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Towards Encoding Time in Text-Based Entity
Embeddings
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Abstract. Knowledge Graphs (KG) are widely used abstractions to rep-
resent entity-centric knowledge. Approaches to embed entities, entity
types and relations represented in the graph into vector spaces - often
referred to as KG embeddings - have become increasingly popular for
their ability to capture the similarity between entities and support other
reasoning tasks. However, representation of time has received little at-
tention in these approaches. In this work, we make a first step to encode
time into vector-based entity representations using a text-based KG em-
bedding model named Typed Entity Embeddings (TEEs). In TEEs, each
entity is represented by a vector that represents the entity and its type,
which is learned from entity mentions found in a text corpus. Inspired
by evidence from cognitive sciences and application-oriented concerns,
we propose an approach to encode representations of years into TEEs by
aggregating the representations of the entities that occur in event-based
descriptions of the years. These representations are used to define two
time-aware similarity measures to control the implicit effect of time on
entity similarity. Experimental results show that the linear order of years
obtained using our model is highly correlated with natural time flow and
the effectiveness of the time-aware similarity measure proposed to flatten
the time effect on entity similarity.

1 Introduction

Knowledge Graphs (KGs) provide useful abstractions for representing knowl-
edge, with nodes describing real-world entities and entity types, and labeled
edges representing relations between entities, between types, and between enti-
ties and types. Traditional approaches to represent KGs use graph databases and
semantic web technologies based on the RDF model1. More recently, complemen-
tary models to represent KGs have been proposed, which embed KG elements
such as entities, types and relations into vector spaces of fixed dimensionality
and learn such representations from large amounts of data [6, 14, 32, 1, 21, 30,
19]. We refer to these models as KG embeddings. In KG embeddings, entities are
represented by vectors, and efficient geometric operations can support a variety
of tasks such as the evaluation of similarity between arbitrary entity pairs.

1 https://www.w3.org/RDF/
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2 F. Bianchi et al.

Some approaches generate KG embeddings using structured data as a source,
e.g., relations occurring in the KG, and are mainly targeted at predictive reason-
ing tasks such as link prediction [6, 14, 32]. Other approaches generate the KG
embeddings from text corpora using methods similar to the ones used to gener-
ate word embeddings [1], under the distributional hypothesis [11]. These models
referred to as text-based KG embeddings in the following, are mainly targeted at
similarity evaluation tasks.

In a previous work, we have presented Typed Entity Embeddings (TEEs) as
one of the latter models [2, 4]. In TEEs, embeddings of entities and types are
generated under the following entity-centric reinterpretation of the distributional
hypothesis: entities and types that appear in similar contexts are similar. An
entity linking algorithm [22] is used to find entity mentions in the corpus, while
the KG is used to extract the most specific types of the mentioned entities. Then,
based on the co-occurrence of entities and types in the text corpora two vector
spaces are generated, one for entities and one for types. The direct sum of the
two vector spaces leads to a typed entities space. In this space, each entity is
represented by the concatenation of its vector in the entity space and the vector
of its type. For example, the typed vector of the DBpedia entity dbr:Rome is the
concatenation of the vectors generated for dbr:Rome and dbo:City.

Time is an important aspect in knowledge representation and has been ex-
tensively studied in the field of qualitative temporal representation and reason-
ing [31, 25, 23, 15]. In addition, time is essential to human cognition, as people
“place events in time, deciding when they occurred, in which order and on what
scale, whether that of a lifetime or of a few seconds” [8]. Finally, recent work
has investigated temporal word embeddings to study language evolution along
time using diachronic corpora [27]. Thus, we believe that encoding time into KG
embeddings models is an important research objective.

Our work is inspired by evidence found in cognitive science studies as well
as by application-oriented concerns. Time and time perception have been deeply
investigated in the cognitive psychology literature. Since it has been observed
that “the succession of events is an inherent property of our time perception.
Memory is necessary, and the order of these events is fundamental” [26], we may
consider textual descriptions of events found in text corpora as a sort of mem-
ory, and as a source for learning representations of time. Encoding time into KG
embeddings has also several practical applications, in particular when evaluating
entity similarity with text-based KG embeddings, where similarity depends on
entity co-occurrence in similar contexts. Time can sneak into entity similarity in
a way that cannot be controlled, because entities that share a temporal context
are more likely to co-occur in the text (we refer to this implicit effect of time
on entity similarity as to the time effect hypothesis). As a consequence, we may
find that the most similar entity to dbr:Winston Churcill is the little-known
dbr:Harold McMillian. This makes perfect sense, if time is considered when
evaluating the similarity, but if we want to compare UK politician by inter-
national relevance and fame, rather then by their chronological order, we may
prefer to find also more famous prime ministers like dbr:Margaret Thatcher
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Towards Encoding Time in Text-Based Entity Embeddings 3

among the most similar entities to dbr:Winston Churcill. If we are able to
explicitly incorporate time into KG embeddings, then we can control its effect
when evaluating the similarity between entities, boosting or flattening time effect
in entity similarity. Such control over similarity is helpful for example in knowl-
edge exploration applications, which we investigated in previous work [3]. Other
potential applications can be found in time-aware entity recommendations [18,
28] (e.g., find “related contemporary entities” vs. “related entities in the past”
vs. “time-independent related entities”) and in temporal information retrieval,
where it is important to keep track of the time factor.

To the best of our knowledge, in this paper we propose a first approach to
make time a first-class citizen in KG embeddings. We use the text-based TEEs
model as background and learn explicit representations of temporal entities as
part of this model. In particular, we encode representations of years, i.e., we em-
bed regular time periods with a yearly granularity. We build year representations
from the textual description of events occurring during each year, which are avail-
able in different web sources2. We generate year representations by aggregating
the representations of the entities that that take part in events occurring in those
particular years. These representations are then used to define two parametric
time-aware similarity functions: time-flattening and time-boosting similarities.

In other words, in this paper we tackle the following research challenges:
1) to generate representations of time periods that are inspired by evidence
found in cognitive psychology for memory being a fundamental aspect in time
representation [26]; 2) to use these representations to control the effect of time
over entity similarity for practical applications. The contributions with respect
to these objectives can be summarized as follows:

– We learn representations of time periods at a yearly granularity starting from
natural language descriptions of events occurring in these periods, showing
that, even if the natural time flow is not explicitly encoded into the model,
the generated year representations are highly correlated with the natural
sequence of years.

– We provide evidence for the time-effect on entity similarity in text-based KG
embeddings.

– We propose two parametric time-aware similarity measures to control the
time effect in entity similarity.

Our approach to encoding time into text-based KG embeddings is explained
in Section 2. Experiments to evaluate the time effect, properties of the year rep-
resentations and the time-aware similarities are discussed in Section 3. Related
work is discussed in Section 4. Conclusions and future work end the paper.

2 Typed Entity Embeddings with Time Periods

We use a minimal definition of Knowledge Graph (KG) as a directed labeled
graph, where nodes are entities or types, and labeled edges represent relations

2 Examples are Wikipedia pages for years, https://www.onthisday.com/events-by-
year.php and https://www.history.com/this-day-in-history
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4 F. Bianchi et al.

between entities or between types or between entities and types. Relations be-
tween types define a sub-type graph (often a hierarchy). However, the relations
between the entities are not considered for generating the embeddings in our
work. An example of KG, which will be used in the rest of the paper, is DBpe-
dia, where types are classes in the DBpedia Ontology. For simplicity, we assume
that given an entity we can determine its minimum type (i.e., its most specific
type) using the typing assertions and the sub-type graph. In case an entity has
more minimal types none of which is the minimum, different strategies can be
considered to select one of them as representative type. In DBpedia the most
specific type of entities can be determined by using dedicated resources3.

A Typed Entity Embedding (TEE) with Time Periods consists in:

– A set of typed entities E, which includes a subset Eτ of temporal periods.
– Two embedding functions; φ : E \ Eτ → Rk and one ω : Eτ → Rk.
– A similarity function η : E × E → [0, 1] constructed as operation over the

typed entity vectors.
– A proximity function ρ : E → Eτ that allows us to find the most representing

time period for a given typed entity.
– A time-aware similarity function ψ : E × E → [0, 1] that computes the

similarity between two typed entities by considering their time distance as
a factor.

In the following, we explain each component of the model more in detail.

2.1 TEEs and their Generation

The φ embedding function has been intuitively explained in Section 1. For more
details we refer to previous work [2, 4]. Here we provide some more insights about
the generation process using Figure 1. As a corpus we use a set of documents,
each one describing an entity in natural language. As shown in the figure, after
the entity mentions are found in a document by an entity linking algorithm, we
generate a second document that consists in the sequence of the entities found
in the corpus text. This document is transformed into a third document, where
entities are replaced by their most specific type, obtaining a sequence of types.
As a result, we have two corpora, one for entities and one for types. At this point
we run word2vec [16] on each corpus to generate Entity Embeddings (EE) and
Type Embeddings [4] (TE) separately. These two embeddings can have different
dimensionality. Finally, for each entity, we concatenate its entity vector with
the vector of its most specific type, thus obtaining a typed entity vector, i.e.,
a Typed Entity Embedding (TEE). Entities of the same type (or of similar
types) are more likely to be closer to each other in the TEE space built upon
this concatenation than in the EE space that consists of entity-only vectors [2].
Given an entity e, we use the bold notation e to refer to its typed entity vector.

Observe that since we have generated the typed entity vector space as the
direct sum of the entity and the type vector spaces, we can easily drop the type-
component in typed entity vectors and use entity vectors without representing

3 http://wiki.dbpedia.org/services-resources/documentation/datasets#InstanceTypes
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Towards Encoding Time in Text-Based Entity Embeddings 5

the entity types. We will use these simplified entity vectors in the experiments
discussed in Section 3.1.

dbr:Rome

Rome is the capital of Italy
and a special
comune Rome also serves
as the capital of the Lazio
region...

dbr:Rome

dbr:Rome dbr:Italy
dbr:Rome dbr:Lazio...

3

9

2

2

1

2

4

3

5

Replace
Text
With
Entities

Generate
Embeddings

dbr:Rome

dbo:City dbo:Country
dbr:Country
dbo:Administrative_Region
...

Generate
Embeddings

1

6

5

4

3

5

2

3

5

dbo:City dbo:Country dbo:Administrative_Region

1

2

2

8

4

6

2

4

1

dbr:Rome dbr:Italy dbr:Lazio

Replace Each
Entity With
Most Specific

Type

Fig. 1. Entity embedding process: textual content is replaced by entities. Each entity is
replaced with its own type. Embeddings can be then generated using word2vec. Finally
each entity is concatenated to its own type.

2.2 Encoding Temporal Periods into TEEs

In this work, we consider time as a set of connected time periods Eτ , i.e., a
sequence of time periods totally ordered by a relation <τ . We represent time
periods at the year granularity, meaning that each year represents the time period
that spans over the year duration. In the following, we describe the function ω,
which embeds time periods into Rk.

Our main hypothesis is that discrete periods of times can be embedded in
a vector space, where each period is represented by a vector, in such a way
that years that are near in time have similar vectors. A second hypothesis that
drives our approach is that a period of time, e.g., a year, can be described by
the entities that take part in the events that occur during the time period.
For example, years in the first half of the 40s are characterized by World War
II events and by the entities that had a relevant role in these events. For the
experiments conducted in this paper, we consider textual descriptions of events
that appear in the Wikipedia pages that describe years 4.

To generate the representation of a year, we extract entities from the corre-
sponding Wikipedia page and compute the average vector of the entity vectors
defined in the EE space 5. In other words, we drop the type component from
the typed entity vectors, to use a more entity-centric representation (types occur

4 E.g., https://en.wikipedia.org/wiki/1943
5 Our representation of years is independent from the φ embedding function: other

embedding algorithms could be used to compute the entities representation.
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6 F. Bianchi et al.

more regularly across years). To generate a TEE-compatible representation of
the time periods in the vector space, we concatenate each embedding generated
in the EE space with a vector consisting of 0s of the same dimension of type
vector in TEE. This process is briefly summarized in Figure 2. Slight variations
of this process are also possible, e.g., different vector aggregation methods, as
discussed in Section 2.3. Finally, we empirically found that it is better to con-
sider only the “Events” section in year Wikipedia pages for entity extraction
because the sections “Births” and “Deaths” produce noisier representations.

1943

WWII: The Soviet
Union announces that
22 German divisions
have been encircled at
Stalingrad, with
175,000 killed...

1943

dbr:World_War_II
dbr:Soviet_Union
dbr:Stalingrad...

Replace Text With Entities

1 1 2 7 3

1 3 2 4 2

2 2 5 2 1

dbr:World_War_II

dbr:Stalingrad

dbr:Soviet_Union

2

1

3

8 6 2 9 21

Embedding for 1943
Aggregation

 (average of embeddings)

Vectors of the entities found
in the year description are
averaged to obtain a vector
representation of the year

Fig. 2. Year embedding process.

Since non-temporal and temporal entities (i.e., time periods) are embedded
in the same space, a comparison between entities of these two kinds is possible.
In addition, these representations of time periods are generated using collective
knowledge of what has happened during their time. However, since no explicit
constraints over time ordering are used in the generation process, a natural
question is which relation can be found between the vector-based representations
of time periods and the natural time order. In Figure 3 we show an example of
the 2D representation of the years from 1900 to 2015 using PCA. Interestingly,
the years seem to follow a natural time order from left to right. A statistical
correlation analysis between the one-dimensional projection of years using PCA
and their natural order confirms this intuition (Kendall τ = 0.80, Spearman
Rank correlation coefficient = 0.94).

2.3 Temporal Embeddings Alternative Configurations

There are different ways to use the entities that are found in the year description:
1) considering the entities only one time (i.e., as a set of entities); 2) considering
the entities multiple times if they appear more than once (i.e., United States
might appear more than one time in the text); 3) Using TF-IDF on the whole
year corpus to weight each term by its own TF-IDF score and apply this with 1)
and 2). We generated models using all these alternative configurations and we
projected the embeddings into 1D using PCA and compared this ordering in 1D
with the natural flow time order (i.e., the natural sequence from 1900 to 2015)
and we obtained that the model that considers each entity only once (1) is the
one that is most correlated to the natural time order. We thus decided to use
this configuration to generate temporal embeddings.
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Towards Encoding Time in Text-Based Entity Embeddings 7

Fig. 3. Average vectors represented in two dimensions using PCA.

2.4 Time-Aware Similarity Measures

We propose a new way of computing similarity that also considers the temporal
factor in the embeddings. Given an entity e ∈ E is it possible to find its most
representing year in Eτ by considering the functions defined in the model. To
get the most representative year for a given entity we select the most similar
year in Eτ to a given entity.

ρ(e) = argmax
eτ∈Eτ

cos(φ(e), ω(eτ ))

We use eτ to denote the vector of ρ(e), i.e., the closer year to a given entity
in the vector space.

We can now define two time-aware similarity functions: a time-flattened
similarity and a time-boosted similarity. The time-flattened similarity can
be computed using the following formula.

ψ(e1, e2) = αη(e1, e2)− (1− α)ηn(eτ1, e
τ
2)

Where e1, e2 are the embeddings of the entities e1, e2, η is the cosine similar-
ity in the typed entity space, and α is a parameter that can be used to regulate
the weight of the time flattening factor. Time flattening is obtained by subtract-
ing the temporal similarity ηn of the most representative temporal periods (i.e.,
years) of both entities eτ1 and eτ2. The temporal similarity is defined as the cosine
similarity between two years in the typed entity space normalized in the interval
[0, 1] with a max-min approach, by considering the maximum similarity between
two years in the representation and the minimal similarity between two years in
the representation. We adopt this normalization to make the year factor of the
similarity work as a weight factor.

A time-boosted similarity function can be defined analogously by adapting
the formula in such a way that a time-boosting factor is summed to the similarity
between the typed entities:
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8 F. Bianchi et al.

ψ(e1, e2) = αη(e1, e2) + (1− α)ηn(eτ1, e
τ
2)

3 Experimental Evaluation

The experiments that we discuss in this section have the following goals: 1)
validate the time-effect hypothesis introduced in Section 1, that is, that time
influences the distribution of entities in vector spaces, and the rationale behind
the generation of time period representations from those of the entities that
take part in the events that occur during these time periods; 2) evaluate the
effectiveness of the time-aware similarity function.

Experimental Settings (for all the Experiments). Our entity embeddings
were generated using the DBpedia’s abstracts (4M of textual documents) from
the 2016 dump6. We used the skip-gram algorithm for obtaining the entities em-
beddings [16]. We used a window of 5 in the algorithm and types and entities are
embedded into 100 dimensional vector spaces. We annotated text using DBpedia
Spotlight [7]. For the year embeddings we decide to concentrate our experiments
on the years from 1900 to 2015. Code and dataset are freely available online so
that experiments can be replicated 7.

3.1 Time Effect and Temporal Representations in Text-based
Entity Embeddings

In a first experiment, we evaluate if the time effect can be noticed in text-based
entity embeddings, i.e., temporal contexts shared by entities have an effect on
their similarity. Then, with a second experiment, we provide evidence that years
that are close in time are more likely to have descriptions that share a larger
number of entities, thus supporting the rationale behind using entity represen-
tations to generate temporal representations. The time effect validated with the
first experiment adds even more substance to this idea, since the time effect
suggests that time is implicitly encoded in entity representations. As a conse-
quence, temporal representations are generated using entity representations that
implicitly encode some temporal characterization. Finally, in a third experiment,
we investigate if the space that jointly represents years (temporal entities) and
other entities can support entity ordering over time, to further evaluate the qual-
ity of the temporal representations and their relation to the representations of
the other entities. We remind that some properties of our model, e.g., the cor-
relation between projection on one dimension of temporal entities and natural
flow of time, have been discussed in Section 2.

6 http://wiki.dbpedia.org/dbpedia-version-2016-04
7 https://github.com/vinid/time-aware
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Towards Encoding Time in Text-Based Entity Embeddings 9

Classifying World War I and World War II Battles

Our assumption is that entity embeddings share time-based context, and thus
entities that live nearby times are closer to each other in the vector space. We
collect battles from World War I and World War II using the list provided
by Wikipedia military engagements pages89. We used a clustering algorithm to
understand if there is an underlying pattern that puts entities in two different
groups. We use K-means (number of clusters equal to 2 to cluster the vector rep-
resentations of the battles in two different groups represented by the two wars).
We will evaluate the performance of the clustering algorithm by considering how
many years were clustered in the correct group.
Dataset. Our dataset contains 152 battles linked to Wikipedia (and thus DB-
pedia) from the two different periods 1914-1918 and 1939-1945. 63 battles are
from World War I while 89 are from World War II.
Results. In Table 1 we show the confusion matrix that we obtained after clus-
tering the embedded vectors of the battles with K-Means. Out of 152 samples,
146 were correctly associated to the same cluster, while 8 were classified in the
wrong one. Accuracy is around 95%. Another interesting result is that the two
cluster centroids are closer to the respective war years: the first centroid is near
the years of World War I, while the second centroid is close to the years of World
War II.

Table 1. Confusion Matrix for World War I and II clustering.

Actual Values
(n=152)

Predicted
World War I World War II

World War I 57 6
World War II 2 87

Adherence to Natural Time Order

Our intuition suggests that the descriptions of contiguous years (e.g. 1943 and
1944) share more entities than the descriptions of years that are not contiguous
(e.g. 1901 and 1992).
Methodology and Dataset. We collect every possible combination of two and
three contiguous years (e.g. 1900-1901,1901-1902; 1900-1901-1902, 1901-1902-
1903) and we compute the average number of shared entities. We compare the
values of these two samples with the average values of shared entities of every
possible combination of two and three years (e.g. 1902-1992, thus considering
also noncontiguous years).
Evaluation. Results on the average number of shared entities are reported in
Table 2. Pairs and triples of contiguous years have a higher amount of shared
entities with respect to noncontinuous years.

8 https://en.wikipedia.org/wiki/List of World War I battles
9 https://en.wikipedia.org/wiki/List of military engagements of World War II



P
os
t-
p
ri
n
t
ve
rs
io
n

fo
r
se
lf
-a
rc
h
iv
in
g

p
u
rp
os
es

of
th
e
ar
ti
cl
e
w
it
h

sa
m
e
ti
tl
e
an

d
au

th
or
s

p
u
b
li
sh
ed

in
T
h
e
S
em

an
ti
c
W
eb

IS
W
C

20
18
.
IS
W
C

20
18
.
L
ec
tu
re

N
ot
es

in
C
om

p
u
te
r

S
ci
en
ce
,
vo
l
11
13
6.

S
p
ri
n
ge
r,

C
h
am

.
P
le
as
e

re
fe
r
to

th
e

or
ig
in
al

p
u
b
li
sh
er
’s

ve
rs
io
n

at
[h
tt
p
s:
//
li
n
k
.s
p
ri
n
ge
r.
co
m
/c
h
ap

te
r/
10
.1
00
7/
97
8-
3-
03
0-
00
67
1-
6
4]

fo
r
fo
r
ci
ta
ti
on

10 F. Bianchi et al.

Table 2. Average number of shared entities between continuous and non contiguous
years.

Contiguous-2 All-2 Contiguous-3 All-3

Average 55.6 33.5 27.7 12.6

Std 30.3 19.2 13.3 8.22

We use the Kolmogorov-Smirnov test to detect if the average number of
shared entities of contiguous years is statistically different from the respective
value for of all the combinations of years. A p-value lower than 0.05 confirms
our hypothesis.

Relative Ordering of Entities by Time

In this experiment, we show that time actually affects the position of entities in
the space.
Dataset. We pick 101 entities from different groups of people and events (United
States Presidents, British Prime Ministers, French Presidents, Fifa World-Cup
Years, Wars over in 1900, Olympics Events). Entities and groups have been
chosen so as to select pairs of entities for which a chronological order can be
established upon a reasonably objective criterion (e.g., dbr:Barack Obama is
a president elected after dbr:Woodrow Wilson). We acknowledge that ordering
people by considering one single feature is a strong assumption. However, being
prime minister or president is a very discriminant feature for people.
Methodology. For each entity pair, we compare the manually determined rel-
ative order with the order of their most representative years according to our
model. The most representative year of an entity is the the closest year to the en-
tity in the vector space. We want to show that given two entities e1, e2 ∈ E such
that e1 is known to chronologically come before e2, it is likely that ρ(e1) >τ ρ(e2).
For each pair, we also computed the number of time steps separating the two
entities. This is a measures that indicates a relative distance between two en-
tities: the number of time steps between Barack Obama and George W. Bush
is 1, because Bush was the US president before Obama, while between Barack
Obama and Bill Clinton it is 2, because Bush was between Obama and Clin-
ton. The same is applied to events like the Fifa World Cup (e.g., the time step
between the 2006 world cup and the 2002 world cup is 1).
Results. The accuracy of the relative orders was 70%. For 217 pairs the model
was not able to decide a relative ordering since ρ(e1) = ρ(e2)10. In Figure 4,
we show the distribution of correctly relative ordered pairs, incorrect relative
ordered pairs and pairs that the model could not order by time steps involved
in the relative order. The radius of the points is used to indicate the number of
time pairs with a certain time step in each category. It is clear that the farther in
time two entities are, the easier it is to determine a correct relative order. Thus,

10 If for the generation of eτ we consider the average of the nearest 10 years to an entity
all the 902 pairs can be compared and the accuracy reaches 92%.



P
os
t-
p
ri
n
t
ve
rs
io
n

fo
r
se
lf
-a
rc
h
iv
in
g

p
u
rp
os
es

of
th
e
ar
ti
cl
e
w
it
h

sa
m
e
ti
tl
e
an

d
au

th
or
s

p
u
b
li
sh
ed

in
T
h
e
S
em

an
ti
c
W
eb

IS
W
C

20
18
.
IS
W
C

20
18
.
L
ec
tu
re

N
ot
es

in
C
om

p
u
te
r

S
ci
en
ce
,
vo
l
11
13
6.

S
p
ri
n
ge
r,

C
h
am

.
P
le
as
e

re
fe
r
to

th
e

or
ig
in
al

p
u
b
li
sh
er
’s

ve
rs
io
n

at
[h
tt
p
s:
//
li
n
k
.s
p
ri
n
ge
r.
co
m
/c
h
ap

te
r/
10
.1
00
7/
97
8-
3-
03
0-
00
67
1-
6
4]

fo
r
fo
r
ci
ta
ti
on

Towards Encoding Time in Text-Based Entity Embeddings 11

time influences the position of entities in the vector space and the estimation
of a relative time order between entities using their representative year is quite
accurate.

Fig. 4. Distribution of correctly and not correctly ordered pairs with the use of EE.

3.2 Time-Aware Similarity

To test time-aware similarity measures we concentrate on time-flattened similar-
ity for two reasons: it is useful to mitigate the time-effect that we have discussed
in the previous experiment and it can be evaluated more objectively using data
available in KGs. Defining what is similar when considering the time variable
is a challenging task. In this experiment we decided to provide a small-scale
experiment on the possible use of the time-flattened similarity by considering
reasonably objective orders is time. A time-flattening similarity should reduce
the effect that a shared temporal context has on finding similar entities. A time-
flattened similarity can be used to find entities that are similar independently
from the temporal context they share. For example, given a prime minister, we
would expect to find many other prime ministers among its most similar entities
if we neglect time, but the time-effect moves many prime ministers down in the
ranking with cosine similarity.
Dataset. In line with other experiments done on similarity and relatedness [12]
we create a dataset containing entities that are related but distant in time. Given
an input entity the task consists in finding similar entities that are distant in
time (e.g., given dbr:Barack Obama, a time-flattened similarity should rank in
higher position the entities dbr:Theodore Roosevelt and dbr:William Howard
Taft). Given a set of 12 prime ministers, the task is therefore to compare the
number of prime ministers found in the 5/10 most similar entities retrieved using
non-time flattened similarity measures and time-flattening similarity measures.
We used prime ministers because this is a salient feature in making entities
“ontologically” similar (e.g., very few entities share this feature). We selected
6 entities representing the most recent US presidents (from a list of the most
recent 19 presidents) and 6 entities representing the most recent British Prime
Ministers (from a list of the most recent 19 prime minister).
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12 F. Bianchi et al.

Algorithms and Methods. We consider different algorithms to test the time-
flattened similarity: we want to test if our model is actually able to retrieve
entities that are far in time starting from input entities. We select the 100 nearest
entities given an input entity using cosine and order them using time-flattened
similarity. We then compute Precision@K and Recall@K. This task is tested on
both TEE and the EE model: we will compare standard neighborhood of the
input entity (based on cosine similarity) and the time-flattened one (considering
the time-flattened similarity).

Baseline. As a Baseline we consider a similarity measure that uses a skip-gram
model trained on a corpus that also contains mentions to entity years11. Time-
flattening in the baseline is computed considering the closest entity year to a
given entity as the most representative year, similarly to what we do in our
similarity. The difference with our representation is that, in this Baseline, the
entity year representations are learned by considering the co-occurrence in text
as in standard embedding models and do not have an explicit representation
generated by a dedicated embedding function like in our model. The tested
models are:

– Time-aware Similarity TEE (TATEE), with time-flattened similarity;

– Similarity TEE (STEE) (standard neighborhood with cosine);

– Time-Aware Similarity EE (TAEE), with time-flattened similarity;

– Similarity EE (SEE) (standard neighborhood with cosine);

– Time-flattened similarity Baseline (Baseline).

Experiments on the time-flattened similarity were run with α = 0.7.

Results. Table 3 shows the results. The use of a time-flattening factor can
improve the retrieval of entities that are distant in time. Models that use types
have an advantaged: the tasks, in fact, consists in finding entities that share more
or less of the same type. However, the performance of the model that does not use
types, but time-flattened (TAEE) is better than the baseline. We can conclude
that the use of both the TEE model and time-awareness (time-flattening in this
case) allows achieving better performance on this task.

Table 3. Results for time-flattened similarity (0* means small values)

Precison@5 Precison@10 Recall@5 Recall@10
TATEE 0.40 0.40 0.20 0.21
STEE 0.14 0.21 0.07 0.10
TAEE 0.05 0.04 0* 0.01
SEE 0.02 0.02 0* 0.01
Baseline 0.01 0.01 0* 0.01

11 https://github.com/idio/wiki2vec
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Towards Encoding Time in Text-Based Entity Embeddings 13

Qualitative Evaluation. To provide further insights on the behavior of our
time-flattening similarity, we discuss an example in details. If we consider the
entity dbr:Winston Churchill and the top-100 entities more similar to it, recent
but popular British prime ministers are found distant in the TEE model when
retrieved using plain cosine similarity: dbr:Tony Blair and dbr:Gordon Brown
are respectively in the 49th and the 41th position. If we use our time-flattening
similarity, the two entities are found respectively at the 16th and 14th position.
The nearest entity to dbr:Winston Churchill is dbr:Harold Macmillan (Member
of Churchill government and British prime minister two years after Winston
Churchill) if we use plain cosine similarity, and dbr:Margaret Thatcher if we use
our time-flattened similarity.

Time-flattening/time-boosting. In Table 4, we list the top-10 most similar
entities to Barack Obama, when retrieved with time-flattened, plain cosine, and
time-boosted similarity. For time-aware similarities we also show differences for
different values of α, to show the effect of this parameter (remember that 0.7
was used as value in previous experiments). We believe that this example shows
an interesting behavior: removing the time effect with time-flattened similarity
pushes old presidents of the United States in higher positions. Otherwise, if we
use the time-boosted similarity, members of the Obama government and his
rivals during the elections (i.e., John McCain and Mitt Romney) are the ones
pushed in higher positions.

Table 4. Time-flattened and time-boosted similarity on the entity Barack Obama.

Time Flattened Similarity
- Time ←

Cosine
Similarity

Time Boosted Similarity
→ + Time

α = 0.1 α = 0.7 α = 0.7 α = 0.1
G. Ford B. Clinton B. Clinton B. Clinton G. Bush
C. Coolidge Reagan Reagan G. Bush J. Kerry
H. Hoover Carter G. Bush Reagan D. Cheney
Truman Al Gore Carter Kerry McCain
F. Roosevelt Nixon Al Gore D. Cheney Biden
W. Wilson G. Ford Nixon McCain Ron Paul
Eleanor Roosevelt G. Bush J. Kerry Biden H. Humphrey
D. Eisenhower C. Coolidge D. Cheney Carter Romney
W. Harding T. Kennedy McCain Al Gore C. Powell
G. Cleveland H. Hoover Biden Ron Paul W. Mondale

4 Related Work

Qualitative temporal representation and reasoning is a topic covered by a vast
literature in Artificial Intelligence and related fields, for which we refer to several
surveys [31, 25, 23]. Different mathematical models of time such as point-based
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14 F. Bianchi et al.

vs. interval-based, linear time vs. branching time, have been proposed [31]. Mod-
els to support reasoning with approximate time intervals have also been pro-
posed [5]. Previous work has surveyed models to represent temporal information
in RDF [23] and reason about time in natural language processing [25]. In our
work, we use a simple model of time as a sequence of regular time periods and
do not tackle logic-based temporal reasoning. Otherwise, none of the previous
approaches has addressed the problem of generating temporal representations
from texts. Extraction of temporal information from text (see, e.g., [15]) and
imputation of temporal validity intervals for RDF triples (see, e.g., [24]), are
tasks also very different from the one addressed in this paper.

Many approaches for KG embeddings that consider knowledge graph struc-
ture have been introduced in literature [20, 14, 32, 6, 21, 30, 19]. For example,
TransE [6] embeds entities in a space in which for each triple (s, p, o), s + p ≈ o
holds. All these methods are able to efficiently represent entities and relations
of a KG into a vector space, but none of them take explicit steps towards the
representation of temporal entities. Other methods have been introduced to rep-
resent temporal information in KGs [29, 13, 9] and have obtained good results in
tasks like time-aware link prediction. The main difference with our approach is
that we explicitly embed temporal entities inside a vector space.

We used a semantic annotator to extract entities from text. If we consider
Wikipedia, text can be replaced with the use of links as done in other models [1].
Our approach can be generalized to any kind of text, even those that do not
contain links, such as books or newspapers.

Worth mentioning in this context are the works on temporal word embed-
dings [27]. These representations are often called diachronic embeddings [10],
since they start from collections of documents coming from different periods in
times and build and embedding for each of the periods. The study of embeddings
at different points in time has shown that words are subject to a shift in mean-
ing that can be quantified using distance measures between different embeddings
across the vector space. The main difference between our work and theirs is that
we are embedding temporal entities inside a KG, while often the task proposed
in other approaches is to study the changes of meaning in words over during
time [10]. Following this methodology, a recent work on time-aware entity relat-
edness that uses word embeddings learned from a collection of documents that
spans different time periods has been proposed [17].

5 Conclusions and Future Work

In this paper we have presented an approach to encoding temporal periods into
text-based entity embedding models. In particular, we used our previous work to
generate Typed Entity Embeddings (TEEs) from textual descriptions of entities
and encoded into this model the representations of years. These representations
are generated using natural language descriptions of events occurring during the
years. To the best of our knowledge, this is the first attempt to explicitly encode
time into KG embedding models. In addition, we have defined a parametric
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Towards Encoding Time in Text-Based Entity Embeddings 15

time-aware similarity function that can be tuned to boost or flatten the effect of
time when computing the entity similarity.

In our experiments we have shown that time has an effect on entity embed-
dings built from text, thus validating the main hypothesis behind this work.
Then we have tested our time-aware similarity function to show that it can
capture aspects of similarity that other time-agnostic similarity measures can-
not capture. Such a similarity measure can provide novel knowledge exploration
methods where time can be factored when finding entities similar to each other.

Our results provide a first contribution to the problem of encoding time into
KG embeddings built from text, which poses several challenges that we want
to address in future work. So far, we have considered sequences of regular time
periods at a yearly granularity. An important challenge would be to consider
different granularity levels and, even more important, to study the compositional
nature of temporal representations extracted from text. For example, we would
like to generate a vector for the 70s by composing vectors of years 197X. More
in general, we would like to investigate how vector-based representations of time
periods can be composed so as to provide a soft account of relations between
time intervals that are considered in qualitative models of temporal reasoning
like Allen algebra.
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