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Abstract: Let K be a discrete field and (V, ¢) a pair consisting of a locally linearly compact K-space V and a
continuous endomorphism ¢: V — V. We provide the formulae to compute the topological entropy ent” of
the flow (V, ¢) subject to either extension or restriction of scalars.
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1 Introduction

An entropy function over a category € can be regarded as an invariant
h: Flow(C) — N U {eo},

of the category Flow(C), whose objects are the flows defined over C. Recall that a flow over an arbitrary cate-
gory € is a pair (C, v) consisting of an object C and an endomorphism ~: C — C.

The first appearance of topological entropy was in 1965 when Adler, Konheim and McAndrew [1] defined
it for continuous self-maps of compact spaces. Afterwards, Bowen [3] and Hood [7] brought a notion of topo-
logical entropy into the world of uniformly continuous self-maps on uniform spaces (also known as uniform
entropy) opening up the possibility for computing entropy of any given continuous endomorphism ¢: G — G
of a topological group G. E.g., profinite groups and, more generally, locally compact groups.

Interest in the locally compact case is currently very high because locally compact groups are om-
nipresent in several areas of mathematics. In particular, when the locally compact group is also totally
disconnected, the topological entropy becomes more docile leading to various significant results. For exam-
ple, for totally disconnected locally compact groups and their endomorphisms, there exists a strict relation
between the topological entropy h,p and the famous scale function s defined in [10] (see [2, 8] for details).

By analogy with the topological entropy h;,p, the topological entropy ent” has been introduced in [6] for
the category x LLC of locally linearly compact vector spaces over a discrete field K, and the main motivation
for studying such an entropy function was to reach a better understanding of ho, by means of the more rigid
case of locally linearly compact vector spaces. A topological vector space V over a discrete field K is said to
be locally linearly compact if V admits a local basis at 0 consisting of linearly compact open K-subspaces.
Namely, every neighbourhood of O contains an open K-subspace that is linearly compact in the subspace
topology. Recall that a topological vector space E is linearly compact when

(LC1) it is a Hausdorff space in which there is a local base of 0 consisting of linear subspaces of E;
(LC2) any filter base on E consisting of closed linear varieties has a non-empty intersection.
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Notice that, for a finite field K, every locally linearly compact K-space V is a totally disconnected locally
compact abelian group and
heop(V, §) = ent’(V, §) - log [K|,

for every continuous endomorphism ¢p: V — V (see [6, Proposition 3.9]). In the latter equation it is clear that
the size of the field K affects - as predictable - the value of the topological entropy. Therefore, it is reasonable
to ask whether the topological entropy is affected by the change of scalars also in the case of infinite fields.
The aim of this paper is to address this question, which finds a complete answer in Theorem 4.5. Namely,
we first see that both the procedures of restriction and extension of scalars continue to be available in the
context of locally linearly compact vector spaces: given a finite field extension F < K, there exist functors

Resi(-): kLLC — yLLC and Indk(-): yLLC — xLLC

forming an adjunction by
CHomy (Inds(-), -) = CHomg(-, Resj(-)),

where CHom is understood to be the space of continuous homomorphisms. Afterwards, for finite field exten-
sions F < K < L, we provide the formulae

entz(Resk(V, ¢)) = [K : F] - entx(V, ¢) and ent; (Ind%(V, ¢)) = enti(V, ¢), (V, ¢) € ob(Flow(xLLC)),
that rule the effect of the change of scalars on the computation of ent”.

There are no surprises in either the statement or the proof of Theorem 4.5, but its content does not appear
anywhere else. Indeed this paper is intended to be a complement to [5, 6] where ent” for locally linearly
compact K-spaces has been introduced and studied.

2 Preliminaries and basic properties

Throughout, the topology on arbitrary fields will always be the discrete topology. We summarise in this sec-
tion some of the properties of (locally) linearly compact vector spaces and the topological entropy ent” (see
[6, Sections 2 and 3] for references) that will be used in the rest of the paper sometimes with no previous
acknowledgement.

A topological K-space is said to be linearly topologized if it admits a local basis at 0 of K-linear subspaces.
For linearly topologized K-spaces V, V' and W such that W < V, the following hold:

P1. If W is linearly compact, then W is closed in V.

P2. If V is linearly compact and W is closed, then W is linearly compact.

P3. Linear compactness is preserved by continuous homomorphisms.

P4. If V is discrete, then V is linearly compact if and only if V has finite dimension.

P5. If W is closed, then V is linearly compact if and only if W and V/W are linearly compact.

P6. The direct product of linearly compact K-spaces is linearly compact.

P7. An inverse limit of linearly compact K-spaces is linearly compact.

P8. If V is linearly compact, then V is complete.

P9. Let V be a linearly compact K-space. Every continuous K-linear map f: V — V'’ is open onto its image.
P10. Linearly compact K-spaces satisfy Lefschetz duality.
P11. Every linearly compact K-space is topologically a direct product of copies of K.
P12. Every linearly compact K-space is topologically an inverse limit of finite-dimensional K-spaces.

2.1 Complete tensor product and profinite plagiarism

Given linearly compact K-spaces V and W, a linearly compact K-space T (together with a bilinear map b: Vx
W — T) is a complete tensor product of V and W over K if it satisfies the following universal property: for
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every linearly compact K-space Z and every continuous bilinear map : VxW — Z there exists a continuous
linear map ff: T — Z such that

VxW_2.oT 1)

| A

VA

commutes. It is easy to see that if the complete tensor product exists, it is unique up to isomorphism. We
denote it by Vg W.

Proposition 2.1. With the above notation, the complete tensor product V&g W exists. In fact, if

-

V=1lmV; and W =lim W,
H
icl J€J

where each V; (respectively, W;) is a finite-dimensional K-space endowed with the discrete topology, then

V@KW = lim (Vi ®K Wj),
icl,je

where V; @k W; is the usual tensor product as abstract K-spaces. In particular, V&g W is the linearly compact-
completion of V @ W, where V @k W has the topology for which a fundamental system of neighbourhoods of
0 are the kernels of the natural maps

Vor W— V; @k Wj (ielje).
Proof. Basically, we use the strategy developed in the proof of [9, Lemma 5.5.1]. Since

VxW Z¢p m (Vi x Wj),
iel,je]

by the universal property of inverse limits, there exists a canonical continuous K-bilinear map

iel,je]

Since every linearly compact K-space is the inverse limit of its finite-dimensional K-quotients, it suffices to
check the universal property only for an arbitrary K-space, say F, of finite dimension. Suppose f: VxW — F
to be continuous and K-bilinear. For dimg (F) < oo, there is a pair of indices (i, j) € I x J and a continuous
K-bilinear map B;;: V; x Wj — F such that the diagram

VxW—" o F

A
\ | Bij
|

Vl'X W]

commutes. Now the universal property of V; ®x W; produces a continuous K-bilinear map [3,7 :Vieg W; — F
such that B;;(v; ® w;) = B(v;, w)). Finally, define B: V&g W — F to be

B

V@KWH V; @k Wl —F.
B

i
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Since the complete tensor product is unique up to isomorphism, the construction above does not depend on
the (inverse limit)-representation of V and W. Moreover, the right-exact covariant functor V&g —: xLC — xLC
is additive and satisfies

V®KK g/top V, (3)

where the isomorphism is natural in V. Clearly, similar properties hold for -@x W.

Remark 2.2. The tensor products here are merely vector spaces, but complete tensor products can be defined
for more general objects, e.g., linearly compact modules over linearly compact commutative rings.

2.2 Topological entropy on xLLC

Let (V, ¢) be a flow over xLLC and denote by B(V) the collection of all linearly compact open K-subspaces
of V. Then the topological entropy of (V, ¢) is defined to be

ent]%(V, ¢)= sup H];((q,'), U),
UeB(V)

where 1
Hy (¢, U) = Jim — dimg (U/(U N ¢ tUN...np ™).

The linearly compact open K-subspace U N ¢ U N ... N ¢ "1 U is called n-cotrajectory of ¢ in U and it is
denoted by Cx (¢, U).
In [6] the topological entropy was denoted simply by ent” but we need to highlight the field involved.

eP1. (Invariance under conjugation) For every isomorphism a: V — W of locally linearly compact K-spaces,
enty (W, aq,')a"l) = enty(V, o).
eP2. (Monotonicity) For every closed K-subspace W of V such that ¢p(W) < W,
enty(V, ¢) > max{enty (W, ¢ [w), entx(V/W, ¢)}

where ¢p: V/W — V/W is induced by ¢.

eP3. (Logarithmic law) For all k € N, enty (V, ¢*) = k - enty(V, ¢).

eP4. (Continuity on inverse limits) Let {W; | i € I} be a directed system (for inverse inclusion) of closed K-
subspaces of V such that ¢p(W;) < W;. If V = m V/W;, then

enty (V, ¢) = sup enty (V/W;, bw)s
icl

where any $Wi : V/W; — V/W,; is the continuous endomorphism induced by ¢.
eP5. (Change of basis) For every local basis B at 0 contained in B(V), one has enty (V, ¢) = supyc Hy (¢, U).

3 Change of fields

Firstly, we deal with the case of linearly compact vector spaces in order to deduce from it the general case
concerning locally linearly compact spaces.

3.1 Restriction of scalars for linearly compact vector spaces

Let F < K be a field extension of finite degree [K : F] € N. Since any K-space can be regarded as F-space via
the inclusion F — K, one has a functor of abstract vector spaces

resk(-): gVect — pVect, (4)
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which is usually called restriction of scalars. Let V be a linearly compact K-space. By the property P11., we
know that V is topologically the direct product of 1-dimensional K-spaces (endowed with the Tychonoff topol-
ogy). Since the restriction functor is a right-adjoint, we get it commutes with products. Therefore, the under-
lying F-space is still a direct product, i.e.,

res%(V) = H res%(K) = H F[K’Fl,

and the topology on V coincides with the product topology of [| FIFl i e., V can be regarded as a linearly
compact F-space. Thus it is well-defined a restriction functor

Resf(-): xkLC — LC. ()

for linearly compact vector spaces and field extensions. Notice that [K : F] < oo is a necessary condition,
since Resk (K) has to be finite-dimensional in order to be linearly compact in the discrete topology.

3.2 Extension of scalars for linearly compact vector spaces

Let K < L be a finite field extension, i.e., L. is a linearly compact K-space via multiplication. For every V, W ¢
kLC, we know that V@ W is dense in V&g W since the complete tensor product is a topological completion of
the abstract tensor product. Indeed V&g W is topologically spanned by the set of elements {v&w := (v, w) |
(v, w) € V x W} (see (2)). Therefore one can define a structure of topological LL-space on the linearly compact
K-space L&g V, by extending the natural action

1-('év) = (1Né&v, foralll,l! eL,velV.
We denote this topological L-space by Indk (V).

Proposition 3.1. For every linearly compact K-space V and a finite extension K < L, the induced 1L-space
Ind% (V) is topologically isomorphic to

1. L @k V with the topology for which a local basis at O are the kernels of the natural I.-maps
LexV—LegV;, i€l

where V = @ie ! V; for some family {V;} of finite-dimensional K-spaces.
2. TI; L with Tychonoff topology, where V has been regarded as [ | K.

In particular, Indi (V) is a linearly compact L-space.

Proof. Note that

4 gtop @ HK,

FeF()jeF

where F(J) is the directed set of all finite subsets of J. Thus 1. follows by (3) and Proposition 2.1 since L ~ K"
for some n. Moreover, 2. follows by 1..
O

Therefore, whenever L is an extension of K of finite degree, the functor
Indj(-): xLC — 1 LC, (6)

is defined and it is left-adjoint to the restriction functor Resk(—), i.e., L&k V satisfies the following universal
property: for every linearly compact LL.-space W and every continuous K-linear map f: V — W there exists a
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unique continuous L-linear map f: L&x V — W such that

V—= L(/X\)KV )

commutes. The functor Indk(—) is called induction functor.

3.3 Restriction and Induction over xLLC

Let F < K < L be finite field extensions. Here we define the restriction functor
ResX(-): gkLLC — gLLC. (8)

and the induction functor
Indk(-): kLLC — 1 LLC, ©)

over the category of locally linearly compact vector spaces relying on the construction given above for linearly
compact vector spaces. With abuse of notation, those functors shall still be denoted by Res.(-) and Ind.(-),
where *, € {F, K, LL}. It unlikely causes confusion since the functors defined here coincide with (5) and (6)
over the corresponding subcategory of linearly compact vector spaces.

Let V be an object in g LLC. The locally linearly compact K-space V can be regarded as a locally linearly
compact F-space Res%(v) since the topology on V is locally generated at O by

{Resk(U) | U linearly compact open in V},

(compare with (5)). Analogously, Indk(V) is defined to be the abstract L-space L. ®k V together with the
topology locally generated at O by

{Indk(U) | U linearly compact openin V},

where each Ind%(U) can be identified with a K-subspace of L @ V since L is free over K (compare with
Proposition 3.1 and (6)). Finally, one checks that the functors so defined are additive and form the adjunction

CHomy (Ind% (V), W) = CHomg(V, Resk(W)), VV € ob(xLLC) and W € ob(,LLC).

4 Topological entropy after induction and restriction

Clearly, every functor F: «LLC — «LLC induces a functor of flows by (V, ¢) — (FV, F¢). Therefore, for an
arbitrary discrete field E, we simplify the notation of § 2.2 as following:

N1. Cy(F(¢, U)) := Cr(F(¢p), F(U)), forall n € N;
N2. Hg(F(¢, U)) := Hy(F(¢), F(U));
N3. enty(F(V, ¢)) := enty(F(V), F(¢)).

4.1 Linearly compact case

Let IF < K < L be field extensions such that [IL : F] < oo. Let V be a linearly compact vector K-space and let

vB: H V— H v, (Vn)neN = (Vn+1)n€N’
n=0 n=0
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denote the left Bernoulli shift of V. For V = K, the map f is the one-dimensional left Bernoulli shift
whose topological entropy is 1 (see [6, Example 3.16(a)]) . Applying the restriction functor Resk to the flow
(12>, K, ) produces an endomorphism of Res ([T, K) = [, FI¥**\. In particular, it coincides to the left
Bernoulli shift ., B of the F-space FF) whose topological entropy equals [K : F] by [6, Example 3.16(b)].
Therefore,

entf}(Resﬁg(H K, xB) = ent}(H FUF] emB) =[K:F]=[K:F]- entk(H K, xf).
n=0 n=0 n=0

On the other hand, the induction Ind} produces an endomorphism of the L-space [T, L that coincides to
the (1-dimensional) left Bernoulli shift ; 8 of L. In particular,

enti(Indk(H K, xpB)) = enti(H L, f)=1= entﬂz(H K, xB).
n=0 n=0 n=0
The following result shows that the formulae above hold for arbitrary flows over xLC.

Proposition 4.1. Let F < K < IL such that [L : F] < os. For every flow (V, ¢) over xLC one has
enty(Resk(V, ¢) = [K : F] - enty(V, ¢) and enti(Indk(V, ¢)) = ent (V, ¢).

For a field E, the collection of all open E-subspaces [ [ A; of [] E such that

(G1) A; = E for all but finitely many indices,
(G2) A; = 0 otherwise;

form a neighbourhood basis at O for the Tychonoff topology on [ | E. We will refer to such a basis as good basis
of [] E and its elements will be said to be good.

Proof of Proposition 4.1. For an arbitrary flow (V, ¢) over xLC, let U = [] A; be a good K-subspace of V. Thus

H;(Resf (9, ) = lim % . codimy CE(Res¥(¢p, U)) =

[K:TF]
n

= lim - codimg CX(¢, U) = [K : F] - Hx (¢, U).

and notice that Res%(U) is a good [F-subspace of V. Since good subspaces form a neighbourhood basis at 0,
one has that
[K : F] - entx (V, ¢) < entp(Rest (V, ).

Finally, the equality holds since every good F-subspace of Res%(V) can be realised as the restriction of a good
K-subspace of V. In order to prove the second part of the statement, notice that

dimg(-) = dimy (Indk(-)) and C%(Indk(¢, U)) = Indk(CX(¢p, U)), (U € B(V), n € N).
Therefore,

* .1 . .1 .
H; (Indk (¢, U)) = Jim - - codimy, Ch(Indk (¢, U)) = lim - - codimy, Indg (Cn(¢, U)) =

= lim % . codimy Cu(¢h, U) = Hy(, U).

n—soo

Same reasoning as above yields ent; (indj(V, ¢)) = ent (V, ¢). O

Remark 4.2. An easy observation yields that, for every linearly compact K-space V, one has
enti(lnd%(Res%(V, $) =[K:TF]- enty (V, ¢) and entI}(Res%(Ind%g(V, $) =[L: F] -enty (V, o).

Using induction and restriction gives back an intuitive method to generate examples of topological flows
with some finite topological entropy n € N over different fields. E.g., let (V, k) be the 1-dimensional left
Bernoulli shift defined above. One easily generates the n-dimensional left Bernoulli shift over K by combining
induction and restriction with respect to a field extension of K of degree n.
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Remark 4.3. In [4] a deep relationship between a flow (V, ¢») and the Bernoulli shift has been recently proved:
the flow (V, ¢) is essentially a product of one-dimensional left Bernoulli shifts as many as enty(V, ¢) counts.
Therefore, Proposition 4.1 can be obtained as corollary of [4, Theorem A].

4.2 General case

Recall that every locally linearly compact K-space V can be split into a topological sum of a linearly compact
K-space V. and a discrete K-space V;; namely, V =, V. @ V. Actually, this type of decomposition is
available whenever we consider a linearly compact open subspace U of V. Indeed, V =, U@ V/U.

Now let (V, ¢) be a flow over g LLC . Any decomposition V =,, V¢ @ V, induces the decomposition

¢ _ ¢CC ¢dc
¢cd ¢dd
where ¢+ : Ve — Vi« is the composition ¢ex = pxopote for e, * € {c, d}. Therefore, ¢+ is continuous being
composition of continuous homomorphisms.

Lemma 4.4. LetF < K < LL be finite field extensions and V =,, Ve ® V4 a locally linearly compact K-space
together with a continuous endomorphism ¢: V — V. Thus

1 Res]%{( V) admits a decomposition such that
Resk(V)e = Resk(Ve) and Resk(¢)cc = Resk(ee).
2. Indk(V) admits a decomposition such that

Indi (V) = Ind2(Ve) and Indi(¢)cc = Indf(dec).

Proof. Notice that Res%(v) (or Indk(V)) can be obtained by restricting (or extending) V. and V, first in the
corresponding categories and then summing them up in x LLC. Indeed both restriction functor and induction
functor are additive. O

Theorem 4.5. LetF < K < IL such that [ : F] < co. For every flow (V, ¢) over xLLC one has
entp(Resy(V, ¢)) = [K : F] - ent(V, ¢) and ent] (Indk(V, ¢)) = entiz(V, ¢).

Proof. By the previous lemma, it follows directly from Proposition 4.1 and the reduction to linearly compact
vector spaces devoloped in [6, Section 4]. O
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