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Abstract:
Fluctuations in growth rate have been shown to be important drivers of phenotypic hetero-
geneity. So far they have been usually related to gene expression or enzymatic reactions, since
the metabolism was supposed to average the mixture of many and different noisy reactions
involved in it. On the other hand, single-cell experiments have recently highlighted how noise
may well propagate also from metabolic reactions, and influence cellular growth rate. In this
work, a coarse-grained model of the relationships linking cellular resources to growth rate
and metabolism is investigated with respect to noise propagation. An incoherent feedforward
control is exerted by growth rate on metabolic enzymes, since growth is supposed to positively
control both metabolic enzymes production and degradation. Different noise sources have been
addressed, affecting metabolic production, cellular resource clearance and production. Noise
sources have been addressed one at a time, and noise propagation has been investigated by means
of a Stochastic Hybrid System model, whose shape is modulated according to the different noise
sources. Results provide interesting biological insights about the causal relationship concerning
noise propagation from growth to metabolism and vice versa.
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1. INTRODUCTION

This work investigates how noise propagates in a coarse-
grained model linking together metabolic enzymes, cellular
resources and growth rate. Metabolism has been rarely
involved in such analysis because of the many concurrent
molecular patterns acting at the metabolic level, providing
an average smoothing of the noise effects. On the other
hand, recent single-cell investigations have gathered inter-
est in metabolic noise, showing how fluctuations in gene
expression and enzyme accumulation are tightly related
to metabolic fluxes and growth rate (see, e.g. Kiviet et al.
(2014); Nordholt et al. (2018); Wehrens et al. (2018);
Thomas et al. (2018); Kleijn et al. (2018); Tonn et al.
(2019); Weiße et al. (2015)).

The model under investigation considers a growing cell
whose growth rate g is controlled by the accumulation
of a set of cellular resources, represented by X in the
scheme of Fig. 1. The growth rate in turn controls both the
production and the clearance rate of a class of metabolic
enzymes, represented by Y in Fig. 1. Indeed, the decay

of molecular players is, generally, governed by dilution,
strictly related to growth rate and, moreover, in the work
of Klumpp et al. (2009) it is shown how growth rate
positively regulates also the transcription rate.

Finally, Y closes the loop by properly regulating X pro-
duction rate. In fact, such a scheme may be treated as an
incoherent feedforward loop, since X controls (indirectly,
by means of the growth rate g) both accumulation and
degradation of Y , see Alon (2009); Soltani et al. (2016).

Three noise sources are here considered. One involves the
enzyme Y production rate and the other two involve the
clearance and production rate of the cellular resource X.
A simplified scenario has been proposed in Borri et al.
(2018), where a unique noise source (the one affecting Y )
was considered to act on such a network.

Noise propagation is investigated by accounting for one
noise source at a time. We build a class of Stochastic Hy-
brid System that entails the three frameworks in a unique
fashion although, in some cases, noise is supposed to exert
its action discretely, and in some other continuously. Since



we are interested in noise correlations between metabolism
and cellular growth, we aim at investigating the cross-
correlation functions, thus focusing our attention to first-
and second-order moments. Although this fact unburden
the computational load, a linear approximation is still
required, otherwise moment equations are not closed and
stationary values cannot be computed (see Hespanha &
Singh (2005); Singh & Hespanha (2011); Sontag & Singh
(2015)). The goodness of the analytical results, achieved
according to the aforementioned approximation is vali-
dated by means of Monte Carlo random paths simulations,
carried out by properly implementing the τ -leap version
of the Gillespie algorithm (in case of discrete noise) (see
Gillespie (1977, 2001)) or the Euler-Maruyama integration
method for stochastic differential equations, in case of
continuous noise, Higham (2001).

Results highlight how different noise sources provide dif-
ferent and opposite causal relationships. For instance, if
noise affects the production of metabolic enzymes, it is
reasonable to expect that it propagates from metabolism
to cellular growth, since growth is positively controlled by
cellular resource accumulation, whose production rate is
positively controlled by the metabolic enzymes. Indeed,
such results had been highlighted in Borri et al. (2018)
and experimentally confirmed in Wehrens et al. (2018).
Less intuitive is how metabolism correlates to growth if
the noise source is constrained to cellular resource produc-
tion or degradation. In this case, the incoherent feedfor-
ward control exerted by growth on both production and
clearance rate of metabolic enzymes prevents to make a
straightforward prediction, and computations are invoked
to unravel the mechanism. Provided results show a nega-
tive correlation for both these other two cases.

2. MODEL SETTING

Fig. 1. Scheme of the metabolic coarse-grained model.
Model 1 refers to only Noise 1 affecting the metabolic
enzymes production rate; Model 2 refers to only Noise
2 affecting the clearance rate of the cellular resource;
Model 3 refers to only Noise 3 affecting the cellular
resource production rate.

As reported in the Introduction, three distinct models are
considered, each related to a specific noise source. For the
three models, X and Y will be described by means of their
copy numbers x and y. Model 1 refers to the noise related
to the production of the metabolic enzyme Y (Noise 1),

which is supposed to occur in discrete bursts of η copy
numbers. The size η of the burst is a discrete random
variable taking values in {1, 2, . . .} according to a chosen
probability distribution P(η = j), j = 0, 1, . . ., like in
Soltani et al. (2015); Golding et al. (2005). The average
size of η will be shortly denoted by η. The growth rate
exerts a feedback on the metabolic enzyme production,
since we assume that the propensity aj of an event of j
bursts production depends on the growth rate according
to a nonlinear saturating function ϕ(g), chosen to be
monotonically increasing (e.g. a saturating exponential or
a Michaelis-Menten, according to the experimental results
in Klumpp et al. (2009)). Moreover, the relationship
between the cellular resource X and the growth rate g
is supposed linear:

g(x) = kGx. (1)

Therefore, for any j = 1, 2, . . .:

Y 7→ Y + j aj(x) = ϕg(x)P(η = j), (2)

with
ϕg(x) = ϕ

(
g(x)

)
= ϕ

(
kGx

)
. (3)

With a little abuse of notation (x and y are discrete copy
numbers) within any two consecutive bursts, the X and Y
dynamics evolve continuously according to the following
Ordinary Differential Equation (ODE) model:{

ẋ = kXf(y)− γx
ẏ = −kGxy

(4)

Such a Stochastic Hybrid System model has been investi-
gated in Borri et al. (2018).

Model 2 addresses the noise source affecting the clearance
of X, by modeling such a clearance rate γ as an Ornstein-
Uhlenbeck (UO) process, i.e. γ obeys to the following
linear Stochastic Differential Equation (SDE):

dγ = θ(γ − γ)dt+ σdWt (5)

with γ readily shown to provide the steady-state average
value. Wt is a standard Wiener process (zero-mean and
unitary variance). By assuming the stochasticity of only
Noise 2, the whole system is supposed to evolve according
to the following SDE:

dx = kXf(y)dt− γxdt

dγ = θ(γ − γ)dt+ σdWt

dy = −kGxydt+ ηϕg(x)dt

(6)

where η is the average value of the random variable
describing the size of the bursts for the noisy enzyme
production in Model 1.

Finally, Model 3 accounts for only Noise 3 and considers
X production rate as the following discrete update

X 7→ X + 1, a(y) = kXf(y) (7)

with a(y) the propensity of a unitary update ruled by the
metabolic enzyme accumulation by means of the saturat-
ing function f(y). Between any two production events,
similarly to Model 1, the system evolves continuously
according to the following ODE system{

ẋ = −γx
ẏ = −kGxy + ηϕg(x)

(8)

The three models could be formally written according to
a unifying Stochastic Hybrid System formalism, where the
continuous part dynamics is rendered by the following SDE



dz = h(z)dt+ β(z)dW (9)

with z = [x y]T for Models 1 and 3, whilst z = [x γ y]T

for Model 2. Clearly, functions h(·) and β(·) have different
shapes according to the different models

– Model 1:
h(z) = (kXf(z2)− γz1 − kGz1z2)T

β(z) = (0 0)T
(10)

– Model 2:
h(z) =

(
kXf(z3)− z1z2 θ(γ − z2)

−kGz1z3 + ηϕg(z1)
)T

β(z) = (0 σ 0)T

(11)
– Model 3:

h(z) = (−γz1 − kGz1z2 + ηϕg(z1))T

β(z) = (0 0)T
(12)

Within the SHS formalism, the SDE is endowed with the
following set of stochastic discrete reset maps:

Z 7→ Z + ∆j , propensity aj(z), j ∈ J (13)

In case of Model 1, we have

∆j = [0 j]T , aj(z) = ϕg(z1)P(η = j), j = 1, 2, . . .
(14)

in case of Model 2 we have no discrete resets and J = ∅
whilst, in case of Model 3, we have

∆1 = [1 0]T , a1(z) = kXf(z2). (15)

3. FIRST-ORDER MOMENTS

According to the SHS of the type (9), (13), finite-order
moments dynamics is written by means of the following
general formula provided by Hespanha & Singh (2005)
for a general nonlinear function ψ(·):
d

dt
〈ψ(z)〉 =

〈dψ
dz
h(z)

〉
+

∞∑
j=1

〈(
ψ(z + ∆j)− ψ(z)

)
aj(z)

〉
+

1

2
trace

(
d2ψ

dz2
β(z)βT (z)

)
(16)

Because of nonlinearities in h(·) and aj(·), moment equa-
tions are not available in closed form, therefore we need to
resort to moment closure techniques, Singh & Hespanha
(2011), or to linear noise approximations for SHS, Modi
et al. (2018). Within this framework, in order to find
analytical results, we consider the linearization around the
stationary average values x, γ, y of the nonlinear functions
involved in the models, i.e.:

ϕg(x) ' ϕg(x) + ϕ′g(x)(x− x) (17)

xy ' x y + y(x− x) + x(y − y) (18)
γx ' γ x+ γ(x− x) + x(γ − γ) (19)
f(y) ' f(y) + f ′(y)(y − y) (20)

Dealing with the first-order moments, formula (16) is
written with ψ(z) = z. By properly substituting (17)-(20)
into (16), we have, after computations:

d

dt
〈z〉 = Ai(x, γ, y) 〈z〉+ bi(x, γ, y), (21)

with pairs (Ai, bi), i = 1, 2, 3 associated to Model i:

A1(x, γ, y) = A3(x, γ, y) =

[
−γ kXf

′(y)
ηϕ′g(x)− kGy −kGx

]
(22)

b1(x, γ, y) = b3(x, γ, y)

[
kX
(
f(y)− f ′(y)y

)
ηϕg(x) +

(
kGy − ηϕ′g(x))x

]
,

(23)

A2(x, γ, y) =

 −γ −x kXf
′(y)

0 −θ 0
ηϕ′g(x)− kGy 0 −kGx

 (24)

b2(x, γ, y) =

 kX
(
f(y)− f ′(y)y

)
+ γ x

θγ
ηϕg(x) +

(
kGy − ηϕ′g(x))x

 . (25)

With regards to Model 1, we have shown in Borri et al.
(2018) that:

– if ϕg(x)/x is a monotonically decreasing function in
x ≥ 0, with

lim
x 7→0+

ϕg(x)

x
= M > 0, (26)

then there exists a unique nontrivial, positive solution
for the pair (x, y);

– moreover, if f(y)/y is a monotonically decreasing
function for y ≥ 0, then, the ODE system describing
the first-order moment equation of the linearized
system is Hurwitz.

An analogous result for the stationary values x and y
and for the stability of the linearized system comes out
when dealing with Model 2 and Model 3. Indeed, Model 3
actually shares the same first-order dynamics with Model
1. In regards to Model 2, it readily comes that γ dynamics
is achieved independently of x and y with 〈γ〉 7→ γ, so that,
at steady-state, the x and y obey to the same algebraic
constraint for the 3 models, i.e.

A1(x, γ, y)

[
x
y

]
+ b1(x, γ, y) = 0. (27)

In summary, the three models share the same first-order
analysis. The next Section highlights the differences arising
when dealing second-order moments.

4. SECOND-ORDER MOMENTS AND
CROSS-/AUTOCORRELATIONS

Here we compute the second-order moments, in order
to build the cross-correlation functions, required to infer
information on whether noise fluctuations propagate from
the metabolic enzyme Y on cellular growth, or vice versa.
According to formula (16), second-order moments are
written by setting function ψ(z) = zizj , i, j = 1, 2, 3.

Concerning Model 1, computations have been carried out
in Borri et al. (2018), providing the steady-state solutions

〈x2〉, 〈y2〉, 〈xy〉 as the solutions of the following linear
system:

Γ1
x2

(
〈x2〉, 〈xy〉

)
= 0

Γ1
y2

(
〈y2〉, 〈xy〉

)
= 0

Γ1
xy

(
〈x2〉, 〈y2〉, 〈xy〉

)
= 0

(28)

where

Γ1
x2

(
〈x2〉, 〈xy〉

)
= kXx y

(
f(y)

y
− f ′(y)

)
− γ〈x2〉

+kXf
′(y)〈xy〉

(29)



Γ1
y2

(
〈y2〉, 〈xy〉

)
=

〈
η2
〉

2
ϕg(x) + x y η

(
2
ϕg(x)

x
− ϕ′g(x)

)
−kGx〈y2〉 − η

(
ϕg(x)

x
− ϕ′g(x)

)
〈xy〉

(30)

Γ1
xy

(
〈y2〉, 〈xy〉

)
= kXf

′(y)〈y2〉 − (γ + kGx)〈xy〉

−η
(
ϕg(x)

x
− ϕ′g(x)

)
〈x2〉

+kXy
2

(
f(y)

y
− f ′(y)

)
+ η x2

(
2
ϕg(x)

x
− ϕ′g(x)

)
.

(31)

In relation to Model 2, we have 〈x2〉, 〈y2〉, 〈xy〉, as the
solutions of the following linear system:

Γ2
x2

(
〈x2〉, 〈xy〉, 〈xγ〉

)
= 0

Γ2
y2

(
〈y2〉, 〈xy〉

)
= 0

Γ2
xy

(
〈x2〉, 〈y2〉, 〈xy〉, 〈yγ〉

)
= 0

(32)

where

Γ2
x2

(
〈x2〉, 〈xy〉, 〈xγ〉

)
= Γ1

x2

(
〈x2〉, 〈xy〉

)
+ x2γ − x〈xγ〉

(33)

Γ2
y2

(
〈y2〉, 〈xy〉

)
= Γ1

y2

(
〈y2〉, 〈xy〉

)
−
〈
η2
〉

2
ϕg(x) (34)

Γ2
xy

(
〈y2〉, 〈xy〉, 〈yγ〉

)
= Γ1

xy

(
〈y2〉, 〈xy〉

)
+ x
(
γy − 〈γy〉

)
(35)

and second-order moments 〈xγ〉 and 〈yγ〉 come from the
solutions of the following linear system

Γ2
xγ

(
〈xγ〉, 〈yγ〉

)
= 0

Γ2
yγ

(
〈xγ〉, 〈yγ〉

)
= 0

(36)

where

Γ2
xγ

(
〈xγ〉, 〈yγ〉

)
= x〈γ2〉+ γ〈xγ〉 − 2xγ2

+kXf
′(y)γy − θxγ + θ〈xγ〉 − kXf ′(y)〈yγ〉

(37)

Γ2
yγ

(
〈xγ〉, 〈yγ〉

)
= kGy〈xγ〉+ kGx〈yγ〉 − kGxyγ

−ηϕg(x)γ − ηϕ′g(x)〈xγ〉+ ηϕ′g(x)γx− θ
(
yγ − 〈yγ〉

)
(38)

and

〈γ2〉 = γ2 +
σ2

2θ
. (39)

With regards to Model 3, we have 〈x2〉, 〈y2〉, 〈xy〉, as the
solutions of the following linear system:

Γ3
x2

(
〈x2〉, 〈xy〉, 〈xγ〉

)
= 0

Γ3
y2

(
〈y2〉, 〈xy〉

)
= 0

Γ3
xy

(
〈x2〉, 〈y2〉, 〈xy〉, 〈yγ〉

)
= 0

(40)

where

Γ3
x2

(
〈x2〉, 〈xy〉, 〈xγ〉

)
= Γ1

x2

(
〈x2〉, 〈xy〉

)
+
kX
2
f(y) (41)

Γ3
y2

(
〈y2〉, 〈xy〉

)
= Γ1

y2

(
〈y2〉, 〈xy〉

)
−
〈
η2
〉

2
ϕg(x) (42)

Γ3
xy

(
〈y2〉, 〈xy〉

)
= Γ1

xy

(
〈y2〉, 〈xy〉

)
. (43)

The cross-correlation coefficient associated to the pair
(y, g) is defined as follows

ρyg(τ) =
〈y(t)g(t+ τ)〉 − yg(x)

σY σg
, (44)

where τ ∈ R is the lag, describing a delay related to
noise propagation, and σY , σg are the stationary standard
deviations associated to Y and g, respectively, with

σ2
g =

〈(
g(x)− 〈g(x)〉

)2〉
=
〈
k2G
(
x− x

)2〉
= k2Gσ

2
X . (45)

In summary, the cross-correlation function for the pair
(y, g) is:

ρyg(τ) =
〈y(t)x(t+ τ)〉 − x y

σXσY
= ρyx(τ). (46)

Computations for the case of τ ≥ 0 and τ < 0 follow the
same line of Singh & Bokes (2012); Borri et al. (2018).
Therefore, for τ ≥ 0 we exploit the relationship

〈y(t)x(t+ τ)〉 = 〈y(t) 〈x(t+ τ)|z(t)〉〉 (47)

where z is the vector defined in Section 2 entailing the
pair x, y for Models 1, 3 or the triple x, γ, y for Model 2.
Then,

〈x(t+ τ)|z(t)〉 = Cxie
Aiτz(t) + CxiA

−1
i

(
eAiτ − I)bi (48)

with Cxi = [1 0] for i = 1, 3 and Cxi = [1 0 0] for i = 2,
provided that Ai is invertible. If we substitute (48) into
(47), it is

〈y(t)x(t+ τ)〉 = Cxie
Aiτ 〈y(t)z(t)〉

+ 〈y(t)〉CxiA−1i
(
eAiτ − I)bi

(49)

so that, at steady-state

〈y(t)x(t+ τ)〉 = Cxie
Aiτ 〈yz〉+yCxiA−1

(
eAiτ−I

)
bi (50)

with

〈yz〉 =
[
〈xy〉 〈y2〉

]T
(51)

for Model 1, 3, whilst

〈yz〉 =
[
〈xy〉 〈γy〉 〈y2〉

]T
(52)

for Model 2. On the other hand, for τ < 0, we have:

〈y(t)x(t+ τ)〉 = 〈y(t)x(t− |τ |)〉
=
〈
x(t− |τ |) 〈y(t)|z(t− |τ |)〉

〉 (53)

and so, at steady-state:

〈y(t)x(t+ τ)〉 = 〈x(t)y(t+ |τ |)〉. (54)

Then, dealing with 〈x(t)y(t+ |τ |)〉, it is

〈x(t)y(t+ |τ |)〉 =
〈
x(t) 〈y(t+ |τ |)|z(t)〉

〉
. (55)

so that, according to (21), we have:

〈y(t+ |τ |)|z(t)〉 = Cyie
Ai|τ |z(t)

+Cyi

∫ t+|τ |

t

eAi(t+|τ |−s)bids
(56)

with Cyi = [0 1] for i = 1, 3 and Cxi = [0 0 1] for i = 2,
that becomes

〈y(t+ |τ |)|z(t)〉 = Cyie
Ai|τ |z(t) + CyiA

−1
i

(
eAi|τ | − I

)
bi

(57)
provided that Ai is nonsingular. By substituting (57) into
(55):

〈x(t)y(t+ |τ |)〉 = Cyie
Ai|τ | 〈x(t)z(t)〉

+ 〈x(t)〉CyiA−1i
(
eAi|τ | − I

)
bi

(58)



Table 1. Model parameters.

Parameter Value Parameter Value

λ 0.2 kX 1000

θF 300 γ̄ 1

θY 500 kG 2 · 10−4

kY 15 θ 1

σ 0.2

and so, accounting for the steady-state solutions, when
t 7→ +∞ we have

〈x(t)y(t+ |τ |)〉 = Cyie
Ai|τ |〈xz〉+ xCyiA

−1
i

(
eAi|τ | − I

)
bi

(59)
with

〈xz〉 =
[
〈x2〉 〈xy〉

]T
(60)

for Model 1, 3, and

〈xz〉 =
[
〈x2〉 〈xγ〉 〈xy〉

]T
(61)

for Model 2.

5. NUMERICAL SIMULATIONS

We here provide numerical simulations for the three mod-
els illustrated in the previous Sections. As in Borri et al.
(2018), the nonlinear functions f(·) and ϕg(·) have been
chosen as Michaelis-Menten functions

f(y) =
y

y + θF
, ϕg(x) = kY

x

x + θY
, (62)

satisfying ϕg(x)/x and f(y)/y to be monotonically de-
creasing functions.

With respect to the bursty noisy production of Y , as in
Soltani et al. (2015); Borri et al. (2016, 2018), we assume
the following geometric probability distribution:

P(η = j) = (1−λ)jλ, λ ∈ (0, 1], j = 0, 1, . . . (63)

providing an average burst size η = (1− λ)/λ.

Table 1 reports the set of model parameters, according
to which the steady-state solutions provided by (27) are
x = θY = 500, y = θF = 300 (parameters set to
provide steady-state values equal to the Michaelis-Menten
constants), such that ϕg(x) = kY /2 and f(y) = 1/2.

A step selection of 0.1 seconds and an overall simulation
time of 10, 000 seconds has been chosen for both the τ -
leaping algorithm of Gillespie (2001), employed for sim-
ulating Models 1 and 3, and for the Euler-Maruyama
method chosen for integrating the SDE in Model 2,
Higham (2001). In all cases, the ergodic properties of the
underlying stochastic process have been exploited in order
to infer the statistics of interest from the corresponding
time averages.

Figs. 2–4 draw the cross-correlations according to the
aforementioned scheme. It can be appreciated that the
approximate analytical computations are validated by nu-
merical simulations since there is a very good overlapping
of the two curves (the numerical one, clearly obtained
without any approximation, and the one achieved accord-
ing to analytical computations carried out in Section 4).
Differently from the results related to Model 1, provid-
ing a positive cross-correlation function with an apparent
positive delay of the maximum (see Borri et al. (2018)
where a discussion about Model 1 is given), the other
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Fig. 2. Model 1: Cross-correlation function ρyg(τ) drawn
according to the parameter values in Table 1. The
approximate analytical computations (solid line) are
validated by the statistical results obtained by means
of the τ -leaping method (dashed line).
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Fig. 3. Model 2: Cross-correlation function ρyg(τ) drawn
according to the parameter values in Table 1. The
approximate analytical computations (solid line) are
validated by the statistical results obtained by means
of the Euler-Maruyama method (dashed line).

two cross-correlation functions share a different behavior.
Indeed, both show a trivial correlation for positive lags
and a negative correlation for negative lags. The trivial
correlation for positive lags suggests that, contrary to
Model 1, in both Models 2 and 3, there seem to be no
noise propagation from the metabolic enzymes to growth
rate. On the other hand, noise seems to propagate with
a non-trivial negative correlation from cellular growth
to the metabolic enzyme. This fact could be explained
by the incoherent feedforward control exerted by growth
on both production and clearance rate of the metabolic
enzymes. In summary, similarly to what comes out from
the experimental results published in Kiviet et al. (2014),
fluctuations may propagate from metabolism to growth
and vice versa: growth noise may affect gene expression.
Further investigation would require the building of an
experimental setting aiming at confirming what the model
predicts.
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Fig. 4. Model 3: Cross-correlation function ρyg(τ) drawn
according to the parameter values in Table 1. The
approximate analytical computations (solid line) are
validated by the statistical results obtained by means
of the τ -leaping method (dashed line).

6. CONCLUSIONS

This work builds on the paper Borri et al. (2018)
and investigates the effect of different noise sources in a
coarse-grained model of the interplay among growth rate,
metabolism and resource allocation. Approximate moment
computations and cross-correlation functions based on a
Stochastic Hybrid System framework are validated via
approximate stochastic simulations (τ -leaping and Euler-
Maruyama), in order to evaluate how noise propagates in
the metabolic pathway. The use of the model suggests
new interpretations concerning how noise impacts from
metabolism to cellular growth (or vice versa) and highlight
how different noise sources could provide very different
results in terms of noise propagation.
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