A Blockchain-based Brokerage Platform
for Fog Computing Resource Federation

Marco Savi!, Daniele Santoro!, Katarzyna Di Meo!, Daniele Pizzolli', Miguel Pincheira’,

Raffaele Giaffreda!, Silvio Cretti!, Seung-woo Kum?, Domenico Siracusa

1

'Fondazione Bruno Kessler, Trento, Italy, ?Korea Electronics Technology Institute, Seoul, Korea

Abstract—This demonstration aims at showcasing an initial
version of the DECENTER Brokerage Platform, which leverages
an Ethereum blockchain to enable resource federation among
different Fog Computing infrastructures. We consider a scenario
where an Italian Infrastructure Provider wants to seamlessly
extend its pool of resources to get access to an IP camera located
in Korea, so that it can deploy an application to locally perform
text recognition from a live video stream.

I. INTRODUCTION

Fog Computing [1] has been proposed as an effective
means to bridge the gap between Cloud and IoT, making
computing resources more easily available closer to where
data is produced. While commercial deployments of Fog
Computing Platforms already exist (e.g. [2]), such solutions
are bound to work within a single administrative domain as
they presume direct ownership of the distributed resources. As
a result, complex interactions are required to operate federation
of resources across administrative domains when any of the
federated providers need resources at the edge in a location
where they do not have an infrastructure deployed [3].

The DECENTER project [4] aims at addressing this short-
coming by creating a federated Fog Computing ecosystem
where computing and [oT resources (processing, memory, stor-
age, connectivity, sensing, actuating, etc.) can be harmoniously
orchestrated in dynamically-created federated environments.
DECENTER proposes a blockchain-based Brokerage Platform
incentivising resource sharing across administrative domains
through the use of Smart Contracts (SCs).

This demonstration showcases a first version of the DE-
CENTER Brokerage Platform: to show the potential of our
solution, we extended the functionalities of FogAtlas [5], a Fog
Computing Platform based on Kubernetes (K8s) and designed
for single-domain resource orchestration and application de-
ployment. The extension integrates the Brokerage Platform
through which spare resources can be advertised, selected
and eventually paid for (after use) using blockchain cryp-
tocurrencies. Providers that select some of the resources on
offer will "self-provision” them over their own infrastructure
that is managed by a local instance of FogAtlas. Specifically,
in the demonstration we consider two providers, a seller
(advertising resources located in Korea) and a buyer (located
in Europe but willing to rent advertised resources) and we
show, by means of a simple Graphical User Interface (GUI),
how the buyer can easily extend its pool of resources. The
specific example shows the deployment of a simple Optical
Character Recognition (OCR) application where the buyer

requires access to resources (an IP camera and processing
power) from outside its administrative domain.

The remainder of this paper is organized as follows. Section
IT reports the architectural view of the proposed solution,
Section III recalls the demonstration setup and workflow, while
Section IV concludes the paper.

II. ARCHITECTURE AND BEHAVIOR

Figure 1 shows the high-level architecture of the software
framework used in this demo. Two platforms are envisioned:

« Fog Computing Platform: Manages a Fog Computing
infrastructure and handles requests for the deployment of
microservice-oriented applications in a single administrative
domain. We adopt FogAtlas [5], which leverages and ex-
tends open-source technologies (OpenStack, K8s, Docker,
Ansible, ZeroTier, etc.) to seamlessly work from Cloud to
things. Figure 1 shows two Fog Computing Platforms, man-
aging infrastructures of two distinct administrative domains,
namely Infrastructure Provider A (pink) and Infrastructure
Provider B (green)!.

o Brokerage Platform: Handles applications’ deployment
requests when different administrative domains are involved,
i.e., when an application requires the usage of fog resources
belonging to another Provider. A blockchain-based toolset
(i.e., Ethereum [6]) is adopted for resource advertisement,
negotiation and federation. In Fig. 1 the Brokerage Platform
modules are highlighted in yellow.

A. Modules and interfaces

The main components of the Fog Computing Platform are:

« App Composer GUI: Used to model microservice-oriented
applications and specify computational and networking re-
quirements for microservices and related data flows.

o Orchestrator: Finds the best placement for applications’
microservices, while meeting specified requirements. It is
an extension of the K8s Scheduler.

« TaaS Manager: Offers a generic interface to the underlying
infrastructure that can be customized.

« Resource Manager: Discovers, reserves and frees resources
on the underlying infrastructure.

« Infrastructure Provisioning: Sub-component of the Re-
source Manager that enables the provisioning of new re-
sources on the underlying infrastructure.

'Only two Infrastructure Providers (from now on simply "Providers") are
considered in this demonstration, but more could be involved in a real scenario.



App Composer GUI
Compose IF1: REB API Reserve.
application Resource Selector GUI |1 Publish
|F2 F Eth resource
Deploy . Fog Check for . ereum availability
application | Platform API I resources REli_A Blockchain v REE—B
Orchestrator | 2| 8 _ Resource Exchange g | ®| oOrchestrator |
§ |5 90— Broker (REB 5.0\ 5y
laaS Manager 211 Q "o| |F1: REB API ( ) IF1: REB API| & @ :2 laaS Manager |
N ' g e ;
NN N = 2 00
INERAS. g § E’o L IF3: Resource Sharing API § E”o g / INERAS. )ﬂ\
A V0§13 S Legend 3 clglp B Y
£ 9 ] Fog Computin o e~ s
o £ &S | Fog Computing & ElE| < 9|
:-rl Provision /‘; Platforms : \_/\‘/ L

Infrastructure Provider A acquired

resources

Infrastructure Provider B
(Seller of resources)

D Brokerage Platform

(Buyer of resources)

Fig. 1. Architectural view and behavior specification

The main components of the Brokerage Platform are:

« Resource Exchange Broker (REB): blockchain-based
"conveyor belt”, where different Providers can commit some
resources for sharing with others. Sharing is regulated
through SCs recorded in an Ethereum blockchain, which
are submitted through a set of Application Programming
Interfaces (APIs) distributed above each Fog Computing
Platform (i.e., REB_A and REB_B) and used to enable
communication with the blockchain.

« Resource Selector GUI: Click-based interface able to show
resources advertised on the REB and used to select the most
appropriate ones to meet application requirements.

« Resource Seller: Advertises available resources on the REB
and implements the negotiation process to acknowledge a
reservation request made by the Resource Selector GUI

Three main interfaces have been designed and implemented:

« REB API (IF1): It allows (i) the Resource Seller to adver-
tise resource availability on the REB and (ii) the Resource
Selector to retrieve information about advertised resources
and make reservations on them.

« Fog Platform API (IF2): Used (i) for applications’ deploy-
ment and (ii) to request provisioning of third-parties rented
resources on the underlying infrastructure.

o Resource Sharing API (IF3): Used by a Provider for
automated resource provisioning of resources belonging to
another Provider.

B. Behavior specification

Figure 1 reports the high-level behavior specification of this
demonstration, where Provider A acts as buyer and Provider
B as seller of resources. Six steps are executed:

1) Publish resource availability: Resource Seller of Provider
B advertises available resources on the REB.

2) Compose application and send it for deployment: Through
the App Composer GUI, a user (e.g. a service provider)
models her application and sends its descriptor for deploy-
ment to Provider A through Fog Platform API.

3) Check for available resources: Advertised resources on the
REB are retrieved through REB API and displayed by the
Resource Selector GUI of Provider A. The most appro-
priate to meet application’s requirements (i.e., resources
advertised by Provider B) are selected.

4) Reserve resources: Resource Selector GUI requests to
Provider B the reservation of chosen resources through
REB API and the creation of a SC. Provider B acknowl-
edges it via REB by amending the created SC.

5) Provision acquired resources: Infrastructure Provisioning
module of Provider A starts the automated provisioning
process through Resource Sharing API to include the rented
resources of Provider B in its infrastructure.

6) Deploy the application: Orchestrator of Provider A deploys
the application on the extended infrastructure.

III. DEMONSTRATION SETUP AND WORKFLOW

This section describes how the demonstration environment
has been set up and how its execution is carried out.

A. Environment and setup

The demonstration environment includes two Fog Comput-
ing infrastructures, one managed by Provider A and the other
by Provider B. Both are composed of two regions: a Cloud
region and an Edge region. The former infrastructure, called
Infrastructure A for the sake of brevity, is located in Italy,
while the latter (Infrastructure B) is located in Korea. The
characteristics of the infrastructures are shown in Table I.

We use a simple microservice-oriented application to show-
case the functionalities of the Brokerage Platform. It collects
a video stream from an IP camera, extracts the text embedded
in the images thanks to an OCR open-source library [7]
and stores the text into a repository for future consultation
through a web interface. The application, called simple_ocr, is
composed of three microservices that are chained in sequence:
o Processor: Thanks to an OCR library, it extracts the text

from the streamed images coming from the IP camera.

« Repository: Key-value store where extracted text is stored.



TABLE I
CHARACTERISTICS OF INVOLVED INFRASTRUCTURES

Infrastructure A Infrastructure B
Feature | Cloud reg. [ Edge reg. Cloud reg. [ Edge reg.
Name CLOUD POVO SEOUL SEOUL-KETI
CPU 6 vCPU 1 CPU 4 vCPU 2 CPU
RAM 6 GB 1 GB 4 GB 2 GB
Disk 500 GB 10 GB 500 GB 10 GB
Devices None IP camera None IP camera
(caml) (camkorl)
SwW 0S, K8s Ubuntu, K8s OS, K8s Ubuntu, K8s

+ Webserver: Web application that allows to access text
stored in the repository.

This application can benefit from having the Processor mi-
croservice deployed close to the data source (i.e., the IP
camera) in an Edge region, while keeping CPU/RAM-hungry
microservices (i.e., Repository, Webserver) in the Cloud re-
gion. In fact, (i) such a deployment reduces the requested
bandwidth between Edge and Cloud and (ii) the video stream
is processed locally (relevant for privacy-sensitive data).

B. Storyboard and workflow

The initial status of Infrastructures A and B is shown in Fig.
2(a) and 2(b) respectively. On Infrastructure A, simple_ocr
has been already deployed: its microservices are identified
by purple bullets. Note that the Processor microservice has
been deployed on the POVO edge region. Infrastructure B has
instead no applications deployed and is totally disconnected to
Infrastructure A. Green and blue bullets in the CLOUD and
SEOUL regions (i.e., Cloud regions) represent all deployed
microservices of Brokerage and Fog Computing Platforms.

In the current situation, simple_ocr can gather and process
the video stream from the camera located in the POVO
region (caml), while it clearly cannot access the video stream
produced by the camera in the SEOUL-KETI edge region
(camkorl). Granting access to the Korean IP camera, following
the typical modes of operations, would involve human inter-
action, would need networking and infrastructural knowledge
and is time consuming. In fact, the owner of the application
should autonomously negotiate with Provider B the renting of
needed resources, struggle for setting up a secure connection
between the remote region and Infrastructure A and finally
agree with Provider B on the deployment of part of her
application (i.e. the Processor microservice) close to camkorl.

Thanks to the Brokerage Platform, Provider A can instead
embrace the “one-stop-shop” business, offering the possi-
bility to deploy automatically (part of) the application on
resources belonging to Infrastructure B. The needed resources
are reserved and rented through the Resource Selector GUI,
which gets available resources through the REB (by reading
advertised resources on the Ethereum blockchain), stipulates a
SC with Provider B and provisions reserved resources through
its Infrastructure Provisioning component. The acquired pool
of resources is also automatically interconnected with Infras-
tructure A through a Virtual Private Network (VPN). All the
needed software (e.g. K8s) is installed and finally the pool of
resources joins Infrastructure A cluster in the form of a new
K8s worker node. All this complex process is triggered by
simply clicking on a button on the Resource Selector GUI.

cLoup ® seouL ®
00000 | L
000000 |

N P
\\ \\
N povo = | \
N R ) | N
N Microservices: 1 ; \\
N ® | N,  SEOUL-KETI=
[ camer&a: caml } \ Microservices: 0§
" processor camera: camkorl
o <
M
(a) o g (b) m )
B~ oA,
----------------- SEOUL-KETI'®™ ‘
______________________________ )

Fig. 2. Geographical representation of Infrastructure A (a), Infrastructure B
(b) and Infrastructure A extended with resources from Infrastructure B (¢)

The final result of the process is shown in Figure 2(c). On
such an extended infrastructure, spanning from Italy to Korea,
it is now possible to deploy a new instance of the OCR appli-
cation to process the video streamed by camkorl, by placing
a new instance of the Processor microservice in the SEOUL-
KETI region. Once this microservice has been deployed, the
Repository located in Italy can store the extrapolated text as
sent from the Processor located in Korea.

IV. CONCLUSION

We designed an architecture where multiple Fog Computing
Platforms, each managing a distributed infrastructure, can
seamlessly federate their resources by means of a blockchain-
based Brokerage Platform any time access to resources from a
different administrative domain is needed. A proof-of-concept
has been set up where an Infrastructure Provider, located in
Italy, wants to extend its infrastructure by acquiring compu-
tational resources and gaining access to an IP camera located
in Korea, with the aim of recognizing text from the camera-
produced video stream while keeping the video processing
operations local (e.g. for privacy reasons). In the future, we
will extend our work to include negotiated Service Level
Agreements (SLAs) among providers in the stipulated SCs
and to allow an automated verification of those SLAs before
payments for the usage of rented resources occur.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under
grant agreement no. 815141 (DECENTER project).

REFERENCES

[1] A. V. Dastjerdi and R. Buyya, “Fog Computing: Helping the Internet of
Things realize its potential,” Computer, vol. 49, no. 8, pp. 112-116, 2016.

[2] “Amazon AWS IoT Greengrass,” https://aws.amazon.com/greengrass/.

[3] A. Boubendir, F. Guillemin, C. Le Toquin et al., “Federation of Cross-
Domain Edge Resources: A Brokering Architecture for Network Slicing,”
in IEEE NetSoft, 2018.

[4] “DECENTER project,” https://www.decenter-project.eu/.

[5] “FogAtlas,” https://fogatlas.fbk.eu/.

[6] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1-32, 2014.

[7] “Gosseract OCR,” https://github.com/otiail0/gosseract.



