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Abstract—The advent of Software-Defined Networking with
OpenFlow first, and subsequently the emergence of pro-
grammable data planes, has boosted lot of research around many
networking aspects: monitoring, security, traffic engineering. In
the context of network monitoring, most of the proposed solutions
show the benefits of data plane programmability by simplifying
the complexity of the network with a one big-switch abstraction.
Only few papers look at network-wide solutions, but consider the
network as non heterogeneous: only composed by programmable
devices. In this paper, we argue that the primary challenge for a
successful adoption of those solutions is the deployment problem:
how to compose and monitor a network consisting of both
legacy and programmable switches? We propose an approach for
incrementally deploy programmable devices in an ISP network
with the goal of monitoring as many distinct network flows as
possible. While assessing the benefits of our solution, we realized
that proposed network-wide monitoring algorithms might not
be optimized for a partial deployment scenario. We then also
developed a novel strategy capable of detecting network-wide
heavy flows with the same accuracy of state-of-the-art solutions
but by relying on less information from the data plane.

Index Terms—Network monitoring, Programmable data plane,
Incremental deployment, Heavy-hitter detection

I. INTRODUCTION

Network monitoring is of primary importance: it is the
main enabler of various network management tasks, ranging
from accounting [1][2], traffic engineering [3][4], anomaly
detection [5][6], Distributed Denial-of-Service (DDoS), and
scans detection [7][8]. With the advent of Software-Defined
Networking (SDN), the significance of network monitoring has
been certainly boosted. This is because, SDN, with the idea
of a (logically) centralized control, allows an easy coupling of
network management operations with the observed network
status. As a result, SDN has been seen as the answer to many
of the limitations of legacy network infrastructures [9][10][11].
However, such a noble intent has been limited by its current
predominant realisation, the OpenFlow (OF) protocol. Indeed,
current OpenFlow APIs are ill-suited and cannot provide
accurate data-plane measurements: the main mechanism ex-
poses the per-port and per-flow counters available in the
switches [12]. An application running on top of the controller
can periodically poll each counter using the standard OF APIs
and then react accordingly, instantiating the appropriate rule
changes. As a consequence, OF suffers from two important

limitations: (i) the controller needs to know in advance which
flows have to be monitored in the data plane and (ii) as the
data plane exposes just simple counters, the controller needs
to do all the processing to determine the network state.

Lately, the advent of the so-called programmable switches
(e.g. P4-enabled switches [13]) has introduced the possibility
to program data plane with advance functionality and en-
abled the possibility to implement more refined monitoring
solutions directly in the switch hardware. Such a disruptive
technology has attracted a growing number of researchers and
practitioners that in turn have proposed many different solu-
tions to enhance SDN capabilities in the context of network
monitoring [14][15][16][17][18]. As a result, the prospect of
realizing fine-grained network-wide monitoring, by analyzing
the expose information from all the switches in a network,
has attracted lot of interest [16][19][20]. However, in practice,
a one-shot replacement of all the existing legacy devices
with programmable switches is not a feasible solution due to
operational and budget burdens. Clearly, this limits the benefits
in terms of network flow monitoring performance, since a
partial deployment leads to a reduced flow visibility.

This paper proposes a novel approach for an incremental
deployment of programmable switches in Internet Service
Provider (ISP) networks, with the goal of optimizing network-
wide monitoring practices. To achieve it, it is important to
have visibility over the largest number of distinct flows. To
this end, we exploit the HyperLogLog algorithm [21] that
is generally used for the count-distinct problem, approximat-
ing the number of distinct elements in a multi-set. While
assessing the benefits of our solution, we shortly realized
that state-of-the-art network-wide monitoring algorithms might
not perform optimally in a partial deployment scenario. We
therefore propose a new algorithm that is capable of detecting
network-wide heavy flows (i.e., heavy hitters) using as input
only partial information from the data plane. We evaluate
our incremental deployment strategy alongside the proposed
heavy-hitter detection algorithm in simulation. By comparing
our solution with the state-of-the-art proposals, the results
show that we can achieve, according to the F1 score, a better
accuracy using less switches.

The main contributions of the paper are as follows:
• We tackle the problem of partial deployment of pro-

grammable networks in the context of network monitor-978-1-5386-9376-6/19/$31.00 ©2019 IEEE



0 5 101520253035404550556065707580859095
Switch ID

0.000
0.005
0.010
0.015
0.020
0.025
0.030

F1
 s

co
re

Fig. 1. F1 score of Harrison’s heavy-hitter detection strategy with single
programmable-switch deployment
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Fig. 2. Number of distinct flows crossing each switch

ing. We propose a new strategy that allows to incremen-
tally deploy new programmable switches and simultane-
ously maximize the network monitoring operation.

• We propose a new strategy for network-wide heavy-hitter
detection which is robust to partial deployments.

The remainder of the paper is organized as follows. In
Section II we explain the best practices for an effective
partial deployment of programmable switches, while Section
III presents the algorithmic background. Section IV describes
our incremental deployment algorithm, and Section V presents
our network-wide heavy-hitter detection strategy. Section VI
reports our simulation results and comparison with the state
of the art. Finally, Section VII recalls the related work and
Section VIII concludes this paper.

II. HINTS FOR IMPROVED MONITORING PERFORMANCE
WITH LIMITED FLOW VISIBILITY

When only a limited number of programmable switches can
be deployed in a legacy network, the network operator must
ensure that they are deployed in such a way it is made the best
use of them in terms of monitoring performance, measured
by F1 score. Fig. 1 shows the results of a simple test: we
simulated a topology of 100 nodes with real traffic, and we
evaluated the F1 score of an existing threshold-based network-
wide heavy-hitter detection strategy, proposed by Harrison et
al. [20] (see Section VI for more details on simulation settings
and evaluated metrics) when only one legacy switch/router1 is
replaced with a programmable switch. The graph shows all
the 100 possible deployments. What we can see is that the
F1 score (i) is in all cases low but (ii) substantially varies
depending on the placement position of the programmable

1In the remainder of this paper, we will use the generic term legacy device to
generically refer to legacy switches or routers. In fact, programmable switches
can support both Layer-2 and Layer-3 functionalities.

switch. Consideration (i) comes from the fact that by replacing
only one switch the flow visibility is very low, since only
heavy hitters crossing such switch can be detected, while
consideration (ii) proves that how we deploy programmable
switches in the network is a fundamental aspect to ensure
good monitoring performance with limited flow visibility.

Our intuition is that, when deploying a single programmable
switch, an effective strategy is to replace the one crossed by
the highest number of distinct flows. This because the highest
the number of monitored flows is, the highest (in average) the
chance of monitoring some heavy hitters is. Fig. 2 shows the
number of distinct flows crossing each one of the switches in
the given time interval. Two observations can be made: (i) if a
switch crossed by a few number of distinct flows is replaced,
it is highly probable that it cannot detect any heavy hitter (i.e.,
F1 score is often zero); (ii) a (weak) correlation between F1
score and number of monitored distinct flows indeed exists.
For example, replacing the switch with ID 44 leads to the
highest F1 score, and the same switch is one of the switches
crossed by the highest number of distinct flows. However, the
network-wide heavy-hitter detection strategy proposed in [20]
has not been explicitly designed to best exploit the available
information on switches’ monitored distinct flows, unlike our
proposed strategy (see Section V), so correlation between F1
score and number of distinct flows is minimal.

The same considerations can be made when more than one
programmable switches have to be deployed in the network. In
this case, it must be ensured that the subset of programmable
switches to be deployed monitors the highest number of
distinct flows overall (i.e., neglecting duplications): this guar-
antees satisfactory performance in the execution of monitoring
tasks such as heavy-hitter detection. The considerations and
intuitions discussed in this section have thus guided us in
the design of our algorithm for incremental deployment of
programmable switches, which is shown in Section IV.

III. BACKGROUND

In this section, we present the background for our in-
cremental deployment algorithm and network-wide heavy-
hitter detection strategy. Our algorithms rely on different data
streaming concepts and methods.

A. Count of distinct flows

An efficient and effective method to count a number of
distinct items from a set is HyperLogLog [21]. In our specific
case, given a packet stream S = {a1, a2, ..., am}, where
each packet is characterized by a specific (srcIP,dstIP)
pair (generically called flow key), it returns an estimation
of cardinality of flows, i.e., how many (srcIP,dstIP)
distinct pairs exist in the stream2. In this paper, we use
n̂ ← Hll(S) as notation to indicate input and output of the
HyperLogLog algorithm: Hll indicates the algorithm, S the
input packet stream and n̂ the cardinality of flows (i.e., number
of distinct flows). The relative error of HyperLogLog is only

2Note that in this paper, without any loss of generality, we consider
source/destination pairs as flow identifiers. However, other definitions could
also be adopted (e.g. 5-tuple).
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where n is the number of registers. Apart from its high
accuracy, HyperLogLog is also very fast since the query time
complexity is O(1). Moreover, calculating the union (or merge)
of two or more HyperLogLog data structures is also very
efficient, and can be used to count the number of distinct flows
in the union of two (or more) data streams, e.g. Sa and Sb. In
our notation, this can be written as n̂union ← Hll(Sa ∪ Sb),
where n̂union is the number of distinct flows of the packet
streams union Sa ∪ Sb.

B. Estimation of flow packet counts for heavy-hitter detection

Estimating the number of packets for a specific flow is
fundamental for a proper detection of heavy hitters. Different
algorithms exist to perform such an estimation: we choose
to use Count-Min Sketch [22], which relies on a proba-
bilistic data structure based on pairwise-independent hash
functions. To formalize the problem, we consider a stream
of packets S = {a1, a2, ..., am}. The Count-Min Sketch
algorithm returns an estimator of packet count f̂x of flow
x ∼ (srcIPx,dstIPx) satisfying the following condition:
Pr[|f̂x− fx| > ε|S|] ≤ δ, where ε (0 ≤ ε ≤ 1) is the relative
biased value and δ (0 ≤ δ ≤ 1) is the error probability. In
Count-Min Sketch, the space complexity is O(ε−1log2(δ−1)),
and per-update time is O(log2(δ−1)) [23]. Additionally, the
estimation of packet count satisfies fx ≤ f̂x ≤ fx+ε|S|, where
fx is the real packet count value. The accuracy of Count-Min
Sketch depends on ε and δ, which can be tuned by respectively
defining (i) the output size Nh of each hash function and (ii)
the number Ns of hash functions of the data structure.

In previous definitions, a heavy hitter is a flow whose packet
count overcomes a threshold ϑ|S| (0 < ϑ < 1). If a Count-
Min Sketch is adopted, the probability to erroneously detect a
heavy hitter due to packet miscount is defined in the following
way: Pr[∃x|f̂x ≥ (ϑ+ε)|S|] ≤ δ. If Ns is large enough, error
probability δ is negligible.

IV. AN ALGORITHM FOR INCREMENTAL DEPLOYMENT OF
PROGRAMMABLE SWITCHES

In this section we propose a novel algorithm for the incre-
mental upgrade of a legacy infrastructure with programmable
switches, which aims at ensuring high network monitoring
performance, as discussed in Section II.

A. Problem definition

Our problem of incremental deployment of programmable
switches can be formalized in the following way.
Given:
• A network topology of a legacy network infrastructure
G = (N ,L), where N is the set of legacy devices and L
the set of interconnection links;

• A long-term estimation of the transmitted packets in
the network between different sources and destinations
(i.e., traffic matrix T ), including their routing paths and
possible re-routing paths in case of failures. From this
information it is possible to retrieve the estimated packet
stream Ti for each switch i ∈ N ;

Algorithm 1: Incremental deployment algorithm
Input: Long-term traffic statistics T , Network topology

G, Number of legacy devices P to be replaced
Output: Set of legacy devices P to be replaced

1 max ← 0;
2 P ← {};
3 n̂ ← 0;
4 n̂pre ← 0;
5 T pre ← {};
6 key ← empty;
7 for Each legacy device i ∈ N carrying traffic Ti do
8 n̂ ← Hll (Ti);
9 if n̂ > max then

10 max← n̂
11 key ← i

12 P.add(key)
13 if P > 1 then
14 n̂pre ← max
15 T pre ← Tkey
16 while P.size() ≤ P do
17 for Each switch i ∈ N \ P carrying traffic Ti do
18 n̂← Hll(T pre ∪ Ti)
19 if n̂ > max then
20 max← n̂
21 key ← i

22 P.add(key)
23 n̂pre ← max
24 T pre ← T pre ∪ Tkey
25 return P

• A number P ≤ |N | of legacy devices to be replaced with
programmable switches;

Replace a subset of P (such that P = |P|) of legacy devices
with programmable switches with the goal of monitoring the
highest number of distinct flows in the network and in an
incremental way. This means that it must be assured that any
subset of programmable switches Z (with |Z| ≤ P ) that have
been already deployed in the network as intermediate step,
monitors the highest number of distinct flows as well.

B. Incremental deployment algorithm

As we mentioned above, HyperLogLog has good perfor-
mance on estimating the distinct flows from an union of
packet streams, so we use it to estimate the number of distinct
flows passing through a set of legacy devices. The pseudo
code of our proposed algorithm is shown in Algorithm 1. To
place the first programmable switch, we compute the estimated
number of distinct flows n̂ carried by each of the i ∈ N
legacy devices using the HyperLogLog algorithm. The input
of HyperLogLog, for each device i ∈ N , is Ti. For the
replacement with a programmable switch, the algorithm selects
the legacy device crossed by the highest number (max) of
distinct flows (Lines 7-11). Such legacy device is added to P .



Once the first legacy device has been replaced, the principle
to replace any other legacy device consists in progressively
finding the one that, if replaced, allows to overall monitor
the highest number of distinct flows in the network. To do
so, we exploit the union property of HyperLogLog (Line 18),
recalled in Section III. As shown in Lines 13-24, the algorithm
estimates the number of monitored distinct flows n̂pre coming
from the union of packet streams (i) of all the previously-
upgraded programmable switches (T pre) and (ii) of any legacy
device i ∈ N \P still in the network (Ti). Then, the algorithm
selects for replacement (and thus addition to set P) the legacy
device i leading to the largest number of monitored distinct
flows overall (max). This operation is iterated until a number
P = |P| of legacy switches has been replaced.

Once the set P has been defined, the network operator can
proceed with the physical replacement of the legacy devices
with programmable switches, while ensuring interoperability
in a hybrid environment [24]. Note that our incremental
deployment algorithm focuses on the replacement of switches
instead of new additions to the network. In fact, adding new
switches may imply changes to existing routing paths and
alteration of flow statistics, making our algorithm ineffective.

V. A NETWORK-WIDE HEAVY-HITTER DETECTION
STRATEGY ROBUST TO PARTIAL DEPLOYMENT

Figure 3 shows the interaction between switches and a
centralized controller for network-wide heavy-hitter detection,
in the case of partial deployment of programmable switches
(i.e., when only some switches can perform monitoring op-
erations in the data plane). Time is divided in intervals, and
in every time interval each programmable switch dynamically
stores in a sample list only those flows whose packet count
is larger than a dynamic sampling threshold. At the end of
each time interval, if any programmable switch stores in its
sample list one or more flows with packet count larger than a
dynamic local threshold, it reports a true flag to the centralized
controller. The flows whose packet count overcomes the local
threshold are called potential heavy hitters. The controller,
if at least one true-flag report is received, then polls all the
programmable switches in the network to gather the {flow
key, packet count} pairs of all the flows stored in their
sample lists. This information is used to estimate the whole
network volume, i.e., the number of all the unique packets
transmitted in the network in the given time interval. Finally,
the controller computes the global threshold leveraging the
estimated network volume and retrieves all the network-wide
heavy hitters, i.e., the flows from sample lists whose packet
count is larger than the global threshold. Finally, all the flow
and packet statistics are reset and a new time interval is started.

In the following subsections, we formalize the problem
and describe in detail the algorithms running both in the
programmable switches and in the controller to implement the
proposed high-level strategy.

A. Problem definition

We formulate the network-wide heavy-hitter detection prob-
lem as follows.

Fig. 3. Interaction between controller and programmable switches for
network-wide heavy-hitter detection in a partial deployment scenario
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Fig. 4. Scheme of the proposed network-wide heavy-hitter detection strategy

Given:
• A heavy-hitter identification fraction θH (0 < θH < 1);
• A time interval Tint;
• The set of unique packets S transmitted in the network

in the time interval Tint;
Identify the set of flows which are network-wide heavy

hitters (HH), i.e., carry in the time interval Tint a number of
packets larger than the global threshold θH |S|tot, where |S|tot
is the whole network volume, i.e., the number of transmitted
unique packets.

B. Algorithm in programmable switches (Data plane)

As shown in Fig. 4, when a packet comes into a pro-
grammable switch i, a packet counter named |Si| is updated
to count all the incoming packets. A Count-Min Sketch data
structure, which is used to store the estimated packet counts
for all the flows, is updated to include the information from the
current packet, and then it is queried to retrieve the estimated
packet count f̂x for the flow x ∼ (srcIPx,dstIPx) such
packet belongs to. This information is used to understand
whether the packet belongs to a flow that must be inserted
in the sample list.

The flow x is inserted in the sample list if f̂x ≥
(WθH+ε)|Si|

K , where (WθH+ε)|Si|
K is the sampling threshold.

The parameters W (W ≥ 1) and K (1 < K) affect the size
of the sample list: the greater W is or the smaller K is ,
the smaller the sample list size is, thereby consuming less
memory in the switch. However, as we will report in the next
subsection, this would reduce the accuracy on the estimation
of the overall network volume and on the identification of



Algorithm 2: Network-wide heavy-hitter detection al-
gorithm - Programmable switch i ∈ P (Data plane)

Input: Flow stream S, Local minimum min,
Heavy-hitters identification fraction θH , Local
ratio W , Sampling rate K, Count-Min Sketch
size Nh ×Ns, Time interval Tint

Output: flag (true if potential heavy hitters are
identified in time interval, false otherwise)

1 ε ← 1/Ns
2 Function StoreFlowsInSampleList:
3 |Si| ← 0
4 flag ← false
5 while currentTime < T do
6 for Each received packet belonging to flow

x ∼ (srcIPx, dstIPx) received do
7 |Si| ← |Si|+ 1

8 if f̂x ≥ min and f̂x ≥ (WθH+ε)|Si|
K then

9 SampleListi(x) ← f̂x

10 Function PotentialHHsDetection:
11 if currentTime = Tint then
12 for Each flow x in SampleListi do
13 if f̂x < (WθH+ε)|Si|

K then
14 SampleListi.remove(x)

15 if SampleList(x) ≥ (WθH + ε)|Si| then
16 flag ← true
17 return flag

18 return flag

heavy hitters. Therefore, K (called sampling rate) should be
carefully set in each programmable switch to store only flows
carrying a significant number of packets. ε is instead the biased
value caused by Count-Min Sketch (see Section III): we sum
ε = 1/Ns to WθH in order to compensate such bias. The
sample list is thus used to dynamically store the packet counts
for the most frequent flows crossing the switch. Since at the
beginning of each time interval Tint the sampling threshold is
low, being |Si| a small value (that can even be lower than 1),
flows with very small packet counts would be stored in the
sample list. We thus introduce a parameter min operating in
conjunction with the sampling threshold: only if packet count
of the considered flow is larger than both min and sampling
threshold (WθH+ε)|Si|

K , the flow is inserted in the sample list.
This is described in Lines 2-9 of Algorithm 2.

At the end of the time interval Tint, |Si| counts all the
incoming packets in the considered time frame. Thus, as shown
in Lines 10-12, the algorithm removes from the sample list
all those flows with packet count lower than (WθH+ε)|Si|

K ,
where |Si| is the final stored value. This means that the
algorithm keeps in the sample list only those flows which
have packet counts larger than the final sampling threshold,
while discarding the flows with packet counts greater than
the temporary threshold dynamically computed and updated

within the time interval. Note that the sample list can store
at most K

(WθH+ε) flows, and thus its memory occupation
increases as K increase or W decrease, as already discussed
above.

Finally, the algorithm evaluates whether potential heavy
hitters cross the switch. They are the flows whose packet
counts are greater than the switch local threshold, set as
(WθH + ε)|Si| (Lines 13-14). A true flag is sent to the
controller if at least one potential heavy hitter is detected,
otherwise no information is sent. Note that the local threshold
is similar to the sampling threshold, and just misses in its
definition K, which has been introduced to only set the
size of the sample list. The primary role of W is instead
to set the proportion (or ratio) between the local threshold
(WθH + ε)|Si| and the global threshold θH |S|tot, being Si a
local (and smaller) value than |S|tot.

C. Algorithm in centralized controller (Control plane)
At the end of the time interval Tint, once the controller

receives from the programmable switches the reports including
the identified potential heavy hitters, it polls all of them to
obtain their sample lists. Note that different sample lists can
include the estimated packet count for the same flows: this
happens if a flow crosses multiple programmable switches.
To avoid an overestimation of |S|tot, Algorithm 3 makes sure
that (i) only the minimum-estimated packet count is kept, i.e.,
the one less overestimated by Count-Min Sketch, and (ii) it is
stored in a list (i.e., GlobalSampleList) including all distinct
flows from sample lists (Lines 2-8). The algorithm then sums
up the packet counts for all the identified distinct flows and
estimates the whole network volume |S|tot (Lines 9-12). If
packet counts of flows belonging to GlobalSampleList (which
for sure includes the potential heavy hitters) are larger than
the global threshold θH |S|tot, we consider them as network-
wide heavy hitters HH (Lines 13-17). At last, the controller
triggers the reset of counters in all programmable switches.

VI. EVALUATION RESULTS

Based on open source implementations of HyperLogLog
[25] and Count-Min Sketch [26], we implemented our incre-
mental deployment algorithm and we simulated both our and
Harrison’s [20] network-wide heavy-hitter detection strategies
in Python. In the following the simulation settings are reported.

A. Simulation settings and evaluation metrics
1) Traces and network topology: We divided 50 seconds

2018-passive CAIDA flow trace [27] into 10 time intervals.
The programmable switches send reports to the controller
when they detect potential heavy hitters at the end of any
of those time intervals: in each time interval are transmitted
around 2.3 million packets. As testing topology, we adopted a
100-nodes ISP backbone network [28]. A 32-bit cyclic redun-
dancy check (CRC) [29] function was used to randomly assign
each packet (characterized by a specific (srcIP,dstIP)
pair) to a source/destination node couple in the network, and
each packet is routed on the shortest path.

2) Tuning parameters: Unless otherwise specified, we set
the simulation parameters as reported in Table I.



Algorithm 3: Network-wide heavy-hitter detection al-
gorithm - Centralized controller (Control plane)

Input: Heavy-hitters identification fraction θH , Time
interval Tint, Sample lists SampleListi from all
programmable switches i ∈ P

Output: Set of network-wide heavy hitters HH in time
interval Tint

1 Function RetrieveDistinctFlowsPacketCounts:
2 for Each switch i ∈ P do
3 for Each flow x in SampleListi do
4 if flow x is in GlobalSampleList then
5 if SampleListi(x) <

GlobalSampleList(x) then
6 GlobalSampleList(x)←

SampleListi(x)

7 else
8 GlobalSampleList(x)←

SampleListi(x)

9 Function EstimateVolume:
10 |S|tot ← 0
11 for Each flow x in GlobalSampleList do
12 |S|tot ← |S|tot +GlobalSampleList(x)

13 Function GetNetworkWideHH:
14 for Each flow x in GlobalSampleList do
15 if GlobalSampleList(x) ≥ θH |S|tot then
16 HH.add(x)

17 return HH

3) Metrics: We set recall R and precision Pr as key
metrics to evaluate our network-wide heavy-hitter detection
strategy. They are defined in the following way:

R =
Count

detected/true
HeavyHitters

Count
detected/true
HeavyHitters + Count

undetected/true
HeavyHitters

(1)

Pr =
Count

detected/true
HeavyHitters

Count
detected/true
HeavyHitters + Count

detected/false
HeavyHitters

(2)

In our evaluations, we consider F1 score (F1) as compact
metric taking into consideration both precision and recall, and
measuring the accuracy of our strategy. It is defined in the
following way:

F1 =
2 · Pr ·R
Pr +R

(3)

Additionally, we consider each {flow key, packet count}
pair as unit to evaluate both consumed communication over-
head (when sent) and overall occupied memory (when stored
in programmable switches). All the reported metrics are the
average value obtained in the considered 10 time intervals.

B. Evaluation of the incremental deployment algorithm
We compare our Incremental deployment algorithm, where

programmable switches are used for the detection of network-
wide heavy hitters, with three existing algorithms: Highest
closeness, Highest betweenness and Random locations. In

TABLE I
SIMULATION PARAMETERS

HyperLogLog Size m 12

Time interval Tint 5s

Sampling rate K 10

Local ratio W 1

Heavy-hitter identification fraction θH 0.05%

Local minimum min 1

Count-Min sketch size (Nh ×Ns) 10000× 40
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Fig. 5. Performance evaluation of our incremental deployment against some
existing algorithms in the detection of network-wide heavy hitters

the Highest closeness algorithm, the switches are ordered
according to decreasing closeness, and in a partial deployment
of P programmable switches only the top P switches in the list
are replaced [30]. The Highest betweenness algorithm behaves
in the same way, but betweenness of nodes [31] is evaluated
instead of closeness. Both of the algorithms only depend on
the network topology, and their underlying assumption is that
nodes with highest centrality should be replaced first. Finally,
the Random locations algorithm replaces P randomly-selected
nodes: we average results over five randomized instances.

As shown in Fig. 5, which reports F1 score as a function
of the number of deployed programmable switches, our In-
cremental deployment algorithm allows network operators to
deploy a less number of programmable switches while ensur-
ing the same F1 score of the other algorithms. It especially
works well when a small number of programmable switches is
deployed (i.e., for less than 50 switches), while has comparable
performance as the other algorithms when more than half
programmable switches are deployed. This means that our
strategy of first replacing switches that monitor the highest
number of distinct flows effectively improves flow visibility
when it is inherently limited.

C. Evaluation of the network-wide heavy-hitter detection
strategy in an incremental deployment scenario

We compare the performance of our proposed network-wide
heavy-hitter detection strategy, named NWHHD+ for the sake
of brevity, with the state-of-the-art strategy (called SOTA in the
remainder of the section) proposed by Harrison et al. [20]. In
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Fig. 6. Performance comparison of NWHHD+ with a state-of-the-art strategy in a partial deployment scenario

order to fairly compare these two strategies, we set the global
threshold for SOTA to Tg = dθH |S|tot, where d is the average
path length for the flows in all the time intervals, θH is fraction
for heavy-hitter identification, and |S|tot is the whole network
volume. Smoothing parameter is α = 0.8 as per [20].

Figure 6(a) shows that NWHHD+, when deploying pro-
grammable switches using our incremental deployment al-
gorithm, always leads to higher F1 score than SOTA. This
means that NWHHD+ better exploits partial flow information
provided by the programmable switches to detect the network-
wide heavy hitters.

Figure 6(b) shows instead a comparison on the average-
generated communication overhead. It clearly shows that
NWHHD+ has a higher communication overhead than SOTA,
and the difference becomes even higher as the number of
programmable switches increases. This happens because, in
NWHHD+, if at least one local heavy hitter is identified in a
given time interval (as always happens in our simulations), at
the end of it the controller polls all the programmable switches
to estimate the global network volume. Conversely, the SOTA
strategy coarsely estimates the overall network volume at the
controller and polls the programmable switches only if the
estimated value is above the global threshold. This coarser
estimation allows to save communication overhead but, as
shown in Fig. 6(a), has a negative impact on accuracy.

Figure 6(c) shows the average occupied memory in the two
strategies. NWHHD+ outperforms SOTA, always occupying
much less memory. This happens because NWHHD+ only
stores (i) the sample list (and not all the {flow key, packet
count} pairs, as SOTA does) and (ii) one local threshold for
all the flows in each programmable switch (while SOTA stores
per-flow local thresholds).

Finally, Fig. 7 recalls the simple test described in Section
II. What we report in the figure is the F1 score for all
the possible 100 deployments for the programmable switch
when NWHHD+ is adopted. Compared to Fig. 1, we can
see that the F1 score is generally higher in NWHHD+ (as
already discussed), and that in most of the cases the peaks
in F1 score correspond to IDs of switches that are crossed
by a high number of distinct flows (see Fig. 2). This means
that NWHHD+ better exploits the distinct flows information
than SOTA. This can be even further proven by computing
the normalized cross-correlation in τ = 0 [32] between the
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Fig. 7. F1 score of NWHHD+ with single programmable-switch deployment

TABLE II
SENSITIVITY TO W IN THE CASE OF FULL DEPLOYMENT (K = 10)

Evaluated metrics SOTA
NWHHD+

W=1 W=3 W=5 W=20

F1 score 0.821 0.948 0.907 0.881 0.823

Communication

overhead
71877 131707 60354 41076 13898

Occupied memory 760042 131608 60255 40977 13799

number of distinct flows and F1 score, which is 13.11 for
NWHHD+ and 6.57 for SOTA.

D. Evaluation of the network-wide heavy-hitter detection
strategy in a full deployment scenario

We evaluate NWHHD+ strategy against SOTA also in a
full deployment scenario, i.e., when all the legacy devices have
been replaced with programmable switches. In NWHHD+, we
have introduced two parameters, i.e., ratio W and sampling
rate K, which allow network operators to explore the trade-
off between F1 score, communication overhead and memory
occupation. Tables II and III show the sensitivity of NWHHD+
to W and K, and a performance comparison with SOTA. Note
that, in the two tables, the columns related to W = 1 and K =
10 report results for the same settings we used in previous
subsections on partial deployment, showing (as expected) a
much higher F1 score and lower memory consumption than
SOTA, but greater communication overhead. The tables also
show that by properly tuning W and K it is possible to get a
desired performance trade-off among F1 score, communication
overhead and memory occupation.



TABLE III
SENSITIVITY TO K IN THE CASE OF FULL DEPLOYMENT (W = 1)

Evaluated metrics SOTA
NWHHD+

K=1.2 K=10 K=20 K=100

F1 score 0.821 0.846 0.948 0.970 0.998

Communication

overhead
71877 24760 131707 218370 570956

Occupied memory 760042 24661 131608 218264 570875

As shown in Table II, an increase of W leads to a decrease
in the sample list size, which means that less {flow key, packet
count} pairs are reported to the controller when the switches
are polled (i.e., less communication overhead). Additionally,
a decrease in the sample list size means that less memory
is occupied in the switches. Intuitively, as side effect, the
detection accuracy is affected (i.e., lower F1 score). Table II
also shows that with W = 20, NWHHD+ and SOTA have
comparable F1 score, but NWHHD+ leads to a significant
reduction of both memory occupation and communication
overhead.

Similar results can be obtained by properly tuning K (Table
III). An increase of K leads to a smaller sample list and,
consequently, to less memory consumption. Moreover, com-
munication overhead is also reduced, because less information
is sent when the switches are polled by the controller. Also in
this case, with K = 1.2, NWHHD+ and SOTA have similar
F1 score, but NWHHD+ considerably reduces communication
overhead and memory occupation.

Note that such a tuning of W and K leads to analogous
trends also in the case of partial deployment, but we omit a
quantitative evaluation for the sake of conciseness.

VII. RELATED WORK

A. Partial deployment of SDN solutions in ISP networks

The appearance of SDN simplifies the network management
an enhances the flexibility of the network. However, currently
it is not feasible to upgrade all legacy switches to SDN
switches due to the limitation of budgets and operational
burdens, so the current trend for network operators is to deploy
a limited number of SDN switches and make the network best
work in a hybrid environment. A good strategy for partial SDN
deployment is thus needed to cost-effectively bring benefits to
ISPs. Unfortunately, obtaining the best partial deployment of
SDN switches is a NP-hard problem [33]. In literature, most
of the work focuses on the problem of partial deployment
of OpenFlow switches [34] in legacy infrastructures, and
either Integer Linear Programming (ILP) [35] or incremental
deployment heuristic algorithms [33][36][37][38] have been
adopted to solve such problem, focusing on interoperability
and routing issues in a hybrid environment while achieving
the best load balancing or maximizing the throughput. Incre-
mental deployment heuristic strategies are a good approach
to solve the problem of partial deployment, since they aim
at iteratively replacing legacy equipment by ensuring local
optimal performance. However, the previous work neither

takes into account the problem of incremental deployment of
programmable switches in a legacy infrastructure to improve
network monitoring performance nor proposes a solution for
topological placement of programmable switches: with our
paper, we try to fill this gap.

B. Network-wide heavy-hitter detection in the data plane

In the last years, many strategies have been proposed to
monitor heavy hitters directly in the data plane by exploiting
the flexibility of programmable switches. Some among them
are OpenSketch [39], UnivMon [14], Elastic Skecth [16],
FlowRadar [15] and HashPipe [18]. However, all of them only
focused on heavy-hitter detection at a single SDN switch,
but this is not enough for heavy-hitter detection in large
networks, since some heavy hitters may be undetected or
wrongly detected by relying on limited information at a single
location.

Thus, the concept of network-wide heavy hitter has been
introduced in literature [19]. A network-wide heavy hitter
uses distributed information, which can be made available by
programmable switches, to accurately and effectively monitor
heavy hitters from a global perspective. Harrison et al. [19]
and Basat et al. [20] have proposed two different strategies
to monitor network-wide heavy hitters. In Harrison’s strategy
[20], at the end of each time interval, if any heavy hitter has
been detected through a local threshold-based mechanism, the
controller polls the programmable switches and uses a dif-
ferent (global) threshold-based mechanism to decide whether
local heavy hitters are network-wide heavy hitters or not.
However, in their strategy, packets belonging to the same
flow are counted multiple times by different switches, and
this duplicated information is not discarded by the controller
while estimating network-wide heavy hitters: for this reason,
it is very difficult to correctly set the global threshold in
their strategy. Basat’s work [19] provides a solid method for
network-wide heavy-hitter detection by using a data streaming
model, but the introduced communication overhead and the
occupied memory are significant. Another key limitation is that
the hash functions their strategy needs do not exist in practice.
Our network-wide heavy-hitter detection strategy is similar
to the one proposed by Harrison et al., but we define new
and more intuitive local and global thresholds and we exploit
information on distinct flows to prevent duplicate counting of
packets, thus reducing the occupied memory in programmable
switches and improving monitoring performance.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new greedy algorithm for
an effective incremental deployment of SDN programmable
switches in legacy infrastructures that aims at monitoring as
many distinct network flows as possible. This algorithm best
supports monitoring tasks such as heavy-hitter detection when
only a limited number of legacy devices can be replaced with
programmable switches. We also proposed a novel network-
wide heavy-hitter detection strategy which works well in
conjunction with our incremental deployment approach. Both
the incremental deployment algorithm and the network-wide



heavy-hitter detection strategy were proved to outperform
existing approaches. By adopting our incremental deployment
algorithm, network operators can ensure very good monitoring
performance by replacing less than half of the legacy devices
in the network. Moreover, our network-wide heavy-hitter de-
tection strategy outperforms an existing approach both when
only a limited number of programmable switches is deployed
and when the network is entirely upgraded, since it allows
network operators to strike a balance between heavy-hitter
detection accuracy, communication overhead and occupied
memory.

As future work, we intend to implement our network-
wide heavy-hitter detection strategy in a testbed composed
of three programmable P4 switches, and thus test it in a real
environment. Furthermore, we also plan to extend our strategy
to execute a wider range of network-wide monitoring tasks,
such as heavy change detection and entropy estimation.
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