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Abstract:We show that the inert subgroups of the lamplighter group fall into exactly �ve commensurability
classes. The result is then connected with the theory of totally disconnected locally compact groups and with
algebraic entropy.
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A subgroup H of a group G is said to be inert if H and g−1Hg are commensurate for all g ∈ G, meaning that H∩
Hg always has �nite index in bothH andHg. The terminologywas introduced by Kegel and has been explored
in many contexts (see, for example, the recent survey [8]). In abstract group theory, Robinson’s investigation
[13] focusses on soluble groups. Here we study a particular special family of soluble groups: the lamplighter
groups and our interest is in the connectionwith the theory of totally disconnected locally compact groups. In
that context, inert subgroups are particularly important in the light of vanDantzig’s theorem that every totally
disconnected locally compact group has a compact open subgroup and of course all such subgroups are
commensurate with one another and therefore inert. It should be noted that in recent literature it is common
to use the term commensurated in place of inert, see for example [5–7, 10]. In §2 we remark a dynamical aspect
of the property investigated here and relate it to the concept of algebraic entropy.

The relation of commensurability is an equivalence relation amongst the subgroups of a group. By a class
we shall here mean an equivalence class of subgroups under this relation. For a prime p, the corresponding
lamplighter group is the standard restrictedwreath productFp wr Z, i.e., the standard restrictedwreath prod-
uct of a group of order p by an in�nite cyclic group. These are the simplest of soluble groups that fall outside
the classes considered by Robinson [13]. Our main observation is as follows.

Theorem. The inert subgroups of the lamplighter group Fp wr Z fall into exactly �ve classes.

1 Proof and application to locally compact groups
Let G be a group, K a �eld and KG the group algebra. Let V be a KG-module. We say that a K-subspace U of
V is G-almost invariant when U/U ∩ Ug is �nite dimensional for all g ∈ G. We say that subspaces U and W
are almost equal when U/U ∩W andW/U ∩W are both �nite dimensional.

Lemma. Let G = 〈x〉 be in�nite cyclic and B = KG. Let B+ = K[x] and B− = K[x−1]. If A is a G-almost invariant
subspace of B then A is almost equal to one of the four subspaces 0, B+, B−, B.
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Proof. The group algebra KG is a Laurent polynomial ring and each of its nonzero elements has a lower degree
and an upper degree these being the least integer and the greatest integer for which the corresponding power
of x has non-zero coe�cient.

Since A is G-almost invariant, there is a �nite dimensional subspace F of B such that Ax and Ax−1 are
both contained in A + F. Let n+ and n− denote the maximum and minimum integers in the �nite set

{j; xj belongs to the support of some non-zero element of F}.

We now distinguish two cases each of which has two subcases.
Case 1 A has an element a with upper degree ≥ n+.
By enlarging F if necessary, we may assume a has upper degree n+. We will de�ne a sequence (aj)j≥0 of ele-
ments of A inductively, starting with a0 = a, so that aj has upper degree n+ + j and so that for almost all j, aj
has lower degree ≥ n−.

For j > 0, we suppose that aj−1 ∈ A has been chosen with upper degree n+ + j − 1. Then aj−1x has upper
degree n++ j and aj−1x = aj + f for some aj in A and f in F. Since n++ j > n+, the upper degree of aj is the same
as that of aj−1x, namely n+ + j. The lower degree of aj−1x is 1 greater than the lower degree of aj−1 and so the
lower degree of aj is either greater than that of aj−1 or is ≥ n−. As a consequence the terms of the sequence
(aj) eventually all have lower degree ≥ n−. Now the span of the aj is almost equal to B+.
Subcase 1a A has an element with lower degree ≤ n−.
If this happens then the same reasoning as above produces a sequence with lower degrees decreasing by one
and the terms of the sequence span a subspace almost equal to B−. It follows that A is almost equal to B.
Subcase 1b All elements of A have lower degree > n−.
In this case, A is almost equal to B+.
Case 2 All elements of A have upper degree < n+.
Similar reasoning shows that either A is �nite dimensional or it is almost equal to B−.

Remark 1.1. Essentially the same strategy can be used to prove a more general result: suppose R is a com-
mutative noetherian ring, G = 〈x〉 is in�nite cyclic, and B = RG =

⊕
n∈Z R. If A is a G-almost invariant

R-submodule of B then A is almost equal to
⊕

n<0 I ⊕
⊕

n>0 J, for some right ideals I, J of R.

Proof of the Theorem. Let B denote the base of the lamplighter group, i.e., B is the in�nite direct sum
⊕

Z Fp
of countably many copies of Fp. This can be identi�ed with the Laurent polynomial ring Fp[x, x−1]. If H is an
inert subgroup of G then H ∩ B is an 〈x〉-almost invariant Fp-subspace of B and so is almost equal to one of
0, B+, B−, B by the above lemma. Commensuration and almost equality are the same thing here because the
ground �eld is �nite.

If H has no elements of in�nite order then H ⊆ B and we are done. If H has an element of in�nite order
and also an element of �nite order then H ∩ B contains Laurent polynomials of arbitrarily large positive
and arbitrarily large negative degrees. In this case H ∩ B has �nite index in B and H has �nite index in G.
If H has an element of in�nite order and no elements of �nite order then it is in�nite cyclic and it is not
commensurated.

We thank Pierre-Emmanuel Caprace for pointing out that one now has the following consequence.

Corollary 1. If G is a totally disconnected locally compact group which has a dense subgroup isomorphic to a
lamplighter group then G is isomorphic to one of the following.

1. A discrete lamplighter group.
2. A compact group.
3. The group Fp((t))ot Z for some prime p.
4. The unrestricted wreath product Fp wrZ for some prime p.

In order to justify Corollary 1 we need a few preliminaries. Recall that a locally compact group G is totally
disconnected if the identity 1G is its own connected component. For a totally disconnected locally compact
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group G, van Dantzig’s theorem ensures that the family of all compact open subgroups of G forms a base
of neighbourhoods of 1G . Therefore, every totally disconnected locally compact group G has a distinguished
class CO(G) of inert subgroups, namely its compact open subgroups.

For a discrete group H, let ϕ : H → G be a group homomorphism with dense image in G. Such a ho-
momorphism is referred to as a totally disconnected locally compact completion of H (a general framework
for totally disconnected locally compact completions can be found in [12]). Note that ϕ is not required to be
injective. For every U ∈ CO(G), the preimage ϕ−1(U) is inert in H. This observation connects the inert sub-
groups of H to its totally disconnected locally compact completions: given a completion ϕ : H → G, the set
{ϕ−1(U) | U ∈ CO(G)} is contained in the commensurability class of an inert subgroup of H. Moreover, if we
start with an inert subgroup I of H, there are two canonical completions of H such that I is the preimage of
a compact open subgroup of G: the Belyaev completion [2] and the Schlichting completion [16]. By [12, Theo-
rem 5.4], every totally disconnected locally compact completion ϕ of the pair (H, I) arises as a quotient (with
compact kernel) of the Belyaev completion of H with respect to the inert subgroup I. Thus the problem of
classifying all totally disconnected locally compact completions of H can be broken into two steps:

1. classify inert subgroups of H up to commensurability;
2. for each class form the Belyaev completion and classify its quotients with compact kernels.

If we start with the lamplighter group, which is residually �nite, Fp wr Z densely embeds in its Belyaev com-
pletions; see [2, Theorem 7.1]. Therefore, to obtain the exhaustive list in Corollary 1 it su�ces to form the
Belyaev completion of each pair (H, I) where I represents one of the 5 classes of inert subgroups of Fp wr Z.

2 Connection with algebraic entropy
The concept of inert subgroup tacitly involves inner automorphisms and, therefore, it is amenable to being
extended to the case of a general endomorphism φ of a group G: a subgroup H of G is said to be φ-inert if
Hφ ∩ H has �nite index in the image Hφ (see [9]). Consequently, a subgroup H is inert in G if H is φ-inert for
every inner automorphism φ of G. The family of all φ-inert subgroups of G is denoted by Iφ(G).

This de�nition can be easily adapted to the context of vector spaces: for an endomorphismϕ of a K-vector
space V, a K-subspace U of V is (linearly) ϕ-inert if dimK((U + ϕU)/U) < ∞. Let LIϕ(V) denote the family of
all ϕ-inert linear subspaces of V. Notice that LIϕ(V) ⊆ Iϕ(V) whenever K is a �nite �eld.

The notion of ϕ-inert subspace allows to point out a dynamical aspect of the Lemma above. Indeed, let

βK :
⊕
n∈Z

K →
⊕
n∈Z

K, (xn)n∈Z 7→ (xn−1)n∈Z. (1)

be the two sided Bernoulli shift on K. Then we have the following reformulation of the Lemma.

Corollary 2. One has LIβK (V) ∩ LIβ−1K (V) = {0, V
−, V+, V}, where

V =
⊕
n∈Z

K, V+ =
⊕
n≥0

K and V− =
⊕
n≤0

K.

Several di�erent notions of algebraic entropy have been introduced in the past (see [1, 11, 14, 17] and refer-
ences there). In particular, the possibility to de�ne ϕ-inert subobjects has recently turned out to be a very
helpful tool for the study of the dynamical properties of the given endomorphism ϕ. The leading example is
the so-called intrinsic entropy ẽnt. It was introduced in [9] to obtain a dynamical invariant able to treat also
endomorphisms of torsion-free abelian groups where other entropy functions vanish completely for the lack
of non-trivial �nite subgroups. Afterwards, the intrinsic valuation entropy ẽntv was introduced in [15] with the
aim of extending ẽnt to the context of modules over a non-discrete valuation domain and also the algebraic
entropy for locally linearly compact vector spaces de�ned in [4] has the same “intrinsic” �avour. Therefore,
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going down the same path, one de�nes the intrinsic dimension entropy ẽntdim for linear endomorphisms by

ẽntdim(ϕ) = sup
U∈Iϕ(V)

ẽntdim(ϕ, U), (2)

where ẽntdim(ϕ, U) := limn∈N
1
n dimK

(
Tn(ϕ,U)

U

)
and Tn(ϕ, U) := U+ϕU+ . . .+ϕn−1U for n ∈ N (the existence

of the limit is not trivial; an easy adaption of the argument of [4, Proposition 3.1] provides a proof).
In this new context, Corollary 2 can be then used to compute the intrinsic dimension entropy of the two

sided Bernoulli shift βK, which turns out to equal 1. Indeed, Corollary 2 and a limit-free formula as in [4, 15]
provide ẽntdim(βK) = dimK(V−/β−1K (V−)) = 1.

Quite remarkably, ϕ-inert subspaces do not enrich the dynamics of linear �ows like ϕ-inert subgroups
do in the framework of abelian groups (see [9]). Indeed, one veri�es that ẽntdim(ϕ) = entdim(ϕ) for every
ϕ : V → V, where

entdim(ϕ) := sup
{
lim
n→∞

dimK(Tn(ϕ, F))
n | F ≤ V and dimK(F) < ∞

}
,

which is a classical entropy function for vector spaces and their endomorphisms (details about this entropy
function can be found in [3]). Indeed, since every �nite-dimensional subspace is ϕ-inert, one easily has
ẽntdim(ϕ) ≥ entdim(ϕ). Conversely, proceeding as in [4, Lemma 3.9], for every U ∈ Iϕ(V) one can �nd a
�nite-dimensional subspace FU such that Tn(ϕ, U) = U + Tn(ϕ, FU). Consequently, dimK(Tn(ϕ, U)/U) ≤
dimK(Tn(ϕ, FU)) and ẽntdim(ϕ) ≤ entdim(ϕ).

In other words, there are always enough �nite-dimensional linear subspaces.
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