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Abstract— Size control is usually exerted in living cells by prop-
erly sensing the external inputs (like nutrients) and, accordingly,
by activating the metabolic pathways in order to set and
adjust their own growth rate. In this framework, experimental
results have recently highlighted the role of metabolic noise,
usually neglected because of its averaging over the great deal
of reactions involved in metabolic networks. In this note, a
basic model of the interplay among metabolic enzymes activity,
resource allocation and growth rate is introduced. A noise
source is supposed to affect the enzymatic activity. The model
includes a feedforward action of the resource on the enzyme
dynamics (modulated by growth), as well as a feedback of
the enzyme on the resource production rate. A Stochastic
Hybrid System formulation is exploited to investigate how the
noise propagates through the metabolic pathway. Model-based
results support the hypothesis that fluctuations in the enzyme
production perturb cellular growth, and not vice versa, because
of an apparent delay in the cross-correlation function. This
result is coherent with single-cell recent experimental results.

Index Terms— Metabolic pathways, Enzymatic Reactions,
Systems Biology, Feedback/Feedforward loops

I. INTRODUCTION

The comprehension of how complex biological functions
emerge from the genomic structure of a living cell, modu-
lated by environmental cues, is an open challenge for systems
biology, and computational models are expected to increase
the understanding on cellular emergent properties, that arise
from the interactions of a large numbers of gene products and
metabolic reactions. What make these phenomena trickier to
investigate are the many feedback and feedforward mecha-
nisms linking gene expression to metabolism and vice versa.
For instance, the environment (mostly the nutrient availabil-
ity) strongly influences the growth rate of many organisms
(spanning from bacteria to eukaryotic cells), and the growth
rate is known to characterize the metabolism of the cell,
eventually leading to different cell size and macromolecular
resource allocation with the aim of complying with specific
fates and developmental programs. Indeed, growth-dependent
molecular players control the cellular resource allocation,
for instance facilitating or inhibiting enzymatic reactions
or modulating the correct gene expression, and a different
resource allocation influences in feedback the growth rate
of the cell thus controlling, by means of growth rate, in an
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indirect way, the metabolic enzymes activity (see, among the
others, [2], [1], [6], [14], [13], [12]). Within this framework,
molecular stochasticity has been usually related to enzymatic
reactions or gene expression, assuming that these random
fluctuations do not propagate at a metabolic level, and
could be averaged and substantially neglected because of
their averaging over the great deal of reactions involved in
metabolic networks. Instead, recent single-cell investigations
have highlighted how fluctuations in gene expression and
enzymes may affect metabolic fluxes as well as the rate of
cellular growth [11], [23], [15].

This note investigates noise propagation for a basic model
dealing with the tight interplay between resource allocation
and growth rate modulation. The scheme is reported in
Fig. 1. X is a cellular resource, whose accumulation controls
the metabolic pathways of the cell, definitely regulating in
a positive fashion the cell growth rate. The growth rate
controls, in turn, the accumulation of a set of metabolic
enzymes, by properly tuning both enzymatic production and
dilution. In our model Y denotes the class of such enzymes.
In summary, X exerts an incoherent feedforward control on
Y , since it indirectly (by means of the growth rate) enhances
both Y production and clearance (feedforward loops are
known to be frequently occurring in transcription networks
[3], [19]). On the other hand, Y is supposed to control in
feedback the X production rate, according to its specific
enzymatic affinity. Noise is supposed to affect the expression
of Y , and the aim of the paper is to characterize how
noise propagates on the growth rate from the fluctuations
affecting the enzymatic expression. It will be shown that
the proposed model (though elementary and basic) is able
to replicate important features related to noise propagation
through the metabolic pathway, and to support the hypothesis
that fluctuations in the enzyme production perturb cellular
growth, and not vice versa, because of an apparent positive
delay in the cross-correlation function. These results are
coherent with recent single-cell experimental results [23],
and motivates the research.

A Stochastic Hybrid System (SHS) model is introduced,
with the noisy Y production rate modeled in a bursty discrete
stochastic fashion, whilst the remaining dynamics evolves
according to an Ordinary Differential Equation (ODE) sys-
tem between any two bursts [10]. SHS models, entailing
both continuous and discrete events, are usually preferred
(with respect to a more general Chemical Master Equations
framework where the chemical reaction network is totally
modeled by discrete stochastic events) when the bursty
production is dominant with respect to the other reactions, for



Fig. 1. Schematic figure of the model under investigation.

instance because of a large average burst size [18]. SHS have
recently been exploited to investigate the role of feedbacks
in noise propagation in enzymatic reaction and metabolic
frameworks [4], [5].

Noise propagation is investigated by means of first- and
second-order moments, whose analytic computation is, how-
ever, prevented by the nonlinearities involved in the model
[10], [17], [21]. To overcome such a drawback, analytical
solutions are obtained after linearization of the nonlinear
functions involved, and these results are validated by the
Gillespie Stochastic Simulation Algorithm (SSA) [7], run
according to the original nonlinear system, whose results
are shown to be very close to the approximated ones on
a wide range of model parameters. The SSA is the Monte
Carlo numerical approach usually exploited for Chemical
Master Equations, since it provides accurate estimates of the
probability distributions associated to the chemical reaction
network. In the present case, the propensity of the discrete
stochastic reaction of the SHS will be shown to depend
on the state of the ODE system associated to the SHS,
therefore it varies in continuous time. As a consequence,
the tau-leaping method [8] will be exploited for stochastic
simulation. This is a popular approximate version of SSA,
iteratively performing reactions within sufficiently small time
steps where propensities are assumed to be approximately
constant.

The note is organized as follows. Next Section formally
defines the model under study and the kind of investigation
that will be carried out. Section III refers to the first-order
moment results associated to the SHS, with a special focus on
steady-state conditions and stability issues, whilst Section IV
details about noise propagation, dealing with second-order
moment results, including the cross-correlation analysis. Sec-
tion V reports numerical simulations. Conclusions follow.

II. MODEL SETTING

Consider the scheme of Fig. 1 where X and Y refer
to the molecular players under investigation and x and y
refer to their copy numbers. X stands for a cellular resource

whose accumulation modulates the growth rate by properly
influencing the cell metabolism. By assuming that X is a
suitable fraction of the whole cell size, we set the dependency
of the growth rate g in terms of a linear function:

g(x) = kGx. (1)

Indeed, a great deal of experimental results highlights the
tight correlation between growth rate and cell size, occurring
for different and diverse living cells, like bacteria, fission or
budding yeast and mammalian cells (see [2] and references
therein).

The growth rate controls, in turn, the accumulation of a
set of metabolic enzymes, represented in this model by Y ,
by properly tuning both enzymatic production and dilution.
Indeed, dilution is supposed to occur at the same growth
rate whilst, regards to Y production, we assume it occurs
in bursts of η copy numbers, with the random variable η
indicating the size of the bursts, occurring according to a
chosen probability distribution P(η = j), j = 0, 1, . . .,
[20], [9]. The average size of η will be shortely denoted
by η. Moreover, the propensity aj of an event of j bursts
production (i.e. y 7→ y + j) is assumed to depend on the
growth rate via a nonlinear saturating function ϕ(g), chosen
to be monotonically increasing (e.g. a saturating exponential
or a Michaelis-Menten, according to the experimental results
in [12]). Therefore:

aj(x) = ϕg(x)P(η = j), j = 0, 1, . . . (2)

where
ϕg(x) = ϕ

(
g(x)

)
= ϕ

(
kGx

)
. (3)

In summary, X exerts an incoherent feedforward control on
Y , since it indirectly (by means of the growth rate) enhances
both Y production and clearance.

On the other hand, Y is supposed to control in feedback
the resource X production rate, according to a generic mono-
tonically increasing, saturating function of y, denoted by
f(y), for instance a Michaelis-Menten function, according
to usual assumptions on enzymes kinetics.

According to the Stochastic Hybrid System (SHS) mod-
eling approach [10], denoting with (x,y) the state of the
system associated to the biological framework under inves-
tigation, we assume a continuous-time evolution between
any two discrete noisy resets, described by the following
Ordinary Differential Equation system:{

ẋ = kXf(y)− γXx

ẏ = −kGxy
(4)

The aim of the work is to investigate how the noise
affecting the enzyme production propagates and affects the
growth rate. To this end, the cross-correlation function will be
exploited, analytically achieved according to the SHS model,
by means of first- and second-order moments.

In the following, we will denote with 〈h(x)〉 the average
value of a generic function h of a random process x, and with
〈h(x)〉 = limt 7→+∞ 〈h(x)〉 its stationary average value. In
case of the average value (i.e. h(x) = x), it will be denoted
by x = 〈x〉 for short.



III. FIRST-ORDER MOMENTS AND STEADY-STATE
CONDITIONS

The nonlinearities involved in the enzyme clearance rate,
in the propensities aj(x) and in the enzymatic feedback on
X production rate, prevent from achieving moment equations
in closed form. Therefore, we linearize them around the
stationary average values x,y, supposed to exist and be
unique:

ϕg(x) ' ϕg(x) + ϕ′g(x)(x− x) (5)

xy ' xy + y(x− x) + x(y − y) (6)

f(y) ' f(y) + f ′(y)(y − y) (7)

By formally denoting with ż = h(z), z = [x y]T the
ODE system (4) associated to the SHS, the general formula
to achieve any order moment equation from the SHS is below
reported [10]

d

dt
〈ψ(z)〉 =

dψ

dz
h(z) +

∞∑
j=1

〈(
ψ(z + ∆j)− ψ(z)

)
aj(x)

〉
(8)

where ∆j = [0 j]T stands for the state update occurring
whenever j copies of enzyme Y are produced in bursts
with propensity aj(x). Then, first-order moments are readily
computed for ψ(z) = x and ψ(z) = y, by properly
exploiting the linear approximations in (5)-(7):

d

dt
〈x〉 = 〈kXf(y)− γXx〉

= kX
(
f(y) + f ′(y)(〈y〉 − y)

)
− γX 〈x〉

(9)

d

dt
〈y〉 = −〈kGxy〉+

∞∑
j=1

〈jϕg(x)P(η = j)〉

= −kG
(
xy + y(〈x〉 − x) + x(〈y〉 − y)

)
+η
(
ϕg(x) + ϕ′g(x)(〈x〉 − x)

)
(10)

First-order moment equations in (9)-(10) can be put in a
more compact form according to the following linear system

d

dt
〈z(t)〉 = A(x,y) 〈z(t)〉+ b(x,y) (11)

with

A(x,y) =

[
−γX kXf

′(y)
ηϕ′g(x)− kGy −kGx

]
(12)

b(x,y) =

[
kX
(
f(y)− f ′(y)y

)
ηϕg(x) +

(
kGy − ηϕ′g(x))x

]
, (13)

providing at steady-state the following algebraic equations:kXf(y) = γXx

kGxy = ηϕg(x)
(14)

The following Lemma provides a sufficient condition for the
existence and uniqueness of a nontrivial, positive solution to
the algebraic equations reported in (14).

Lemma 1: Consider the algebraic equation system (14). If
ϕg(x)/x is a monotonically decreasing function in x ≥ 0,
with

lim
x 7→0+

ϕg(x)

x
= M > 0, (15)

then there exists a unique nontrivial, positive solution for the
pair (x,y).

Proof. According to simple manipulations, it comes that
nontrivial positive solutions of (14) are the positive roots of
the following nonlinear equation

Φ(x) = 0, Φ(x) = kXf

(
η

kG
· ϕg(x)

x

)
− γXx, (16)

with

Φ(0) = kXf

(
ηM

kG

)
, lim

x7→+∞
Φ(x) = −∞, (17)

and

Φ′(x) =
kXη

kG
f ′
(
η

kG
· ϕg(x)

x

)
d

dx

[
ϕg(x)

x

]
− γX < 0

(18)
because ϕg(x)/x is monotonically decreasing by hypothesis
(15) and f(·) is a monotonically increasing function. There-
fore, by continuity, there must exist a unique positive solution
for x. 2

In order to investigate the stability of the equilibrium
point, we need to show that matrix (12) is Hurwitz, i.e. has
eigenvalues with negative real part. The following Lemma
provides a sufficient condition.

Lemma 2: Assume that the hypotheses on ϕg(·) detailed
in Lemma 1 hold true and, moreover, that f(y)/y is a
monotonically decreasing function for y ≥ 0. Then, matrix
A in (12) is Hurwitz.

Proof. Consider the characteristic polynomial d(λ) asso-
ciated to A:

d(λ) = λ2 + (kXx + γX)λ+ c(x,y) (19)

with

c(x,y) = γXkGx− kXηf ′(y)ϕ′g(x) + kXkGyf
′(y). (20)

According to the Routh-Hurwitz criterion, the characteristic
polynomial has both roots with negative real part (therefore
matrix A is Hurwitz) if, and only if, the zero-order coefficient
c > 0. According to the steady-state conditions (14), after
computations, coefficient c can be lower bounded as:

c(x,y) ≥ kXη
(
f(y)

y
· ϕg(x)

x
− f ′(y) · ϕ′g(x)

)
. (21)

Now, if ϕg(x)/x is a decreasing function in x > 0, then

d

dx

[
ϕg(x)

x

]
=
ϕ′g(x)x− ϕg(x)

x2 < 0

=⇒ ϕg(x)

x
> ϕ′g(x)

(22)

and, similarly,
f(y)

y
> f ′(y) (23)

therefore c(x,y) > 0. 2



Remark 3: It is worth noticing that the hypotheses of both
Lemmas are not restrictive since, for instance, are satisfied
by any Michaelis-Menten function of the type

ϕg(x) = kY
x

x + θy
, (24)

as well as by exponentials of the form

ϕg(x) = kY
(
1− e−θyx

)
. (25)

IV. SECOND-ORDER MOMENTS AND
CROSS-CORRELATION FUNCTION

To deal with noise fluctuations and propagation, we need
to compute the second-order moments associated to the copy
number of the species of the system. The dynamic equations
for

〈
x2
〉
,
〈
y2
〉
, 〈xy〉 can be written according to (8) by

properly setting ψ(z) = x2, ψ(z) = y2 and ψ(z) = xy.
Because of the linearization, the steady-states solutions 〈x2〉,
〈y2〉, 〈xy〉 are obtained as the solutions of the following
linear third-order system

γX〈x2〉 − kXf ′(y)〈xy〉 = kXxy

(
f(y)

x
− f ′(y)

)
(26)

kGx〈y2〉+ η

(
ϕg(x)

x
− ϕ′g(x)

)
〈xy〉

=

〈
η2
〉

2
ϕg(x) + xy η

(
2
ϕg(x)

x
− ϕ′g(x)

) (27)

kX〈y2〉 − η
(
ϕg(x)

x
− ϕ′g(x)

)
〈x2〉 − (γX + kGx)〈xy〉

= −xy(γX + kGx) + kXy2f ′(y)− kGx2y + η x2ϕ′g(x)

= −kXy2

(
f(y)

y
− f ′(y)

)
− η x2

(
2
ϕg(x)

x
− ϕ′g(x)

)
(28)

The explicit solution is readily achievable, though its final
form is cumbersome and not easy-to-handle, therefore it will
not be reported here.

These results on stationary second-order moments will
be exploited to compute the cross-correlation function, in
order to infer information on whether noise fluctuations in
the enzyme production propagate on cellular growth, or vice
versa. With a little abuse of notation, whenever the explicit
dependency of time is required, the following notation is
exploited for short:

g
(
x(t)

)
= g(t), (29)

so that the cross-correlation coefficient between y and g is
formally defined as

ρyg(τ) =
〈y(t)g(t+ τ)〉 − yg(x)

σY σg
, (30)

where τ ∈ R is the lag, describing a delay related to
noise propagation, and σY , σg are the stationary standard
deviations associated to g and Y , respectively, with

σ2
g =

〈(
g(x)− g(x)

)2〉
=
〈
k2G
(
x− x

)2〉
= k2Gσ

2
X . (31)

In summary:

ρyg(τ) =
〈y(t)x(t+ τ)〉 − xy

σXσY
= ρyx(τ). (32)

For positive lags τ ≥ 0, similarly to [16], we first compute
the cross-covariance by properly exploiting the relationship

〈y(t)x(t+ τ)〉 =
〈
y(t) 〈x(t+ τ)|x(t),y(t)〉

〉
. (33)

Instead, for negative lags, we need to resort to another
conditional expectation formula. Indeed, for τ < 0

〈y(t)x(t+ τ)〉 = 〈y(t)x(t− |τ |)〉

=
〈
x(t− |τ |) 〈y(t)|x(t− |τ |),y(t− |τ |)〉

〉 (34)

and so, at steady-state:

〈y(t)x(t+ τ)〉 = 〈x(t)y(t+ |τ |)〉. (35)

Let τ ≥ 0. Then, by defining Cx = [1 0], Cy = [0 1]
and according to (11), we have:

〈x(t+ τ)|x(t),y(t)〉 = Cxe
Aτz(t)+Cx

∫ t+τ

t

eA(t+τ−s)bds

(36)
that becomes

〈x(t+ τ)|x(t),y(t)〉 = Cxe
Aτz(t) + CxA

−1(eAτ − I)b
(37)

provided that A is nonsingular. By substituting (37) into (33)
we have

〈y(t)x(t+ τ)〉 = Cxe
Aτ 〈y(t)z(t)〉

+ 〈y(t)〉CxA−1
(
eAτ − I

)
b

(38)
and so, accounting for steady-state solutions, when t 7→ +∞
we have

〈y(t)x(t+ τ)〉 = Cxe
Aτ 〈yz〉+ yCxA

−1(eAτ − I)b (39)

with

〈yz〉 =

 〈xy〉
〈y2〉

 . (40)

Analogously, let τ < 0. Then, by means of (35) we
compute

〈x(t)y(t+ |τ |)〉 =
〈
x(t) 〈y(t+ |τ |)|x(t),y(t)〉

〉
. (41)

Then, according to (11), we have:

〈y(t+ |τ |)|x(t),y(t)〉 = Cye
A|τ |z(t)

+Cy
∫ t+|τ |
t

eA(t+|τ |−s)bds
(42)

that becomes

〈y(t+ |τ |)|x(t),y(t)〉 = Cye
A|τ |z(t) +CyA

−1(eA|τ | − I)b
(43)

provided that A is nonsingular. By substituting (43) into (41)
we have

〈x(t)y(t+ |τ |)〉 = Cye
A|τ | 〈x(t)z(t)〉

+ 〈x(t)〉CyA−1
(
eA|τ | − I

)
b

(44)



TABLE I
NOMINAL MODEL PARAMETERS.

Parameter Value
λ 0.2
kX 1000
θF 300
γX 1
θy 500
kG 2 · 10−4

kY 15

and so, accounting for steady-state solutions, when t 7→ +∞
we have

〈x(t)y(t+ |τ |)〉 = Cye
A|τ |〈xz〉+ xCyA

−1(eA|τ | − I)b
(45)

with

〈xz〉 =

 〈x2〉

〈xy〉

 . (46)

V. NUMERICAL SIMULATIONS

Numerical simulations are carried out according to the
following choice for the nonlinear functions f(·) and ϕ(·).
Both these functions are set as Michaelis-Menten functions,
so that conditions in Lemmas 1-2 are trivially satisfied

f(y) =
y

y + θF
, ϕ(g) = kφ

g

g + θφ
. (47)

Because of the linear relationship between x and g, the
choice of ϕ(g) in (47) implies that also ϕg(x) is a Michaelis-
Menten of the type (24), with kY = kφ θy = θφ/kG. Regards
to the bursty noisy production of Y , similarly to [20], [4],
we assume the following geometric probability distribution:

P(η = j) = (1− λ)jλ, λ ∈ (0, 1], j = 0, 1, . . .
(48)

providing an average burst size η = (1− λ)/λ.
A set of nominal model parameters is reported in Table I,

according to which the steady-state solutions provided by
(14) are x = 500, y = 300. Notice that nominal parameters
have been set in order to provide steady-state values equal to
the Michaelis-Menten constants (i.e. x = θy and y = θF ),
thus providing half of the maximum values for ϕg(x) =
kY /2 and f(y) = 1/2, respectively.

Stochastic simulations for the SHS are performed by
means of the tau-leaping algorithm [8] to validate the theoret-
ical approximate results developed in the previous sections,
by also exploiting the ergodic properties of the underlying
stochastic process. In this setting, the step selection has been
chosen equal to 0.1 seconds within an overall simulation time
of 10, 000 seconds.

Figs. 2–3 illustrate the SHS equilibrium distributions of
species X and Y obtained via tau-leaping, which result to
be centered on the equilibria x and y of (14), respectively.

In order to compare cross-correlation functions according
to different model parameter settings, we assume to vary
the Michaelis-Menten parameters θy and θF of the feedback
functions as well as the values kY and kX in order to keep

Fig. 2. Statistical distribution of species X of the SHS (2)–(4) obtained
by means of the τ -leaping method (blue solid line). The mode of the
distribution is approximately centered on the equilibrium solution x of (14)
(red dashed line).

Fig. 3. Statistical distribution of species Y of the SHS (2)–(4) obtained
by means of the τ -leaping method (blue solid line). The mode of the
distribution is approximately centered on the equilibrium value y of (14)
(red dashed line).

fixed the steady-state solutions achieved for the nominal
values. In other words, by denoting with MMf , MMφ the
following constants,

MMf = kX
y

y + θF
, MMφ = kY

x

x + θy
(49)

equations (49) provide the loci on the planes (kX , θF ) and
(kY , θy), respectively, where to take values compatible with
the fixed steady-state solutions.

Cross-correlation functions have been computed by ar-
bitrarily varying parameters θF and θy and by varying
parameters kX and kY according to (49). Table II reports
the kind of variation together with the measurement of the
feedback strength on f(·) and ϕg(·) computed as

Sf = kX ·
f ′(y)

y
, Sφ =

ϕ′g(x)

x
. (50)



TABLE II
PARAMETER VARIATIONS AND FEEDBACK STRENGTH.

Parameter Variation Sf Sφ
θF , θy 0.0028 1.5 · 10−5

10 · θF , θy 0.0051 1.5 · 10−5

0.1 · θF , θy 5.1 · 10−4 1.5 · 10−5

θF , 10 · θy 0.0028 2.7 · 10−5

θF , 0.1 · θy 0.0028 2.7 · 10−6

Fig. 4. Cross-correlation function ρyg(τ) drawn according to different
values of parameter θy . The analytical computations (solid lines) are
approximately validated by the statistical results obtained by means of the
τ -leaping method (circles).

Fig. 5. Cross-correlation function ρyg(τ) drawn according to different
values of parameter θF . The analytical computations (solid lines) are
approximately validated by the statistical results obtained by means of the
τ -leaping method (circles).

Figs. 4–5 draw the cross-correlations according to the
aforementioned scheme, where approximate formulae are
again validated by tau-leaping stochastic simulations, with
same simulation step (0.1 seconds) and time horizon (10, 000
seconds) for each parameter set in Table II. The nominal case
is reported in blue in both figures. One apparent fact is that
the maximum of the cross-correlation function occurs in cor-
respondence of a positive delay. This fact is coherent with the
analogous experimental results reported in [23], where it was
highlighted that current enzyme expression correlates better
with growth some time later, thus explaining that enzyme
production fluctuations happen first and growth fluctuations
occur some time later. In other words, growth fluctuations
arise because of the noise in the enzyme expression, and
not vice versa. Another apparent fact that is shared by all
parameter settings is that the maximum correlation lag does
not move if we keep fixed the steady-state solutions. On
the other hand, by increasing the strength of the enzymatic
(Y ) feedback on the resource (X) (i.e. by increasing Sf ),
we have an amplification of the cross-correlation function,
and the opposite happens if we decrease Sf , see Fig. 5 and
Table II: that means the feedback of Y on X production
rate enhances the correlation between the expression of the
metabolic enzyme and cellular growth rate. Instead, with
respect to the feedforward of X accumulation on the enzyme
production rate, an increase on the feedforward strength Sφ
weakens the cross-correlation function (and vice versa when
Sφ decreases): in summary, the feedback of Y on X and
the feedforward of X on Y provide opposite effects on the
cross-correlation function.

VI. CONCLUSIONS

This work investigates a simple model of interplay among
growth rate, metabolism and resource allocation, in pres-
ence of noise affecting the enzymatic activity. Approximate
moment computations and cross-correlation functions based
on a Stochastic Hybrid System framework are validated
via approximate stochastic simulations, in order to evaluate
how noise propagates in the metabolic pathway. Consistently
with recent experiments, the hypothesis that fluctuations in
the enzyme production perturb cellular growth (and not
viceversa), are corroborated because of an apparent delay
appearing in the cross-correlation function. Future work will
be devoted to investigate the impact of a second source of
noise, allowing parameter kX in X production rate to be
stochastic.
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