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Abstract: Let K be a discrete �eld and (V , ϕ) a pair consisting of a locally linearly compact K-space V and a
continuous endomorphism ϕ : V → V. We provide the formulae to compute the topological entropy ent* of
the �ow (V , ϕ) subject to either extension or restriction of scalars.
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1 Introduction
An entropy function over a category C can be regarded as an invariant

h: Flow(C)→ N ∪ {∞},

of the category Flow(C), whose objects are the �ows de�ned over C. Recall that a �ow over an arbitrary cate-
gory C is a pair (C, γ) consisting of an object C and an endomorphism γ : C → C.

The �rst appearance of topological entropy was in 1965 when Adler, Konheim and McAndrew [1] de�ned
it for continuous self-maps of compact spaces. Afterwards, Bowen [3] and Hood [7] brought a notion of topo-
logical entropy into the world of uniformly continuous self-maps on uniform spaces (also known as uniform
entropy) opening up the possibility for computing entropy of any given continuous endomorphismϕ : G → G
of a topological group G. E.g., pro�nite groups and, more generally, locally compact groups.

Interest in the locally compact case is currently very high because locally compact groups are om-
nipresent in several areas of mathematics. In particular, when the locally compact group is also totally
disconnected, the topological entropy becomes more docile leading to various signi�cant results. For exam-
ple, for totally disconnected locally compact groups and their endomorphisms, there exists a strict relation
between the topological entropy htop and the famous scale function s de�ned in [10] (see [2, 8] for details).

By analogy with the topological entropy htop, the topological entropy ent* has been introduced in [6] for
the category KLLC of locally linearly compact vector spaces over a discrete �eld K, and the main motivation
for studying such an entropy function was to reach a better understanding of htop bymeans of the more rigid
case of locally linearly compact vector spaces. A topological vector space V over a discrete �eld K is said to
be locally linearly compact if V admits a local basis at 0 consisting of linearly compact open K-subspaces.
Namely, every neighbourhood of 0 contains an open K-subspace that is linearly compact in the subspace
topology. Recall that a topological vector space E is linearly compact when

(LC1) it is a Hausdor� space in which there is a local base of 0 consisting of linear subspaces of E;
(LC2) any �lter base on E consisting of closed linear varieties has a non-empty intersection.
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Notice that, for a �nite �eld K, every locally linearly compact K-space V is a totally disconnected locally
compact abelian group and

htop(V , ϕ) = ent*(V , ϕ) · log |K|,

for every continuous endomorphism ϕ : V → V (see [6, Proposition 3.9]). In the latter equation it is clear that
the size of the �eldK a�ects - as predictable - the value of the topological entropy. Therefore, it is reasonable
to ask whether the topological entropy is a�ected by the change of scalars also in the case of in�nite �elds.

The aim of this paper is to address this question, which �nds a complete answer in Theorem 4.5. Namely,
we �rst see that both the procedures of restriction and extension of scalars continue to be available in the
context of locally linearly compact vector spaces: given a �nite �eld extension F ≤ K, there exist functors

ResKF (−) : KLLC→ FLLC and IndKF (−) : FLLC→ KLLC

forming an adjunction by
CHomK(IndKF (−), −) ∼= CHomF(−, ResKF (−)),

where CHom is understood to be the space of continuous homomorphisms. Afterwards, for �nite �eld exten-
sions F ≤ K ≤ L, we provide the formulae

ent*F(ResKF (V , ϕ)) = [K : F] · ent*K(V , ϕ) and ent*L(IndLK(V , ϕ)) = ent*K(V , ϕ), (V , ϕ) ∈ ob(Flow(KLLC)),

that rule the e�ect of the change of scalars on the computation of ent*.

There are no surprises in either the statement or the proof of Theorem 4.5, but its content does not appear
anywhere else. Indeed this paper is intended to be a complement to [5, 6] where ent* for locally linearly
compactK-spaces has been introduced and studied.

2 Preliminaries and basic properties
Throughout, the topology on arbitrary �elds will always be the discrete topology. We summarise in this sec-
tion some of the properties of (locally) linearly compact vector spaces and the topological entropy ent* (see
[6, Sections 2 and 3] for references) that will be used in the rest of the paper sometimes with no previous
acknowledgement.

A topologicalK-space is said to be linearly topologized if it admits a local basis at 0 ofK-linear subspaces.
For linearly topologizedK-spaces V , V ′ andW such thatW ≤ V, the following hold:

P1. IfW is linearly compact, thenW is closed in V.
P2. If V is linearly compact andW is closed, thenW is linearly compact.
P3. Linear compactness is preserved by continuous homomorphisms.
P4. If V is discrete, then V is linearly compact if and only if V has �nite dimension.
P5. IfW is closed, then V is linearly compact if and only ifW and V/W are linearly compact.
P6. The direct product of linearly compactK-spaces is linearly compact.
P7. An inverse limit of linearly compactK-spaces is linearly compact.
P8. If V is linearly compact, then V is complete.
P9. Let V be a linearly compactK-space. Every continuousK-linear map f : V → V ′ is open onto its image.

P10. Linearly compactK-spaces satisfy Lefschetz duality.
P11. Every linearly compactK-space is topologically a direct product of copies ofK.
P12. Every linearly compactK-space is topologically an inverse limit of �nite-dimensionalK-spaces.

2.1 Complete tensor product and pro�nite plagiarism

Given linearly compactK-spaces V andW, a linearly compactK-space T (together with a bilinearmap b : V ×
W → T) is a complete tensor product of V and W over K if it satis�es the following universal property: for
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every linearly compactK-space Z and every continuous bilinear map β : V ×W → Z there exists a continuous
linear map β̂ : T → Z such that

V ×W b //

β
��

T

β̂||
Z

(1)

commutes. It is easy to see that if the complete tensor product exists, it is unique up to isomorphism. We
denote it by V⊗̂KW.

Proposition 2.1. With the above notation, the complete tensor product V⊗̂KW exists. In fact, if

V = lim←−
i∈I

Vi and W = lim←−
j∈J

Wj ,

where each Vi (respectively, Wj) is a �nite-dimensionalK-space endowed with the discrete topology, then

V⊗̂KW = lim←−
i∈I,j∈J

(Vi ⊗K Wj),

where Vi ⊗KWj is the usual tensor product as abstractK-spaces. In particular, V⊗̂KW is the linearly compact-
completion of V ⊗K W, where V ⊗K W has the topology for which a fundamental system of neighbourhoods of
0 are the kernels of the natural maps

V ⊗K W → Vi ⊗K Wj (i ∈ I, j ∈ J).

Proof. Basically, we use the strategy developed in the proof of [9, Lemma 5.5.1]. Since

V ×W ∼= top lim←−
i∈I,j∈J

(Vi ×Wj),

by the universal property of inverse limits, there exists a canonical continuousK-bilinear map

ι : V ×W → lim←−
i∈I,j∈J

(Vi ⊗K Wj). (2)

Since every linearly compact K-space is the inverse limit of its �nite-dimensional K-quotients, it su�ces to
check the universal property only for an arbitraryK-space, say F, of �nite dimension. Suppose β : V ×W → F
to be continuous and K-bilinear. For dimK(F) < ∞, there is a pair of indices (i, j) ∈ I × J and a continuous
K-bilinear map βij : Vi ×Wj → F such that the diagram

V ×W
β //

$$

F

Vi ×Wj

βij

OO

commutes. Now the universal property of Vi⊗KWj produces a continuousK-bilinear map β̂ij : Vi⊗KWj → F
such that β̂ij(vi ⊗ wj) = β(vi , wj). Finally, de�ne β : V⊗̂KW → F to be

V⊗̂KW //

β

##
Vi ⊗K Wj

β̂ij
// F.
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Since the complete tensor product is unique up to isomorphism, the construction above does not depend on
the (inverse limit)-representation of V andW. Moreover, the right-exact covariant functor V⊗̂K−: KLC→ KLC
is additive and satis�es

V⊗̂KK ∼= top V , (3)

where the isomorphism is natural in V. Clearly, similar properties hold for −⊗̂KW.

Remark 2.2. The tensor products here are merely vector spaces, but complete tensor products can be de�ned
for more general objects, e.g., linearly compact modules over linearly compact commutative rings.

2.2 Topological entropy on KLLC

Let (V , ϕ) be a �ow over KLLC and denote by B(V) the collection of all linearly compact open K-subspaces
of V. Then the topological entropy of (V , ϕ) is de�ned to be

ent*K(V , ϕ) = sup
U∈B(V)

H*K(ϕ, U),

where
H*K(ϕ, U) = lim

n→∞
1
n dimK(U/(U ∩ ϕ−1U ∩ . . . ∩ ϕ−n+1U)).

The linearly compact open K-subspace U ∩ ϕ−1U ∩ . . . ∩ ϕ−n+1U is called n-cotrajectory of ϕ in U and it is
denoted by CKn (ϕ, U).

In [6] the topological entropy was denoted simply by ent* but we need to highlight the �eld involved.

eP1. (Invariance under conjugation) For every isomorphism α : V → W of locally linearly compactK-spaces,

ent*K(W , αϕα−1) = ent*K(V , ϕ).

eP2. (Monotonicity) For every closedK-subspaceW of V such that ϕ(W) ≤ W,

ent*K(V , ϕ) ≥ max{ent*K(W , ϕ �W ), ent*K(V/W , ϕ)}

where ϕ : V/W → V/W is induced by ϕ.
eP3. (Logarithmic law) For all k ∈ N, ent*K(V , ϕk) = k · ent*K(V , ϕ).
eP4. (Continuity on inverse limits) Let {Wi | i ∈ I} be a directed system (for inverse inclusion) of closed K-

subspaces of V such that ϕ(Wi) ≤ Wi. If V = lim←−V/Wi, then

ent*K(V , ϕ) = sup
i∈I

ent*K(V/Wi , ϕWi
),

where any ϕWi
: V/Wi → V/Wi is the continuous endomorphism induced by ϕ.

eP5. (Change of basis) For every local basisB at 0 contained inB(V), one has ent*K(V , ϕ) = supU∈B H*K(ϕ, U).

3 Change of �elds
Firstly, we deal with the case of linearly compact vector spaces in order to deduce from it the general case
concerning locally linearly compact spaces.

3.1 Restriction of scalars for linearly compact vector spaces

Let F ≤ K be a �eld extension of �nite degree [K : F] ∈ N. Since anyK-space can be regarded as F-space via
the inclusion F ↪→ K, one has a functor of abstract vector spaces

resKF (−) : KVect→ FVect, (4)
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which is usually called restriction of scalars. Let V be a linearly compact K-space. By the property P11., we
know that V is topologically the direct product of 1-dimensionalK-spaces (endowedwith the Tychono� topol-
ogy). Since the restriction functor is a right-adjoint, we get it commutes with products. Therefore, the under-
lying F-space is still a direct product, i.e.,

resKF (V) =
∏

resKF (K) ∼=
∏

F[K:F],

and the topology on V coincides with the product topology of
∏

F[K:F], i.e., V can be regarded as a linearly
compact F-space. Thus it is well-de�ned a restriction functor

ResKF (−) : KLC→ FLC. (5)

for linearly compact vector spaces and �eld extensions. Notice that [K : F] < ∞ is a necessary condition,
since ResKF (K) has to be �nite-dimensional in order to be linearly compact in the discrete topology.

3.2 Extension of scalars for linearly compact vector spaces

LetK ≤ L be a �nite �eld extension, i.e., L is a linearly compactK-space via multiplication. For every V ,W ∈
KLC,we know that V⊗KW is dense in V⊗̂KW since the complete tensor product is a topological completion of
the abstract tensor product. Indeed V⊗̂KW is topologically spanned by the set of elements {v⊗̂w := ι(v, w) |
(v, w) ∈ V ×W} (see (2)). Therefore one can de�ne a structure of topological L-space on the linearly compact
K-space L⊗̂KV , by extending the natural action

l · (l′⊗̂v) := (ll′)⊗̂v, for all l, l′ ∈ L, v ∈ V .

We denote this topological L-space by IndLK(V).

Proposition 3.1. For every linearly compact K-space V and a �nite extension K ≤ L, the induced L-space
IndLK(V) is topologically isomorphic to

1. L⊗K V with the topology for which a local basis at 0 are the kernels of the natural L-maps

L⊗K V → L⊗K Vi , i ∈ I,

where V = lim←−i∈I Vi for some family {Vi} of �nite-dimensionalK-spaces.
2.
∏
J L with Tychono� topology, where V has been regarded as

∏
J K.

In particular, IndLK(V) is a linearly compact L-space.

Proof. Note that
V ∼= top lim←−

F∈F(J)

∏
j∈F

K,

where F(J) is the directed set of all �nite subsets of J. Thus 1. follows by (3) and Proposition 2.1 since L ∼= Kn

for some n. Moreover, 2. follows by 1. .

Therefore, whenever L is an extension ofK of �nite degree, the functor

IndLK(−) : KLC→ LLC, (6)

is de�ned and it is left-adjoint to the restriction functor ResLK(−), i.e., L⊗̂KV satis�es the following universal
property: for every linearly compact L-spaceW and every continuousK-linear map f : V → W there exists a
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unique continuous L-linear map f̂ : L⊗̂KV → W such that

V //

f
��

L⊗̂KV

f̂||
W

(7)

commutes. The functor IndLK(−) is called induction functor.

3.3 Restriction and Induction over KLLC

Let F ≤ K ≤ L be �nite �eld extensions. Here we de�ne the restriction functor

ResKF (−) : KLLC→ FLLC. (8)

and the induction functor
IndLK(−) : KLLC→ LLLC, (9)

over the category of locally linearly compact vector spaces relying on the construction given above for linearly
compact vector spaces. With abuse of notation, those functors shall still be denoted by Res*•(−) and Ind*•(−),
where *, • ∈ {F,K,L}. It unlikely causes confusion since the functors de�ned here coincide with (5) and (6)
over the corresponding subcategory of linearly compact vector spaces.

Let V be an object in KLLC. The locally linearly compactK-space V can be regarded as a locally linearly
compact F-space ResKF (V) since the topology on V is locally generated at 0 by

{ResKF (U) | U linearly compact open in V},

(compare with (5)). Analogously, IndLK(V) is de�ned to be the abstract L-space L ⊗K V together with the
topology locally generated at 0 by

{IndLK(U) | U linearly compact open in V},

where each IndLK(U) can be identi�ed with a K-subspace of L ⊗F V since L is free over K (compare with
Proposition 3.1 and (6)). Finally, one checks that the functors so de�ned are additive and form the adjunction

CHomL(IndLK(V),W) ∼= CHomK(V , ResLK(W)), ∀V ∈ ob(KLLC) andW ∈ ob(LLLC).

4 Topological entropy after induction and restriction
Clearly, every functor F : *LLC → •LLC induces a functor of �ows by (V , ϕ) 7→ (FV , Fϕ). Therefore, for an
arbitrary discrete �eld E, we simplify the notation of § 2.2 as following:

N1. C•n(F(ϕ, U)) := C•n(F(ϕ), F(U)), for all n ∈ N;
N2. H*E(F(ϕ, U)) := H*E(F(ϕ), F(U));
N3. ent*E(F(V , ϕ)) := ent*E(F(V), F(ϕ)).

4.1 Linearly compact case

Let F ≤ K ≤ L be �eld extensions such that [L : F] < ∞. Let V be a linearly compact vectorK-space and let

Vβ :
∞∏
n=0

V →
∞∏
n=0

V , (vn)n∈N 7→ (vn+1)n∈N,
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denote the left Bernoulli shift of V. For V = K, the map Kβ is the one-dimensional left Bernoulli shift
whose topological entropy is 1 (see [6, Example 3.16(a)]) . Applying the restriction functor ResKF to the �ow
(
∏∞
n=0K, Kβ) produces an endomorphism of ResKF (

∏∞
n=0K) =

∏∞
n=0 F

[K:F]. In particular, it coincides to the left
Bernoulli shift

F[K:F]
β of the F-space F[K:F] whose topological entropy equals [K : F] by [6, Example 3.16(b)].

Therefore,

ent*F(ResKF (
∞∏
n=0

K, Kβ)) = ent*F(
∞∏
n=0

F[K:F],
F[K:F]

β) = [K : F] = [K : F] · ent*K(
∞∏
n=0

K, Kβ).

On the other hand, the induction IndLK produces an endomorphism of the L-space
∏∞
n=0 L that coincides to

the (1-dimensional) left Bernoulli shift Lβ of L. In particular,

ent*L(IndLK(
∞∏
n=0

K, Kβ)) = ent*L(
∞∏
n=0

L, Lβ) = 1 = ent*K(
∞∏
n=0

K, Kβ).

The following result shows that the formulae above hold for arbitrary �ows over KLC.

Proposition 4.1. Let F ≤ K ≤ L such that [L : F] < ∞. For every �ow (V , ϕ) over KLC one has

ent*F(ResKF (V , ϕ)) = [K : F] · ent*K(V , ϕ) and ent*L(IndLK(V , ϕ)) = ent*K(V , ϕ).

For a �eld E, the collection of all open E-subspaces
∏
Ai of

∏
E such that

(G1) Ai = E for all but �nitely many indices,
(G2) Ai = 0 otherwise;

form a neighbourhood basis at 0 for the Tychono� topology on
∏

E. Wewill refer to such a basis as good basis
of
∏

E and its elements will be said to be good.

Proof of Proposition 4.1. For an arbitrary �ow (V , ϕ) over KLC, let U =
∏
Ai be a goodK-subspace of V. Thus

H*F(ResKF (ϕ, U)) = lim
n→∞

1
n · codimF CFn(ResKF (ϕ, U)) =

= lim
n→∞

[K : F]
n · codimK CKn (ϕ, U) = [K : F] · H*K(ϕ, U).

and notice that ResKF (U) is a good F-subspace of V. Since good subspaces form a neighbourhood basis at 0,
one has that

[K : F] · ent*K(V , ϕ) ≤ ent*F(ResKF (V , ϕ)).

Finally, the equality holds since every good F-subspace of ResKF (V) can be realised as the restriction of a good
K-subspace of V. In order to prove the second part of the statement, notice that

dimK(−) = dimL(IndLK(−)) and CLn (IndLK(ϕ, U)) = IndLK(CKn (ϕ, U)), (U ∈ B(V), n ∈ N).

Therefore,

H*L(IndLK(ϕ, U)) = lim
n→∞

1
n · codimL CLn (IndLK(ϕ, U)) = lim

n→∞
1
n · codimL IndLK(Cn(ϕ, U)) =

= lim
n→∞

1
n · codimK Cn(ϕ, U) = H*K(ϕ, U).

Same reasoning as above yields ent*L(ind
L
K(V , ϕ)) = ent*K(V , ϕ).

Remark 4.2. An easy observation yields that, for every linearly compactK-space V, one has

ent*L(IndLF(ResKF (V , ϕ))) = [K : F] · ent*K(V , ϕ) and ent*F(ResLF(IndLK(V , ϕ))) = [L : F] · ent*K(V , ϕ).

Using induction and restriction gives back an intuitive method to generate examples of topological �ows
with some �nite topological entropy n ∈ N over di�erent �elds. E.g., let (V , Kβ) be the 1-dimensional left
Bernoulli shift de�ned above.One easily generates the n-dimensional left Bernoulli shift overKby combining
induction and restriction with respect to a �eld extension ofK of degree n.
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Remark 4.3. In [4] a deep relationship between a �ow (V , ϕ) and the Bernoulli shift has been recently proved:
the �ow (V , ϕ) is essentially a product of one-dimensional left Bernoulli shifts asmany as ent*K(V , ϕ) counts.
Therefore, Proposition 4.1 can be obtained as corollary of [4, Theorem A].

4.2 General case

Recall that every locally linearly compactK-space V can be split into a topological sum of a linearly compact
K-space Vc and a discrete K-space Vd; namely, V ∼= top Vc ⊕ Vd. Actually, this type of decomposition is
available whenever we consider a linearly compact open subspace U of V. Indeed, V ∼= top U ⊕ V/U.

Now let (V , ϕ) be a �ow over KLLC . Any decomposition V ∼= top Vc ⊕ Vd induces the decomposition

ϕ =
(
ϕcc ϕdc
ϕcd ϕdd

)
,

where ϕ•* : V• → V* is the composition ϕ•* = p* ◦ϕ ◦ ι• for •, * ∈ {c, d}. Therefore, ϕ•* is continuous being
composition of continuous homomorphisms.

Lemma 4.4. Let F ≤ K ≤ L be �nite �eld extensions and V ∼= top Vc ⊕ Vd a locally linearly compact K-space
together with a continuous endomorphism ϕ : V → V. Thus

1. ResKF (V) admits a decomposition such that

ResKF (V)c = ResKF (Vc) and ResKF (ϕ)cc = ResKF (ϕcc).

2. IndLK(V) admits a decomposition such that

IndLK(V)c = IndLK(Vc) and IndLK(ϕ)cc = IndLF(ϕcc).

Proof. Notice that ResKF (V) (or Ind
L
K(V)) can be obtained by restricting (or extending) Vc and Vd �rst in the

corresponding categories and then summing them up in KLLC. Indeed both restriction functor and induction
functor are additive.

Theorem 4.5. Let F ≤ K ≤ L such that [L : F] < ∞. For every �ow (V , ϕ) over KLLC one has

ent*F(ResKF (V , ϕ)) = [K : F] · ent*K(V , ϕ) and ent*L(IndLK(V , ϕ)) = ent*K(V , ϕ).

Proof. By the previous lemma, it follows directly from Proposition 4.1 and the reduction to linearly compact
vector spaces devoloped in [6, Section 4].
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