
Optimal linear filter for a class of nonlinear stochastic differential
systems with discrete measurements

F. Cacace, V. Cusimano, A. Germani, P. Palumbo, and M. Papi

Abstract— Continuous-discrete models refer to systems de-
scribed by continuous ordinary or stochastic differential equa-
tions, with measurements acquired at discrete sampling in-
stants. Here we investigate the state estimation problem in
the stochastic framework, for a class of nonlinear systems
characterized by a linear drift and a generic nonlinear diffusion
term. Motivation stems from a large variety of applications,
ranging from systems biology to finance. By using a Carleman
linearization approach we show how the original system can
be embedded into an infinite dimensional bilinear system, for
which it is possible to write the equations of the optimal
linear filter, in case of measurements provided by linear state
transformations. A finite dimensional approximation of the
optimal linear filter is finally derived. Results are applied to
a case of interest in financial applications.

I. INTRODUCTION

This work investigates the state estimation problem for
continuous differential systems endowed with discrete sam-
pled measurements, a filtering framework easy to find in
tracking [34], finance [29] and systems biology [13], that is
receiving growing attention in recent years [17], [24], [28].
Different approaches can be found in the literature, including
adaptations of the Extended Kalman Filter (EKF), like the
continuous-discrete extended Kalman filter [21], [26], un-
scented Kalman filter, [31], and cubature Kalman filter, [2].
When exploiting the EKF, the main difficulty is the evolution
of the moments, specifically the expectation of the state
and the error covariance, across the discretization interval.
For this reason, many techniques have been proposed to
overcome this problem in the context of both the extended
and unscented Kalman filters [17], [24], [28], [33] and a
comparison can be found, for example, in [17].

On the other hand, one can search for the filter solution
by properly exploiting the conditional expectation. However,
this approach requires the solution of the Kolmogorov for-
ward equation, which is not provided analytically except for
very special cases; instead, different numerical methods have
been proposed to this aim, including finite-difference method
[22], finite elements [16], quadrature-based methods [35],
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Galerkin’s method [3], [20], particle methods [6], [9], [30]
and Markov chain Monte Carlo methods [4]. Unfortunately,
the computational complexity of solving the Kolmogorov
equation increases exponentially with the dimension of the
state vector, thus preventing an effective real-time implemen-
tation even for systems of moderate size.

In this note, the stochastic differential system under inves-
tigation is described by a linear drift and a generic nonlinear
diffusion term, with sampled measurements provided by a
linear output transformation, and affected by an additive
Gaussian noise. To address the filtering issue, we embed the
nonlinear finite-dimensional system into a bilinear infinite-
dimensional system for which the optimal linear filter is
achieved. To this end the Carleman embedding technique
for stochastic systems is exploited: the idea of transforming
a nonlinear system in a bilinear one (with respect to the
deterministic input) has been pursued, among others, in [25],
[27]. A central point of the proposed algorithm involves the
computation of the moment equations, a problem studied in
[32], whilst the use of the Carleman embedding (related to
different frameworks) can be found both for stochastic [19],
[18], [8] and deterministic systems [1], [7], [23].

A finite-dimensional implementation of the infinite-
dimensional optimal linear filter is as well provided by
the truncation of the higher order terms in the Carleman
expansion.

The paper is organized as follows. In Section II we
introduce the Carleman embedding for the class of stochastic
nonlinear systems under investigation. The resulting optimal
linear filter is developed in Section III, with the finite-
dimensional approximation detailed in subsection III-A. Sec-
tion IV discusses an application in the mathematical finance
field.

Notation. Throughout the paper we use boldface notation
to denote infinite-dimensional vectors and matrices. For any
two matrices A,B of any dimension, A ⊗ B denotes the
Kronecker product between A and B, and A[n] is the n-th
order Kronecker power of A, recursively defined by A[n] =
A⊗A[n−1] and A[0] = 1. The stack operator of a matrix A is
the vector that piles up all its entries and is denoted by st(A).
The inverse operation is denoted by st−1

r,c and transform a
vector of r · c entries into an r × c matrix.

II. CARLEMAN EMBEDDING

Consider the following nonlinear stochastic differential
system in the Itô formulation endowed with a linear discrete-



time measurement equation

dxt = Axtdt+ utdt+

p∑
l=1

gl(xt)dW
l
t , t ≥ 0 (1)

Yk = Ckxk∆ + γk +DkNk, k ∈ N (2)

defined on a filtered probability space (Ω, {Ft}, P ), where
xt ∈ Rn is the state vector, {Wt, t ≥ 0} is an Ft-
adapted Rp-valued standard Wiener process, Yk ∈ Rq are
the sampled measurements, acquired at sampling interval
∆, ut ∈ Rn and γk ∈ Rq are known deterministic biases
and {Nk ∈ Rq, k ∈ N} is a sequence of zero-mean in-
dependent gaussian vectors, with identity covariance matrix,
independent of Wt. gl : Rn → Rn are Lipschitz continuous
analytic maps, and A,Ck, Dk are matrices in Rn×n, Rq×n,
Rq×q , respectively. The initial state x0 is a random variable
independent of the state noise Wt, with finite moments of
any order. In order to avoid singular filtering problems, see
[5], we use the standard assumption that rank(DkD

T
k ) = q.

These assumptions ensure that the solution to (1) is unique
and exists for all t ≥ 0.

Denoting Xk = xk∆, the exact discretization applied to
(1) is described by the equation:

Xk+1 = eA∆Xk + Uk + Zk, k ∈ N, (3)

with

Uk =

∫ (k+1)∆

k∆

eA((k+1)∆−τ)uτdτ, (4)

Zk =

p∑
l=1

∫ (k+1)∆

k∆

eA((k+1)∆−τ)gl(xτ )dW l
τ . (5)

The noise affecting the discretized system (3) {Zk, k ∈
N} is a white sequence of zero-mean random vectors, whose
covariance (denoted in the following by ΨZ,k) computation
requires the knowledge of the probability density function for
xt, t ∈ Ik = [k∆, (k+1)∆]. This lack of knowledge prevents
the straightforward application of the optimal linear filter
equations to (3)-(5) endowed with the output linear equation
(2). Such information is recovered by the knowledge of
the moments of xt by exploiting a problem reformulation
in an infinite-dimensional setting: this task is achieved by
means of the Carleman embedding, which suitably exploits
the Taylor expansion of the nonlinear functions gl(xτ ) in
the neighborhood of the actual estimate X̂k. To this end,
consider the displacement

εk,t = xt − X̂k, t ∈ Ik. (6)

and the infinite-dimensional vector Θk,t composed by the
aggregate of the Kronecker powers of the displacement εk,t,
namely Θi

k,t = ε
[i]
k,t ∈ Rni , i = 1, 2, . . . (see the Appendix of

[10] for an exhaustive description of the Kronecker product
and of its main properties). According to a little abuse of
notation, when t = k∆ or t = (k + 1)∆ then Θk,k∆ and
Θk,(k+1)∆ will be denoted by Θk,k and Θk,k+1 for short.

Since dεk,t = dxt, by properly exploiting the Taylor
expansion of gl(xt) around X̂k, we get

dΘ1
k,t = (AΘ1

k,t+AX̂k +ut)dt+

p∑
l=0

∞∑
j=0

Glj(X̂k)Θj
k,tdW

l
t ,

(7)
where Glj(X̂k) stand for the Taylor expansion coefficients,
see e.g. [19] for the details. Higher order differentials of the
type dΘi

k,t are computed by properly exploiting Theorem 5.2
in [11], so that by using the expression of first and second
order differentials of the Kronecker powers, [19], and the
properties of Kronecker product in [8], we obtain that Θk,t is
the solution for t ∈ Ik of the following infinite-dimensional
bilinear stochastic system (linear drift and multiplicative
noise)

dΘk,t = Ak,tΘk,tdt+ Lk,tdt+

p∑
l=1

(
Bl
kΘk,t + Flk

)
dW l

t ,

(8)
with initial condition

Θk,k =

 Xk − X̂k

(Xk − X̂k)[2]

...

 , (9)

where the infinite-dimensional matrices Ak,t, Lk,t, Bl
k, Flk

(the index k recalls that they depend on X̂k), have the
structure reported in Appendix.

Notice that the knowledge of the conditional expectation
E[Θk,t|Fk∆], t ∈ Ik is equivalent to the knowledge of the
conditional moments of any order of εk,t and, hence, to the
conditional probability distribution of xt.

Let us denote these moments with Θ
i

k,t = E[Θi
k,t|X̂k].

From (8), we have that the vector Θk,t (assembled by
properly aggregating the blocks Θ

i

k,t i = 1, 2, . . .) obeys
the following infinite-dimensional linear equation,

Θ̇k,t =Ak,tΘk,t + Lk,t, t ∈ Ik, (10)

Θk,k =E[Θk,k|X̂k], (11)

It will be shown in the next Section that the integration
of (10)-(11) is instrumental for the computation of the
covariance matrix ΨZ,k related to Zk in (5).

III. THE OPTIMAL LINEAR FILTER

The optimal linear filter refers to the discrete system
(3), (2) with the initial estimate X̂0 = E[X0] and condi-
tional error covariance matrix P (0) = E[(X0 − X̂0)(X0 −
X̂0)T |X̂0] = ΨX0

, where ΨX0
is the covariance matrix of

the initial state X0. E[X0] and ΨX0 are supposed to be
known.

Because of the linear drift, the state prediction is:

X̂k+1|k = eA∆X̂k + Uk, (12)

with the prediction error covariance matrix P (k + 1|k)

P (k + 1|k) = eA∆P (k)eA
T∆ + ΨZ,k. (13)



The computation of ΨZ,k will be later addressed. The
Kalman gain K(k + 1) and the updated estimation error
covariance P (k + 1) are:

K(k + 1) =P (k + 1|k)CTk+1(
Ck+1P (k + 1|k)CTk+1 +Dk+1D

T
k+1

)−1
,
(14)

P (k + 1) =Ξk+1P (k + 1|k), Ξk = In −K(k)Ck
(15)

with the updated estimate X̂k+1,

X̂k+1 = X̂k+1|k+K(k+1)
(
Yk+1 − Ck+1X̂k+1|k − γk+1

)
.

(16)
The Kalman filter (12)–(16) is actually infinite-

dimensional, since the computation of ΨZ,k requires
all the moments of the error Θ1

k,k = xk∆− X̂k. To this end,
we need to propagate Θk,k to Θk+1,k+1. For these reasons it
is essential to prove that all the moments can be computed,
though according to a possibly infinite dimensional
procedure. We prove this property constructively through a
sequence of steps.

Step 1. Computation of Θk,k+1: It is obtained by
integrating (10) in Ik with initial condition (11).

Step 2. Computation of the moments of Zk: Denote
ζik = E

[
Z

[i]
k |X̂k

]
∈ Rni and compute Xk+1 from (6)

Xk+1 = X̂k + ΠnΘk,k+1 = X̂k + Θ1
k,k+1, (17)

where Πn denotes the projector onto Rn. Consequently,

E[X
[i]
k+1|X̂k] =

i∑
j=0

M i
j

(
X̂

[j]
k ⊗Θ

i−j
k,k+1

)
(18)

where M i
j , j = 1, . . . , i − 1 are the coefficients for the

binomial expansion of an i-th order Kronecker power (see
e.g. [10]). On the other hand, from (3) and the fact that Xk

and Zk are independent random vectors it follows

E[X
[i]
k+1|X̂k] =ζik +

∑
j1+j2+j3=i, j3<i

M i
j1,j2,j3

·
((

(eA∆)[j1]E[X
[j1]
k |X̂k]

)
⊗ U [j2]

k ⊗ ζj3k
)

(19)

where M i
j1,j2,j3

are the coefficients for the trinomial expan-
sion of an i-th order Kronecker power (see e.g. [10]) and
E[X

[j1]
k |X̂k] can be computed from (6) at t = k∆ as

E
[
X

[j1]
k |X̂k

]
=

j1∑
l=0

M j1
l

(
X̂

[l]
k ⊗Θ

j1−l
k,k

)
. (20)

Therefore, by comparing (18) to (19) we obtain the i-th
order moment of Zk, i.e. ζik, as a function of its lower order
moments ζj3k , j3 < i.

Step 3. Computation of ΨZ,k: ΨZ,k can be computed
from ζ2

k by exploiting the column stack property of the
Kronecker product (see [10] for the definition of the stack
operator and of its inverse):

ΨZ,k = st−1
n,n(ζ2

k). (21)

According to the previous Step 2, this computation requires
the final-time solution (first n+n2 components) of (10)-(11).
That is, by denoting with Π2

n the projector onto Rn+n2

we
obtain from (10)Θ

1

k,k+1

Θ
2

k,k+1

 =Π2
nΦ((k + 1)∆, k∆)Θk,k

+

∫ (k+1)∆

k∆

Π2
nΦ((k + 1)∆, τ)Lk,τdτ, (22)

where Φ(t, τ) is the semigroup generated by Ak,t. In case
of piecewise constant inputs ut = uk, ∀t ∈ Ik, then we
can denote Ak = Ak,t and Lk = Lk,t, ∀t ∈ Ik, and (22)
simplifies intoΘ

1

k,k+1

Θ
2

k,k+1

=Π2
ne

Ak∆Θk,k+

∫ (k+1)∆

k∆

Π2
ne

Ak((k+1)∆−τ)dτLk

=

∞∑
i=0

Π2
nAi

kΘk,k
∆i

i!
+

∞∑
i=1

Π2
nAi−1

k Lk
∆i

i!

(23)

The two sums in (23) can computed according to a different
level of accuracy. Indeed, each term of the first sum is made
of infinite sums itself, whilst the terms of the second sum
are made each of finite sums: this is because of the sparsity
of the infinite-dimensional matrix Lk (see also [8]).

Step 4. Computation of Θk+1,k+1: In order to have
a recursively computable estimate we need Θk,k to be
available at each step. This can be achieved by expressing
Θk+1,k+1, that is, all the moments of the estimation error of
the updated estimate, as a function of Θk,k, the moments ζik
of Zk and the measurement noise. To this end we represent
the estimation error as

Θ1
k+1,k+1 = Ξk+1e

A∆Θ1
k,k + Ξk+1Zk

−K(k + 1)Ck+1Dk+1Nk+1, (24)

therefore

Θ
i

k+1,k+1 =
∑

m1+m2+m3=i

(−1)m3M i
m1,m2,m3

·
((

(Ξk+1e
A∆)[m1]Θ

m1

k,k

)
⊗
(
Ξ

[m2]
k+1 ζ

m2

k

)
⊗
(
(K(k + 1)Ck+1Dk+1)[m3]E[N

[m3]
k+1 ]

))
, (25)

Eq. (25) benefits of the fact that random variables Θ1
k,k, Zk

and Nk+1 are mutually independent.



A. Optimal linear filter: finite-dimensional approximation

Here we provide the ν-degree finite-dimensional approx-
imation of the optimal linear filter, required for the com-
putation of Θ

1

k,k+1 and Θ
2

k,k+1 in (22). Define the finite-
dimensional vector Θ

ν

k,t =
[
Θ
ν,1T

k,t · · · Θ
ν,ν T

k,t

]T
, such that:

Θ̇
ν

k,t = Aν
k,tΘ

ν

k,t + Lνk,t, t ∈ Ik, (26)

with initial condition Θ
ν

k,k inherited from the previous step
of the filtering algorithm. Finite-dimensional matrices Aν

k,t,
Lνk,t are easily obtained from (40)-(41) by properly neglect-
ing the blocks (Ak,t)ij and (Lk,t)i with i, j > ν. Hence, the
implementable (approximate) version of the optimal linear
filtering algorithm is below resumed:

0) The initialization requires the moments of the initial
states up to degree ν to compute X̂ν,0 = E[x0],
P ν(0) = Cov(x0) and Θν,i

0,0 = E[(x0 − X̂ν,0)[i]],
i = 1, . . . , ν.
Given X̂ν,k, P ν(k) and Θ

ν

k,k at time t = k∆:
1) Compute the state prediction X̂ν,k+1|k by means of

X̂ν,k+1|k = eA∆X̂ν,k + Uk. (27)

2) Compute Θ
ν

k,k+1 as the final-value (t = (k + 1)∆)
solution of (26).

3) Compute Ψ̂ν
Z,k = st−1

n,n

(
ζν,2k

)
, with ζν,2k achieved by

properly exploiting the first n + n2 components of
Θ
ν

k,k+1

4) Compute P ν(k + 1|k) from

P ν(k + 1|k) = eA∆P ν(k)eA
T∆ + Ψ̂ν

Z,k (28)

5) Compute the gain matrix Kν(k + 1) from

Kν(k + 1) =P ν(k + 1|k)CTk+1

·
(
Ck+1P

ν(k + 1|k)CTk+1 +Dk+1D
T
k+1

)−1
(29)

6) Update the state estimate X̂ν,k+1 from

X̂ν,k+1 =X̂ν,k+1|k +Kν(k + 1)

·
(
Yk+1 − Ck+1X̂ν,k+1|k − γk+1

)
(30)

7) Update the error covariance matrix P ν(k + 1) from

P ν(k + 1) = Ξν,k+1P
ν(k + 1|k), (31)

with Ξν,k = In −Kν(k)Ck

8) Iteratively compute ζν,ik , i = 3, . . . , ν by properly
exploiting all the components of Θ

ν

k,k+1.
9) Update the Θ

ν,i

k+1,k+1, i = 1, . . . , ν:

IV. MATHEMATICAL FINANCE APPLICATION

To demonstrate the good performances of the proposed
algorithm, we decided to focus our attention on a classical
problem in the mathematical finance described by the fol-
lowing stochastic differential system

dXt = (V −KXt)dt+ g(Xt)dWt, (32)

where the state vector Xt = [rt, λt]
T ∈ R2 represents the

short-rate process r and the intensity of default process λ
with

V =

[
krθr
kλθλ

]
, K =

[
kr 0
0 kλ

]
, (33)

g(X) =

[
cr
√
X1 0

0 cλ
√
X2

]
, (34)

where kr, kλ, θr, θλ, cr and cλ are positive parameters and
WT
t = [W r

t W
λ
t ] is a two-dimensional Brownian motion.

The goal is to estimate Xt by using the observed zero
rates Yt ∈ R associated to a zero-coupon bond price with
respect to the date maturity T :

Yt = Ft +HtXt +Nt, t = k∆, k = 1, . . . ,M
(35)

with

Ft = −
(

log[Ar] + log[Aλ]

(T − t)

)
, (36)

(Ht)1 =
Br

(T − t)
, (Ht)2 =

Bλ
(T − t)

, (37)

and

Ah =
[

2γe(kh+γh)(T−t)/2

(kh+γh)(eγh(T−t)−1)+2γh

]2khθh/c2h
Bh =

2(eγh(T−t)−1)
(kh+γh)(eγh(T−t)−1)+2γh

(38)

where γh =
√
k2
h + 2c2h, h = r, λ (see [12], [14] for more

details). Note that if the measurement is acquired at very
distant times from the value of maturity, the informative
contribution is less than that in the case of nearest maturity.

Given a generic process h, the coefficients kh and θh are
the speed of adjustment and the long run mean of the process,
respectively, while ch

√
ht is the standard deviation factor.

When the process is close to zero, also the rate becomes
very small, and the drift factor becomes dominate for the
system evolution. Moreover if the Feller condition is satisfied
(2khθh ≥ c2 [15]), the process is strictly positive. In Table
1, the parameter values are reported.

TABLE I
MODEL PARAMETERS

kr kλ θr θλ cr cλ
0.50239 0.15 6 · 10−3 1 · 10−3 5 · 10−3 4 · 10−2

The resulting system (32)-(35) is a general formulation
of the problem of estimating continuous-time bond pricing
models from bond prices with correlated pricing errors.

To evaluate the performance of the algorithm, the sampling
interval ∆ varies form 0.2 to 1.2 with step of 0.2. For each
∆, a simulation final time tf = M ·∆, with M the number
of measurements samples, and a maturity T = α · tf , with
α = 4, 10, are defined.

Moreover, for each triplet (∆, tf , α), N random realiza-
tions were run and the performance was evaluated by using



the Mean Square Error (MSE):

MSE =
1

N

N∑
ν=1

1

M

M∑
k=1

√
||Xk − X̂k||2 (39)

where Xk and X̂k are the the real and estimated values at
time t = k∆, respectively.

The variance of the measurement noise is chosen equal
to 1 · 10−4 for α = 4 and equal to 1 · 10−6 for α = 10,
and the filtering algorithm has been tested with a Carleman
approximation order equal to ν = 4.

As an example, Figure 1 shows the evolution of the real
and estimated systems for a generic realization.

Fig. 1. Evolution of real system x and filter algorithms x̂

In Table 2 and Figure 2, the numerical results for different
values of ∆ and α are reported, with N = 100 and M = 150.

TABLE II
MSE FOR DIFFERENT ∆

∆
0.2 0.4 0.6 0.8 1.0 1.2

α
4 2.93 6.19 10.5 14.9 19.7 23.9

10−6
10 1.42 1.52 1.53 1.56 1.63 1.67

Fig. 2. ∆ vs MSE

In particular in Table 2 it can be noted that the algorithm
works better for smaller intervals, differently from the other
case where the performances are substantially constant (it can

be better appreciated in Figure 2). This is a consequence of
the maturity value more than the filter.

V. CONCLUDING REMARKS AND FUTURE WORK

In summary, in this paper we present an optimal linear
filter for Continuous-Discrete (CD) models. This task is
achieved by using a Carleman linearization approach through
which the original stochastic nonlinear system is embedded
into an infinite dimensional bilinear system, for which it is
possible to write the equations of the optimal linear filter.

The resulting algorithm has the features:

• to evaluate explicitly, in each sampling interval, the
higher order moments of the state evolution up to a
designed order. In this way , the obtained representation
is more precise than under Gaussian approximations;

• to return a system with a linear structure which allows
to use a standard Kalman Filter and the relative imple-
mentation advantages;

• that the order of the truncated system is a design
parameter that allows a simple trade-off between com-
putational burden and precision. This makes the method
well suited when the sampling interval is not negligible.

Future research will involve the study of the existence
of the solution for the moment equations in the Carleman
approach, i.e. the existence of the solution for the infinite-
dimensional system resulting from the linearization proce-
dure, associated to the original nonlinear finite-dimensional
one. This is a work in progress by the authors.

APPENDIX

The structure of the infinite-dimensional matrices in (8) is
the following.

Ak,t =


A 0

n×n2 0
n×n3 0

n×n4 · · ·
A2,1 +H2,1 A2,2 +H2,2 H2,3 H2,4 . . .

H3,1 A3,2 +H3,2 A3,3 +H3,3 H3,4 · · ·
0
n4×n H4,2 A4,3 +H4,3 A4,4 +H4,4 · · ·

0
n5×n 0

n5×n2 H5,3 A5,4 +H5,4 · · ·

.

.

.

.

.

.

.

.

.

.

.

.
. . .

 ,
(40)

Lk,t =


AX̂k + ut
H2,0

0n3×1

...

 , Bl
k =


Gl1 Gl2 · · ·
Gl2,1 Gl2,2 · · ·

0
n3×n Gl3,2 · · ·

0
n4×n 0

n4×n2

. . .

.

.

.

.

.

.
. . .

 , (41)

Flk =


Gl0

0n2×1

0n3×1

...

 . (42)

The building blocks (Ak,t)ij , (B
l
k)ij ∈ Rni×nj ,



(Lk,t)i, (F
l
k)i ∈ Rni×1, i, l = 1, 2, . . . are defined as

(Ak,t)ij =


A, if i = 1, j = 1,

Hi,i−2(X̂k), if j = i− 2,

Ai,j(X̂k) +Hi,j(X̂k) if i > 1, j > i− 2

0ni×nj , otherwise
(43)

(Lk,t)i =


AX̂k + ut, if i = 1

H2,0(X̂k), if i = 2

0ni×1, otherwise

(44)

(Bl
k)i,l =

{
G
j

i,l(X̂k), if l ≥ i− 1

0ni×nl , otherwise
(45)

(Flk)i =

{
Gj0(X̂k), i = 1

0ni×1, otherwise,
(46)

and

Hi,j(X̂k) =
1

2
Oin

(
p∑
l=1

H l
j−i+2(X̂k)⊗ Ini−2

)
,

j ≥ i− 2 (47)

H l
h(X̂k) =

h∑
r=0

Glr(X̂k)⊗Glh−r(X̂k) (48)

Ai,i−1(X̂k) =U in

(
(AX̂k + ut)⊗ Ini−1

)
, (49)

Ai,i(X̂k) =U in (A⊗ Ini−1) , (50)

Ai,j(X̂k) =0ni×nj ,

j > i (51)

G
l

i,j(X̂k) =U in

(
Glj−i+1(X̂k)⊗ Ini−1

)
, j ≥ i− 1

(52)

with matrices Oin and U in defined in [19].
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