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We introduce TEOBiResumS SM, an improved version of the effective-one-body (EOB) waveform
model TEOBResumS for spin-aligned, coalescing black hole binaries, that includes subdominant
gravitational waveform modes completed through merger and ringdown. Beyond the dominant
(`, |m|) = (2, 2) one, the more robust multipoles all over the parameter space are: (2, 1), (3, 3),
(3, 2), (4, 4) and (5, 5). Modes as (3, 1), (4, 3) and (4, 2) can also be generated, but are less robust.
The multipolar ringdown EOB waveform stems from suitably fitting many numerical relativity
(NR) waveform data from the Simulating eXtreme Spacetimes (SXS) collaboration together with
test-mass waveform data. Mode-mixing effects are not incorporated. The orbital (nonspinning) part
of the multipolar waveform amplitudes includes test-mass results up to (relative) 6PN order and,
for most modes, is Padé resummed. The m=odd waveform multipoles (up to ` = 5) incorporate
most of the currently available spin-dependent analytical information. Each multipolar amplitude is
additionally orbital-factorized and resummed. Improving on previous work, we confirm that certain
m = odd modes, e.g. the (2, 1), and even the (3, 1), may develop a zero (or a minimum) in the
amplitude for nearly equal-mass binaries and for several combinations of the individual spins. A
remarkable EOB/NR agreement around such zero is found for these modes. The new waveform,
and radiation reaction, prompts a new NR-calibration of the spinning sector of the model, done
with only 32 datasets. The maximum (2, 2) EOB/NR unfaithfulness with Advanced LIGO noise
against the SXS catalog (∼ 473 datasets) is always below 0.5% for binaries with total mass M as
20M� ≤ M ≤ 200M�, except for a single outlier with max (F̄ ) ∼ 0.7%. When (2, 1), (3, 3) and
(4, 4) modes are included, one finds an excellent EOB/NR agreement up to M ∼ 120M�, above
which the performance degrades slightly and moves above 3% We also point out that the EOB
dynamics may develop unphysical features for large, anti-aligned, spins and this may impact the
correct construction of the (2, 1) mode in some corners of the parameter space.

I. INTRODUCTION

The recent observation made by LIGO [1] and Virgo [2]
of gravitational wave (GW) signals from twelve coa-
lescing compact binaries marked the beginning of the
era of gravitational wave astronomy. Of these detec-
tions, ten were associated to coalescing binary black
holes (BBHs) [3–8] and two to a binary neutron star
(BNS) [9, 10].

Up to recent times, gravitational waveform models
used on LIGO and Virgo data only incorporated the
dominant (` = 2,m = 2) mode. This may be sufficient
when the binary system is highly symmetric (e.g nearly
equal masses and nearly equal spins), but for binaries
when one object is more massive than the other, or when
the spins are very different, modeling the subdominant
multipoles becomes an absolute necessity to avoid poten-
tial biases in the parameters [11, 12]. Similarly, at large
inclinations, the modeling of gravitational wave modes
beyond the dominant mode becomes increasingly impor-
tant as higher modes are geometrically suppressed in the
face-on/off limit. For this reason, there were recent ef-

forts in building waveform models that incorporate the
subdominant modes. This was the case for phenomeno-
logical models, both in the spinning [13] or nonspinning
case [14], or for effective-one-body (EOB) models [15] for
spin aligned black hole binaries. In addition, Ref. [16]
took advantage of a huge number of high-quality numer-
ical relativity simulations from the SXS collaboration to
construct a numerical relativity (NR) surrogate model
with as many modes as possible (also including the m = 0
ones).

Within the effective-one-body framework [17–21] for
coalescing black-hole binaries, the SEOBNRv4HM model in-
troduced in Ref. [15] is the higher-mode version of the
SEOBNRv4 [22] spin-aligned model, calibrated to NR sim-
ulations, while SEOBNRv4HMP is its precessing version [23]
and represents current state of the art. Alternatively to
SEOBNRv4, a different spin-aligned EOB model, informed
by NR simulations, is TEOBResumS. This model was intro-
duced in [24], and used to independently infer the param-
eters of GW150914 [3]. Although this waveform model
is limited to the ` = m = 2 dominant mode, is publicly
available either as a stand-alone C code based on the
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GSL library or through the LIGO LALSuite [25] library.
One of the advantages of this model is that it imple-
ments the description of the inspiral dynamics based on
the (high-order) post-adiabatic (PA) approximation [26–
28]. This allows one to generate long-inspiral waveforms
so efficiently to be of direct use for parameter estimation
purposes (see also Ref. [29] where the same approach is
applied to the SEOBNRv4 Hamiltonian).

Recently, in a companion paper [30], hereafter Pa-
per I, the nonspinning sector of TEOBResumS, was aug-
mented with all subdominant waveform modes, com-
pleted through merger and ringdown, up to ` = m = 5 in-
cluded. This defined the TEOBiResumMultipoles model.
In doing so, the EOB orbital interaction potential was im-
proved thanks to a more stringent comparison with state-
of-the-art NR simulations with small uncertainties. This
led us to construct a multipolar model with EOB/NR
unfaithfulness at most of the order of 2% (and typically
well below 1%) for total mass up to 200M� and mass ra-
tio in the range 1 ≤ q ≤ 10. It was also possible to verify
that the model performs excellently up to q = 18, that
is the NR dataset with the largest mass ratio currently
available to us.

The purpose of the present work is to generalize the
results of Paper I to the case of spin-aligned black-hole
binaries. To improve the robustness of the multipolar
waveform amplitudes towards merger, we build upon
Refs. [31, 32], implementing the corresponding orbital
factorization and resummation paradigm, though lim-
ited to the m =odd waveform modes. Together with
the changes in the nonspinning part of the dynamics dis-
cussed in Paper I, this led us to a new determination of
the next-to-next-to-next-to-leading (NNNLO) spin-orbit
effective parameter c3 introduced long ago [33, 34]. The
construction of the multipolar waveform around the am-
plitude peak of each multipole (e.g. around merger),
of the next-to-quasi-circular (NQC) corrections and of
the postpeak-ringdown phase follows the procedure dis-
cussed, multipole by multipole, for the nonspinning case
in Paper I. The only difference is that some of the NR-
informed fits incorporate now a suitable spin-dependence.
Ther reader should be aware that this paper stems from
Refs. [24, 31, 33–37] and it is essentially the follow up of
Refs. [24, 30]. As such, it adopts the same notations and
conventions. For this reason, we shall assume the reader
to be familiar with the notation and language of those
papers, that might not be reintroduced if not absolutely
necessary.

The paper is organized as follows. In Sec. II we re-
view the elements of the EOB dynamics that remained
unchanged with respect to [24] and Paper I; we discuss
the structure of the new multipolar waveform and the
related new determination of c3. Section III probes the
(2, 2) mode all over the current release of the SXS cata-
log. Section IV focuses on the behavior of higher multi-
polar modes, highlighting several aspects related to their
accurate modelization. In particular, it is pointed out,
and explained, the peculiar behavior of some m = 1

modes. The important EOB/NR unfaithfulness compu-
tations with higher modes are also performed there. Our
concluding remarks are then collected in Sec. V. The
bulk of the text is complemented by several Appendixes.
Appendix A specifically discusses EOB/NR comparisons
with extremely long SXS waveforms; Appendix B sum-
marizes the SXS data used in this work, either to inform
the model or just to check it; and Appendix D reports
all the NR-informed fits that are needed to accurately
build the merger and ringdown part of the multipolar
waveform.

If not otherwise specified, we use natural units with
c = G = 1. Our notations are as follows: we denote
with (m1,m2) the individual masses, while the mass ra-
tio is q ≡ m1/m2 ≥ 1. The total mass and symmetric
mass ratio are then M ≡ m1 + m2 and ν = m1m2/M .
We also use the mass fractions X1,2 ≡ m1,2/M and

X12 ≡ X1 − X2 =
√

1− 4ν. We address with (S1, S2)
the individual, dimensionful, spin components along the
direction of the orbital angular momentum. The dimen-
sionless spin variables are denoted as χ1,2 ≡ S1,2/(m1,2)2.
We also use ã1,2 ≡ X1,2χ1,2, the effective spin ã0 =
ã1 − ã2 and ã12 ≡ ã1 − ã2.

II. THE MODEL: RELATIVE DYNAMICS AND
MULTIPOLAR WAVEFORM

In this Section we collect the analytical elements of
TEOBiResumS SM that change with respect to the original
implementation of TEOBResumS of [24] or that stems from
results of Paper I. The modifications regard all building
blocks of the model: the Hamiltonian, the inspiral, EOB-
resummed, waveform as well as the merger-ringdown
part. However, the structure of the Hamiltonian is pre-
cisely the same of TEOBResumS: there is thus no need to
describe it here in detail and we address the reader to
Sec. II of Ref. [24]. The modifications are limited to the
NR-informed effective 5PN coefficient ac6(ν) (that coin-
cides with the function determined in Paper I) as well as
the effective NNNLO spin-orbit parameter c3(ν, ã1, ã2).
This one needs to be redetermined, by phasing compari-
son with NR simulations, because of both the new ac6(ν),
that has changed with respect to Ref. [24], and the new
analytical choice for the factorized (and resummed) mul-
tipolar waveform taken from Ref. [32]. In addition, we
also present here a new, spin-dependent, description of
the multipolar merger and ringdown waveform, that is
based on fits informed by NR simulations. These fits
incorporate some, but not all, spin dependence for all
modes up to ` = m = 5, as we detail in Appendix D.
We start by discussing the structure of the resummed
waveform.
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TABLE I. Resummation choices used to build our multipolar EOB waveform. The bar denotes resummation using the inverse
Taylor expansion, as described by Eq. (5) of Ref. [31]. The PN-order should be intended relative to the leading-order term and
also indicates the order of the additional (spinning) test-particle terms. For example, 3.5PN means that we take a polynomial

of the form 1 + x3/2 + x2 + x5/2 + ...+ x7/2, with the known ν dependence in the coefficients. Instead, 1.5+1PN means that we
add to the ν-dependent 1.5PN-accurate polynomial an additional term proportional to x5/2 obtained by suitably incorporating
spinning p article terms as illustrated in Sec. VB of Ref. [32]. We denote Padé resummation by Pnd , where N = n + d is the
PN order.

(`,m) Resummation choices Relative PN order

orbital spin orbital spin

(2, 2) P 5
0 [ρorb

22 ] T [ρS
22] 3+2PN 3.5PN without NNLO SO term

(2, 1) P 5
1 [ρ21] f̂S

21 = X12f̂
S(0)

21 − 3

2
ã12x

1/2f̂
S(1)

21 3+3PN 2.5PN

(3, 3) P 4
2 [ρ33] f̂S

33 = X12f̂
S(0)

33 +

(
−1

4
+

5

2
ν

)
ã12x

3/2f̂
S(1)

33 3+3PN 2.5PN

(3, 2) P 4
2 [ρ32] T [ρS

32] 2+2PN 1.5+1PN (SO only)

(3, 1) P 3
2 [ρorb

31 ] f̂S
31 = X12f̂

S(0)

31 +

(
−9

4
+

13

2
ν

)
ã12x

3/2f̂
S(1)

31 3+2PN 2.5PN

(4, 4) P 6
0 [ρorb

44 ] T [ρS
44] 2+4PN 1.5+2PN (SO only)

(4, 3) P 4
2 [ρorb

43 ] f̂S
43 = X12f̂

S(0)

43 − 5

4
ã12x

1/2 1+5PN 0.5PN (SO only)

(4, 2) P 6
0 [ρorb

42 ] T [ρS
42] 2+4PN 1.5+3PN (SO only)

(4, 1) P 4
2 [ρorb

41 ] f̂S
41 = X12f̂

S(0)

41 − 5

4
ã12x

1/2 1+5PN 0.5PN (SO only)

(5, 5) P 6
0 [ρorb

55 ] f̂S
55 = X12f̂

S(0)

55 + 10ν
(1− 3ν)

3− 6ν
ã12x

3/2 1+5PN 2PN

A. Inspiral multipolar waveform

The waveform amplitudes we use here incorporate sev-
eral factorization and resummation procedures that have
been discussed in previous literature [31, 32, 38, 39]. One
should be warned that there are not ubiquitous recipes
for what concerns the choice of resummation and/or the
multipolar order to use: each multipolar amplitude can,
in principle, be treated separately from the others. In
practice, following Paper I, we attempt to comply at the
idea of using 6PN-accurate hybrid orbital (i.e. nonspin-
ning) amplitudes that are, whenever possible, resummed
using Padé approximants. By “hybrid” we mean that the
ν-dependent terms, analytically known up to 3PN accu-
racy, are augmented by test-particle terms up to getting
a relative 6PN order in all the residual waveform am-
plitudes. The spin sector takes advantage of some of,
but not all, the new PN information at next-to-next-
to-leading-order (NNLO) that was recently presented in
Ref. [15] adapting (yet unpublished) results of S. Marsat
and A. Bohé. Practically all the structure of the wave-
form was discussed in Sec. IIIB, IIIC and IIID and of

Paper I. Since we are adopting the same notation and
nomenclature introduced there, it is not worth to repeat
it here. We only recall that the acronym NQC stands for
“next-to-quasi-circular” and that f`m’s or ρ`m ≡ (f`m)1/`

functions are the residual waveform amplitudes. For
resumming the m = odd mode waveform amplitudes
we implement the orbital-factorization and resummation
scheme of Ref. [32]. In brief, following the notation of this
latter reference, our analytical choices for the waveform
amplitudes are listed in Table I. We give below more
details, discussing explicitly, and separately, the orbital
and spin sectors.

1. Orbital sector

All ν-dependent terms in the multipolar amplitudes
up to ` = 6 are augmented with test-particle terms up
to relative (hybrid) order 6PN except for the (2, 2) and
(3, 1) modes, that rely on 3+2 PN information, consis-
tently with previous work. For most of the modes, such
6PN-accurate, hybridized, amplitudes are additionally
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Padé resummed consistently with the choice made in the
extreme-mass-ratio limit in Ref. [32]. Note however that
some multipoles actually behave better (when compared
with test-mass numerical data) when they are left in non-
resummed form. Table I lists, in the second column, the
analytical representation chosen for the orbital factors
up to ` = m = 5. We address the Padé approximant of
order (n, d) with the usual notation Pnd , where n is the
polynomial order of the numerator and d the one of the
denominator. For notational consistency, we also indi-
cate with Pn0 the Taylor-expanded form of the functions.
The subdominant modes that do not contain spin infor-
mation are not reported in the table. The (5, 1), (6, 1),
` = 7 and ` = 8 modes are kept in Taylor-expanded form
at (global) 3+2 PN order for simplicity, consistently with
previous work. All other ρorb

`m ’s with ` = 5 and ` = 6 are
resummed as P 4

2

(
ρorb
`m

)
approximants.

2. Spin sector

The spin-dependent terms in the waveform ampli-
tudes are incorporated only in those multipoles where
the ν-dependence beyond the leading order is analyti-
cally known, i.e. up to ` = m = 5, as illustrated in Ta-
ble I. For some modes, the ν-dependent information is
augmented with spinning-particle terms, according to the
hybridization procedure discussed in Ref. [32]. Note that
the analytical resummation of the residual waveform am-
plitudes to improve their robustness in the strong-field,
fast-velocity regime when m = even is not the same as
when m = odd. For the m = even modes, the residual
amplitudes are written as

Pnd
[
ρorb
`m

]
+ ρS

`m, (1)

where we explicitly indicate the fact that the orbital part
is Padé resummed (including in this nomenclature also
the plain Taylor-expansion) according to Table I. By con-
trast, the spin-dependent part is kept in Taylor-expanded
form, with the (relative) PN order given in Table I. Here,
the notation T [ρS

`m] is an explicit reminder that we are
using the ρS

`m in Taylor-expanded form. The amount of
analytical information used in each mode is listed in the
fifth column of the table. First of all, note that we do
not include the NNLO spin-orbit term in ρS

22 that was
recently computed and is part of either SEOBNRv4 [22]
and SEOBNRv4HM [15]. As it was pointed out already in
Ref. [31], this term has a large impact on the EOB wave-
form towards merger for large, positive, spins, so that the
EOB/NR difference is larger with this term than with-
out it (see Fig. 6 of [31]). By contrast, the NLO-accurate
amplitude alone already delivers an excellent representa-
tion of the corresponding NR amplitude and thus gives
a more robust starting point for the action of the NQC
factor. We do, however, include the LO cubic-in-spin
term in ρS

22. Browsing the fifth column of Table I the
notation adopted indicates that the ν-dependent terms

in (ρS
32, ρ

S
44, ρ

S
42) were hybridized with some of the higher-

order, spin-orbit, terms obtained in the limit of a spin-
ning particle on a Schwarzschild black hole in Ref. [40].
The rational behind such hybridization procedure is dis-
cussed in Sec. VB of Ref. [32] and allows one to incor-
porate some of the leading-in-ν-dependence by suitably
“dressing” the ν = 0 information. One finds that the
additional terms are such to increase the EOB/NR wave-
form ampltiude agreement towards merger in a natural
way. To be explicit, we have

ρS
32 = cSOlox1/2 + cSOnlo

32 x3/2 + cSOnnlo
32 x5/2, (2)

where (cSOlo , cSOnlo) are the usual known terms with the
full ν dependence (see e.g. [32] for their explicit form),
while

cSOnnlo
32 = −2571199

1924560
ã0 −

1844993

1924560
ã12X12, (3)

that reduces to the known spinning test-particle terms
when ν → 0. Similarly, ρS

44 reads

ρS
44 = cSOlo

44 x3/2 + cSOnlo
44 x5/2 + cSOnnlo

44 x7/2, (4)

where

cSOnlo
44 = −199

550
ã0 −

491

550
ã12X12, (5)

cSOnnlo
44 =

527001653

264264000
ã0 +

3208967

264264000
ã12X12, (6)

For ρS
42 we have

ρS
42 = cSOlo

42 x3/2 + cSOnlo
42 x5/2 + cSOnnlo

42 x7/2 + cSOnnnlo
42 x9/2,

(7)

where the ν-dressed spinning particle coefficients read

cSOnlo
42 = −219

550
ã0 +

92

275
ã12X12, (8)

cSOnnlo
42 = −329051729

264264000
ã0 +

169512229

264264000
ã12X12, (9)

cSOnnnlo
42 = −

(
32079746680643

16482145680000
+

17581

51975
eulerlog(x, 2)

)
ã0

−
(

28943192016227

16482145680000
− 10697

51975
eulerlog(x, 2)

)
ã12X12.

(10)

For the m = odd modes, we apply in full the factoriza-
tion of the orbital term and subsequent resummation of
the spin factor with its inverse Taylor representation as
illustrated in Ref. [32]. Recalling the notation therein,
each m-odd waveform mode is written as

h
(ε)
`m = h

N,(ε)′

`m h̃
(ε)
`m, (11)

where h
N,(ε)′

`m is the usual Newtonian prefactor [38] with
the overall factor X12 factorized out, while

h̃
(ε)
`m ≡ X12ĥ

(ε)
`m, (12)
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and ĥ
(ε)
`m is the usual relativistic correction [38]. The m-

odd relativistic waveform correction is then factorized as

h̃
(ε)
`m = Ŝ

(ε)
eff ĥ

tail
`m e

iδ`m
[
Pnd
(
ρorb
`m

)]`
f̂S
`m, (13)

where (ĥtail
`m , δ`m) are the usual, well known, tail factor

and residual phase correction [38]. The spin-dependent

f̂S
`m functions that we use are summarized in Table I.

The same table also lists the Padé approximants Pnd [ρorb
`m ]

adopted for the orbital factors. For the spin factors, we
take advantage of the new NNLO results of Ref. [15],
in particular those concerning the ` = m = 5 mode.
This multipole is also resummed consistently with the
others. In particular, it also includes the 2PN-accurate
(or relative LO) spin-square term. The inverse-resummed

factor f̂
S(0)

55 explicitly reads

f̂
S(0)

55 =

(
1 +

10

3
ã0x

3/2 − 5

2
ã2

0x
2

)−1

. (14)

The global structure of the spin factors is illustrated
in Table I and we do not discuss here any further as
it is a straightforward application of the procedure of
Ref. [32] once modified with the new PN terms published
in Ref. [15] and the spinning-particle terms of Ref. [40].

3. Residual phase corrections δ`m

Let us finally detail the expression of the δ`m we use.
Following Ref. [41], we mostly use them in Padé re-
summed form, augmenting, for some modes, the 3.5PN,
ν-dependent terms with the next, 4.5PN-accurate, con-
tribution in the test-particle limit [42]. In addition, we
only rely on nonspinning information, although spin-
dependent terms are available [15]. Explicitly, the ex-
pressions we use read

δ22 =
7

3
y

3
2

808920νπ
√
y + 137388π2y + 35ν2 (136080 + (154975− 1359276ν)y)

808920νπ
√
y + 137388π2y + 35ν2 (136080 + (154975 + 40404ν)y)

, (15)

δ21 =
2

3
y

3
2

5992π
√
y + 2465ν(28− 493νy)

69020ν + 5992π
√
y

, (16)

δ33 =
13

10
y

3
2

1 + 94770π
566279ν

√
y

1 + 94770π
566279ν

√
y + 80897

3159 νy
, (17)

δ32 =
10 + 33ν

15(1− 3ν)
y

3
2

1

1− 260(1−3ν)
7(10+33ν)πy

3
2 + 1

(10+33ν)2

(
91120

27 + 9112
9 ν − 100232

3 ν2 + 130000
147 π2 − 412880

49 νπ2 + 848640
49 ν2π2

)
y3
,

(18)

δ31 =
13

30
y

3
2

4641ν + 1690π
√
y

4641ν + 1690π
√
y + 18207ν2y

, (19)

δ44 =
112 + 219ν

120(1− 3ν)
y

3
2

1

1− 201088(1−3ν)
231(112+219ν)πy

3
2 − 1−3ν

(112+219ν)2

(
49409024

25 + 96612288
25 ν + 8854306816

17787 π2 − 49478908928
17787 νπ2

)
y3
,

(20)

δ43 =
486 + 4961ν

810(1− 2ν)
y

3
2

[
1− 254502(1− 2ν)

77(486 + 4961ν)
πy

3
2 +

1

(486 + 4961ν)2

(122106771

5
+

2004460533

10
ν+ (21)

− 2492887617

5
ν2 +

45723320316

5929
π2 − 415427177628

5929
νπ2 +

647961073992

5929
ν2π2

)
y3

]−1

,

δ42 =
7(1 + 6ν)

15(1− 3ν)
y

3
2

1

1− 6284(1−3ν)
1617(1+6ν)πy

3
2 + 1−3ν

(1+6ν)2

(
6893
175 + 41358

175 ν + 8646784
871563 π

2 − 22195088
290521 νπ2

)
y3
, (22)

δ41 =
2 + 507ν

10(1− 2ν)
y

3
2 +

1571

3465
π3y3, (23)

δ55 =
96875 + 857528ν

131250(1− 2ν)
y

3
2 , (24)
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where y = ĤEOBΩ, with ĤEOB and Ω being the energy
and orbital frequency of the binary system respectively.
For completeness, let us also list the original Taylor ex-
panded functions that are then resummed using the Padé
approximants explicitly written above.

δTaylor
22 =

7

3
y

3
2 − 24νy

5
2 +

428

105
πy3

+

(
30995

42
+

962

5
ν

)
ν

27
y

7
2 , (25)

δTaylor
21 =

2

3
y

3
2 − 493

42
νy

5
2 +

107

105
πy3, (26)

δTaylor
33 =

13

10
y

3
2 − 80897

2430
νy

5
2 +

39

7
πy3 , (27)

δTaylor
31 =

13

30
y

3
2 − 17

10
νy

5
2 +

13

21
πy3 , (28)

δTaylor
32 =

10 + 33ν

15(1− 3ν)
y

3
2 +

52

21
πy3

+

(
208

63
π2 − 9112

405

)
y9/2 , (29)

δTaylor
44 =

112 + 219ν

120 (1− 3ν)
y

3
2

+
25136

3465
πy3 +

(
201088

10395
π2 − 55144

375

)
y9/2, (30)

δTaylor
43 =

486 + 4961ν

810(1− 2ν)
y3/2 +

1571

385
πy3

+

(
−18611

300
+

3142

385
π2

)
y9/2, (31)

δTaylor
42 =

7(1 + 6ν)

15(1− 3ν)
y3/2 +

6284

3465
πy3

+

(
25136

10395
π2 − 6893

375

)
y9/2 . (32)

Comparing with Appendix D of Ref. [41], we are here
explicitly using 4.5PN terms in some of the higher modes,
since we found that they improve the EOB/NR frequency
agreement close to merger. In practice, after factorizing
the leading contribution following [41] , the approximants
we use for each mode are: δ22 → P 2

2 ; δ21 → P 2
1 ; δ33 →

P 1
2 ; δ32 → P 0

2 ; δ31 → P 1
2 ; δ44 → P 0

2 and δ43 → P 0
2 .

B. Multipolar peak, ringdown and
next-to-quasi-circular corrections

The modelization of the peak and postpeak waveform
multipole by multipole is done following precisely the
same procedure adopted in the nonspinning case, but in-
corporating spin dependence (whenever possible) in all
fits. As we detail in Appendix D, in practice we in-
clude: (i) complete spin-dependence for what concerns
peak quantities and postpeak fits in all ` = m modes
up to ` = 5; (ii) modes like (2, 1), (3, 2), (4, 3) and
(4, 2) include spin dependence for peak frequency and
amplitude, but they adopt the simpler nonspinning fits

for the parameters entering the postpeak waveform de-
scription; (iii) the (3, 1) and (4, 1) mode only rely on
nonspinning information. The values at the NQC deter-
mination points are either obtained with dedicated fits
of the corresponding NR quantities, or directly from the
postpeak behavior. All considered, this approach allows
one to obtain a rather robust description of the ringdown
waveform all over the parameter space.

C. NR-informed EOB functions: ac
6 and c3

Finally, we discuss the NR-informed functions that en-
ter the EOB dynamics. For ac6(ν), we use the function
determined in Paper I. Note that this was obtained using
the Padé resummed P 4

2 [ρorb
22 ] description of the residual

` = m = 2 waveform amplitude hybridized with test-
particle terms up to 6PN. For simplicity, we adopt it here
even if we are here using ρorb

22 at 3+2 PN accuracy. The
differences in the dynamics, at the nonspinning level, are
consistent with the NR uncertainty, so it is not worth to
proceed with a new, more consistent, determination of
this function. The expression adopted from Paper I is

ac6 = n0
1 + n1ν + n2ν

2 + n3ν
3

1 + d1ν
, (33)

where

n0 = 5.9951, (34)

n1 = −34.4844, (35)

n2 = −79.2997, (36)

n3 = 713.4451, (37)

d1 = −3.167. (38)

This, together with the new analytical description of the
spin-sector of the waveform (and radiation reaction) calls
for a new determination of c3. This is obtained pre-
cisely following Sec. IIB.2 of Ref. [24], i.e. by deter-
mining the good values of c3 such that the EOB/NR
dephasing is within the nominal NR phase uncertainty
at NR merger. This is done using 32 NR datasets, 30
from SXS and 2 from the BAM code. The configurations
used are listed in Table II, together with the value of
c3 that assures an EOB/NR phasing at merger that is
smaller than (or comparable with) the nominal numer-
ical uncertainty (see [24]. Note also that these values
are such to assure that the EOB frequency evolution to-
wards merger is correctly reproducing the corresponding
NR one. The data of Table II are fitted with a global
function as c3(ν, ã0, ã12) that is actually simplified with
respect to previous work. The fit template reads

c3(ã1, ã2, ν) = p0
1 + n1ã0 + n2ã

2
0 + n3ã

3
0 + n4ã

4
0

1 + d1ã0

+ p1ã0ν
√

1− 4ν + p2 (ã1 − ã2) ν2, (39)
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TABLE II. Binary configurations, first-guess values of c3 used
to inform the global interpolating fit given in Eq. (39), and
the corresponding cfit

3 values.

# ID (q, χ1, χ2) cfirst guess
3 cfit

3

1 SXS:BBH:0156 (1,−0.95,−0.95) 88 87.87

2 SXS:BBH:0159 (1,−0.90,−0.90) 85.5 85.54

3 SXS:BBH:0154 (1,−0.80,−0.80) 81 80.90

4 SXS:BBH:0215 (1,−0.60,−0.60) 71.5 71.72

5 SXS:BBH:0150 (1,+0.20,+0.20) 38.0 36.92

6 SXS:BBH:0228 (1,+0.60,+0.60) 22.0 21.94

7 SXS:BBH:0230 (1,+0.80,+0.80) 15.5 16.25

8 SXS:BBH:0153 (1,+0.85,+0.85) 14.5 15.25

9 SXS:BBH:0160 (1,+0.90,+0.90) 14.9 14.53

10 SXS:BBH:0157 (1,+0.95,+0.95) 14.3 14.20

11 SXS:BBH:0177 (1,+0.99,+0.99) 14.2 14.32

12 SXS:BBH:0004 (1,−0.50, 0) 54.5 56.61

13 SXS:BBH:0231 (1,+0.90, 0) 27.0 26.18

14 SXS:BBH:0232 (1,+0.90,+0.50) 19.0 18.38

15 SXS:BBH:0005 (1,+0.50, 0) 34.3 34.34

16 SXS:BBH:0016 (1.5,−0.50, 0) 57.0 58.19

17 SXS:BBH:0255 (2,+0.60, 0) 29.0 29.75

18 SXS:BBH:0256 (2,+0.60,+0.60) 22.8 23.68

19 SXS:BBH:0257 (2,+0.85,+0.85) 15.7 17.73

20 SXS:BBH:0036 (3,−0.50, 0) 60.0 60.39

21 SXS:BBH:0267 (3,−0.50,−0.50) 69.5 65.28

22 SXS:BBH:0174 (3,+0.50, 0) 30.0 31.20

23 SXS:BBH:0286 (3,+0.50,+0.50) 26.0 27.28

24 SXS:BBH:0291 (3,+0.60,+0.60) 23.4 24.22

25 SXS:BBH:0293 (3,+0.85,+0.85) 16.2 18.48

26 SXS:BBH:0060 (5,−0.50, 0) 62.0 61.91

27 SXS:BBH:0110 (5,+0.50, 0) 31.0 29.97

28 SXS:BBH:1375 (8,−0.90, 0) 64.0 78.27

29 SXS:BBH:0064 (8,−0.50, 0) 57.0 63.23

30 SXS:BBH:0065 (8,+0.50, 0) 28.5 28.86

31 BAM (8,+0.80, 0) 24.5 20.85

32 BAM (8,+0.85,+0.85) 16.3 18.11

where the parameters are

p0 = 45.235903, (40)

n1 = −1.688708, (41)

n2 = 0.787959, (42)

n3 = −0.018080, (43)

n4 = −0.001906, (44)

d1 = −0.751479, (45)

p1 = 47.3756, (46)

p2 = −36.1964. (47)

Figure 1 highlights that the span of the “best” (first-
guess) values of c3 is rather limited (especially for pos-
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FIG. 1. The first-guess c3 values of Table II versus the spin
variable ã0 ≡ S1/(m1M)+S2/(m2M). The unequal-spin and
unequal-mass points can be essentially seen as a correction to
the equal-mass, equal-spin values.

itively aligned spins) around the equal-mass, equal-spin
case. At a practical level, this eases up the fitting proce-
dure, that, following Ref. [24], is performed in two steps.
First, one fits the equal-mass, equal-spin data with a
quasi-linear function of ã0 = ã1 + ã2 with ã1 = ã2. This
delivers the six parameters (p0, n1, n2, n3, n4, d1). Note
that the analytical structure of the fitting function was
chosen in order to accurately capture the nonlinear be-
havior of c3 for ã0 → 1. In the second step one sub-
tracts this fit, computed for the unequal-mass, unequal-

spin data, from the corresponding cfirst−guess
3 values and

fits the residual. This gives the parameters (p1, p2). The
novelty with respect to Ref. [24] is that, thanks to the
new analytical improvements, one finds that the unequal-
spin and unequal-mass correction can be represented, in
Eq. (39), with acceptable accuracy, only with the two
parameters (p1, p2), as we shall illustrate quantitatively
below.

III. THE ` = m = 2 MODE: EOB/NR
UNFAITHFULNESS

We start discussing the performance of the model in
terms of EOB/NR unfaithfulnesses plots for the ` = m =
2 mode. The EOB/NR unfaithfulness (as function of the
total mass M of the binary) is defined as

F̄ (M) ≡ 1− F = 1−max
t0,φ0

〈hEOB
22 , hNR

22 〉
||hEOB

22 ||||hNR
22 ||

, (48)

where (t0, φ0) are the initial time and phase, ||h|| ≡√
〈h, h〉, and the inner product between two waveforms

is defined as 〈h1, h2〉 ≡ 4<
∫∞
fNR
min(M)

h̃1(f)h̃∗2(f)/Sn(f) df ,
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FIG. 2. EOB/NR unfaithfulness, Eq. (48), for the ` = m = 2 mode. Left panel: computation using SXS waveforms publicly
released before February 3, 2019. Right panel: same computation done with BAM waveform data. A subset of all this data is
used to inform the (ac6, c3) EOB functions. Comparison with Figs. 1 and 3 of Ref. [24] allows to appreciate the improvement
with respect to the original implementation of TEOBResumS.
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FIG. 3. EOB/NR ` = m = 2 unfaithfulness computation
with SXS waveform data publicly released after February 3,
2019. None of these datasets was used to inform the model,
in the dynamical EOB functions (ac6, c3), though several were
used for the postmerger waveform part. It is remarkable that
max(F̄ ) is always below 0.4% except for two outliers (one in
red and one in dashed thick blue online), that however never
exceed 0.7%. The plot includes five exceptionally long wave-
forms, each one developing more than 139 GW cycles before
merger, SXS:BBH:1412, 1413, 1414, 1415 and 1416, that are
depicted in blue. The function F̄ for (1.50,+0.50,+0.50), la-
beled as SXS:BBH:1415, shows a rather unusual behavior for
low masses. See Fig. 4 and related text for discussion.

where h̃(f) denotes the Fourier transform of h(t), Sn(f)
is the zero-detuned, high-power noise spectral density

of Advanced LIGO [43] and fNR
min(M) = f̂NR

min/M is the
starting frequency of the NR waveform (after the junk
radiation initial transient). Both EOB and NR wave-

2 4 6 8 10

10 4

-0.1

0

0.1

1.162 1.163

10 5

-0.2

0

0.2

0.4

2 4 6 8 10

10 4

-0.2

0

0.2

1.162 1.163

10 5

-0.2

0

0.2

FIG. 4. EOB/NR phasing comparison for SXS:BBH:1415,
(1.5,+0.5,+0.5). Note that it doesn’t seem possible to flat-
ten the phase difference up to t/M ' 1 × 105. The vertical
lines indicate the alignment frequency region [MωL,MωR] =
[0.038, 0.042]. This explains the corresponding behavior of F̄
in Fig. 3 and suggests that the waveform behavior might be
influenced by some systematic effect plaguing the NR data.

forms are tapered in the time-domain so as to reduce
high-frequency oscillations in the corresponding Fourier
transforms. Figure 2 illustrates F̄ versus M evaluated
over the same NR waveform data used in Ref. [24], with
the SXS data in the left panel and the BAM data in the
right panel. As mentioned above, a subset of this data,
listed in Table II, (both SXS and BAM) was used to in-
form the c3(ν, ã1, ã2) function. The global performance
of the model is largely improved with respect to Ref. [24]
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FIG. 5. Maximal EOB/NR faithfulness F , Eq. (48), all over
the SXS (473) and BAM (19) NR simulations considered.
Note that this plot incorporates 338 new SXS waveforms that
were not included in Fig. 6 of [24].

(see Fig. 1 there1. Remarkably, the model performs excel-
lently also for large mass ratios and large spins, without
any outlier above the 1% threshold, but max(F̄ ) . 0.5%
all over.

After February 3, the SXS collaboration publicly re-
leased another 338 new simulations at an improved ac-
curacy2. This part of the catalog mostly covers the same
region of parameter space of the previous data, except
for a few waveforms spanning mass ratios between 4 and
8, with spins higher than what considered before. The
catalog also includes a few extremely long waveforms,
with more than 100 orbits. As an additional cross check
of the robustness and accuracy of our model, we com-
pute F̄ all over this new set of NR waveforms. The
result is displayed in Fig. 3. We find that max(F̄ ) al-
ways remains below 0.7%, with actually only one outlier,
(1.5,+0.95,+0.95) SXS:BBH:11463, above 0.4%. This is
not surprising since the set of NR waveforms used to
inform c3 does not cover, except for one single simula-

1 In this respect, it is interesting to note that F̄ for
(2,+0.85,+0.85) is now around the 10−3 level, while in Fig. 1
of [24] is around 10−4. This happens because the difference be-

tween cfit
3 and cfirst−guess

3 is now larger than what it was in [24],
see Table I there. A priori, a more flexible fitting function for c3

would allow one to obtain even smaller values of F̄ . Since the
EOB/NR performance of the model is already rather good, we
content ourselves of the current, simple, analytical representation
of c3.

2 There are also 6 more, very long (> 100 GW cycles) simulations
that we do not include here due to possible systematics, as we
discuss in Appendix A.

3 We excluded SXS:BBH:1415 (1.5,+0.50,+0.50) from this list.
Computing the mismatch between the two highest levels of res-
olution publicly available one finds a large uncertainty for low
masses. For further discussion see Appendix A.
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FIG. 6. EOB/NR unfaithfulness computation putting to-
gether all ` = m modes up to ` = 4. Plotted is the worst-
case performance maximing the unfaithfulness over the sky,
Eq.(49). The worst-case mismatches arise from near edge-on
configurations, when the power emitted in the (2, 2) mode is
minimized.

tion, the part of the parameter space with 1 < q < 2.
Yet, this results highlights the robustness of our model:
without any additional input from NR simulations to de-
termine c3, it is able to deliver rather accurate wave-
forms even in a region of the parameter space previ-
ously not covered by NR data. The model performance
is summarized in Fig. 5, with an histogram showing all
the maximum values of the faithfulness, max (F ), from
Figs. 2 and 3. Thanks to the additional analytical infor-
mation incorporated and to the improved waveform re-
summation, TEOBiResumS SM is currently the EOB model
that exhibits the highest EOB/NR faithfulness for the
` = m = 2 mode.

IV. HIGHER MULTIPOLAR MODES

A. Multipoles (2, 2), (3, 3) and (4, 4)

Let us move now to discussing the quality of the
higher modes. For illustrative purposes, we consider
explicitly four configurations with q = 3, with equal
spins, both aligned or anti-aligned to the orbital angu-
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FIG. 7. Behavior of (2, 2), (3, 3) and (4, 4) modes for a few, illustrative, spin-aligned configurations with q = 3: comparing
NR (black) with EOB (red) waveform. Each panel plots the real part (left columns) and the instantaneous frequency (right
columns).

lar momentum. More precisely, we use (3,−0.85,−0.85),
(3,−0.60,−0.60), (3.−0.30,−0.30) and (3,+0.60,+0.60).
The qualitative (and quantitative) behavior discussed
here for this configuration is general enough to be con-
sidered paradigmatic all over the SXS waveform catalog.
Figure 7 illustrates the behavior of the (2, 2), (3, 3) and
(4, 4) mode. For each multipoles, we show the real part of
the EOB/NR waveforms together with the instantaneous
GW frequency ω`m. The EOB waveform is aligned to
the NR one around merger, so to highlight the excellent
EOB/NR agreement there. The EOB/NR agreement is
rather good either for spins both anti-aligned or aligned
with the orbital angular momentum. We should, how-
ever, mention that when the spins are large and aligned
there is an increasing dephasing accumulating between
the EOB and NR (4, 4) mode, as one can see in Fig. 7
(a). As it was the case for the ` = m = 2 mode discussed
above, a global understanding of the actual performance

of the model comes from EOB/NR unfaithfulness compu-
tations. In addition to Eq. (48), due to the non-trivial an-
gular dependence introduced by the subdominant spher-
ical harmonics, we consider the worst-case performance
of the model by maximizing the unfaithfulness over the
sky

max F̄ (h1, h2) ≡ max
θ,φ

F̄ (h1, h2). (49)

In Fig. 6, we show the worst case performance for the
` = m modes up to ` = 4, finding excellent agreement
up to ∼ 120M� above which the model performance de-
grades slightly and moves above 3%. In all cases, the
worst case mismatches arise from near edge-on configu-
rations, where the power in the (2,2)-mode is minimized.
The worst mismatches occur for mass ratios 1 ≤ q ≤ 1.5
and equal-spin configurations, in which the approximate
symmetry of the binary leads to a suppression of odd-m
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modes. For these binaries, the degraded performance will
be driven by the accuracy of the (4, 4) mode in both the
EOB model and the underlying NR data itself.

B. Other subdominant multipoles

1. Multipoles (2, 1), (3, 2) and (5, 5)

Let us discuss now modes (2, 1), (3, 2) and (5, 5), that
can be robustly constructed over most (but crucially not
all) the parameter space. To illustrate the typical be-
havior, we consider the same BBH configurations show
in Fig. 7, but we focus now on amplitude and frequency.
Each panel of the figure compares four curves: the NR
one (black), the analytical EOB waveform (orange), the
NQC-corrected EOB waveform (light-blue) and the com-
plete EOB waveform that includes the ringdown part. In
addition, on the (2, 1) frequency we also superpose the
EOB orbital frequency, as a grey line. The blue, dashed,
vertical lines in the plot mark the location of the merger
point, i.e. the peak of the (2, 2) waveform amplitude. A
few considerations first on the NR waveforms: during the
ringdown, one clearly sees in the (2, 1) and (3, 2) the effect
of mode mixing, that shows up as amplitude modulations
and frequency oscillations. The origin of these features
has been explained in details in Ref. [44]. By contrast,
the (5, 5) mode shows features that clearly highlight some
lack of accuracy in the NR data. This is more evident
in both (3,−0.60,−0.60) and (3,−0.85,−0.85) configura-
tions (see bottom rows of the (c) and (d) panels of Fig. 8.
Let us focus first on the (3, 2) mode. Despite the absence
of mode-mixing, the complete EOB waveform qualita-
tively reproduces the behavior of the NR one around
peak and postpeak, especially for what concerns the am-
plitude. By contrast, the ringdown frequency, i.e. in the
postpeak regime, is flat and systematically larger than
the NR one because of lack of the physical information
in the ringdown modelization. It is however interesting
to note that the approximation is more reliable for large,
anti-aligned, spins. Similarly, the shape of the waveform
entailed by the action of the NQC is rather accurate and
yields a reliable approximation of the frequency behavior
up to merger. By contrast, the situation is different for
the (2, 1) mode. When spins are aligned with the angu-
lar momentum, the standard procedure for improving the
behavior of the merger waveform via NQC and the ring-
down attachment works well, consistently with the non-
spinning case discussed in Ref. [30]. This is clear for the
case (3,+0.60,+0.60) of Fig. 8 and the procedure remains
robust at least up to (3,−0.30,−0.30) as the figure illus-
trates. By contrast, as the magnitude of the anti-aligned
spins increase, the NQC correction becomes progressively
inaccurate and the resulting waveform becomes incom-
patible with the NR ones. This is for example the case
for (3,−0.85,−0.85), where the NQC correction is un-
able to act so as to smoothly connect the inspiral, plunge
and merger waveform to the ringdown (postmerger) part.

This latter is, by contrast, reliable, except for the mode-
mixing oscillation, that is missing by construction. We
tracked the reason of the unphysical behavior of the NQC
correction as follows. In our approach, that is the same of
the nonspinning case, Paper I, the NR information used
to determine the NQC parameters is extracted 2M after
the (2, 1) peak. As a consequence, for a successful imple-
mentation, the NQC factor should be evaluated there.
Unfortunately, the EOB dynamics in this region, that is
after merger time (i.e. the peak of the (2, 2) mode), may
develop unphysical features depending on the values of
the spins. The simplest way to explain what is going on
is by looking at the orbital frequency, Ω. This is shown as
a grey line in the (2, 1) panels of Fig. 8. One sees that for
both (3,−0.60,−0.60) and (3,−0.85,−0.85) Ω becomes
very small around the peak of the (2, 1) mode until it
crosses zero and becomes negative. This is unexpected
for this configuration and not what it is supposed to be.
The unphysical character of this feature can be under-
stood by qualitative comparison with the system made
by a point-particle inspiralling and plunging on a Kerr
black hole. In this case, the orbital frequency changes
sign for configurations where the spin of the black hole
is antialigned with the orbital angular momentum and
large: the frame dragging exerted by the black-hole space
time on the particle is responsible of the sign change in
the frequency (see e.g. Ref. [45] ). One should be aware
that such dynamical behavior reflects on the waveform,
and in particular on the QNMs frequency excitations,
notably also at the level of the (2, 2) mode, that should
have a zero at the time when the angular velocity of the
particle changes sign (i.e., from counterrotation with re-
spect to the black hole, to rotating with the black hole).
Such qualitative features are not present in the NR wave-
form, so we believe that the EOB frequency behavior for
this configuration is incorrect after merger time. This
suggests that the current Hamiltonian should be modi-
fied so to avoid this feature. At a practical level, the fact
that Ω crosses zero when the values of the relative separa-
tion r is small, but finite, implies that the NQC functions
n4 ≡ pr∗/(rΩ) and n5 ≡ pr∗/(rΩ)Ω2/3 (see Paper I) be-
come very large and prevent the related NQC correction
to the phase to act efficiently so to correctly modify the
bare inspiral waveform. This is is evident in panel (c)
and (d) of Fig. 8. This problem affects the (2, 1) for any
mass ratio when the anti-aligned spin(s) are sufficiently
large. For example, a similar behavior is found also for
(8,−0.90, 0). As a consequence, to use the current mul-
tipolar model for actual parameter estimation studies, it
will be necessary to determine the precise region of the
parameter space where the (2, 1) mode is reliable. Select-
ing only those datasets with χi > −0.4, Fig. 9 shows the
EOB/NR unfaithfulness, maximized over the sky, when
including modes (2, 2), (2, 1) and (3, 3. Further improve-
ment, as well as the determination of the precise range
of reliability of the (2, 1) mode through merger and ring-
down, are postponed to future work. Here we will just
briefly explore, in Sec. IV B 3 below, a possible modifica-
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FIG. 8. Frequency and amplitude for the (2, 1), (3, 2) and (5, 5) modes for the same BBH configurations of Fig. 7. On top
of the NR (black) and complete EOB curves (red, dashed), the plots also show: (i) the analytical EOB waveform, without
NQC corrections and ringdown (orange online) and (ii) the NQC-augmented EOB waveform (light-blue online). The dashed,
vertical, line marks the merger location, i.e. the peak of the ` = m = 2 waveform amplitude. The (2, 1) frequency plots also
incorporate the orbital frequency Ω (grey online). The construction of the (2, 1) mode through merger and ringdown cannot
be accomplished correctly for large values of the spins anti-aligned with the orbital angular momentum [see panel (c) and (d)].

tion to the current spin-orbit sector of the Hamiltonian
that may eventually improve the behavior of the (2, 1)
mode in the anti-aligned spin case.

2. Multipoles (3, 1), (4, 3) and (4, 2)

From fits of the SXS waveforms we can also obtain a
postmerger/ringdown description of the (3, 1), (4, 2) and
(4, 3) modes. For simplicity and robustness, the (3, 1)
ringdown relies on the nonspinning fits of Ref. [30], while
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FIG. 9. EOB/NR unfaithfulness, maximized over the di-
rection from the sky, when including (2, 2), (2, 1) and (3, 3)
modes. Here we only consider a subset of the SXS waveforms
with χi > −0.4, where the (2, 1) EOB waveform mode does
not present pathologies (see Fig. 8). The worst case config-
uration is SXS:BBH:0239, a binary of mass ratio and spins
(2.0,−0.37,+0.85).

for (4, 3) and (4, 2) the relevant information is found in
Appendix D 2 g-D 2 f. When the magnitude of the spins
are relatively mild, these modes can be modeled rather
accurately (modulo mode mixing during ringdown) as in
the nonspinning case [30]. Figure 10 illustrates this fact
for (3,+0.30,+0.30), with the usual EOB/NR compar-
ison as we did above. For (4, 3) and (4, 2) modes one
can appreciate the relevant action of the NQC factor.
When spins are larger (and notably anti-aligned) one can
have Ω-driven pathological effects like the (2, 1) mode
discussed above. Seen also the (average) lower accuracy
of the corresponding NR modes all over the SXS catalog,
we postpone a more detailed discussion (and possible im-
provements) to future work.

3. Improving the behavior of the (2, 1) multipole

The correct behavior of the orbita frequency Ω in the
strong-field regime is determined by subtle compensation
between the orbital and spin-orbit part of the Hamil-
tonian. This is the region where our analytical under-
standing is weaker, as we have to rely on resummed re-
sults that are analytically incomplete. From the practical
point of view, to NQC-complete the inspiral (2, 1) mode
following the current scheme it would be sufficient the
behavior of Ω be milder after the merger. In practice,
we found that this is possible by implementing a small
modification to the resummed (GS , GS∗) functions. The
spin-orbit sector of TEOBResumS is based on Ref. [33], in
particular the gyro-gravitomagnetic functions are given
by Eqs. (38), (39), (41), and (42), where the inverse sep-
aration u is replaced by the inverse centrifugal radius
uc. While G0

S = 2uu2
c , Eq. (38) of Ref. [33], has the

structure of the Kerr gyro-gravitomagnetic function, the
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FIG. 10. Illustrative EOB/NR comparison for modes (3, 1),
(4, 3) and (4, 2) for (3,+0.3,+0.3). This behavior is analogous
to the nonspinning case and is robust until the spins are mild.
For larger spins, these modes may suffer the same problem
related to the NQC factor discussed above for the (2, 1) mode.

dependence of uc introduced in the other functions, G0
S∗

,

ĜS and ĜS∗ was an arbitrary choice. One finds that
replacing such uc dependence with the, more natural, u-
dependence is sufficient to provide small modifications in
the behavior of Ω that entail a far more robust behavior
of the NQC correction. In practice, we use

GS = 2uu2
cĜS(u), (50)

GS∗ =
3

2
u3ĜS∗(u), (51)

where (ĜS , ĜS∗) are given by Eqs. (41)-(42) of Ref. [33]
where uc is replaced by u. The result of this change
for (3,−0.85,−0.85) is illustrated in Fig. 11. Note that,
since the dynamics has now changed, to get a good (2, 2)
EOB/NR phasing agreement we had to use c3 = 86.5
instead of cfit

3 = 79.98 from Eq. (39). Comparing Fig. 11
with the panel (d) of Fig. 8 one immediately notices the
different behavior of the orbital frequency, whose peak is
shallower than before. The consequence of this behavior
is that the action of the NQC factor on both amplitude
and frequency is more correct than before, though not yet
fully accurate for this latter. Although improvable, this
proves that the scheme for completing the EOB wave-
form through merger and ringdown for all modes that
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FIG. 11. Attempt of improving the behavior of the (2, 1)
mode for (3,−0.85,−0.85) by modifying the spin-orbit sector
of the EOB Hamiltonian. The related change in the EOB
orbital frequency, Ω, that is seen now to decrease more mildly
after its peak than in Fig. 8 (d), is sufficient to improve the
efficiency of the NQC correction, so to get a more acceptable
frequency growth that can be smoothly connected with the
ringdown. See text for additional details.

TABLE III. Frequency of the minimum of the (2, 1) ampli-
tude for a few BBH configurations considered in Ref. [15]
and not publicly available. MΩ0 is the (orbital) frequency
corresponding to a minimum (or a zero) in the amplitude.

Our EOB-predicted value, from the zero of f̂S
21 in Table I,

is more consistent with the NR one than the straightforward
PN value.

Name q χ1 χ2 Ŝ MΩNR
0 MΩEOB

0 MΩPN
0

SXS:BBH:0614 2 0.75 −0.5 0.278 0.083 0.0968 0.057

SXS:BBH:0612 1.6 0.5 −0.5 0.115 0.068 0.0712 0.047

SXS:BBH:1377 1.1 −0.4 −0.7 −0.268 0.033 0.0330 0.029

was seen to be efficient in the nonspinning case [30] can
be straightforwardly generalized to the spinning case pro-
vided the dynamics, i.e. the orbital frequency, behaves
correctly. The result of Fig. 11 gives us a handle to im-
prove the description of spin-orbit effects within the EOB
Hamiltonian in future work.
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FIG. 12. Top and medium panels: occurrence of a zero in
the (2, 1) amplitude in configuration (1.1,−0.4,−0.7), corre-
sponding to NR dataset SXS:BBH:1377 analyzed in Ref. [15].
This dataset is not publicly available through the SXS cat-
alog. The EOB-predicted value of the frequency is perfectly
compatible with the NR value reported in Ref. [15] (see the
last row of Table III). The bottom panel compares the zero
location of the resummed (orange) and nonresummed (ma-
genta) amplitudes. See text for details.

C. Peculiar behavior of m = 1 waveform
amplitudes for 1 ≤ q ≤ 2.

Reference [15] pointed out that a few NR simulations
exhibit a minimum in the (2, 1) mode amplitude in the
late inspiral phase. Such behavior was found in 4 SXS
datasets: SXS:BBH:0254 (2,+0.6,−0.6); SXS:BBH:0612
(1.6, 0.5,−0.5); SXS:BBH:0614 (2,+0.75,−0.5); and
SXS:BBH:1377 (1.1,−0.4,−0.7). Only the first among
these dataset if public through the SXS catalog. In addi-
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FIG. 13. Mode (2, 1): comparison between the EOB ampli-
tude (orange) and the corresponding NR one from dataset
SXS:BBH:1466. The purely analytical EOB waveform multi-
pole can accurately predict the location of the minimum (that
analytically is a zero of the modulus) consistently with the
one found in the NR data. The excellent agreement shown
is obtained naturally, without the need of calibrating any ad-
ditional parameter entering the waveform amplitude. The
dashed vertical line corresponds to merger time, i.e. the peak
of the ` = m = 2 waveform. The cusp in the analytical ampli-
tude occurs because of a zero in f̂S

21 as illustrated in Fig. 14.

tion, Ref. [15] noticed that the same feature is present in
the EOB resummed waveform (both in orbital-factorized
and non-orbital factorized form). An explanation of this
phenomenon was suggested on the basis of leading-order
considerations, that were similarly proven using a 3PN-
based analysis. In addition, Ref. [15] compared the PN
prediction for the frequency corresponding to the mini-
mum of the (2, 1) mode with the value extracted from
NR simulations. From this PN-based analysis, Ref. [15]
suggested that the phenomenon comes from a compensa-
tion between the spinning and leading-order nonspinning
terms entering the (2, 1) mode. Notably, the PN based
analysis aimed at explaining this feature qualitatively as
well as semi-quantitatively (see Table I in Ref. [15]).

Here we revisit the analysis of Ref. [15] and we attempt
to improve it along several directions thanks to the ro-
bustness of our factorized and resummed waveform am-
plitudes. In brief we can show that: (i) focusing on the
same datasets considered in Ref. [15], we illustrate that
the (2, 1), purely analytical EOB amplitude has a mini-
mum (in fact, a zero) rather close to the values reported
in Table I of Ref. [15], and definitely much closer than
the PN-based prediction; (ii) the phenomenon is here un-
derstood as coming from the compensation, occurring at
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FIG. 14. Complementing Fig. 13: the behavior of the re-
summed versus nonresummed amplitude versus x = Ω2/3.

a given frequency, between the two (inverse-resummed)
macro-terms that compose the analytically resummed ex-

pression of f̂S21, one proportional to X12 and the other one
proportional to ã12, and that appear with opposite signs;
(iii) guided by this analytical understanding, we investi-
gated whether some of the currently available simula-
tions in the SXS catalog may develop a zero (that occurs
in fact as a cusp) in the amplitude. Quite remarkably
we found that it is indeed the case for SXS:BBH:1466,
(1.9,+0.70,−0.8), that shows a clean minimum that is
perfectly consistent with the EOB-based analytical pre-
diction; (iv) since the same structure, with the minus
sign, is present also in other m = odd modes, we investi-
gated whether the same phenomenon may show up also in
some of the other SXS datasets. Interestingly, we found
that also the (3, 1) mode of SXS:BBH:1496 is consistent
with the EOB-predicted analytical behavior, suggesting
that such features may occur in several modes.

Let us now discuss in detail the four points listed
above. Figure 12 illustrates an EOB analytical wave-
form for (1.1,−0.4,+0.7), that corresponds to the dataset
SXS:BBH:1377. As mentioned above, this simulation is
not public and so we cannot perform an explicit EOB/NR
comparison. The top panel shows the ` = m = 2 wave-
form amplitude together with the EOB orbital frequency
MΩ. The middle panel shows the (2, 1) waveform am-
plitude, that develops a zero highlighted by a marker.
It turns out that this zero precisely corresponds to the

zero of the f̂S
21 function once evaluated at x = (MΩ)2/3.

This function is shown, versus x, in the bottom panel of
Fig. 12. To be more quantitative, the last row of Ta-
ble III lists the corresponding frequency, that is identical
to the NR-extracted value reported in the correspond-
ing last column of Table I of [15]. To check the model
further, we explored also the other two cases in the Ta-
ble, similarly finding a rather good agreement between
the EOB orbital frequency corresponding to the zero and
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FIG. 15. EOB/NR waveform comparison for SXS:BBH:1466

for modes (2, 1), (3, 2) and (5, 5). The frequency of the (2, 1)
mode behaves correctly through merger and ringdown, while
the EOB amplitude largely underestimates the NR one. As in
Fig. 8, the orange curve is the purely analytical EOB wave-
form, while the light blue one is the NQC corrected. The
vertical line marks the merger location

the NR value4. Our reasoning relies on our orbital fac-
torized waveform, and in particular on the definition of

f̂S
21. However, Ref. [15] pointed out that a zero in the

amplitude may occur also in the standard, non orbital-
factorized, waveform amplitude. To make some quanti-
tative statement, we also consider the function

forb+S
21 = X12

(
ρorb

21

)2
+ fS

21, (52)

where both ρorb
21 and fS

21 are kept in PN-expanded form.
The orbital term is given in the usual Taylor-expanded
form ρorb

21 = 1 + (. . . )x + (. . . )x2 + (. . . )x3 + (. . . )x4 +

4 Note that Ref. [15] does not explain how their MΩNR
0 is com-

puted. We may imagine that it is just given by the NR orbital
frequency divided by two, which is slightly different from the
EOB orbital frequency we include due to the presence of tail
terms and other effects.
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FIG. 16. The minimum and maximum EOB/NR unfaithful-
ness for SXS:BBH:1466 over the whole sky. The blue curve
uses the (2, 2), (3, 3) and (4, 4) modes. The purple curve uses
the (2, 2), (2, 1) and (3, 3) modes. Worst case mismatches oc-
cur near edge on configurations with the unfaithfulness being
below 3% up to 200M�.
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FIG. 17. Mode (3, 1): comparison between the EOB ampli-
tude (orange) and the corresponding NR one from dataset
SXS:BBH:1496, (1.1584,+0.7997,+0.0285). While the analyt-

ical waveform has a zero because of f̂31, the NR one just shows
a glimpse of a global minimum, probably because if insuffi-
cient numerical resolution. Note however the excellent qual-
itative and quantitative consistency between the two wave-
forms up to that point.

(dots)x5. The spin term, at NNLO, reads

fS
21 = −3

2
ã12x

1/2 +cNLO
SO x3/2 +cLO

SS x
2 +cNNLO

SO x5/2, (53)
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where

cNLO
SO =

(
110

21
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84
ν

)
ã12 −
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84
ã0X12, (54)

cLO
SS = −27

8
ã0ã12 +

3

8
X12

(
ã2

1 +
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3
ã1ã2 + ã2
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)
, (55)

cNNLO
SO =
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ν2

)
ã12

+

(
−443
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+

1735
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)
ã0X12 +

3

4
ã2

0ã12. (56)

For the configuration (1.1,−0.4,−0.7), this function, rep-
resented versus x, does not have a zero, as illustrated by
the magenta line in the bottom panel of Fig. 12.

The closeness between the numbers in Table III
prompted us to additionally investigate for which val-
ues of spin and mass ratio the analytical (2, 1) ampli-
tude develops a zero before merger frequency. Comparing
with the configurations available through the SXS cata-
log (notably those up to February 3, 2019), we found
that the parameters of dataset SXS:BBH:1466 are such
that the zero in the amplitude occurs at a frequency
that is smaller than the merger frequency. We then ex-
plicitly checked the (2, 1) mode of this simulation and,
as illustrated in Fig. 13, we found that it has a local
minimum, that is very consistent with the cusp in the
analytic EOB waveform modulus. In addition, Fig. 15
illustrates the behavior of the full waveform completed
by NQC corrections and ringdown. As above, we show
together the more difficult modes to model, (2, 1) and
(3, 2), with (5, 5). The figure highlights that the (2, 1)
frequency is well captured by the analytical model, al-
though the amplitude is underestimated by more than
a factor two. Consistently, Fig. 16 shows that the min-
imum and maximum unfaithfulness over the whole sky
is always below 3%. This makes us confident that
TEOBiResumS SM can give a reliable representation of the
(2, 1) mode also in this special region of the parameter
space, since it naturally incorporates a feature that is ab-
sent in SEOBNRv4HM [15]. One should however be aware
that the (2, 1) EOB mode is not as good for the case
(2,+0.60,−0.60), where the corresponding NR waveform
is found to have very a clean minimum much closer to the
merger frequency, as noted in Ref. [15]. This is proba-
bly due to lack of additional analytical information to
improve the behavior of the (2, 1) mode in the strong-
field regime. It would be interesting to investigate, for
future work, whether higher-order PN terms (e.g. those
obtained after hybridization with test-mass results, sim-
ilarly to the procedure followed for the m = even) could
be useful to improve the behavior of the (2, 1) EOB am-
plitude for (2,+0.60,−0.60).

As a last exploratory study, we investigated whether
some of the other m-odd multipolar amplitudes can de-
velop a zero at a frequency smaller than the merger fre-
quency, and we found this happens for several modes. In
the SXS catalog (up to February 3, 2019) we identified a
configuration where, analytically, we may expect a zero

in the (3, 1) mode. This is SXS:BBH:1496, with parame-
ters (1.1584, 0.7997, 0.0285). Figure 17 compares the an-
alytical EOB waveform amplitude with the NR one. We
think it is remarkable that the NR is consistent with the
analytic waveform (modulo some numerical oscillation)
up to t/M ' 5050. At this time the NR waveform devel-
ops a local dip that, we conjecture, would eventually lead
to an approximate cusp by increasing the resolution. We
hope that these special features of the waveform could be
investigated in more detail by dedicated NR simulations.

V. CONCLUSIONS

We have introduced TEOBiResumS SM, an improved,
NR-informed, EOB model for nonprecessing, spin-
ning, coalescing black hole binaries. This model in-
corporates several subdominant waveform modes, be-
yond the quadrupolar one, that are completed through
merger and ringdown. The work presented here gen-
eralizes to the spinning case the nonspinning model
TEOBiResumMultipoles presented in Paper I, Ref. [30].
Generally speaking, we found that modes with m = `,
up to ` = 5, are the most robust ones all over the pa-
rameter space covered by the SXS and BAM NR sim-
ulations at our disposal. The other modes, and espe-
cially the most relevant (2, 1) one, can be nonrobust for
medium-to-large value of the spins anti-aligned with the
orbital angular momentum. The waveform modes (and
thus the radiation reaction) rely on a new resummed rep-
resentation for the waveform multipolar amplitudes, that
improves their robustness and predictive power through
late-inspiral and merger, as well as a new, NR-informed,
representation of the ringdown part.

Our results can be summarized as follows:

1. The new analytical description of the binary rel-
ative dynamics due to the orbital-factorized and
resummed radiation reaction entails a new (some-
how simpler) determination of the EOB flexibil-
ity functions {ac6(ν), c3(ν, S1, S2)}, that is different
from the one used in TEOBResumS [24]. We com-
puted the EOB/NR unfaithfulness for the (2, 2)
mode and found that it is always well below 0.7%
all over the current release of the SXS NR wave-
form catalog (473 datasets) as well as on additional
data from BAM code spanning up to mass ratio
q = 18. We remark that the performance of the
model is largely improved, with respect to Ref. [24],
in the large-mass-ratio, large-spin corner, notably
for (8,+0.85,+0.85).

2. We provided a prescription for completing higher
modes trough merger and ringdown. Such prescrip-
tion is the carbon copy of what previously done in
the nonspinning case and discussed in Paper I. No
new conceptual modification to the procedure were
introduced here. The novelty is the introduction of
the spin-dependence in the NR-informed fits of the
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quantities needed to determine the NQC parame-
ters and the peak-postpeak (ringdown) behavior.
Such fits are done factorizing some leading-order
spin contributions, as well as incorporating test-
mass information, in an attempt to reduce the flex-
ibility in the fits and to improve their robustness
all over the parameter space.

We found that for ` = m modes, up to ` = m =
5, the model is very robust and reliable. When
putting together all m = ` modes up to ` = 4, the
maximal EOB/NR unfaithfulness all over the sky
(with Advanced LIGO noise) is always well below
3% up to total mass M = 120M�, that is exceeded
slightly after because of lack of accuracy in both
the EOB and the NR data itself, especially in the
(4, 4) mode. The model peforms similarly well (F̄ .
3%) aso when the (2, 1) mode is included. We have
however pointed out that for large values of the
spin, anti-aligned with the angular momentum, e.g.
as (3,−0.85,−0.85), inaccuracies in the postmerger
EOB dynamics prevent one to get accurate (2, 1)
mode through merger and ringdown.

3. Inspired by previous work, we could confirm that
the phenomenology of the (2, 1) mode is rich, in
particular that its amplitude can have a zero dur-
ing the late-inspiral before merger for nearly equal-
mass binaries. We have presented a quantitative
understanding of the phenomenon. We also showed
that the EOB waveform, in its orbital-factorized
and resummed avatar of Ref. [31, 32], can accu-
rately reproduce NR waveforms with the same phe-
nomenology, at least when the frequency of the zero
is sufficiently far from merger. We remark that was
achieved without advocating any additional ad-hoc
calibration or tuning of phenomenological parame-
ters entering the waveform amplitude. Quite inter-
estingly, the same phenomenon may occur also in
some of the other of the m = odd modes. In partic-
ular, we could find, for the (3, 1) mode, a SXS con-
figuration that shows this behavior and illustrate
how it agrees with the analytical prediction.

4. In general, this work made us aware that the struc-
ture of the (2, 1) mode is very challenging to be
modeled properly through peak and ringdown us-
ing the simple approach developed in Paper I. Such
difficulty is shared by other modes with m 6= ` in
certain region of the parameter space, whenever the
peak of such mode is significantly (∼ 7 − 8M) de-
layed with respect to the merger time (e.g. the
(4, 3) or (3, 1)). We consider the identification of
this difficulty as one of the most relevant outcomes
of this work. We think that the proper modeliza-
tion of such m 6= ` modes in the transition from
the late inspiral up to the waveform peak should
not be done using brute force (e.g. by extending
the effective postmerger fits also before the peak)

but rather that it requires a more detailed under-
standing of the underlying physical elements, in
particular: (i) the structure of the waveform (e.g.
with the need of naturally incorporating the zero
in the amplitude also when it is known to exist at
rather high frequencies, e.g. for (2,+0.60,−0.60));
and (ii) the behavior of the EOB relative dynam-
ics (notably mirrored in the time evolution of the
orbital frequency Ω(t)) in the extreme region just
after the merger, corresponding to very small ra-
dial separation. We have shown explicitly that one
of the analytical choices adopted in TEOBResumS,
i.e. the uc dependence in the gyro-gravitomagnetic
functions, was (partly) responsible of the problems
we encountered in modeling the (2, 1) mode (see
Sec. IV B 3). Together with a different choice of
gauge, so to incorporate the test-black hole spin-
orbit interaction [29], it might be possible to ob-
tain an improved EOB dynamics more robust also
in the postmerger regime, so to easily account for
more subdominant multipoles via the usual NQC-
completion and ringdown matching procedure.
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Appendix A: Long-inspiral Numerical Relativity
waveforms

This Appendix discussed 11 very long waveforms, sum-
marized in Table XV, that have been made available in
the SXS catalog with the latest updates this year. These
waveforms all show an inspiral of over 100 orbits be-
fore a common horizion appears5. Figure 18 displays
the F̄ curves of these datasets. First, it should be noted
that 6 waveforms are shown here that are not included
in the analysis presented in Section III. These wave-
forms are marked in light blue. All, with the excep-
tion of SXS:BBH:1385, show a large unfaithfulness for low
masses, with max(F̄ ) > 3% for SXS:BBH:1393. Figure 19
illustrates the time-domain alignment of EOB and NR
waveforms for this extreme case. The waves are aligned
on the frequency interval [ωL, ωR] = [0.014, 0.03]. Seen
the large oscillations that show up in the amplitude, we
are prone to think that at least part of this difference is
due to yet uncontrolled systematics in the NR waveforms.
As already mentioned in the main text, SXS:BBH:1415
also shows unfaithfulness above 1% for small values of

5 SXS:BBH:1110 is excluded from this analysis since the waveform
needs additional post-processing.
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FIG. 18. Complement to Fig. 3 including all very long wave-
forms available in the SXS catalog. Note that a few of them
are above the 1% threshold because of spurious effects during
the inspiral.
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FIG. 19. EOB/NR time-domain phasing comparison for
SXS:BBH:1393, (1.79,0,0.115), that explains why F̄ grows for
small total masses. The vertical lines indicate the alignment
frequency region [MωL,MωR] = [0.014, 0.022].

the total mass. Computing the unfaithfulness between
the two highest levels of NR can be used as a conservtive
estimate on the error. Figure 20 exhibits this compar-
ison directly for SXS:BBH:1415: this suggests that the
relatively large EOB/NR unfaithfulness is likely due to
NR uncertainties.

Appendix B: Numerical Relativity datasets

The NR data used in this work were seperated into
two categories. A set used for the calibration of the post-
peak and ringdown and a set used excusively for vali-
dation of the model. The postpeak-calibration set con-

50 100 150 200
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FIG. 20. Complement to Fig. 3 showing a direct comparison
of the EOB/NR unfaithfulness vs. the NR/NR unfaithfulness
computed with the resolutions Lev2 and Lev3.

sists of the following: (i)The set of the NR data is
extended beyond the 23 non-spinning waveforms used
in [30] (19 SXS, 3 BAM, 1 test-particle) .(ii) 38 SXS,
spin-aligned, equal-mass waveforms with spins between
−0.99χ1,2 ≤ 0.9942. See Table IV. (iii)78 SXS spin-
aligned, unequal-mass, waveforms going up to mass ra-
tio q = 8 with spins up to −0.85 ≤ χ1,2 ≤ 0.85.
See Table V – VI. This also includes a single high-
precision waveform with (q, χ1, χ2) = (8,−0.9, 0). (iv)
16 BAM, spin-aligned, unequal-mass waveforms from span-
ning mass ratios 2 ≤ q ≤ 18, including two q = 8 wave-
forms with χ1 = χ2 = ±0.85 and two q = 18 waveforms
with χ1 = ±0.8. See Table VII. (v) A set of waveforms
for a test-particle inspiralling and plunging on a Kerr
black hole [45] with the black hole spin â in the interval
−0.99 ≤ â ≤ 0.99. The NR waveforms contain between
12.4 and 62.1 orbits before the formation of a common
horizon, with an average length of 24.4 orbits, while the
eccentricity never exceeds 0.004.

The validation set consists of 338 waveforms from the
publicly available catalog of the SXS collaboration. The
waveforms span mass ratios up to q = 8 and spins up to
−0.97 ≤ χ1,2 ≤ 0.998. This set includes 5 long waveforms
with more then 143 orbits before the forming of a com-
mon horizon. The remaining waveforms span between
10.0 and 79.8, with an average of 20.9 orbits before the
forming of a common horizon, while eccentricity is lim-
ited to 0.001. The waveforms are listed in Tables VIII –
XIV. Further details on the SXS catalog can be found in
Refs. [46–56].

Appendix C: Numerical Relativity Systematics

As was highlighted in [30], numerical noise and sys-
tematics in the NR data can lead to a degradation in the
mismatches. In Fig. 6 we find that the worst mismatches
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TABLE IV. This table summarizes the SXS NR waveform
data in the postpeak-calibration set, with mass-ratio q = 1.
From left to right, the columns report: the SXS simulation
number, mass ratio and dimensionless spins spins χi, and the
maximum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

1 SXS:BBH:0178 (1, 0.9942, 0.9942) 0.0550

2 SXS:BBH:0177 (1, 0.9893, 0.9893) 0.0342

3 SXS:BBH:0172 (1, 0.9794, 0.9794) 0.0182

4 SXS:BBH:0157 (1, 0.95, 0.95) 0.0406

5 SXS:BBH:0160 (1, 0.9, 0.9) 0.0141

6 SXS:BBH:0153 (1, 0.85, 0.85) 0.0206

7 SXS:BBH:0230 (1, 0.8, 0.8) 0.0517

8 SXS:BBH:0228 (1, 0.6, 0.6) 0.1388

9 SXS:BBH:0150 (1, 0.2, 0.2) 0.1644

10 SXS:BBH:0149 (1,−0.2,−0.2) 0.0469

11 SXS:BBH:0148 (1,−0.44,−0.44) 0.0274

12 SXS:BBH:0215 (1,−0.6,−0.6) 0.0465

13 SXS:BBH:0154 (1,−0.8,−0.8) 0.0296

14 SXS:BBH:0212 (1,−0.8,−0.8) 0.0304

15 SXS:BBH:0159 (1,−0.9,−0.9) 0.0291

16 SXS:BBH:0156 (1,−0.949,−0.949) 0.0654

17 SXS:BBH:0231 (1, 0.9, 0) 0.1286

18 SXS:BBH:0232 (1, 0.9, 0.5) 0.0654

19 SXS:BBH:0229 (1, 0.65, 0.25) 0.1380

20 SXS:BBH:0227 (1, 0.6, 0) 0.0973

21 SXS:BBH:0005 (1, 0.5, 0) 0.1432

22 SXS:BBH:0226 (1, 0.5,−0.9) 0.0493

23 SXS:BBH:0224 (1, 0.4,−0.8) 0.0493

24 SXS:BBH:0225 (1, 0.4, 0.8) 0.1833

25 SXS:BBH:0223 (1, 0.3, 0) 0.0745

26 SXS:BBH:0222 (1,−0.3, 0) 0.0489

27 SXS:BBH:0220 (1,−0.4,−0.8) 0.0347

28 SXS:BBH:0221 (1,−0.4, 0.8) 0.1837

29 SXS:BBH:0004 (1,−0.5, 0) 0.0328

30 SXS:BBH:0218 (1,−0.5, 0.5) 0.0434

31 SXS:BBH:0219 (1,−0.5, 0.9) 0.1864

32 SXS:BBH:0216 (1,−0.6, 0) 0.0344

33 SXS:BBH:0217 (1,−0.6, 0.6) 0.0917

34 SXS:BBH:0214 (1,−0.62,−0.25) 0.1088

35 SXS:BBH:0213 (1,−0.8, 0.8) 0.0757

36 SXS:BBH:0209 (1,−0.9,−0.5) 0.0408

37 SXS:BBH:0210 (1,−0.9, 0) 0.0641

38 SXS:BBH:0211 (1,−0.9, 0.9) 0.0873

39 SXS:BBH:0306 (1.31, 0.9612,−0.9) 0.1985

40 SXS:BBH:0013 (1.5, 0.5, 0) 0.1491

41 SXS:BBH:0025 (1.5, 0.5,−0.5) 0.1534

42 SXS:BBH:0016 (1.5,−0.5, 0) 0.0349

43 SXS:BBH:0019 (1.5,−0.5, 0.5) 0.0250

TABLE V. This table summarizes the SXS NR waveform data
in the postpeak-calibration set, with mass-ratio 1 < q ≤ 2.
From left to right, the columns report: the SXS simulation
number, mass ratio and dimensionless spins spins χi, and the
maximum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

44 SXS:BBH:0258 (2, 0.8713,−0.85) 0.3884

45 SXS:BBH:0257 (2, 0.85, 0.85) 0.3031

46 SXS:BBH:0254 (2, 0.6,−0.6) 0.1227

47 SXS:BBH:0255 (2, 0.6, 0) 0.1234

48 SXS:BBH:0256 (2, 0.6, 0.6) 0.0666

49 SXS:BBH:0253 (2, 0.5, 0.5) 0.0697

50 SXS:BBH:0252 (2, 0.3715,−0.8494) 0.1561

51 SXS:BBH:0249 (2, 0.3,−0.3) 0.0952

52 SXS:BBH:0250 (2, 0.3, 0) 0.0813

53 SXS:BBH:0251 (2, 0.3, 0.3) 0.0725

54 SXS:BBH:0248 (2, 0.1287, 0.85) 0.0628

55 SXS:BBH:0244 (2, 0,−0.6) 0.0592

56 SXS:BBH:0245 (2, 0,−0.3) 0.0396

57 SXS:BBH:0246 (2, 0, 0.3) 0.0357

58 SXS:BBH:0247 (2, 0, 0.6) 0.0401

59 SXS:BBH:0243 (2,−0.1287,−0.85) 0.0603

60 SXS:BBH:0240 (2,−0.3,−0.3) 0.0201

61 SXS:BBH:0241 (2,−0.3, 0) 0.0194

62 SXS:BBH:0242 (2,−0.3, 0.3) 0.0225

63 SXS:BBH:0239 (2,−0.37, 0.85) 0.0364

64 SXS:BBH:0238 (2,−0.5,−0.5) 0.0304

65 SXS:BBH:0235 (2,−0.6,−0.6) 0.0324

66 SXS:BBH:0236 (2,−0.6, 0) 0.0452

67 SXS:BBH:0237 (2,−0.6, 0.6) 0.0743

68 SXS:BBH:0234 (2,−0.85,−0.85) 0.0780

69 SXS:BBH:0233 (2,−0.8713, 0.85) 0.1575

typically come from near edge-on cases, where the power
in the (2, 2)-mode is minimized, and for mass ratios near
q ∼ 1, where the amplitude of the odd-m multipoles is
suppressed. When restricting to the (`,m) = (2, 2), (3, 3)
and (4, 4) modes, as shown in the bottom panel of Fig.6,
the mode that contributes the most for the near equal-
mass, edge-on configurations is the (4, 4) mode. How-
ever, as highlighted in Fig. 21, the (4, 4) mode in the
NR datasets can often be particularly problematic, espe-
cially through the merger-ringdown. In particular, we see
strong oscillatory features in the instantaneous frequency
and un-physical, non-monotonic behaviour in the ampli-
tude. This can result in large mismatches that are rela-
tively uninformative regarding the accuracy of the EOB
model against NR. At higher mass ratios, where the mode
is well-resolved in NR, the mismatches are under control
and well below 3%. At low total masses, where we com-
pute mismatches against a larger portion of the inspi-
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TABLE VI. This table summarizes the SXS NR waveform
data in the postpeak-calibration set, with mass-ratio 3 ≤ q.
From left to right, the columns report: the SXS simulation
number, mass ratio and dimensionless spins spins χi, and the
maximum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

70 SXS:BBH:0036 (3,−0.5, 0) 0.0272

71 SXS:BBH:0045 (3, 0.5,−0.5) 0.1325

72 SXS:BBH:0174 (3, 0.5, 0) 0.1365

73 SXS:BBH:0260 (3,−0.85,−0.8494) 0.1127

74 SXS:BBH:0261 (3,−0.7313, 0.85) 0.1441

75 SXS:BBH:0262 (3,−0.6, 0) 0.0393

76 SXS:BBH:0263 (3,−0.6, 0.6) 0.1036

77 SXS:BBH:0264 (3,−0.6,−0.6) 0.0427

78 SXS:BBH:0265 (3,−0.6,−0.4) 0.0302

79 SXS:BBH:0266 (3,−0.6, 0.4) 0.0711

80 SXS:BBH:0267 (3,−0.5,−0.5) 0.0350

81 SXS:BBH:0268 (3,−0.4,−0.6) 0.0377

82 SXS:BBH:0269 (3,−0.4, 0.6) 0.0518

83 SXS:BBH:0270 (3,−0.3,−0.3) 0.0201

84 SXS:BBH:0271 (3,−0.3, 0) 0.0183

85 SXS:BBH:0272 (3,−0.3, 0.3) 0.0277

86 SXS:BBH:0273 (3,−0.2687,−0.8493) 0.0580

87 SXS:BBH:0274 (3,−0.2313, 0.85) 0.0327

88 SXS:BBH:0275 (3, 0,−0.6) 0.0571

89 SXS:BBH:0276 (3, 0,−0.3) 0.0351

90 SXS:BBH:0277 (3, 0, 0.3) 0.0183

91 SXS:BBH:0278 (3, 0, 0.6) 0.0239

92 SXS:BBH:0279 (3, 0.2314,−0.8494) 0.1186

93 SXS:BBH:0280 (3, 0.2687, 0.85) 0.0377

94 SXS:BBH:0281 (3, 0.3,−0.3) 0.0680

95 SXS:BBH:0282 (3, 0.3, 0) 0.0435

96 SXS:BBH:0283 (3, 0.3, 0.3) 0.0299

97 SXS:BBH:0284 (3, 0.4,−0.6) 0.1208

98 SXS:BBH:0285 (3, 0.4, 0.6) 0.0228

99 SXS:BBH:0286 (3, 0.5, 0.5) 0.0172

100 SXS:BBH:0287 (3, 0.6,−0.6) 0.1836

101 SXS:BBH:0288 (3, 0.6,−0.4) 0.1356

102 SXS:BBH:0289 (3, 0.6, 0) 0.0581

103 SXS:BBH:0290 (3, 0.6, 0.4) 0.0166

104 SXS:BBH:0291 (3, 0.6, 0.6) 0.0135

105 SXS:BBH:0292 (3, 0.7314,−0.8493) 0.3565

106 SXS:BBH:0293 (3, 0.85, 0.85) 0.4486

107 SXS:BBH:0060 (5,−0.5, 0) 0.0163

108 SXS:BBH:0110 (5, 0.5, 0) 0.0240

109 SXS:BBH:0208 (5,−0.9, 0) 0.0638

110 SXS:BBH:0202 (7, 0.6, 0) 0.3702

111 SXS:BBH:0203 (7, 0.4, 0) 0.0503

112 SXS:BBH:0205 (7,−0.4, 0) 0.0392

113 SXS:BBH:0207 (7,−0.6, 0) 0.0629

114 SXS:BBH:0064 (8,−0.5, 0) 0.0246

115 SXS:BBH:0065 (8, 0.5, 0) 0.1442

116 SXS:BBH:1375 (8,−0.9, 0) 0.1482

TABLE VII. This table summarizes the BAM NR waveform
data in the postpeak-calibration set. From left to right, the
columns report: the simulation number, mass ratio and di-
mensionless spins spins χi, and the maximum value of the
EOB/NR unfaithfulness F̄ , see Fig. 2. These waveforms were
mostly presented in Refs. [57–59]

# (q, χ1, χ2) max(F̄ )[%]

117 (2, 0.5, 0.5) 0.3543

118 (2, 0.75, 0.75) 0.4344

119 (3,−0.5,−0.5) 0.1790

120 (4,−0.75,−0.75) 0.3162

121 (4,−0.5,−0.5) 0.2176

122 (4,−0.25,−0.25) 0.1231

123 (4, 0.25, 0.25) 0.0745

124 (4, 0.5, 0.5) 0.0482

125 (4, 0.75, 0.75) 0.0632

126 (8,−0.85,−0.85) 0.4308

127 (8, 0.8, 0) 0.2860

128 (8, 0.85, 0.85) 0.2399

129 (18,−0.8, 0) 0.1456

130 (18,−0.4, 0) 0.0390

131 (18, 0.4, 0) 0.0153

132 (18, 0.8, 0) 0.0997

ral signal, we see excellent agreement between the EOB
model and NR for all modes and configurations used in
our analysis. In the mismatches shown in Fig. 6, we have
removed NR datasets that display obvious pathologies,
such as those demonstrated in Fig. 21.

Appendix D: Analytic modeling of the multipolar
ringdown waveform

1. Introduction

In this Appendix we discuss the fits of the NR data
needed for completing TEOBiResumS SM through merger
and ringdown. The fits concern: (i) frequency and am-
plitude at the peak of each multipole; (ii) the time delays
∆t`m between the peak of each multipole and the peak
of the (2, 2) mode; (iii) fits for waveforms quantities at
the location at the NQC extraction point. Technical de-
tails are all listed in Sec. III D and Sec. V A of Ref. [30]
and we address the reader there for complementary infor-
mation. In Sec. D 2 below we report fits of various wave-
form quantities at the peak of each multipole, that is am-

plitude, frequency and time-delay
(
Apeak
`m , ωpeak

`m ,∆t`m

)
.

Following Refs. [24, 30, 35, 36], the postpeak waveform

needs three additional parameters
(
cA`m3 , cφ`m3 , cφ`m4

)
to

be fitted to NR data. This is discussed in Sec. D 3
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FIG. 21. Strain, amplitude and instantaenous frequency for SXS:BBH:0039. Whilst the (2, 2) and (3, 3) modes are well-
behaved, the (4, 4) mode demonstrates unphysical features, as seen by the non-monotonic behavior of the amplitude in the
merger-ringdown and the strong, oscillatory features in the frequency. This is an example of how NR systematics can lead to
relatively poor mismatches against the EOB model.

below. We present spin-dependent fits for multipoles
(2, 2), (3, 3), (4, 4), (5, 5), although, for robustness, we
prefer to use the nonspinning fits discussed in [30] except
for the (2, 2) mode. This gives a rather accurate represen-
tation of the waveform provided that the other quantities
(e.g. the peak ones) incorporate the complete spin de-
pendence. The fits of the quasi-normal-mode frequencies
and (inverse) damping timpes entering

(
ω`m1 , α`m1 , α`m21

)

are given in [30]6. The waveform quantities used to de-
termine the NQC corrections to the waveform amplitude

and phase,
(
ANQC
`m , ωNQC

`m , ȦNQC
`m , ω̇NQC

`m

)
are usually ob-

tained analytically from the postpeak template and all
details are collected in Sec. D 5 below. For the (4, 4)
mode, however, this procedure cannot deliver an accu-
rate time-derivative of the waveform amplitude, so that
a dedicated fit is given. In the case of the (`,m) = (2, 2)
mode fits for all 4 NQC quanties are also given. Unless
otherwise stated all fits are done using fitnlm of matlab
and NonLinearModelFit of MATHEMATICA. All fits exclu-
sively use the the calibration set taken from the BAM
catalog, test-particle data and the calibration set of SXS
waveforms listed in Appendix B. The exception is ∆t21,
which is informed additionally by the test set of SXS

6 The reader should note that the fits are done versus the spin of
the remnant âf , which in turn is obtained from the fits presented
in Ref. [60].

waveforms.

2. Modeling the peak of each multipole

Firs of all, let us recall some symmetric combinations
of the spin variables that will be useful later on

Ŝ ≡ S1 + S2

M2
=

1

2
(ã0 +X12ã12) , (D1)

S̄ ≡ S1 − S2

M2
=

1

2
(X12ã0 + ã12) . (D2)

We refer to the multipolar decomposition of the strain

h ≡ h+ − ih× =
∑

`,m

h`m−2Y`m(ι, ϕ) . (D3)

Here −2Y`m are the s = 2 spin-weighted, spherical har-
monics. ι and ϕ are the polar (with respect to the di-
rection of the orbital angular momentum) and azimuthal
angle in the source frame. Each multipole is decomposed
in amplitude A`m and a phase φ`m as

h`m = A`me
iφ`m . (D4)

The instantaneous GW frequency ω`m is defined as

ω`m ≡ −φ̇`m, (D5)



23

TABLE VIII. This table summarizes the SXS NR waveform
data in the validation set. From left to right, the columns re-
port: the SXS simulation number, mass ratio and dimension-
less spins spins χi, and the maximum value of the EOB/NR
unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

133 SXS:BBH:1135 (1,−0.4375,−0.4375) 0.0251

134 SXS:BBH:1122 (1, 0.4376, 0.4376) 0.1711

135 SXS:BBH:1137 (1,−0.9692,−0.9692) 0.1015

136 SXS:BBH:1123 (1, 0.5, 0.5) 0.1796

137 SXS:BBH:2102 (1, 0.6, 0.6) 0.1394

138 SXS:BBH:2089 (1,−0.6,−0.6) 0.0469

139 SXS:BBH:2104 (1, 0.8, 0.8) 0.0523

140 SXS:BBH:1475 (1,−0.8,−0.8) 0.0301

141 SXS:BBH:1114 (1, 0.2,−0.0) 0.1213

142 SXS:BBH:2086 (1,−0.8,−0.8) 0.0449

143 SXS:BBH:1141 (1,−0.4376,−0.4376) 0.0273

144 SXS:BBH:0328 (1, 0.8, 0.8) 0.0519

145 SXS:BBH:1477 (1, 0.8, 0.8) 0.0522

146 SXS:BBH:0366 (1, 0.2,−0.0) 0.1120

147 SXS:BBH:1134 (1,−0.4375,−0.4375) 0.0283

148 SXS:BBH:0329 (1,−0.8,−0.8) 0.0448

149 SXS:BBH:2092 (1, 0.5,−0.5) 0.0795

150 SXS:BBH:1124 (1, 1.0, 1.0) 0.0597

151 SXS:BBH:1509 (1,−0.244,−0.1) 0.0442

152 SXS:BBH:2096 (1,−0.3,−0.0) 0.0469

153 SXS:BBH:2097 (1, 0.3,−0.0) 0.1267

154 SXS:BBH:1506 (1, 0.4589,−0.32) 0.0987

155 SXS:BBH:0370 (1, 0.4,−0.2) 0.1074

156 SXS:BBH:0459 (1,−0.4, 0.2) 0.0547

157 SXS:BBH:0304 (1,−0.5, 0.5) 0.0437

158 SXS:BBH:0327 (1,−0.8, 0.8) 0.0758

159 SXS:BBH:1497 (1, 0.6824, 0.6677) 0.0836

160 SXS:BBH:0330 (1,−0.8, 0.8) 0.0758

161 SXS:BBH:2085 (1,−0.9, 0.9) 0.0737

162 SXS:BBH:0418 (1, 0.4,−0.0) 0.1385

163 SXS:BBH:0415 (1,−0.4,−0.0) 0.0172

164 SXS:BBH:2091 (1,−0.6, 0.6) 0.0778

165 SXS:BBH:0436 (1,−0.4,−0.2) 0.0309

166 SXS:BBH:1144 (1,−0.4376,−0.4376) 0.0409

167 SXS:BBH:2087 (1,−0.8, 0.8) 0.0754

168 SXS:BBH:1476 (1,−0.8, 0.8) 0.0761

169 SXS:BBH:1507 (1, 0.5067, 0.288) 0.1112

170 SXS:BBH:0376 (1, 0.6,−0.4) 0.1021

171 SXS:BBH:0394 (1, 0.6, 0.4) 0.1368

172 SXS:BBH:0462 (1,−0.6,−0.4) 0.0441

173 SXS:BBH:0447 (1,−0.6, 0.4) 0.0524

174 SXS:BBH:2090 (1,−0.6,−0.0) 0.0356

175 SXS:BBH:2088 (1,−0.625,−0.25) 0.0524

176 SXS:BBH:2101 (1, 0.6, 0.0) 0.0972

177 SXS:BBH:0585 (1,−0.6, 0.0) 0.0293

178 SXS:BBH:1481 (1, 0.7937, 0.7312) 0.0584

179 SXS:BBH:2103 (1, 0.65, 0.25) 0.1376

180 SXS:BBH:1502 (1, 0.7,−0.42) 0.1087

181 SXS:BBH:1503 (1, 0.7266, 0.1356) 0.0832

182 SXS:BBH:1495 (1, 0.7791, 0.5337) 0.0360

183 SXS:BBH:1501 (1, 0.7527, 0.088) 0.1291

TABLE IX. This table summarizes the SXS NR waveform data
in the validation set, with mass-ratios 1 ≤ q ≤ 1.25. From
left to right, the columns report: the SXS simulation number,
mass ratio and dimensionless spins spins χi, and the maxi-
mum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

184 SXS:BBH:2094 (1,−0.8,−0.4) 0.0560

185 SXS:BBH:2095 (1, 0.8,−0.4) 0.0729

186 SXS:BBH:1499 (1,−0.7546, 0.3429) 0.0347

187 SXS:BBH:2098 (1,−0.8, 0.4) 0.0348

188 SXS:BBH:2099 (1, 0.8, 0.4) 0.0753

189 SXS:BBH:1500 (1,−0.7686,−0.2) 0.0477

190 SXS:BBH:1492 (1,−0.7934,−0.4707) 0.0444

191 SXS:BBH:0326 (1, 0.8,−0.0) 0.0787

192 SXS:BBH:0325 (1,−0.8, 0.0) 0.0427

193 SXS:BBH:2106 (1, 0.9, 0.5) 0.0409

194 SXS:BBH:2083 (1,−0.9,−0.5) 0.0525

195 SXS:BBH:2093 (1, 0.9,−0.5) 0.1101

196 SXS:BBH:2084 (1,−0.9, 0.0) 0.0673

197 SXS:BBH:2100 (1,−0.9, 0.5) 0.0313

198 SXS:BBH:2105 (1, 0.9, 0.0) 0.1028

199 SXS:BBH:1376 (1, 0.25, 0.5) 0.1951

200 SXS:BBH:1498 (1, 0.2232,−0.7837) 0.0204

201 SXS:BBH:1351 (1,−0.2281,−0.0) 0.0522

202 SXS:BBH:0544 (1.08,−0.0, 0.6865) 0.2017

203 SXS:BBH:0518 (1.1088,−0.1367, 0.4346) 0.1139

204 SXS:BBH:1513 (1.1474,−0.1052,−0.0091) 0.0614

205 SXS:BBH:1352 (1.1506, 0.71,−0.6717) 0.1258

206 SXS:BBH:1496 (1.1584, 0.8, 0.0285) 0.1476

207 SXS:BBH:0626 (1.1745,−0.8277, 0.7341) 0.0249

208 SXS:BBH:0311 (1.186, 0.42, 0.38) 0.1231

209 SXS:BBH:0523 (1.2,−0.2073,−0.47) 0.0338

210 SXS:BBH:0312 (1.2, 0.39,−0.48) 0.1018

211 SXS:BBH:0313 (1.2175, 0.38,−0.52) 0.0977

212 SXS:BBH:1353 (1.2183, 0.3308,−0.4382) 0.0966

213 SXS:BBH:0318 (1.22, 0.33,−0.44) 0.0953

214 SXS:BBH:0319 (1.22, 0.33,−0.44) 0.1160

215 SXS:BBH:0309 (1.2212, 0.33,−0.44) 0.2148

216 SXS:BBH:0305 (1.2212, 0.33,−0.44) 0.0956

217 SXS:BBH:0314 (1.2278, 0.31,−0.46) 0.0909

218 SXS:BBH:0307 (1.2278, 0.32,−0.58) 0.0424

219 SXS:BBH:1490 (1.2456, 0.4119, 0.7593) 0.1680

220 SXS:BBH:0465 (1.25, 0.6,−0.8) 0.0666

221 SXS:BBH:0486 (1.25, 0.0, 0.8) 0.1672

222 SXS:BBH:0438 (1.25,−0.6,−0.8) 0.0377

223 SXS:BBH:0559 (1.25,−0.2, 0.8) 0.1213

224 SXS:BBH:0475 (1.25,−0.4, 0.8) 0.0731

225 SXS:BBH:0409 (1.25, 0.4, 0.8) 0.1693

226 SXS:BBH:0503 (1.25,−0.6, 0.8) 0.0395

227 SXS:BBH:0535 (1.25, 0.2,−0.8) 0.0616

228 SXS:BBH:0386 (1.25,−0.2,−0.8) 0.0373

229 SXS:BBH:0398 (1.25,−0.0,−0.8) 0.0453

230 SXS:BBH:1223 (1.25, 0.38,−0.46) 0.1079

231 SXS:BBH:0591 (1.25, 0.0, 0.4) 0.0766

232 SXS:BBH:0464 (1.25,−0.0,−0.4) 0.0516

233 SXS:BBH:0466 (1.25,−0.8,−0.4) 0.0401

234 SXS:BBH:0377 (1.25,−0.8, 0.4) 0.0446
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TABLE X. This table summarizes the SXS NR waveform data
in the validation set, with mass-ratios 1.25 ≤ q ≤ 1.75. From
left to right, the columns report: the SXS simulation number,
mass ratio and dimensionless spins spins χi, and the maxi-
mum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

235 SXS:BBH:0525 (1.25, 0.8,−0.4) 0.1776

236 SXS:BBH:0507 (1.25, 0.8, 0.4) 0.1107

237 SXS:BBH:1487 (1.2545,−0.8, 0.5118) 0.0418

238 SXS:BBH:0315 (1.2718, 0.32,−0.56) 0.0907

239 SXS:BBH:1508 (1.2791, 0.2928,−0.0741) 0.1236

240 SXS:BBH:1474 (1.2821, 0.7237,−0.8) 0.0891

241 SXS:BBH:1493 (1.2828, 0.01, 0.8) 0.1597

242 SXS:BBH:1505 (1.3256,−0.0949, 0.5545) 0.0950

243 SXS:BBH:1471 (1.33,−0.7752,−0.8) 0.0458

244 SXS:BBH:1482 (1.3857,−0.5813, 0.8) 0.0278

245 SXS:BBH:0625 (1.4,−0.7109, 0.22) 0.0446

246 SXS:BBH:1473 (1.45, 0.7, 0.7877) 0.1585

247 SXS:BBH:1511 (1.4662, 0.0278,−0.1) 0.0621

248 SXS:BBH:1146 (1.5, 0.95, 0.9493) 0.7163

249 SXS:BBH:0437 (1.5,−0.2,−0.8) 0.0433

250 SXS:BBH:0404 (1.5,−0.0,−0.8) 0.0577

251 SXS:BBH:0579 (1.5, 0.4,−0.8) 0.1247

252 SXS:BBH:0361 (1.5,−0.0, 0.8) 0.0815

253 SXS:BBH:0369 (1.5, 0.6,−0.8) 0.1771

254 SXS:BBH:0392 (1.5,−0.2, 0.8) 0.0630

255 SXS:BBH:0441 (1.5, 0.6, 0.8) 0.1344

256 SXS:BBH:0385 (1.5, 0.8,−0.0) 0.1593

257 SXS:BBH:0397 (1.5,−0.8,−0.4) 0.0334

258 SXS:BBH:0440 (1.5,−0.0, 0.4) 0.0745

259 SXS:BBH:0372 (1.5, 0.8,−0.4) 0.2114

260 SXS:BBH:1470 (1.5191,−0.7286,−0.7893) 0.0441

261 SXS:BBH:0499 (1.5238, 0.01, 0.7367) 0.0968

262 SXS:BBH:1480 (1.5482,−0.8,−0.31) 0.0339

263 SXS:BBH:1479 (1.55,−0.557,−0.8) 0.0402

264 SXS:BBH:0519 (1.5655, 0.6384, 0.4125) 0.0731

265 SXS:BBH:1488 (1.5933,−0.3276, 0.7472) 0.0336

266 SXS:BBH:1491 (1.66, 0.2,−0.7) 0.0911

267 SXS:BBH:0529 (1.7,−0.0066, 0.527) 0.0599

268 SXS:BBH:1465 (1.708,−0.7876, 0.7675) 0.0786

269 SXS:BBH:0510 (1.711,−0.0238,−0.7464) 0.0607

270 SXS:BBH:0501 (1.75, 0.6, 0.8) 0.1072

271 SXS:BBH:0423 (1.75, 0.0,−0.8) 0.0662

272 SXS:BBH:0488 (1.75, 0.6,−0.8) 0.2127

273 SXS:BBH:0473 (1.75, 0.2,−0.8) 0.0991

274 SXS:BBH:0435 (1.75, 0.4, 0.8) 0.0978

275 SXS:BBH:0355 (1.75,−0.6, 0.8) 0.0447

276 SXS:BBH:0414 (1.75,−0.4,−0.8) 0.0416

277 SXS:BBH:0566 (1.75, 0.2, 0.8) 0.0923

278 SXS:BBH:0512 (1.75,−0.6,−0.8) 0.0192

279 SXS:BBH:0451 (1.75, 0.0, 0.4) 0.0498

280 SXS:BBH:0550 (1.75,−0.2, 0.8) 0.0509

281 SXS:BBH:0382 (1.75,−0.0, 0.8) 0.0658

282 SXS:BBH:0402 (1.75,−0.8, 0.4) 0.0840

283 SXS:BBH:0371 (1.75,−0.0,−0.4) 0.0522

284 SXS:BBH:0454 (1.75,−0.8,−0.4) 0.0237

285 SXS:BBH:0552 (1.75, 0.8,−0.4) 0.2288

TABLE XI. This table summarizes the SXS NR waveform data
in the validation set, with mass-ratios 1.75 ≤ q ≤ 2. From
left to right, the columns report: the SXS simulation number,
mass ratio and dimensionless spins spins χi, and the maxi-
mum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

286 SXS:BBH:0388 (1.75, 0.8, 0.4) 0.1073

287 SXS:BBH:1510 (1.7762, 0.0332, 0.2888) 0.0525

288 SXS:BBH:0545 (1.787, 0.0,−0.79) 0.0672

289 SXS:BBH:1469 (1.8511, 0.8, 0.669) 0.1509

290 SXS:BBH:0403 (1.8808, 0.0,−0.052) 0.0415

291 SXS:BBH:0555 (1.89,−0.0, 0.5288) 0.0458

292 SXS:BBH:1466 (1.9, 0.7,−0.8) 0.1664

293 SXS:BBH:0580 (1.9293, 0.0154,−0.7813) 0.0718

294 SXS:BBH:0368 (1.9341,−0.0539, 0.25) 0.0247

295 SXS:BBH:0530 (1.9489, 0.0085, 0.5439) 0.0424

296 SXS:BBH:1478 (2, 0.8, 0.1263) 0.1251

297 SXS:BBH:1504 (2, 0.2458, 0.0787) 0.0430

298 SXS:BBH:0482 (2,−0.021,−0.1344) 0.0380

299 SXS:BBH:2113 (2,−0.3714, 0.85) 0.0578

300 SXS:BBH:2126 (2, 0.3715,−0.85) 0.0882

301 SXS:BBH:2122 (2, 0.1286, 0.85) 0.0632

302 SXS:BBH:0332 (2, 0.0, 0.8) 0.0467

303 SXS:BBH:2117 (2,−0.1287,−0.85) 0.0603

304 SXS:BBH:0399 (2, 0.2, 0.4) 0.0622

305 SXS:BBH:0333 (2, 0.8, 0.8) 0.1892

306 SXS:BBH:0410 (2, 0.6,−0.0) 0.1252

307 SXS:BBH:0331 (2,−0.0,−0.8) 0.0720

308 SXS:BBH:0407 (2,−0.0, 0.4) 0.0371

309 SXS:BBH:0375 (2,−0.0,−0.4) 0.0502

310 SXS:BBH:0584 (2,−0.4,−0.4) 0.0240

311 SXS:BBH:2107 (2,−0.8712, 0.85) 0.1517

312 SXS:BBH:0354 (2,−0.2, 0.4) 0.0219

313 SXS:BBH:2108 (2,−0.85,−0.85) 0.0779

314 SXS:BBH:0334 (2,−0.8,−0.8) 0.0306

315 SXS:BBH:0335 (2,−0.8, 0.8) 0.1034

316 SXS:BBH:2128 (2, 0.6,−0.6) 0.1222

317 SXS:BBH:2121 (2, 0.0, 0.6) 0.0395

318 SXS:BBH:0574 (2, 0.4, 0.4) 0.0800

319 SXS:BBH:2132 (2, 0.8713,−0.85) 0.2481

320 SXS:BBH:2131 (2, 0.85, 0.85) 0.3730

321 SXS:BBH:2109 (2,−0.6,−0.6) 0.0326

322 SXS:BBH:2119 (2, 0.0,−0.3) 0.0455

323 SXS:BBH:0599 (2, 0.2, 0.0) 0.0667

324 SXS:BBH:1112 (2,−0.2,−0.0) 0.0236

325 SXS:BBH:2118 (2, 0.0,−0.6) 0.0594

326 SXS:BBH:2127 (2, 0.5, 0.5) 0.0749

327 SXS:BBH:2114 (2,−0.3,−0.3) 0.0227

328 SXS:BBH:2115 (2,−0.3, 0.0) 0.0199

329 SXS:BBH:2123 (2, 0.3,−0.3) 0.0977

330 SXS:BBH:2116 (2,−0.3, 0.3) 0.0249

331 SXS:BBH:2124 (2, 0.3,−0.0) 0.0839

332 SXS:BBH:2130 (2, 0.6, 0.6) 0.0678

333 SXS:BBH:0448 (2, 0.4,−0.4) 0.1296

334 SXS:BBH:2120 (2, 0.0, 0.3) 0.0356

335 SXS:BBH:2111 (2,−0.6, 0.6) 0.0747

336 SXS:BBH:0554 (2, 0.2,−0.4) 0.0839
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TABLE XII. This table summarizes the SXS NR waveform
data in the validation set, with mass-ratios 2 ≤ q ≤ 3. From
left to right, the columns report: the SXS simulation number,
mass ratio and dimensionless spins spins χi, and the maxi-
mum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

337 SXS:BBH:2112 (2,−0.5,−0.5) 0.0274

338 SXS:BBH:2129 (2, 0.6,−0.0) 0.1237

339 SXS:BBH:0461 (2,−0.6, 0.0) 0.0346

340 SXS:BBH:0513 (2, 0.6,−0.4) 0.1823

341 SXS:BBH:0387 (2,−0.6,−0.4) 0.0236

342 SXS:BBH:2125 (2, 0.3, 0.3) 0.0749

343 SXS:BBH:0412 (2,−0.2,−0.4) 0.0302

344 SXS:BBH:2110 (2,−0.6,−0.0) 0.0538

345 SXS:BBH:1148 (2, 0.43, 0.51) 0.0778

346 SXS:BBH:1147 (2, 0.43,−0.51) 0.0823

347 SXS:BBH:1494 (2.208,−0.4741,−0.3891) 0.0243

348 SXS:BBH:1467 (2.23,−0.5624, 0.8) 0.0574

349 SXS:BBH:1459 (2.2589, 0.7631, 0.8) 0.1752

350 SXS:BBH:1468 (2.2675, 0.5148, 0.8) 0.0563

351 SXS:BBH:0631 (2.325,−0.1256,−0.3633) 0.0334

352 SXS:BBH:1453 (2.3521, 0.8,−0.7843) 0.3789

353 SXS:BBH:1472 (2.3657,−0.8,−0.116) 0.0253

354 SXS:BBH:1512 (2.4, 0.2393,−0.0) 0.0599

355 SXS:BBH:1454 (2.4541,−0.8,−0.7336) 0.0660

356 SXS:BBH:1462 (2.6312,−0.8, 0.5107) 0.0760

357 SXS:BBH:1461 (2.883,−0.4487,−0.8) 0.0535

358 SXS:BBH:1484 (2.9,−0.56, 0.3) 0.0477

359 SXS:BBH:1387 (3, 0.47,−0.36) 0.1006

360 SXS:BBH:1456 (3, 0.745, 0.7) 0.0508

361 SXS:BBH:2151 (3, 0.2314,−0.8493) 0.1204

362 SXS:BBH:2146 (3,−0.2312, 0.85) 0.0615

363 SXS:BBH:2133 (3,−0.7314, 0.85) 0.1448

364 SXS:BBH:2145 (3,−0.2687,−0.8495) 0.0579

365 SXS:BBH:2152 (3, 0.2687, 0.85) 0.0655

366 SXS:BBH:2156 (3, 0.4,−0.6) 0.1216

367 SXS:BBH:2135 (3,−0.6, 0.6) 0.1004

368 SXS:BBH:2141 (3,−0.4, 0.6) 0.0529

369 SXS:BBH:2142 (3,−0.3,−0.3) 0.0226

370 SXS:BBH:1152 (3, 0.7, 0.6) 0.0175

371 SXS:BBH:1151 (3, 0.7, 0.6) 0.0172

372 SXS:BBH:1150 (3, 0.7, 0.6) 0.0161

373 SXS:BBH:2139 (3,−0.5,−0.5) 0.0331

374 SXS:BBH:1170 (3,−0.7,−0.6) 0.0699

375 SXS:BBH:1382 (3, 0.7, 0.6) 0.0341

376 SXS:BBH:2157 (3, 0.4, 0.6) 0.0230

377 SXS:BBH:2136 (3,−0.6,−0.6) 0.0418

378 SXS:BBH:1172 (3,−0.7,−0.6) 0.0483

379 SXS:BBH:1171 (3,−0.7,−0.6) 0.0512

380 SXS:BBH:2153 (3, 0.3,−0.3) 0.0665

381 SXS:BBH:2159 (3, 0.6,−0.6) 0.1828

382 SXS:BBH:1175 (3,−0.7,−0.6) 0.0484

383 SXS:BBH:1174 (3,−0.7,−0.6) 0.0484

384 SXS:BBH:1173 (3,−0.7,−0.6) 0.0481

385 SXS:BBH:2140 (3,−0.4,−0.6) 0.0374

386 SXS:BBH:2150 (3, 0.0, 0.6) 0.0238

387 SXS:BBH:2147 (3,−0.0,−0.6) 0.0562

TABLE XIII. This table summarizes the SXS NR waveform
data in the validation set, with mass-ratios 3 ≤ q ≤ 5. From
left to right, the columns report: the SXS simulation number,
mass ratio and dimensionless spins spins χi, and the maxi-
mum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

388 SXS:BBH:2138 (3,−0.6, 0.4) 0.0745

389 SXS:BBH:2148 (3,−0.0,−0.3) 0.0146

390 SXS:BBH:2154 (3, 0.3,−0.0) 0.0206

391 SXS:BBH:2134 (3,−0.6,−0.0) 0.0433

392 SXS:BBH:2149 (3,−0.0, 0.3) 0.0190

393 SXS:BBH:2163 (3, 0.6, 0.6) 0.0201

394 SXS:BBH:2143 (3,−0.3,−0.0) 0.0178

395 SXS:BBH:2160 (3, 0.6,−0.4) 0.1359

396 SXS:BBH:2162 (3, 0.6, 0.4) 0.0166

397 SXS:BBH:2144 (3,−0.3, 0.3) 0.0275

398 SXS:BBH:2137 (3,−0.6,−0.4) 0.0299

399 SXS:BBH:2158 (3, 0.5, 0.5) 0.0180

400 SXS:BBH:2155 (3, 0.3, 0.3) 0.0228

401 SXS:BBH:2161 (3, 0.6, 0.0) 0.0593

402 SXS:BBH:1485 (3.093, 0.3527,−0.4) 0.0830

403 SXS:BBH:1446 (3.1541,−0.8, 0.7766) 0.1093

404 SXS:BBH:1447 (3.16, 0.74, 0.8) 0.0588

405 SXS:BBH:1483 (3.1656, 0.5607,−0.1941) 0.0781

406 SXS:BBH:1457 (3.2452, 0.5449, 0.8) 0.0180

407 SXS:BBH:0317 (3.3271, 0.5226,−0.4482) 0.1074

408 SXS:BBH:1489 (3.4647, 0.3,−0.1717) 0.0421

409 SXS:BBH:1452 (3.6414, 0.8,−0.4265) 0.2995

410 SXS:BBH:1486 (3.7227, 0.4272,−0.0335) 0.0286

411 SXS:BBH:1458 (3.8,−0.0633, 0.8) 0.0252

412 SXS:BBH:1932 (4,−0.8, 0.8) 0.1056

413 SXS:BBH:1907 (4, 0.0, 0.8) 0.0242

414 SXS:BBH:1966 (4,−0.4,−0.8) 0.0281

415 SXS:BBH:1962 (4,−0.4, 0.8) 0.0686

416 SXS:BBH:1936 (4,−0.8,−0.8) 0.1017

417 SXS:BBH:1942 (4, 0.4,−0.8) 0.1111

418 SXS:BBH:1911 (4,−0.0,−0.8) 0.0653

419 SXS:BBH:1938 (4, 0.4, 0.8) 0.0259

420 SXS:BBH:2018 (4,−0.8, 0.4) 0.0557

421 SXS:BBH:1937 (4, 0.4,−0.0) 0.0204

422 SXS:BBH:1417 (4, 0.4, 0.5) 0.0484

423 SXS:BBH:2036 (4,−0.0,−0.4) 0.0332

424 SXS:BBH:2013 (4, 0.0, 0.4) 0.0137

425 SXS:BBH:1961 (4,−0.4, 0.0) 0.0231

426 SXS:BBH:2014 (4, 0.8, 0.4) 0.1074

427 SXS:BBH:1418 (4,−0.4,−0.5) 0.0644

428 SXS:BBH:1931 (4,−0.8, 0.0) 0.0304

429 SXS:BBH:2040 (4,−0.8,−0.4) 0.0193

430 SXS:BBH:1451 (4.0556, 0.3134,−0.8) 0.0606

431 SXS:BBH:1450 (4.0673,−0.2835,−0.8) 0.0349

432 SXS:BBH:1449 (4.1856,−0.8,−0.3444) 0.0179

433 SXS:BBH:1434 (4.3672, 0.8, 0.8) 0.0352

434 SXS:BBH:1445 (4.6713,−0.5, 0.8) 0.1436

435 SXS:BBH:1463 (5, 0.6131, 0.2406) 0.1064

436 SXS:BBH:1111 (5,−0.9,−0.0) 0.0417

437 SXS:BBH:1428 (5.5165,−0.8,−0.7) 0.0660

438 SXS:BBH:1440 (5.6383, 0.77, 0.3063) 0.2936
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TABLE XIV. This table summarizes the SXS NR waveform
data in the validation set, with mass-ratios q ≥ 5. From
left to right, the columns report: the SXS simulation number,
mass ratio and dimensionless spins spins χi, and the maxi-
mum value of the EOB/NR unfaithfulness F̄ , see Fig. 2.

# id (q, χ1, χ2) max(F̄ )[%]

439 SXS:BBH:1443 (5.6806, 0.4079,−0.7372) 0.0220

440 SXS:BBH:1432 (5.8391, 0.6576, 0.7925) 0.3098

441 SXS:BBH:1438 (5.8683, 0.1258, 0.8) 0.0453

442 SXS:BBH:1444 (5.937,−0.0631,−0.7582) 0.0307

443 SXS:BBH:1437 (6, 0.8, 0.1475) 0.3598

444 SXS:BBH:1425 (6.1181,−0.8, 0.6727) 0.1102

445 SXS:BBH:1436 (6.2778, 0.0095,−0.8) 0.0337

446 SXS:BBH:1424 (6.4641,−0.6566,−0.8) 0.0487

447 SXS:BBH:1439 (6.4819, 0.72,−0.3192) 0.3839

448 SXS:BBH:1464 (6.5349,−0.0523,−0.3225) 0.0180

449 SXS:BBH:1442 (6.5857,−0.71,−0.1785) 0.0287

450 SXS:BBH:1435 (6.5891,−0.7893, 0.0673) 0.0324

451 SXS:BBH:1448 (6.9451,−0.4814, 0.5248) 0.0880

452 SXS:BBH:1427 (7.4107,−0.61,−0.731) 0.0365

453 SXS:BBH:1429 (7.7476,−0.2,−0.7788) 0.0262

454 SXS:BBH:1421 (7.809,−0.6081, 0.8) 0.1432

455 SXS:BBH:1422 (8,−0.8,−0.4588) 0.0469

456 SXS:BBH:1426 (8, 0.4839, 0.7479) 0.1885

457 SXS:BBH:1420 (8,−0.8, 0.8) 0.1431

458 SXS:BBH:1419 (8,−0.8,−0.8) 0.0666

459 SXS:BBH:1423 (8,−0.6,−0.7525) 0.0185

460 SXS:BBH:1430 (8, 0.2844,−0.7515) 0.0162

461 SXS:BBH:1441 (8, 0.6,−0.478) 0.2715

462 SXS:BBH:1433 (8,−0.7372, 0.2074) 0.0509

463 SXS:BBH:1431 (8, 0.0779,−0.7759) 0.0278

464 SXS:BBH:1455 (8,−0.4, 0.0) 0.0311

465 SXS:BBH:1460 (8, 0.1237, 0.1087) 0.0126

where the dot indicate the time derivative. Motivated
by the leading-order analytical behavior of each multi-
pole, we introduce the following rescaled multipolar am-
plitudes Â`m:

Â22 ≡ A22/
[
ν
(

1− Ŝω22

)]
, (D6)

Â21 ≡ A21/ν, (D7)

Â33 ≡ A33/ν, (D8)

Â32 ≡ A32/
[
ν
(

1− ã0 (ω32/2)
1/3
)]
, (D9)

Â44 ≡ A44/

[
ν

(
1− 1

2
Ŝω44

)]
, (D10)

Â43 ≡ A43/ν, (D11)

Â42 ≡ A42/
[
ν
(

1− ã0 (ω42/2)
1/3
)]
. (D12)

Then one defines the time where each (`,m) mode peaks
as

tpeak
`m ≡ t

(
max

[
Â`m

])
, (D13)

and the merger time, that is defined as the peak of the
(2, 2) mode, i.e.

tmrg ≡ tpeak
22 . (D14)

One then defines the time-delay between merger time and
the time where each mode peak, as

∆t`m ≡ tpeak
`m − tmrg (D15)

For shortness, we denote quantities calculated at a given
time using the corresponding superscript, e.g.

Âpeak
`m ≡ Â`m

(
tpeak
`m

)
. (D16)

Let us now give all details on a mode-by-mode basis.

a. (`,m) = (2, 2) multipole

We start by describing the template with which ωmrg
22

and Âmrg
22 were fitted. The same structure is used both

for the amplitude and frequency at merger. We here
present it explicitly for ωmrg

22 , w hile the same for Âmrg
22 is

obtained by suitably changing the coefficient labels. The
frequency at merger ωmrg

22 is factorized as

ωmrg
22 = ω

mrg0
22 ωorb

22 (ν)ωŜ22(Ŝ,X12) , (D17)

where ω
mrg0
22 is the value of the merger frequency obtained

from a nonspinning test-particle waveform (see e.g. Ta-
ble 3 of [45]). The nonspinning ν-dependence is then in-
troduced by fitting the nonspinning data with a template
of the form

ωorb
22 (ν) = 1 + aω1 ν + aω2 ν

2 , (D18)

where the coefficients aωi are determined using 19 non-
spinning SXS waveforms with mass ratios 1 ≤ m1/m2 ≤
10. The spin dependence is introduced in two steps: first
one accurately fits the spin-dependence of equal-mass
data. Then, additional flexibility to incorporate the spin-
ning, unequal-mass data is introduced. More precisely
the equal-mass, spin-dependence is obtained with

ωŜ22(Ŝ,X12 = 0) =
1 + b

ωm1=m2
1 Ŝ + b

ωm1=m2
2 Ŝ2

1 + b
ωm1=m2
3 Ŝ

, (D19)

which is informed by 39 equal-mass, spin-aligned, SXS
waveforms. The additional dependence on mass ratio is
incorporated substituting into Eq. (D19)

b
ωm1=m2
i → b

ωm1=m2
i + cωi1X12

1 + cωi2X12
, (D20)

with i = {1, 3}. where the additional coefficients cij are
fitted using test-particle data, 77 additional SXS spinning
waveforms and 14 additional NR waveforms from BAM.
The coefficients are explicitly given in Table XVI.
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TABLE XV. This table summarizes the long-inspiral SXS NR waveform data. From left to right, columns report: the SXS

simulation number, mass ratio and dimensionless spins χ1,2, number of orbits N , eccentricity ε and the maximum value of the
unfaithfulness F̄ computed between: the two highest levels of resolution (L2/L3); between N = 2 and N = 3 extrapolation
to infinity and between EOB and NR. Datasets from SXS:BBH:466 and SXS:BBH:470 are part of the validation set, while the
indepth study of the other waveforms is left for future work. These waveforms are discussed in Appendix A.

# id (q, χ1, χ2) N ε [10−3] max(F̄L2/L3)[%] max(F̄N2/N3)[%] max(F̄ )[%]

466 SXS:BBH:1412 (1.63,+0.40,−0.30) 145.1 0.4450 0.9458 0.0019 0.1292

467 SXS:BBH:1413 (1.41,+0.50,+0.40) 145.4 < 1.0 1.5130 0.0021 0.1509

468 SXS:BBH:1414 (1.83,−0.50,+0.40) 143.1 < 1.6 1.1665 0.0009 0.1158

469 SXS:BBH:1415 (1.50,+0.50,+0.50) 147.7 < 0.043 2.0778 0.0032 0.7218

470 SXS:BBH:1416 (1.78,−0.40,−0.40) 139.0 < 1.7 0.7734 0.0003 0.0340

471 SXS:BBH:1385 (1.23,+0.10,−0.16) 107.4 < 1.7 0.0907 0.0036 0.4001

472 SXS:BBH:1389 (1.63,−0.30,+0.16) 140.4 0.3521 1.0402 0.0034 2.0221

473 SXS:BBH:1390 (1.42,−0.16,+0.10) 137.9 0.1895 1.3064 0.0004 3.0090

474 SXS:BBH:1391 (1.83,−0.33,−0.03) 142.9 < 1.3 1.0075 0.0016 0.6159

475 SXS:BBH:1392 (1.51,+0.17,−0.25) 140.6 0.0548 1.3799 0.0679 3.3064

476 SXS:BBH:1393 (1.79,−0.00,+0.11) 146.4 < 1.6 1.0599 0.0007 3.9967

TABLE XVI. Explicit coefficients and their errors for the merger frequency and amplitude fits of the (2, 2) mode. The analytic
template of the fit is defined in Eqs. (D17) – (D20).

ω
mrg0
22 = 0.273356 Â

mrg=0
22 = 1.44959

aω1 = 0.84074 ±0.014341 aÂ1 = −0.041285 ±0.0078878

aω2 = 1.6976 ±0.075488 aÂ2 = 1.5971 ±0.041521

b
ωm1=m2
1 = −0.42311 ±0.088583 b

Âm1=m2
1 = −0.74124 ±0.016178

b
ωm1=m2
2 = −0.066699 ±0.042978 b

Âm1=m2
2 = −0.088705 ±0.0081611

b
ωm1=m2
3 = −0.83053 ±0.084516 b

Âm1=m2
3 = −1.0939 ±0.015318

cω11 = 0.15873 ±0.1103 cÂ11 = 0.44467 ±0.037352

cω12 = −0.43361 ±0.2393 cÂ12 = −0.32543 ±0.081211

cω21 = 0.60589 ±0.076215 cÂ31 = 0.45828 ±0.066062

cω22 = −0.71383 ±0.096828 cÂ32 = −0.21245 ±0.080254

b. (`,m) = (2, 1) multipole

The procedure followed for the subdominant modes is
similar to what is done for the (2, 2). There are however
some differences. First of all, the peak time shift ∆t`m
is also fitted to NR simulations. Second, basing our-
selves to the analytical behavior of the multipolar wave-
form, we have decided to use different factorizations and
different variables to model each mode. For example,
the (2, 1) multipole (and every m-odd mode) vanishes
because of symmetry in the equal-mass equal-spin case.
This has brought us to consider the following factoriza-

tion for Âpeak
21 , which is written as

Âpeak
21 = Â

peak0
21 X12Â

orb
21 (ν) + ÂSpin

21

(
S̄, ν

)
. (D21)

where Â
peak0
21 is the peak amplitude in the test-particle

limit. The factor Âorb
21 is informed by non-spinning wave-

forms and is fitted with the template

Âorb
21 (ν) =

1 + aÂ21
1 ν + aÂ21

2 ν2

1 + aÂ21
3 ν

. (D22)

The spin dependence is first captured in the test-particle
limit with the function

ÂSpin
21 (S̄, ν = 0) =

1 + b
Â0

21
1 S̄ + b

Â0
21

2 S̄2

1 + b
Â0

21
3 S̄

. (D23)

The ν-dependence is then modeled via the replacement

b
Â0

21
i → b

Â0
21

i + cÂ21
i1 ν + cÂ21

i2 ν2 , (D24)

with i = {1, 2, 3}.
The gravitational wave frequency ω21 is instead factor-

ized as

ωpeak
21 = ω

peak0
21 ωorb

21 (ν)ωSpin
21

(
Ŝ, ν

)
, (D25)
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where the ν-dependence of the nonspinning part is mod-
eled as

ωorb
21 (ν) = 1 + aω21

1 ν + aω21
2 ν2 . (D26)

The spin dependence is fitted first in the test-particle
limit

ωSpin
21

(
Ŝ, ν = 0

)
= 1 + b

ω0
21

1 Ŝ + b
ω0

21
2 Ŝ2 , (D27)

and then extended to a general mass ratio via the re-
placement

b
ω0

21
i → b

ω0
21
i + cω21

i ν , (D28)

with i = {1, 2}.
Finally, to represent analytically the time-delay ∆t21

we use

∆t21 = ∆torb
21 (ν)∆tspin

21

(
S̄,X12

)
, (D29)

where the orbital behavior is factorized into two separate
parts before fitting with

∆torb
21 (ν) =

(
∆t021(1− 4ν) + ∆t

ν=1/4
21 4ν

)

×
(

1 + a∆t21
1 ν

√
1− 4ν

)
. (D30)

The factor ∆t
ν=1/4
21 is obtained by fitting a 2nd-order

polynomial, in â0 to the equal-mass waveforms. ∆t021 is
the test-particle value. The equal-mass spin behavior is
fitted with

∆tspin
21

(
S̄,X12 = 0

)
= 1 + b

∆t
ν=1/4
21

1 â0 + b
∆t

ν=1/4
21

2 â2
0 ,
(D31)

while the comparable mass case is extrapolated using

b
∆t

ν=1/4
21

1 → b
∆t021
1 + c∆t21i1 X12

1 + c∆t21i2 X12

, (D32)

with i = {1, 2}. The outcome of the fit, with the explicit
values of all coefficients, id found in Table XVII.

c. (`,m) = (3, 3) multipole

For this mode, the peak amplitude is written as the
sum of two terms

Âpeak
33 = Â

peak0
33 X12Â

orb
33 (ν) + ÂSpin

33 (ã12, ν) , (D33)

where Â
peak0
33 is the peak amplitude in the test particle

limit. The orbital term is modeled as

Âorb
33 (ν) =

1 + aÂ33
1 ν + aÂ33

2 ν2

1 + aÂ33
3 ν

. (D34)

The spin dependence is first fitted in the test-particle
limit using

ÂSpin
33 (ã12, ν = 0) =

b
Â0

33
1 ã12

1 + b
Â0

33
2 ã12

, (D35)

and then extended to comparable masses via the replace-
ments

b
Â0

33
1 → b

Â0
33

1 + cÂ33
11 ν

1 + cÂ33
12 ν + cÂ33

13 ν2
, (D36)

b
Â0

33
2 → b

Â0
33

2 + cÂ33
21 ν

1 + cÂ33
22 ν + cÂ33

23 ν2
. (D37)

The istantaneous frequency ω33 is factorized as

ωpeak
33 = ω

peak0
33 ωorb

33 (ν)ωSpin
33

(
Ŝ, ν

)
, (D38)

where

ωorb
33 (ν) = 1 + aω33

1 ν + aω33
2 ν2 . (D39)

The test-particle spin factor is given by

ωSpin
33

(
Ŝ, ν = 0

)
=

1 + b
ω0

33
1 Ŝ + b

ω0
33

2 Ŝ2

1 + b
ω0

33
3 Ŝ

, (D40)

while the general spin-dependence stems from the re-
placement

b
ω0

33
i → b

ω0
33
i + cω33

i1 ν

1 + cω33
i2 ν

, (D41)

with i = {1, 3}.
To describe ∆t33 we start from the expression

∆t33 = ∆t033∆torb
33 (ν)∆tspin

33

(
Ŝ, ν

)
, (D42)

with

∆torb
33 (ν) = 1 + a∆t33

1 ν + a∆t33
2 ν2 , (D43)

∆tspin
33

(
Ŝ, ν = 0

)
=

1 + b
∆t033
1 Ŝ + b

∆t033
2 Ŝ2

1 + b
∆t033
3 Ŝ

. (D44)

The spin-dependence is obtained from the replacement

b
∆t033
1 → b

∆t033
1 + c∆t33i1 ν

1 + c∆t33i2 ν
, (D45)

with i = {1, 2, 3}. The explicit values of the fit coeffi-
cients are listed in Table XVIII.

d. (`,m) = (3, 2) multipole

The peak amplitude of the (3, 2) mode is fitted with a
factorized template of the form

Âpeak
32 = Â

peak0
32 (1− 3ν) Âorb

32 (ν) ÂSpin
32

(
S̄, ν

)
, (D46)

where Â
peak0
32 is the peak amplitude of the mode in the

test-particle limit. The factor Âorb
32 is informed by non-

spinning waveforms and is fitted with the template

Âorb
32 (ν) =

1 + aÂ32
1 ν + aÂ32

2 ν2

1 + aÂ32
3 ν

. (D47)
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TABLE XVII. Explicit coefficients of the fits of Âpeak
21 , ωpeak

21 and ∆t21.

Â
peak0
21 = 0.523878 ω

peak0
21 = 0.290643 ∆t021 = 11.75925

aÂ21
1 = 3.33622 aω21

1 = −0.563075 ∆t
ν=1/4
21 = 6.6264

aÂ21
2 = 3.47085 aω21

2 = 3.28677 a∆t21
1 = −2.0728

aÂ21
3 = 4.76236

b
Â0

21
1 = −0.428186 b

ω0
21

1 = 0.179639 b
∆t021
1 = 0.0472289

b
Â0

21
2 = −0.335659 b

ω0
21

2 = −0.302122 b
∆t021
2 = 0.115583

b
Â0

21
3 = 0.828923

cÂ21
11 = 0.891139 cω21

1 = −1.20684 c∆t2111 = −1976.13

cÂ21
12 = −5.191702 cω21

2 = 0.425645 c∆t2112 = 3719.88

cÂ21
21 = 3.480139 c∆t2121 = −2545.41

cÂ21
22 = 10.237782 c∆t2122 = 5277.62

cÂ21
31 = −13.867475

cÂ21
32 = 10.525510

TABLE XVIII. Explicit coefficients of the fits of Âpeak
33 , ωpeak

33 and ∆t33.

Â
peak0
33 = 0.566017 ω

peak0
33 = 0.454128 ∆t033 = 3.42593

aÂ33
1 = −0.22523 aω33

1 = 1.08224 a∆t33
1 = 0.183349

aÂ33
2 = 3.0569 aω33

2 = 2.59333 a∆t33
2 = 4.22361

aÂ33
3 = −0.396851

b
Â0

33
1 = 0.100069 b

ω0
33

1 = −0.406161 b
∆t033
1 = −0.49791

b
Â0

33
2 = −0.455859 b

ω0
33

2 = −0.0647944 b
∆t033
2 = −0.18754

b
ω0
33

3 = −0.748126 b
∆t033
3 = −1.07291

cÂ33
11 = −0.401156 cω33

11 = 0.85777 c∆t3311 = −1.9478

cÂ33
12 = −0.141551 cω33

12 = −0.70066 c∆t3312 = 13.9828

cÂ33
13 = −15.4949 cω33

31 = 2.97025 c∆t3321 = 1.25084

cÂ33
21 = 1.84962 cω33

32 = −3.96242 c∆t3322 = −3.41811

cÂ33
22 = −2.03512 c∆t3331 = −1043.15

cÂ33
23 = −4.92334 c∆t3332 = 1033.85

The spin dependence is first captured for the test-particle
limit with the function

ÂSpin
32 (S̄, ν = 0) =

1 + b
Â0

32
1 ã0

1 + b
Â0

32
2 ã0

, (D48)

while the ν-dependence enters via the replacement

b
Â0

32
i → b

Â0
32

i + cÂ32
i1 ν + cÂ32

i2 ν2

1 + cÂ32
i3 ν + cÂ32

i4 ν2
, (D49)

with i = {1, 2}.
The instantaneous frequency ω32 mode is factorized as

ωpeak
32 = ω

peak0
32 ωorb

32 (ν)ωSpin
32 (ã0, ν) . (D50)

The orbital dependence is modeled as

ωorb
32 (ν) =

1 + aω32
1 ν + aω32

2 ν2

1 + aω32
3 ν + aω32

4 ν2
. (D51)

The spin dependence is fitted first for the equal-mass case

ωSpin
32 (ã0, ν = 1/4) =

1 + b
ω
ν=1/4
32

1 ã0 + b
ω
ν=1/4
32

2 ã2
0

1 + b
ω
ν=1/4
32

3 ã0

, (D52)

while the additional dependence on the mass ratio enters
via the replacements

b
ω0

32
i → b

ω
ν=1/4
32
i + cω32

i1 X12 + cω32
i2 X2

12

1 + cω32
i3 X12

, (D53)

with i = {1, 2}. The coefficients of Âpeak
32 and ωpeak

32 are
explicitly listed in Table XXIII.

Moving to ∆t32, it is given by

∆t32 = ∆t032∆torb
32 (ν)∆tspin

32

(
Ŝ, ν

)
, (D54)

where the orbital behavior is fitted with

∆torb
32 (ν) =

1 + a∆t32
1 ν + a∆t32

2 ν2

1 + a∆t32
3 ν + a∆t32

4 ν2
. (D55)
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The spin behavior is more complicated than the corre-
sponding term of other modes. This is separated into
two sectors, as

∆tspin
32

(
Ŝ, ν

)
= ∆t

spinν>1/5

32

(
Ŝ, ν

)
Θ (ν − 1/5)

+ ∆t
spinν≤1/5

32

(
Ŝ, ν

)
[1−Θ (ν − 1/5)] ,

(D56)

where Θ denotes the Heaviside step function. In the ν >
1/5 regime the fit is first done to the equal-mass case

∆t
spinν>1/5

32

(
Ŝ, ν = 1/4

)
=

1 + b
∆t

ν=1/4
32

1 Ŝ + b
∆t

ν=1/4
32

2 Ŝ2

1 + b
∆t

ν=1/4
32

3 Ŝ
.

(D57)
Then it is extrapolated following

b
∆t

ν=1/4
32

i → b
∆t

ν=1/4
32

1 + c∆t32i1 X12 + c∆t32i2 X2
12 + c∆t32i3 X3

12

1 + c∆t43i4 X12 + c∆t43i5 X2
12

,

(D58)
with i = {1, 2, 3}.

In the ν ≤ 1/5 regime the fit is first done to the equal-
mass case

∆t
spinν≤1/5

32

(
Ŝ, ν = 0

)
=

1 + b
∆t032
1 Ŝ + b

∆t032
2 Ŝ2

1 + b
∆t032
3 Ŝ

. (D59)

Then it is extrapolated following

b
∆t032
i → b

∆t032
1 + c∆t32i1 ν + c∆t32i2 ν2 + c∆t32i3 ν3

1 + c∆t32i4 ν + c∆t32i5 ν2
, (D60)

with i = {1, 2, 3}. The coefficients appearing in ∆t32 are
shown in Table XX.

e. (`,m) = (4, 4) multipole

The peak amplitude of the (4, 4) mode is fitted with

Âpeak
44 = Â

peak0
44 (1− 3ν) Âorb

44 (ν) ÂSpin
44

(
Ŝ, ν

)
, (D61)

where Â
peak0
44 is the peak amplitude of the mode in the

test-particle limit. The factor Âorb
44 is informed by non-

spinning waveforms and is fitted with the template

Âorb
44 (ν) =

1 + aÂ44
1 ν + aÂ44

2 ν2

1 + aÂ44
3 ν

. (D62)

The spin dependence is first captured for the test-particle
limit with the function

ÂSpin
44 (Ŝ, ν = 0) =

1 + b
Â0

44
1 Ŝ + b

Â0
44

2 Ŝ2

1 + b
Â0

44
3 Ŝ

, (D63)

TABLE XIX. Explicit coefficients of the fits of Âpeak
32 and

ωpeak
32 .

Â
peak0
32 = 0.199019 ω

peak0
32 = 0.451607

aÂ32
1 = −6.06831 aω32

1 = −9.13525

aÂ32
2 = 10.7505 aω32

2 = 21.488

aÂ32
3 = −3.68883 aω32

3 = −8.81384

aω32
4 = 20.0595

b
Â0

32
1 = −0.258378 b

ω
ν=1/4
32

1 = −0.458126

b
Â0

32
2 = 0.679163 b

ω
ν=1/4
32

2 = 0.0474616

b
ω
ν=1/4
32

3 = −0.486049

cÂ32
11 = 4.36263 cω32

11 = 3.25319

cÂ32
12 = −12.5897 cω32

12 = 0.535555

cÂ32
13 = −7.73233 cω32

13 = −8.07905

cÂ32
14 = 16.2082 cω32

21 = 1.00066

cÂ32
21 = 3.04724 cω32

22 = −1.1333

cÂ32
22 = 46.5711 cω32

23 = 0.601572

cÂ32
23 = 2.10475

cÂ32
24 = 56.9136

and then extended in the comparable mass region of the
parameter space through

b
Â0

44
i → b

Â0
44

i + cÂ44
i1 ν + cÂ44

i2 ν2

1 + cÂ44
i3 ν + cÂ44

i4 ν2
, with i = {1, 2, 3} .

(D64)
The peak frequency ω44 is factorized as

ωpeak
44 = ω

peak0
44 ωorb

44 (ν)ωSpin
44

(
Ŝ, ν

)
. (D65)

The orbital dependence is modeled through

ωorb
44 (ν) =

1 + aω44
1 ν + aω44

2 ν2

1 + aω44
3 ν + aω44

4 ν2
. (D66)

The spin dependence is fitted first for the test-particle
limit as

ωSpin
44

(
Ŝ, ν = 0

)
=

1 + b
ω0

44
1 Ŝ + b

ω0
44

2 Ŝ2 + b
ω0

44
3 Ŝ3

1 + b
ω0

33
4 Ŝ

.

(D67)
The spin dependence in the comparable mass region of
the parameter space is modeled through

b
ω0

44
i → b

ω0
44
i + cω44

i1 ν + cω44
i2 ν2

1 + cω44
i3 ν + cω44

i4 ν2
, (D68)

with i = {1, 2, 3, 4}.
We fit ∆t44 in a factorized form as

∆t44 = ∆t044∆torb
44 (ν)∆tspin

44

(
Ŝ,X12

)
. (D69)

The orbital behavior is fitted with

∆torb
44 (ν) =

1 + a∆t44
1 ν + a∆t44

2 ν2

1 + a∆t44
3 ν + a∆t44

4 ν2
, (D70)
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TABLE XX. Explicit coefficients of ∆t32.

∆t032 = 9.16665 c
∆tν32
11 = −0.037634 c

∆t
X12
32

11 = 2.497188

a∆t32
1 = −11.3497 c

∆tν32
12 = 12.456704 c

∆t
X12
32

12 = −7.532596

a∆t32
2 = 32.9144 c

∆tν32
13 = 2.670868 c

∆t
X12
32

13 = 4.645986

a∆t32
3 = −8.36579 c

∆tν32
14 = −12.255859 c

∆t
X12
32

14 = −3.652524

a∆t32
4 = 20.1017 c

∆tν32
15 = 37.843505 c

∆t
X12
32

15 = 3.398687

b
∆t032
1 = −0.34161 c

∆tν32
21 = −25.058475 c

∆t
X12
32

21 = 7.054185

b
∆t032
2 = −0.46107 c

∆tν32
22 = 449.470722 c

∆t
X12
32

22 = −12.260185

b
∆t032
3 = 0.34744 c

∆tν32
23 = −1413.508735 c

∆t
X12
32

23 = 5.724802

b
∆t
ν=1/4
32

1 = 0.15477 c
∆tν32
24 = −11.852596 c

∆t
X12
32

24 = −3.242611

b
∆t
ν=1/4
32

2 = −0.755639 c
∆tν32
25 = 41.348059 c

∆t
X12
32

25 = 2.714232

b
∆t
ν=1/4
32

3 = 0.21816 c
∆tν32
31 = −5.650710 c

∆t
X12
32

31 = 2.614565

c
∆tν32
32 = −9.567484 c

∆t
X12
32

32 = −9.507583

c
∆tν32
33 = 173.182999 c

∆t
X12
32

33 = 7.321586

c
∆tν32
34 = −10.938605 c

∆t
X12
32

34 = −3.937568

c
∆tν32
35 = 35.670656 c

∆t
X12
32

35 = 4.584970

while the spinning one is first fitted to equal mass simu-
lations as

∆tspin
44

(
Ŝ,X12 = 0

)
=

1 + b
∆t

ν=1/4
44

1 Ŝ

1 + b
∆t

ν=1/4
44

2 Ŝ
. (D71)

The general ν-dependence enters via the replacement

b
∆t

ν=1/4
44

i → b
∆t

ν=1/4
44

i + c∆t44i1 X12 + c∆t44i2 X2
12 , (D72)

with i = {1, 2}. The explicit values of the fit coefficients
can be found in Table XXI.

f. (`,m) = (4, 3) multipole

The peak amplitude of the (4, 3) mode is fitted with

Âpeak
43 = Â

peak0
43 X12 (1− 2ν) Âorb

43 (ν) + ÂSpin
43 (ã0, ν) ,

(D73)

where Â
peak0
43 is the peak amplitude of the mode in the

test-particle limit. The factor Âorb
43 is informed by non-

spinning waveforms and is fitted with the template

Âorb
43 (ν) =

1 + aÂ43
1 ν + aÂ43

2 ν2

1 + aÂ43
3 ν

. (D74)

The spin dependence is first captured for the test-particle
limit with the function

ÂSpin
43 (ã0, ν = 0) =

1 + b
Â0

43
1 ã0 + b

Â0
43

2 ã2
0

1 + b
Â0

43
3 ã0

. (D75)

The spin dependence in the comparable mass region of
the parameter space is modeled through

b
Â0

43
i → b

Â0
43

i + cÂ43
i1 ν

1 + cÂ43
i2 ν + cÂ43

i3 ν2
, (D76)

with i = {1, 2, 3}. For the equal mass case however a
special fit is made to accurately capture the correct be-
havior, i.e.

Âpeak
43

(
ã12, ν =

1

4

)
=
b
Â
ν=1/4
43

1 ã12 + b
Â
ν=1/4
43

2 ã2
12

1 + b
Â
ν=1/4
43

3 ã12

. (D77)

The istantaneous frequency at peak ωpeak
43 is factorized

as

ωpeak
43 = ω

peak0
43 ωorb

43 (ν)ωSpin
43

(
Ŝ, ν

)
, (D78)

where the orbital factor is modeled as

ωorb
43 (ν) =

1 + aω43
1 ν + aω43

2 ν2

1 + aω43
3 ν + aω43

4 ν2
. (D79)

The spin dependence is fitted first for the test-particle
case

ωSpin
43

(
Ŝ, ν = 0

)
=

1 + b
ω0

43
1 Ŝ + b

ω0
43

2 Ŝ2

1 + b
ω0

43
3 Ŝ

, (D80)

and then extended to other regions of the parameter
space with

b
ω0

43
i → b

ω0
43
i + cω43

i1 ν + cω43
i2 ν2

1 + cω43
i3 ν

, (D81)
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TABLE XXI. Explicit coefficients of the fits of Âpeak
44 , ωpeak

44 and ∆t44.

Â
peak0
44 = 0.276618 ω

peak0
44 = 0.635659 ∆t044 = 5.27778

aÂ44
1 = −3.7082 aω44

1 = −0.964614 a∆t44
1 = −8.35574

aÂ44
2 = 0.280906 aω44

2 = −11.1828 a∆t44
2 = 17.5288

aÂ44
3 = −3.71276 aω44

3 = −2.08471 a∆t44
3 = −6.50259

aω44
4 = −6.89287 a∆t44

4 = 10.1575

b
Â0

44
1 = −0.316647 b

ω0
44

1 = −0.445192 b
∆t
ν=1/4
44

1 = 0.00159701

b
Â0

44
2 = −0.062423 b

ω0
44

2 = −0.0985658 b
∆t
ν=1/4
44

2 = −1.14134

b
Â0

44
3 = −0.852876 b

ω0
44

3 = −0.0307812

b
ω0
44

4 = −0.801552

cÂ44
11 = 1.2436 cω44

11 = −0.92902 c∆t411 = −2.28656

cÂ44
12 = −1.60555 cω44

12 = 10.86310 c∆t4412 = 1.66532

cÂ44
13 = −4.05685 cω44

13 = −4.44930 c∆t4421 = −0.589331

cÂ44
14 = 1.59143 cω44

14 = 3.01808 c∆t4422 = 0.708784

cÂ44
21 = 0.837418 cω44

22 = 1.62523

cÂ44
22 = −2.93528 cω44

23 = −7.70486

cÂ44
23 = −11.5591 cω44

23 = 15.06517

cÂ44
24 = 34.1863 cω44

41 = 0.93790

cÂ44
31 = 0.950035 cω44

42 = 8.36038

cÂ44
32 = 7.95168 cω44

43 = −4.85774

cÂ44
33 = −1.26899 cω44

44 = 4.80446

cÂ44
34 = −9.72147

where i = {1, 2, 3}.
For what concerns ∆t43, it is represented as

∆t43 = ∆t043∆torb
43 (ν)∆tspin

43

(
Ŝ, ν

)
, (D82)

with

∆torb
43 (ν) =

1 + a∆t43
1 ν + a∆t43

2 ν2

1 + a∆t43
3 ν + a∆t43

4 ν2
, (D83)

∆tspin
43

(
Ŝ, ν = 0

)
=

1 + b
∆t043
1 Ŝ + b

∆t043
2 Ŝ2

1 + b
∆t043
3 Ŝ

. (D84)

We then incorporate the general ν-dependence via the
replacement

b
∆t043
i → b

∆t043
1 + c∆t43i1 ν + c∆t43i2 ν2

1 + c∆t43i3 ν + c∆t43i4 ν2
, (D85)

with i = {1, 2, 3}. The explicit values of the fit coeffi-
cients are listed in Table XXII.

g. (`,m) = (4, 2) multipole

The peak amplitude of the (4, 2) mode is fitted with a
factorized template of the form

Âpeak
42 = Â

peak0
42 (1− 3ν) Âorb

42 (ν) ÂSpin
42

(
Ŝ, ν

)
, (D86)

where Â
peak0
42 is the peak amplitude of the mode in the

test-particle limit. The factor Âorb
42 is informed by non-

spinning waveforms and is fitted with the template

Âorb
42 (ν) = 1 + aÂ42

1 ν + aÂ42
2 ν2 . (D87)

The spin dependence is first captured for the test-particle
limit with the function

ÂSpin
42 (Ŝ, ν = 0) =

1 + b
Â0

42
1 Ŝ + b

Â0
42

2 Ŝ2

1 + b
Â0

42
3 Ŝ + b

Â0
42

4 Ŝ2
. (D88)

The general ν-dependence is then taken into account via
the replacement

b
Â0

42
i → b

Â0
42

i + cÂ42
i1 ν

1 + cÂ42
i2 ν

, (D89)

with i = {1, 2, 3, 4}.
The instantaneous frequency ωpeak

42 is factorized as

ωpeak
42 = ω

peak0
42 ωorb

42 (ν)ωSpin
42

(
Ŝ, ν

)
(D90)

The orbital dependence is modeled through

ωorb
42 (ν) =

1 + aω42
1 ν + aω42

2 ν2

1 + aω42
3 ν + aω42

4 ν2
. (D91)
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TABLE XXII. Explicit coefficients of the fits of Âpeak
43 , ωpeak

43 and ∆t43.

Â
peak0
43 = 0.0941570 ω

peak0
43 = 0.636130 ∆t043 = 9.53705

aÂ43
1 = −5.74386 aω43

1 = −9.02463 a∆t43
1 = −11.2377

aÂ43
2 = 12.6016 aω43

2 = 21.9802 a∆t43
2 = 38.3177

aÂ43
3 = −3.27435 aω43

3 = −8.75892 a∆t43
3 = −7.29734

aω43
4 = 20.5624 a∆t43

4 = 21.4267

b
Â0

43
1 = −0.02132252 b

ω0
43

1 = −0.973324 b
∆t043
1 = −1.371832

b
Â0

43
2 = 0.02592749 b

ω0
43

2 = −0.109921 b
∆t043
2 = 0.362375

b
Â0

43
3 = −0.826977 b

ω0
43

3 = −1.08036 b
∆t043
3 = −1.0808402

b
Â
ν=1/4
43

1 = −0.00471163

b
Â
ν=1/4
43

2 = 0.0291409

b
Â
ν=1/4
43

3 = −0.351031

cÂ43
11 = 0.249099 cω43

11 = 11.5224 c∆t4311 = 3.215984

cÂ43
12 = −7.345984 cω43

12 = −26.8421 c∆t4312 = 42.133767

cÂ43
13 = 108.923746 cω43

13 = −2.84285 c∆t4313 = −9.440398

cÂ43
21 = −0.104206 cω43

21 = 3.51943 c∆t4314 = 35.160776

cÂ43
22 = 7.073534 cω43

22 = −12.1688 c∆t4321 = 1.133942

cÂ43
23 = −44.374738 cω43

23 = −3.96385 c∆t4322 = −10.356311

cÂ43
31 = 3.545134 cω43

31 = 5.53433 c∆t4323 = −6.701429

cÂ43
32 = 1.341375 cω43

32 = 3.73988 c∆t4324 = 10.726960

cÂ43
33 = −19.552083 cω43

33 = 4.219 c∆t4331 = −6.036207

c∆t4332 = 67.730599

c∆t4333 = −3.082275

c∆t4334 = 11.547917

The spin dependence is fitted first for the test-mass case
with

ωSpin
42

(
Ŝ, ν = 0

)
=

1 + b
ω0

42
1 Ŝ + b

ω0
42

2 Ŝ2

1 + b
ω0

42
3 Ŝ + b

ω0
42

4 Ŝ2
, (D92)

and then the general ν-dependence is taken into account
via the replacement

b
ω0

42
i → b

ω0
42
i + cω42

i1 ν

1 + cω42
i2 ν + cω42

i3 ν2
, (D93)

with i = {1, 2, 3, 4}. The delay ∆t42 is fitted as

∆t42 = ∆t042∆torb
42 (ν)∆tspin

42

(
Ŝ, ν

)
, (D94)

where

∆torb
42 (ν) =

1 + a∆t42
1 ν + a∆t42

2 ν2

1 + a∆t42
3 ν + a∆t42

4 ν2
, (D95)

∆tspin
42

(
Ŝ, ν = 0

)
=

1 + b
∆t042
1 Ŝ

1 + b
∆t042
2 Ŝ

. (D96)

For ν < 6/25 the spin factor is approximated by the
test-particle fit. For the other regions, it is extrapolated

using

b
∆t042
i → b

∆t042
1 + c∆t42i1 ν

1 + c∆t42i2 ν
, (D97)

with i = {1, 2}. The explicit values of the coefficients of
the fits are listed in Table XXIII.

h. (`,m) = (5, 5) multipole

For this multipole, the peak amplitude is written as
the sum of two terms as

Âpeak
55 = Â

peak0
55 X12 (1− 2ν) Âorb

55 (ν) + ÂSpin
55 (ã12, ν) ,

(D98)

where Â
peak0
55 is the peak amplitude in the test particle

limit. The non-spinning ν-dependence is modeled as

Âorb
55 (ν) = 1 + aÂ55

1 ν + aÂ55
2 ν2 . (D99)

The spin dependence is first fitted to the test-particle
limit using

ÂSpin
55 (ã12, ν = 0) =

b
Â0

55
1 ã12

1 + b
Â0

55
2 ã12

, (D100)
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TABLE XXIII. Explicit coefficients of the fits of Âpeak
42 , ωpeak

42 and ∆t42.

Â
peak0
42 = 0.0314364 ω

peak0
42 = 0.617533 ∆t042 = 11.66665

aÂ42
1 = −4.56243 aω42

1 = −7.44121 a∆t42
1 = −9.844617

aÂ42
2 = 6.4522 aω42

2 = 14.233 a∆t42
2 = 23.32294

aω42
3 = −6.61754 a∆t42

3 = −5.760481

aω42
4 = 11.4329 a∆t42

4 = 7.121793

b
Â0

42
1 = −1.63682 b

ω0
42

1 = −2.37589 b
∆t042
1 = −1.3002045

b
Â0

42
2 = 0.854459 b

ω0
42

2 = 1.97249 b
∆t042
2 = −0.9494348

b
Â0

42
3 = 0.120537 b

ω0
42

3 = −2.36107

b
Â0

42
4 = −0.399718 b

ω0
42

4 = 2.16383

cÂ42
11 = 6.53943 cω42

11 = 10.1045 c∆t4211 = 24.604717

cÂ42
12 = −4.00073 cω42

12 = −6.94127 c∆t4212 = −0.808279

cÂ42
21 = −0.638688 cω42

13 = 12.1857 c∆t4221 = 62.471781

cÂ42
22 = −3.94066 cω42

21 = −1.62866 c∆t4222 = 48.340961

cÂ42
31 = −0.482148 cω42

22 = −2.6756

cÂ42
32 = 7.668× 10−9 − 4 cω42

23 = −4.7536

cÂ42
41 = 1.25617 cω42

31 = 10.071

cÂ42
42 = −4.04848 cω42

32 = −6.7299

cω43
33 = 12.0377

cω42
41 = −8.56139

cω42
42 = −5.27136

cω43
43 = 5.10653

and then extrapolated to the comparable mass region
through

b
Â0

55
1 → b

Â0
55

1

1 + cÂ55
11 ν + cÂ55

12 ν2
, (D101)

b
Â0

55
2 → b

Â0
55

2

1 + cÂ55
21 ν + cÂ55

22 ν2
. (D102)

The frequency of the (5, 5) mode is factorized as

ωpeak
55 = ω

peak0
55 ωorb

55 (ν)ωSpin
55

(
Ŝ, ν

)
, (D103)

where

ωorb
55 (ν) =

1 + aω55
1 ν + aω55

2 ν2

1 + aω55
3 ν

, (D104)

and the test-particle spin factor is given by

ωSpin
55

(
Ŝ, ν = 0

)
=

1 + b
ω0

55
1 Ŝ

1 + b
ω0

55
2 Ŝ

. (D105)

The spin dependence in the general case is obtained by
means of

b
ω0

55
i → b

ω0
55
i + cω55

i1 ν

1 + cω55
i2 ν

, (D106)

with i = {1, 2}. Note that, in this case, we do not in-
corporate spin-dependence in ∆55, but only rely on the
nonspinning fit of Ref. [30].

3. NR-fitting of the postpeak parameters

In this Appendix we report the fits of the postpeak pa-

rameters (cA`m3 , cφ`m3 , cφ`m4 ) for all multipoles multipoles
discussed in the main text. For (2, 2), (3, 3), (4, 4), (5, 5)
we present fits that explicitly depend on the spins of the
black holes. By contrast, the same parameters for the
other multipoles (2, 1), (3, 2), (3, 1) (4, 3), (4, 2), are ap-
proximated by the spin-independent fits of Ref. [30]. Let
us note, however, that we prefer to not use the full spin-

dependent fits of (cφ33

3 , cφ33

4 ) and in (cφ44

3 , cφ44

4 ). Instead
the fits of Ref. [30] are used to get a more robust behavior
of ω33 and ω44 in all corners of the parameter space, no-
tably when the mass ratio is between one and two and the
spins are large. See Appendix D 4 for a brief discussion.

a. The (`,m) = (2, 2) postpeak

The data of (cA22
3 , cφ22

3 , cφ22

4 ) were extracted from NR
fitting the NR waveforms in the calibration set over an
interval starting at the peak of length 4τ22

1 .
The fits are done in three steps, based on the model

Y (ν; Ŝ) = bY0 (ν)+bY1 (X12) Ŝ + bY2 (X12) Ŝ2

+ bY3 (X12) Ŝ3 + bY4 (X12) Ŝ4.
(D107)

In the first step Y (ν; Ŝ = 0) is fitted to the non-spinning
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TABLE XXIV. Explicit coefficients of the fits of Âpeak
55 and ωpeak

55

Â
peak0
55 = 0.00522697 ω

peak0
55 = 0.818117

aÂ55
1 = −0.29628 aω55

1 = −2.8918

aÂ55
2 = 6.4207 aω55

2 = −3.2012

aω55
3 = −3.773

b
Â0

55
1 = 0.04360530 b

ω0
55

1 = −0.332703

b
Â0

55
2 = −0.5769451 b

ω0
55

2 = −0.675738

cÂ55
11 = 5.720690 cω55

11 = 1.487294

cÂ55
12 = 44.868515 cω55

12 = −2.058537

cÂ55
21 = 12.777090 cω55

21 = 1.454248

cÂ55
22 = −42.548247 cω55

22 = −1.301284

data. In the second step bYi (X12 = 0) are fitted to the
equal mass data. In the third and final step the fits are
extrapolated to the comparable mass case imposing the
1-D fits informed in the previous two steps. The coeffi-
cients of the fit are listed in Table XXV.

b. The (`,m) = (3, 3) postpeak

The data of (cA33
3 , cφ33

3 , cφ33

4 ) were extracted from NR
fitting the NR waveforms in the calibration set over an
interval starting at the peak of length 1τ33

1 . The inter-
polation is modeled with the template

Y (ν; Ŝ) = bY0 (ν)+bY1 (X12) Ŝ. (D108)

While for the case of cA33
3 the fit is done versus ã12. The

fits are done in two hierarchical steps. (i) bY0 (ν) is fitted
to the non-spinning data. (ii) bY1 (X12) is fitted with a
quadratic polynomial, while imposing the fit of bY0 (ν).
The fits are given explicitly in Table XXVI.

c. The (`,m) = (4, 4) postpeak

The data of (cA44
3 , cφ44

3 , cφ44

4 ) were extracted from NR
fitting the NR waveforms in the calibration set over an
interval starting at the peak of length 1τ44

1 . The inter-

polation of (cφ44

3 , cφ44

4 ) is modeled with the template

Y (ν; Ŝ) = bY0 (ν) + bY1 (X12) Ŝ + bY2 (X12) Ŝ2 (D109)

in three steps, similar to the the (2, 2) mode. (i) bY0 (ν) is
fitted to the non-spinning data. (ii) bYi (X12 = 0) is fit-
ted to the equal mass data. (iii) The full dependence
of bYi (X12) on X12 is fitted while imposing the one-
dimensional fits informed in the first two steps. cA3 44
is modeled with the template

cA44
3 (ν; Ŝ) = b

c
A44
3

0 (ν) + b
c
A44
3

1 νŜ + b
c
A44
3

2 νŜ2. (D110)

The fit is is done in two steps. (i) b
c
A44
3

0 (ν) is fitted to

the non-spinning data. (ii) The coefficients b
c
A44
3
i are in-

formed using the spinning data, while imposing the non-
spinning fit. The fits are given explicitly in Table XXVII.

d. The (`,m) = (5, 5) postpeak

The data of (cA55
3 , cφ55

3 , cφ55

4 ) were extracted from NR
fitting the NR waveforms in the calibration set over an
interval starting at the peak of length 1τ55

1 . The inter-
polation is modeled with the template

Y (ν; Ŝ) = bY0 (ν) + bY1 (X12) Ŝ + bY2 (X12) Ŝ2. (D111)

While for the case of cA55
3 the fit is done versus ã12. The

fits are done in two hierarchical steps. (i) bY0 (ν) is fitted
to the non-spinning data. (ii) bYi (X12) are fitted with a
linear polynomial, while imposing the fit of bY0 (ν). The
fits are given explicitly in Table XXVIII.

4. Motivating the choices for the (3, 3) and (4, 4)
postmerger phases

As mentioned above, the results presented in the

main text do not rely on the the fits of (cφ33

3 , cφ33

4 ) and

(cφ44

3 , cφ44

4 ) given in Appendix D 3 with the full spin de-
pendence, but instead use only their spin-independent
part, as already presented Ref. [30]. This choice was
made so to ensure a more robust behavior of the fre-
quency at the beginning of the ringdown when the spins
are positive and large. We illustrate this argument in-
specting the behavior of ω44 for two highly-spinning con-
figurations. Figure 22 shows EOB/NR comparisons with
two EOB waveforms obtained with either the nonspin-
ning fits (red online) or those with the full spin de-
pendence (green). One sees that the spin-dependent fit
performs rather well for SXS:BBH:1124 (1, 0.998, 0.998),
consistently with the fact that we used SXS:BBH:0178,
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TABLE XXV. The fitted coefficients of (cA22
3 , cφ22

3 , cφ22
4 ) as defined in Eq. (D107).

Y = cA22
3 Y = cφ22

3 Y = cφ22
4

b
cA3
0 (ν) = −0.5585 0.81196ν b

c
φ
3

0 (ν) = 3.8436 +0.71565ν b
c
φ
4

0 (ν) = 1.4736 2.2337ν

b
cA3
1 (X12) = −0.398576 +0.1659421X12 b

c
φ
3

1 (X12) = 5.12794 −1.323643X12 b
c
φ
4

1 (X12) = 8.26539 +0.779683X12

b
cA3
2 (X12) = 0.099805 −0.2560047X12 b

c
φ
3

2 (X12) = 9.9136 −3.555007X12 b
c
φ
4

2 (X12) = 14.2053 −0.069638X12

b
cA3
3 (X12) = 0.72125 −0.9418946X12 b

c
φ
3

3 (X12) = −4.1075 +7.011267X12 b
c
φ
4

3 (X12) = 0

b
cA3
4 (X12) = 0 b

c
φ
3

4 (X12) = −31.5562 +32.737824X12 b
c
φ
4

4 (X12) = 0

TABLE XXVI. The explicit fits of (cA33
3 , cφ33

3 , cφ33
4 ). The reader should note that the fits of (cφ33

3 , cφ33
4 ) are not used for any of

the results given in the main text. Instead the corresponding fits of Ref. [30] are used. See Appendix D 4 for a brief discussion.

cA33
3 (ν,X12, ã12) = −0.5585 +0.81196ν + (−0.3502608 +1.587606X12 −1.555325X2

12) ã12

cφ33
3

(
ν,X12, Ŝ

)
= 3.0611 −6.1597ν + (−0.634377 +5.983525X12 −5.8819X2

12) Ŝ

cφ33
4

(
ν,X12, Ŝ

)
= 1.789 −5.6684ν + (−3.877528 +12.0433X12 −6.524665X2

12) Ŝ

with parameters (1, 0.9942, 0.9942), to inform the fit. By
contrast, one sees that the same description applied to
a different configuration, (1.5, 0.95, 0.95), corresponding
to SXS:BBH:1146, does not perform equally well, with a
nonnegiglible gap between the EOB and NR frequencies
accumulating right after the peak. One finds, however,

that removing the spin-dependence in (cφ44

3 , cφ44

4 ) allows
one to obtain a much closer EOB/NR consistency for
SXS:BBH:1146. For the other case, moving to the non-
spinning description slightly worsens the agreement, both
before and after the waveform peak 7. On the basis of
these results, and especially seen the rather good F̄ be-
havior illustrated in Fig. 6, we decided to be simple and

remove the spin dependence in (cφ44

3 , cφ44

4 ) . We applied
the same rational also to the (3, 3) mode. Clearly, in
case of very high-spins, currents fits should be improved
to some extent, increasing the calibration set so to incor-
porate more points in that corner of the parameter space.
This will be investigated in future work.

5. Modeling the NQC extraction points

Let us finally discuss analytic representations of the
NR point (amplitude, frequency and derivative) on the
multipolar waveform that is needed for computing the
NQC corrections to the waveform multipole by multipole.
For the (2, 2) and (3, 3) modes we give below dedicated
fits. For all other modes, the useful NR quantities are
obtained analytically from the (fitted) post-peak analyt-
ical waveform discussed above. Let us recall here that,

7 The reader should note that the postpeak phasing impacts the
inspiral waveform through the NQC extraction points obtained
from the postpeak template. See Appendix D 5 c

for each mode, the NQC time is always

tNQC
`m ≡ tpeak

`m + 2. (D112)

All quantities mentioned below with the NQC label are

computed at t = tNQC
`m .

a. The (2, 2) NQC extraction point

For the (2, 2) mode the NQC-point quantities{
ÂNQC

22 , ȦNQC
22 , ωNQC

22 , ω̇NQC
22

}
are fitted directly. The 3-

piece hybrid fit, presented in [24, 37] is modified for q > 4.

The fits of
{
ÂNQC

22 ωNQC
22

}
are done using the template

discussed already for the peak, see Appendix D 2 a. The

reader should note however that the fit of ωNQC
22 has addi-

tional flexibility. The replacement in (D20) is also done
for i = 2 for this case. In the following the fitting of

ȦNQC
22 and ω̇NQC

22 . Both rely on the same template thus
it is only given for the former explicitly. To fit the time
derivative of the amplitude at tNQC it was proven useful

to not fit it directly, but to fit ȦNQC
22 /νωNQC

22 , starting
with the following factorization

ȦNQC
22

νωNQC
22

=
[

ˆ̇A
NQCorb
22 (ν) + ˆ̇A

NQCSpin

22

(
X12, Ŝ

)]
. (D113)

The nonspinning contribution is fitted as

ˆ̇A
NQCorb
22 (ν) = 1 + a

ȦNQC
22

1 ν + a
ȦNQC

22
2 ν2. (D114)

The spin-dependence is represented as

ˆ̇A
NQCSpin

22

(
X12Ŝ

)
= b

Ȧ
NQCm1=m2
22

1 Ŝ + b
Ȧ

NQCm1=m2
22

1 Ŝ2 .

(D115)
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TABLE XXVII. The explicit fits of (cA44
3 , cφ44

3 , cφ44
4 ). The reader should note that the fits of (cφ44

3 , cφ44
4 ) are not used for any of

the results given in the main text. Instead the corresponding fits of Ref. [30] are used. See Appendix D 4 for a brief discussion.

cA44
3

(
ν, Ŝ

)
= −0.41591 +3.2099ν − 9.614738ν Ŝ + 122.461125ν Ŝ2

cφ44
3

(
ν,X12, Ŝ

)
= 3.6662−30.072ν+76.371ν2

1−3.5522ν
+ (−4.9184 +7.911653X12) Ŝ + (−15.6772 +21.181688X12) Ŝ2

cφ44
4

(
ν,X12, Ŝ

)
= 0.21595 +23.216ν + (−3.4207 +11.746452X12) Ŝ + (−15.5383 +34.922883X12) Ŝ2

TABLE XXVIII. The explicit fits of (cA55
3 , cφ55

3 , cφ55
4 ).

cA55
3 (ν,X12, ã12) = −7.063079 +65.464944ν + (−2.055335 −0.585373X12) ã12 + (−12.631409 +19.271346X12) ã2

12

cφ55
3

(
ν,X12, Ŝ

)
= −1.510167 +30.569461ν + (−2.687133 +4.873750X12) Ŝ + (−14.629684 +19.696954X12) Ŝ2

cφ55
4

(
ν,X12, Ŝ

)
= −1.383721 +56.871881ν + (+7.198729 −3.870998X12) Ŝ + (−25.992190 +36.882645X12) Ŝ2

The extrapolation to the m1 6= m2 regime is done via the
replacement

b
Ȧ

NQCm1=m2
22

i → b
Ȧ

NQCm1=m2
22

i + c
Ȧ

NQCm1=m2
22

i X12 , (D116)

with i = {1, 2}. All coefficients are listed explicitly in
Table XXIX.

b. The (3, 3) NQC extraction point

Let us discuss now explicit fits for{
ÂNQC

33 , ȦNQC
33 , ωNQC

33 , ω̇NQC
33

}
. The amplitude ÂNQC

33 is

written as two separate terms as

ÂNQC
33 = Â

NQC0
33 X12Â

NQCorb
33 (ν) + Â

NQCS
33 (ν, ã12) ,

(D117)

where Â
NQC0
33 is the test-particle value. The non-spinning

sector is fitted after factorization of Â
NQC0
33 X12 with

Â
NQCorb
33 (ν) = 1 + a

ÂNQC
33

1 ν + a
ÂNQC

33
2 ν2 . (D118)

The spin-dependent factor Â
NQCS
33 is first fitted in the

ν = 0 limit with

Â
NQCS
33 =

b
ÂNQC

33
1 ã12 + b

ÂNQC
33

2 ã2
12

1 + b
ÂNQC

33
3 ã12

. (D119)

and then extended to the ν 6= 0 regime through

b
ÂNQC

33
i → b

ÂNQC
33

i + c
ÂNQC

33
i1 ν

1 + c
ÂNQC

33
i2 ν

with i = {1, 2, 3} . (D120)

The time-derivative of the amplitude ȦNQC
33 was fitted

in two steps. In the first step, one is fitting only equal-
mass data (but, crucially, including also data with un-

equal spins), as

Ȧ
NQCν=1/4

33

105
= d

Ȧ
NQCν=1/4
33

0 +d
Ȧ

NQCν=1/4
33

1 ã12

+ d
Ȧ

NQCν=1/4
33

2 ã2
12 . (D121)

The un-equal mass sector is fitted with the same template

as ÂNQC
33 with 3 modifications: (i) X12 is not factorized

as in (D117); (ii) The spin variable in (D119) is chosen

to be Ŝ; (iii) the transformation is only done for i = 2 in

(D120), c
ÂNQC

33
1i = c

ÂNQC
33

3i = 0.

Moving now to the NQC frequency ωNQC
33 , we assume

the following factorization

ωNQC
33 = ω

NQC0
33 ω

NQCorb
33 ω

NQCS
33 , (D122)

where ω
NQCorb
33 is fitted to the nonspinning data with a

second-order polynomial in ν as

ω
NQCorb
33 = 1 + a

ωNQC
33

1 ν + a
ωNQC

33
2 ν2 . (D123)

Then, ω
NQCS
33 if fitted to the test-particle data using

ω
NQCS
33 =

1 + b
ωNQC

33
1 Ŝ

1 + b
ωNQC

33
2 Ŝ

. (D124)

Finally, the spin-dependence in ω
NQCS
33 incorporates ν-

dependent effects as

b
ωNQC

33
i → b

ωNQC
33
i + c

ωNQC
33
i ν with i = {1, 2} . (D125)

Moving finally to the time-derivative of the frequency,

ω̇NQC
33 , it is fitted with the ansatz

ω̇NQC
33 = ω̇

NQC0
33 ω̇

NQCorb
33 + ω̇

NQCS
33 , (D126)

where ω̇
NQCorb
33 is fitted to nonspinning data with

ω̇
NQCorb
33 = 1 + a

ω̇NQC
33

1 ν . (D127)
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FIG. 22. In this figure we compare the frequency Mω44 for the two NR waveforms (black) SXS:BBH:1124 (1, 0.998, 0.998)
(left panel) and SXS:BBH:1146 (1.5, 0.95, 0.95) (right) with the corresponding EOB waveforms, once obtained using the fits of
Ref. [30] (right panel) and once with the spin-dependent fits presented in Appenix D 3 (green).

TABLE XXIX. Coefficients of the (2, 2) quantities needed to calculate the NQC extraction point. From left to right the columns

show
{
ÂNQC

22 ,
˙̂
ANQC

22 , ωNQC
22 , ω̇NQC

22

}
.

ÂNQC
22 ȦNQC

22 ωNQC
22 ω̇NQC

22

Â
NQC0
22 = 0.294773 Ȧ

NQC0
22 /ν = −0.000243654 ω

NQC0
22 = 0.285588 ω̇

NQC0
22 = 0.00628027

a
Â

NQC
22

1 = −0.052697 a
Ȧ

NQC
22

1 = 2.86637 a
ω
NQC
22

1 = 0.91704 a
ω̇
NQC
22

1 = 2.4351

a
Â

NQC
22

2 = 1.6088 a
Ȧ

NQC
22

2 = −1.3667 a
ω
NQC
22

2 = 1.7912 a
ω̇
NQC
22

2 = 4.4928

b
Â

NQCm1=m2
22

1 = −0.705226 b
Ȧ

NQCm1=m2
22

1 = 0.02679530 b
ω
NQCm1=m2
22

1 = −0.46550 b
ω̇
NQCm1=m2
22

1 = 0.001425242

b
Â

NQCm1=m2
22

2 = −0.0953944 b
Ȧ

NQCm1=m2
22

2 = −0.0064409 b
ω
NQCm1=m2
22

2 = −0.078787 b
ω̇
NQCm1=m2
22

2 = −0.00096073

b
Â

NQCm1=m2
22

3 = −1.087280 b
ω
NQCm1=m2
22

3 = −0.852284

c
Â

NQC
22

11 = 0.009335 c
Ȧ

NQC
22

1 = −0.015395218 c
ω
NQC
22

11 = −0.338008 c
ω̇
NQC
22

1 = −0.000063766

c
Â

NQC
22

12 = 0.582869 c
Ȧ

NQC
22

2 = 0.008732589 c
ω
NQC
22

12 = 1.077812 c
ω̇
NQC
22

2 = 0.000513197

c
ω
NQC
22

21 = 0.0555533

c
ω
NQC
22

22 = −0.312861

c
Â

NQC
22

31 = −0.140747 c
ω
NQC
22

31 = 0.289185

c
Â

NQC
22

32 = 0.505807 c
ω
NQC
22

32 = −0.195838

ω̇
NQCS
33 if fitted to the test-particle data with

ω̇
NQCS
33 = b

ω̇NQC
33

1 Ŝ + b
ω̇NQC

33
2 Ŝ2 . (D128)

The spin dependence in ω̇
NQCS
33 is then extrapolated to

the comparable mass through

b
ω̇NQC

33
i → b

ω̇NQC
33
i + c

ω̇NQC
33
i ν with i = {1, 2} . (D129)

c. Calculation of NQC quantities from the postpeak
analytical waveform

Let us finally discuss explicitly the computation of

the NQC quantities
(
ANQC
`m , ωNQC

`m , ȦNQC
`m , ω̇NQC

`m

)
from

the NR-informed analytical description of the postpeak
waveform, as defined in Sec. V A of [30], to which we refer
the reader for the notation. Although the formulas have
to be intended valid multipole by multipole, in the follow-
ing we drop the (`,m) indexes for clarity. The analytical
expression for the amplitude and its time derivative read
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TABLE XXX. Coefficients of the (3, 3) quantities needed to calculate the NQC extraction point. From left to right the columns

show
{
ÂNQC

33 ,
˙̂
ANQC

33 , ωNQC
33 , ω̇NQC

33

}
.

ÂNQC
33 ȦNQC

33 ωNQC
33 ω̇NQC

33

Â
NQC0
33 = 0.0512928 Ȧ

NQC0
33 /ν = −3.9568× 10−4 ω

NQC0
33 = 0.476647 ω̇

NQC0
33 = 0.0110394

a
Â

NQC
33

1 = 0.09537 a
Ȧ

NQC
33

1 = 1.0985 a
ω
NQC
33

1 = 1.0886 a
ω̇
NQC
33

1 = 2.7962

a
Â

NQC
33

2 = 3.7217 a
Ȧ

NQC
33

2 = −13.458 a
ω
NQC
33

2 = 3.0658

b
Â

NQCν=0
33

1 = 0.00924494 b
Ȧ

NQCν=0
33

1 = 1.41504× 10−4 b
ω
NQCν=0
33

1 = −0.236271 b
ω̇
NQCν=0
33

1 = −4.5666× 10−4

b
Â

NQCν=0
33

2 = −8.7052× 10−5 b
Ȧ

NQCν=0
33

2 = 1.04680× 10−4 b
ω
NQCν=0
33

2 = −0.582892 b
ω̇
NQCν=0
33

2 = −0.00388909

b
Â

NQCν=0
33

3 = −0.479669 b
Ȧ

NQCν=0
33

3 = −0.422066

c
Â

NQC
33

11 = 0.0067063 c
Ȧ

NQC
33

21 = −4.671176× 10−4 c
ω
NQC
33

1 = −0.085544 c
ω̇
NQC
33

1 = 0.0290846

c
Â

NQC
33

12 = 4.814781 c
Ȧ

NQC
33

22 = −4.0270198 c
ω
NQC
33

2 = −0.523365 c
ω̇
NQC
33

2 = 0.0087659

c
Â

NQC
33

21 = 0.0111876 d
Ȧ

NQCν=1/4
33

0 = −0.090676

c
Â

NQC
33

22 = −1.079532 d
Ȧ

NQCν=1/4
33

1 = −5.1643

c
Â

NQC
33

31 = 2.967227 d
Ȧ

NQCν=1/4
33

2 = −3.2594

c
Â

NQC
33

32 = −2.571783

Ah/ν = e
−α1

t−tpeak
MBH

[
cA1 tanh

(
cA2
t− tpeak

MBH
+ cA3

)
+ cA4

]
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Ȧh/ν =
cA1 c

A
2 e
−α1

t−tpeak
MBH sech2

(
cA2

t−tpeak

MBH
+ cA3

)

MBH
−
α1e
−α1

t−tpeak
MBH

[
cA1 tanh

(
cA2

t−tpeak

MBH
+ cA3

)
+ cA4

]

MBH
, (D131)

while those for the phase and its derivatives read

φh =− ω1
t− tpeak

M2
BH

− cφ1 ln


1 + cφ3e

−cφ2
t−tpeak
MBH + cφ4e

−2cφ2
t−tpeak
MBH

1 + cφ3 + cφ4


 , (D132)

ωh =− φ̇h =
ω1

M2
BH

− cφ1 c
φ
2

MBH

cφ3x(t) + 2cφ4x
2(t)

1 + cφ3x(t) + cφ4x
2(t)

, (D133)

ω̇h =− φ̈h =
cφ1 c

φ
2

2

M2
BH


 cφ3x(t) + 4cφ4x

2(t)

1 + cφ3x(t) + cφ4x
2(t)
−
(

cφ3x(t) + 2cφ4x
2(t)

1 + cφ3x(t) + cφ4x
2(t)

)2

 , (D134)

where we introduced

x(t) = e
−cφ2

t−tpeak
MBH . (D135)

The waveform quantities needed to compute the NQC
correction to amplitude and phase are simply obtained by

evaluating the above expressions at t = tNQC
`m = tpeak

`m + 2
multipole by multipole.

d. The fitted derivative of the (`,m) = (4, 4) amplitude at
the NQC extraction point

Unfortunately, we have realized that the accuracy of
the derivative obtained with the above template does not
always have sufficient accuracy. This is due to insufficient
flexibility of the fitting template, that will be modified in
future work. To overcome this difficulty, we give here an
explicit fit of the amplitude time-derivative that is then
used in the main text. The derivative of NQC amplitude
is separated in two terms as

ȦNQC
44 = νȦ

NQC0
44

ˆ̇Aorb
44 (ν) + ˆ̇ASpin

44 (Ŝ, ν) , (D136)
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TABLE XXXI. Explicit coefficients of the fit of ȦNQC
44 .

Ȧ
NQC0
44 = −1.52614× 10−4

a
Ȧ

NQC
44

1 = −7.63783

a
Ȧ

NQC
44

2 = 15.8089

a
Ȧ

NQC
44

3 = −5.88951

a
Ȧ

NQC
44

4 = 11.1555

b
Ȧ

NQC
44

1 = 3.76236× 10−5

b
Ȧ

NQC
44

2 = −0.819379

c
Ȧ

NQC
44

11 = −6.45958× 10−6

c
Ȧ

NQC
44

12 = −2.35613

c
Ȧ

NQC
44

21 = −298.678

c
Ȧ

NQC
44

22 = −1063.08

where Ȧ
NQC0
44 is the peak amplitude in the test particle

limit. The non-spinning behavior is modeled with

ˆ̇Aorb
44 (ν) =

1 + a
ȦNQC

44
1 ν + a

ȦNQC
44

2 ν2

1 + a
ȦNQC

44
3 ν + a

ȦNQC
44

4 ν2
. (D137)

The spin dependence is first fitted to the test-particle
limit using

ˆ̇ASpin
44 (Ŝ, ν = 0) =

b
ȦNQC

44
1 Ŝ

1 + b
ȦNQC

44
2 Ŝ

, (D138)

and then extrapolated to the comparable mass region
through

b
ȦNQC

44
1 → b

ȦNQC
44

1 + c
ȦNQC

44
11 ν

1 + c
ȦNQC

44
12 ν

, (D139)

b
ȦNQC

44
2 → b

ȦNQC
44

2 + c
ȦNQC

44
21 ν

1 + c
ȦNQC

44
22 ν

. (D140)
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[22] A. Bohé et al., Phys. Rev. D95, 044028 (2017),
arXiv:1611.03703 [gr-qc].

[23] S. Ossokine et al., in preparation, 2019.
[24] A. Nagar et al., Phys. Rev. D98, 104052 (2018),

arXiv:1806.01772 [gr-qc].
[25] LIGO Scientific Collaboration, “LIGO Algorithm Li-

brary - LALSuite,” free software (GPL) (2018).
[26] A. Nagar and P. Rettegno, Phys. Rev. D99, 021501

(2019), arXiv:1805.03891 [gr-qc].
[27] S. Akcay, S. Bernuzzi, F. Messina, A. Nagar, N. Or-

tiz, and P. Rettegno, Phys. Rev. D99, 044051 (2019),
arXiv:1812.02744 [gr-qc].

[28] A. Nagar, F. Messina, P. Rettegno, D. Bini, T. Damour,
A. Geralico, S. Akcay, and S. Bernuzzi, Phys. Rev. D99,
044007 (2019), arXiv:1812.07923 [gr-qc].

[29] P. Rettegno, F. Martinetti, A. Nagar, D. Bini,
G. Riemenschneider, and T. Damour, (2019),
arXiv:1911.10818 [gr-qc].

[30] A. Nagar, G. Pratten, G. Riemenschneider, and
R. Gamba, (2019), arXiv:1904.09550 [gr-qc].



41

[31] A. Nagar and A. Shah, Phys. Rev. D94, 104017 (2016),
arXiv:1606.00207 [gr-qc].

[32] F. Messina, A. Maldarella, and A. Nagar, Phys. Rev.
D97, 084016 (2018), arXiv:1801.02366 [gr-qc].

[33] T. Damour and A. Nagar, Phys.Rev. D90, 044018
(2014), arXiv:1406.6913 [gr-qc].

[34] A. Nagar, T. Damour, C. Reisswig, and D. Pollney, Phys.
Rev. D93, 044046 (2016), arXiv:1506.08457 [gr-qc].

[35] T. Damour and A. Nagar, Phys.Rev. D90, 024054
(2014), arXiv:1406.0401 [gr-qc].

[36] W. Del Pozzo and A. Nagar, Phys. Rev. D95, 124034
(2017), arXiv:1606.03952 [gr-qc].

[37] A. Nagar, G. Riemenschneider, and G. Pratten, Phys.
Rev. D96, 084045 (2017), arXiv:1703.06814 [gr-qc].

[38] T. Damour, B. R. Iyer, and A. Nagar, Phys. Rev. D79,
064004 (2009), arXiv:0811.2069 [gr-qc].

[39] Y. Pan, A. Buonanno, R. Fujita, E. Racine,
and H. Tagoshi, Phys.Rev. D83, 064003 (2011),
arXiv:1006.0431 [gr-qc].

[40] A. Nagar, F. Messina, C. Kavanagh, G. Lukes-
Gerakopoulos, N. Warburton, S. Bernuzzi, and
E. Harms, Phys. Rev. D100, 104056 (2019),
arXiv:1907.12233 [gr-qc].

[41] T. Damour, A. Nagar, and S. Bernuzzi, Phys.Rev. D87,
084035 (2013), arXiv:1212.4357 [gr-qc].

[42] R. Fujita, PTEP 2015, 033E01 (2015), arXiv:1412.5689
[gr-qc].

[43] D. Shoemaker, https://dcc.ligo.org/cgi-
bin/DocDB/ShowDocument?docid=2974.

[44] A. Taracchini, A. Buonanno, G. Khanna, and S. A.
Hughes, Phys.Rev. D90, 084025 (2014), arXiv:1404.1819
[gr-qc].

[45] E. Harms, S. Bernuzzi, A. Nagar, and A. Zenginoglu,
Class.Quant.Grav. 31, 245004 (2014), arXiv:1406.5983
[gr-qc].

[46] L. T. Buchman, H. P. Pfeiffer, M. A. Scheel, and B. Szi-
lagyi, Phys. Rev. D86, 084033 (2012), arXiv:1206.3015
[gr-qc].

[47] T. Chu, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev.
D80, 124051 (2009), arXiv:0909.1313 [gr-qc].

[48] D. A. Hemberger, G. Lovelace, T. J. Loredo, L. E.
Kidder, M. A. Scheel, B. Szilágyi, N. W. Taylor,
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