i=0

Ai(x̄)ϕ
[i]
t dt

=

∞∑
i=0

Uhn
(
In ⊗ ϕ[h−1]

t

)
·
((
Ai(x̄)ϕ

[i]
t

)
⊗ 1
)
dt

=

∞∑
i=0

Uhn

((
Ai(x̄)ϕ

[i]
t

)
⊗
(
Inh−1ϕ

[h−1]
t

))
dt

=

∞∑
i=0

Uhn (Ai(x̄)⊗ Inh−1)ϕ
[i+h−1]
t dt

=

∞∑
k=h−1

Uhn (Ak−h+1(x̄)⊗ Inh−1)ϕ
[k]
t dt

=

∞∑
k=h−1

Ah,k(x̄)ϕ
[k]
t dt (17)
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where the identity

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D), (18)

that holds true for matrices of suitable size, has been repeatedly applied, and

matrix Ah,k(x̄) is defined in (14). Analogously, the third term in (16) can be

written as: (
∇ϕ⊗ϕ[h]

t

) p∑
j=1

∞∑
i=0

Gji (x)ϕ
[i]
t dWj,t

=

p∑
j=1

∞∑
k=h−1

Uhn

(
Gjk−h+1(x̄)⊗ Inh−1

)
ϕ

[k]
t dWj,t

=

p∑
j=1

∞∑
k=h−1

G
j

h,k(x̄)ϕ
[k]
t dWj,t (19)

with G
j

h,k(x̄) defined in (15). For the second term in the right-hand-side of (16)

we have, by properly exploiting identity (18),( ∞∑
i=0

Gji (x̄)ϕ
[i]
t

)[2]

=

∞∑
i=0

∞∑
k=0

(
Gji (x̄)⊗Gjk(x̄)

)
ϕ

[i+k]
t

=

∞∑
i=0

∞∑
l=i

(
Gji (x̄)⊗Gjl−i(x̄)

)
ϕ

[l]
t =

∞∑
l=0

Hj
l (x̄)ϕ

[l]
t (20)

with Hj
l (x̄) defined in (13). Thus, according to Lemma 5 in Appendix, by
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repeatedly applying identity (18), it follows that

1

2

(
∇[2]
ϕ ⊗ ϕ

[h]
t

) p∑
j=1

( ∞∑
i=0

Gji (x̄)ϕ
[i]
t

)[2]

=
1

2

∞∑
l=0

Ohn

p∑
j=1

(
In2 ⊗ ϕ[h−2]

t

)
·
((
Hj
l (x̄)ϕ

[l]
t

)
⊗ 1
)

=
1

2

∞∑
l=0

Ohn

p∑
j=1

(
Hj
l (x̄)ϕ

[l]
t

)
⊗
(
Inh−2ϕ

[h−2]
t

)

=
1

2

∞∑
l=0

Ohn

 p∑
j=1

Hj
l (x̄)⊗ Inh−2

ϕ
[l+h−2]
t

=
1

2

∞∑
k=h−2

Ohn

 p∑
j=1

Hj
k−h+2(x̄)⊗ Inh−2

ϕ
[k]
t

=

∞∑
k=h−2

Hh,k(x̄)ϕ
[k]
t (21)

with Hh,k(x̄) defined in (12). In particular, notice that

H2,0(x̄) =
1

2
O2
n

p∑
j=1

Hj
0(x̄) =

1

2
O2
n

p∑
j=1

(Gj0(x̄))[2]. (22)

The theorem is proved by substituting (17), (19) and (21) in (16).

�

We can now proceed to embed (1) into an infinite dimensional bilinear system,

with linear drift.

Theorem 2. Define the infinite-dimensional vector composed by the Kronecker

powers of the displacement ϕt defined in (6) as follows:

Φt =
[
ϕTt ϕ

[2]T
t · · ·

]T
. (23)

Then, Φt is the solution of the following stochastic differential system (linear

drift and multiplicative noise) with initial condition Φs = 0

dΦt = Ã(x)Φtdt+ L̃(x)dt

+

p∑
j=1

(
B̃j(x)Φt + F̃ j(x)

)
dWj,t

(24)
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where the building blocks Ãil, B̃
j
il ∈ Rni×nl

, L̃i, F̃
j
i ∈ Rni×1, i, l = 1, 2, . . . pro-

viding the infinite-dimensional block matrices Ã, L̃, B̃j, F̃ j are defined as

Ãi,l(x̄) =



Al(x̄), if i = 1,

Hi,i−2(x̄), if l = i− 2,

Ai,l(x̄) +Hi,l(x̄) if i > 1, l > i− 2

0ni×nl , otherwise

(25)

L̃i(x̄) =


A0(x̄), if i = 1

H2,0(x̄), if i = 2

0ni×1, otherwise

(26)

B̃ji,l(x̄) =

G
j

i,l(x̄), if l ≥ i− 1

0ni×nl , otherwise
(27)

F̃ ji (x̄) =

Gj0(x̄), i = 1

0ni×1, otherwise
(28)

Proof. The proof is immediately obtained by aggregating the differentials95

d(ϕ
[h]
t ), h ≥ 1, defined in (10) and in Theorem 1.

�

For the ease of the reader we report below the structure of the block matrices

previously defined:

Ã =



A1 A2 A3 · · ·

A2,1 +H2,1 A2,2 +H2,2 A2,3 +H2,3 . . .

H3,1 A3,2 +H3,2 A3,3 +H3,3 · · ·

0 H4,2 A4,3 +H4,3 · · ·

0 0 H5,3
. . .

...
...

. . .
. . .


, (29)
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L̃ =


A0

H2,0

0
...

 , B̃j =



Gj1 Gj2 · · ·

G
j

2,1 G
j

2,2 · · ·

0 G
j

3,2 · · ·

0 0
. . .

...
...

. . .


, F̃ j =


Gj0

0

0
...

 . (30)

Theorem 2 provides an infinite-dimensional bilinear systems (i.e. linear drift

+ multiplicative noise) with respect to the extended state accounting for the

displacement ϕt = xt−x and for its powers. By defining ζt = E(Φt|x̄) for t ≥ s,

it is readily shown that it obeys the following ordinary differential equation

system:

ζ̇t = Ã(x)ζt + L̃(x), ζs = E(Φs|x̄) = 0, (31)

whose explicit solution is given by

ζt =

∫ t

s

eÃ(x)(t−τ)L̃(x)dτ =

∞∑
i=1

Ãi−1(x)L̃(x)
∆i

i!
, (32)

The following Theorem allows to extract the finite-dimensional information from

the sequence of infinite-dimensional vectors provided by (32).

Theorem 3. Consider a projection operator Πn providing the first n compo-

nents of an infinite-dimensional vector. Then:

E(xt|x) = x+

∞∑
i=1

Qi−1(x)
∆i

i!
, (33)

where for i ≥ 0,

Qi(x) = ΠnÃ
i(x)L̃(x). (34)

Proof. According to the definition of ϕt in (6) it is:

E(xt|x̄) = E(ϕt + x̄|x̄) = x̄+ E(ϕt|x̄) = x̄+ E(ΠnΦt|x̄)

= x̄+ ΠnE(Φt|x̄) = x̄+ Πnζt

(35)

with ζt given by (32). The proof is readily completed by substituting (32) in

(35).100

�

11



The essential property here is that in spite of the infinite dimension of the

matrices involved in (34), each term of the sum in (33) has finite size. This

allows to compute E(xt|x) with a desired precision by truncating the series at

an appropriate index ν < ∞. In fact, consider the following block-diagonal

decomposition for ÃiL̃ (we neglect x in the matrices),

ÃiL̃ =


[ÃiL̃]1

...

[ÃiL̃]j
...

 , [ÃiL̃]j ∈ Rn
j×1. (36)

Definitions (25)–(26) imply that [ÃiL̃]j is a zero block for j > 2i+ 2. Moreover,

from (34) it is clear that that Qi = [ÃiL̃]1. The following lemma allows to

recursively build the nontrivial blocks of ÃiL̃.

Lemma 4. Define

µi =


µi1
...

µi2i+2

 with µij = [ÃiL̃]j ∈ Rn
j

. (37)

Then µi+1 = A(i)µi, with

A(i) =


Ã1,1 · · · Ã1,2i+2

...
. . .

...

Ã2i+4,1 · · · Ã2i+4,2i+2

 (38)

Proof. The proof is obtained by computing µi+1
j , for j = 1, . . . , 2i+4. Indeed,

by definition, it is:

µi+1
j = [Ãi+1L̃]j =

2i+2∑
l=1

Ãj,l[Ã
iL̃]l, j = 1, . . . , 2i+ 4. (39)

Thus, according to µi and A(i) definitions, µi+1
j in (39) becomes:

µi+1
j =

2i+2∑
l=1

[A(i)]j,l · µil (40)

12



that completes the proof.

�

Remark 1. In absence of noise (i.e. when gj(x) = 0 in (1)), the matrix Ã is105

composed only by blocks Al and Ai,l, since Hi,l = 0. Moreover, all matrices B̃j

vanish, yielding a linear (instead of a bilinear) extended system for Φt. In this

case eq.(33) is the Taylor series of the solution to ẋ(t) = f(x(t)) with initial

condition x, as shown in [28].

Remark 2. In presence of noise terms, (33) is the Taylor series with respect

to time of E(xt|x), where xt is the solution of (1) with initial condition x = xs.

The approximation error when the series is truncated at index ν can be estimated

with the usual methods for Taylor series. For example, if there exists a compact

set D ⊂ Rn containing the evolution of E(xt|x), we can define

M = max
x∈D

Qν(x), (41)

and the estimation error for a finite Carleman approximation ν < ∞ satisfies

the following uniform (i.e. independent from x) bound

rx,ν(t− s) = E(xt|x)−

(
x+

ν∑
i=1

Qi−1(x)
(t− s)i

i!

)
≤M (t− s)ν+1

(ν + 1)!
. (42)

3. Simulations110

In order to validate the proposed approach we consider a class of nonlinear

stochastic models in the area of financial mathematics for which the prediction

problem is of great practical interest and that admit a closed-form expression

of the conditional expectation in some special cases. We are therefore in the

condition to evaluate the accuracy of the Carleman predictor in terms of dis-115

placements from the real solution, and to compare our results to the ones ob-

tained by applying the deterministic prediction (3)-(4) so broadly exploited in

the literature [6, 7, 8].
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Consider the Rm-valued process y which satisfies the following stochastic

differential equation with initial condition y0 ∈ Rm:

dyt = b(t, yt)dt+ σ(t, yt)dWt, (43)

where b : [0, T ] × Rm → Rm and σ : [0, T ] × Rm → Rm×m are continuous

functions, such that b(t, ·), σ(t, ·) are Lipschitz continuous on Rm, uniformly in

time, for t ∈ [0, T ], T > 0. Given z0 ∈ R, let us introduce the {Ft}-adapted

stochastic process z, defined for t ≥ 0,

zt = z0 exp

(
−
∫ t

0

c(s, ys)ds

)
, (44)

where c : [0, T ]×Rm → R is also a continuous functions. The extended process

x := [yT , z]T ∈ Rm+1, with x0 := (y0, z0) satisfies

dxt =

 b(t, yt)

−c(t, yt)zt

 dt+

σ(t, yt)

01×m

 · dWt. (45)

The computation of the expectation value of processes like (45) is one of the

main problems faced in financial mathematics [30], [31], [32]. In particular, for

a given real valued function φ, there is interest in the conditional expectation

E [zTφ(yT )|Ft] , (46)

for 0 ≤ t ≤ T , which, under a suitable specification of functions c and φ,

represent the no-arbitrage price of a financial derivative with maturity T at120

time t, in several pricing situations.

In some particular cases (46) admits a closed-form solution. For example,

this happens if process y is scalar and satisfies

dyt = k(θ − yt)dt+ σ
√
ytdWt, (47)

where y0 > 0 and Wt is a 1-dimensional Brownian motion. The coefficient k > 0

is the speed of this mean reversion, θ > 0 is the long run average intensity and

σ > 0 is called volatility and when they satisfy Feller’s condition 2kθ ≥ σ2

[33] the trajectories of the process are positive. The coefficient values used in125
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the simulations are reported in Table 1. This model exhibits mean reversion of

the intensity, causing the intensity to be pulled downward when it is above the

long run average intensity and upward in the opposite case. Model (47) was

developed in [34] and has been extensively applied in financial mathematics to

describe the term structure of interest rates.

k θ σ

0.1209 0.0423 0.1642

Table 1: Parameters of process (47).

130

When (47) is used in (45) with φ(y) ≡ 1, c(t, yt) = yt, it is possible to derive

the analytical expression of the prediction for xT [34]

E [xT |Ft] =

yte−k(T−t) + θ(1− e−k(T−t))

zu(yt, t)

 (48)

for any 0 ≤ t ≤ T . The closed form solution for the function u is:

u(y, t) = A(T − t)e−B(T−t)y, (49)

where

A(T − t) =

[
2γe(k+γ)(T−t)/2

(γ + k)(eγ(T−t) − 1) + 2γ

]2kθ/σ2

, (50)

B(T − t) =
2(eγ(T−t) − 1)

(γ + k)(eγ(T−t) − 1) + 2γ
, (51)

with γ =
√
k2 + 2σ2.

Now we compare the exact prediction with the values obtained from (33)

at different levels of accuracy corresponding to ν = 1, · · · , 7, and with the

“deterministic” approximation (3)-(4). In particular, fixed the initial state xT0 =

[θ, 1], the state prediction of zt for T ∈ [0, 8] computed according to the three135

methods is reported in Figure 1.

Figure 2 shows the percentage error for different order of the Carleman ap-

proximation in comparison with the deterministic approximation at T = 4. As

15



Figure 1: Time evolution of the state prediction.

Figure 2: Percentage error

expected the accuracy of the Carleman predictor increases when adding more

terms in the sum (33) and in fact only in the linear case the deterministic ap-140

proximation has a smaller error. The same results are reported in Table 2. As

for the computational cost, for a prediction interval T = 5 the implementa-

tion of the Carleman predictor used in these simulation with ν ≤ 6 requires

about 5 · 10−2s of computation compared with about 5 · 10−3s for the standard

MATLAB R© ODE solver ode45(). Notice that the computation time for the145

ODE solver depends on the prediction interval, whereas the Carleman predictor

performs only one step and its computational time is independent from T .
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T = 2 T = 4 T = 6

Eqs. (4)-(5) 0.12 0.80 2.15

Eq. (33)

ν = 1 0.50 2.39 5.89

ν = 3 0.04 0.62 3.00

ν = 5 6 · 10−4 0.03 0.27

ν = 7 10−5 3 · 10−3 0.11

Table 2: Percentage error for T ∈ {2, 4, 6}.

4. Conclusion

The method described in this paper provides a series expansion for the pre-

diction problem of nonlinear stochastic systems. The appropriate balance be-150

tween precision and computational cost can be achieved by tuning the number

of terms. Since the prediction problem is ubiquitous in the area of continuous-

discrete systems the method proposed here can be useful in a number of appli-

cations. Further work will be devoted to the derivation of a filtering algorithm

for continuous-time systems with discrete measurements based on the Carleman155

linearization technique that we have presented.
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Appendix

Properties of the stochastic differential of Kronecker powers

The following Lemma shows a useful property shared by first and second

order differentials of Kronecker powers.165
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Lemma 5. ([26])

∇x ⊗ x[h] = Uhn

(
In ⊗ x[h−1]

)
, Uhn ∈ Rn

h×nh

(52)

∇[2]
x ⊗ x[h] = Ohn

(
In2 ⊗ x[h−2]

)
, Ohn ∈ Rn

h×nh

(53)

where

Uhn =Inh + CTnh−1,n(Uh−1
n ⊗ In), (54)

Ohn =UhnC
T
nh−1,n((Uh−1

n CTnh−2,n)⊗ In)CTn2,nh−2 (55)

with U1
n = In, and CTn1,n2

stands for the commutation matrix of the Kronecker

product between vectors of size n1, n2.

4.1. Commutation matrices

For any given pair of matrices A ∈ Rr×s , B ∈ Rn×m , we have

B ⊗A = CTr,n(A⊗B)Cs,m, (56)

where the commutation matrix Cu,v is the (u · v)× (u · v) matrix such that its

(h, l) entry is given by

{Cu,v} =

 1 if l = (|h− 1|v)u+ (
[
h−1
v

]
+ 1)

0 otherwise

{C1,1} = 1

(57)

More details on commutation matrices and the Kronecker algebra properties

can be found in [35].170
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