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Abstract

Mixtures of g-priors are well established in linear regression models by Liang et al.
(2008) and generalized linear models by Bové and Held (2011) and Li and Clyde (2013)
for variable selection. This approach enables us to overcome the problem of specifying
the dispersion parameter by imposing a hyper-prior on it. By this way we allow for
our model to "learn" about the shrinkage from the data. In this work, we implement
Bayesian variable selection methods based on g-priors and their mixtures in multinomial
logistic regression models. More precisely, we follow two approaches: (a) the traditional
implementation by extending the approach of Bové and Held (2011) for multinomial
models, and (b) an augmented implementation of Polson et al. (2013) based on latent
structure. We will study and compare the two approaches. Furthermore, we will
focus on handling class imbalance and sparsity issues appearing when the number of
covariates is moderate and the need of specifying different covariate selection across
different pairwise logit structures. All proposed methods will be presented in simulation
and real datasets. Extensive comparisons and results are also presented for logistic
regression in real and simulated settings.
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Chapter 1

Introduction

In daily basis, large scale applications are encountered and produced routinely with
emphasis in genomics and marketing sectors for classification purposes, where usually
only a small number of covariates affect the response. While the development for
classification with only two classes is standard, developing more sophisticated methods
with 3 or more categories is not trivial, due to the additional model complexity and
class imbalance. The need to extract the intrinsic information in the layers of response
associated univoquely to a distinct subset of variables, requires advanced methods
appropriately described by probabilistic reasoning on face of Bayesian methods, since
in reality these subsets are considered unknown. Moreover, the no available or scarce
information regarding each subset of variables suggests the use of objective Bayesian
methodology. The profit of applying these methods stand for separating the noise
variables from the relevant, ensuring accurate predictions, when spike-slab priors are
met with mixtures of g-priors.
Although, mixtures of g-priors have been well recognised in practice for linear regression
and generalized linear models, their use was restricted in multiclassification and
especially in multinomial logistic regression mainly due to posterior intractability,
computation of posterior model probabilities and Fisher information matrix. The
ability to infer on the dispersion parameter, by simply adopting a hyper-prior on it,
ranked mixtures of g-priors the most common prior choice for data-driven methods in
the objective Bayesian catalogue.
This thesis investigates the Bayesian variable selection problem for multinomial logistic
regression models with mixtures of g-priors. Under this setting, the problem is outlined
as the selection of variables that varies according to each class of a polychotomous
response given a baseline class, namely "class-specific predictor selection". Thus, this
problem is regarded as a contemporaneous variable selection procedure, where there is a
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distinct set of variables that is related separately to each level of multicategorical target
variable. By this way, each selected subset of variables shares a unique profile related
exclusively to each categorical class of the response, meaning that the distribution of
each response outcome varies conditional on different subsets.
As formal Bayesian variable selection methods in the multinomial logistic regression,
cannot adequately deal with the computation of posterior model probabilities mainly
due to large model spaces and posterior intractability resulting in the excessive model
uncertainty both at the level of class and covariates that grows exponentially, model-
based inference via MCMC methods consists of a flexible alternative.
In this thesis, we tackle the problem using model search algorithms based on the
approaches of George and McCulloch (1993) and Dellaportas et al. (2002) that explore
sufficiently the model space and provide handy solutions to the difficulties stated above,
summarizing important aspects central to Bayesian variable selection for a traditional
implementation of multinomial logistic regression based on Bové and Held (2011).
Furthermore, we extend the latter Bayesian variable selection methods constructed
with Polya-Gamma latent variables that mimic the behaviour of the original one,
sharing identical properties to those of linear models owing to the data augmentation
strategy of Polson et al. (2013), surpassing the most difficult aspects of MCMC
methods. In this framework, these methods can be alternatively seen as conditional
latent approaches, where the latent variables are entering in our disposal in order to
convert the "incompatible" likelihood into a likelihood of "convenience", where model-
based inference is facilitated due to posterior tractability of regression parameters
amenable to Gibbs sampling. Both approaches are compared and assessed in simulation
and real settings.

1.1 Thesis Overview

The overall context of this thesis is summarized as follows:
Chapter 1 introduces the reader to the essentials of Bayesian model selection and
objective Bayesian methodology within common specific prior choices. The most
popular objective Bayesian approaches are mentioned, although we will not enter in
details through this chapter, because these approaches are beyond the scopes of this
thesis.
Chapter 2 introduces the problem of Bayesian variable selection for linear regression
models and reviews in details the main aspects of objective prior and model selection
based on mixtures of g-priors with full enumeration and MCMC methods. During the
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presentation of this chapter priority is given also to the notion of centering and its
influence on the resulting inference. In addition, formal Bayesian variable selection and
MCMC methods are assessed in simulation settings compared with standard methods
in order to show effectiveness of MCMC, and then we describe a real application with
priority to MCMC procedures. In both cases small model spaces are used in order to
illustrate the attractive comparisons. Appendix A sections are intended to provide
further demonstrated quantities or additional results (Appendix section A.9 and A.10)
to support and justify the presented material.
Chapter 3 focuses on Bayesian variable selection problem for generalized linear models
regarding the basic concepts of objective prior and model selection based on the
approaches of Bové and Held (2011) and Li and Clyde (2013) with mixtures of g-priors,
which are reviewed in detail, emphasizing more on Bové and Held (2011), which will
serve as basis for the next chapter. Appendix B provides additional material with
demonstrations and useful expressions.
Chapter 4 is the main topic of this thesis, where we illustrate the problem of variable
selection in multinomial logistic regression from a fully Bayesian perspective. Next,
we describe and adopt the prior specification of Bové and Held (2011) adapted in
multinomial logistic regression based on mixtures of g-priors, representing the main
computational requirement in order to initialize the MCMC methods. Afterwards, we
introduce the MCMC methods as the main computational tools for Bayesian variable
selection, where they are developed initially for a traditional implementation and
then extended under the conditional latent approach based on Polya-Gamma data
augmentation of Polson et al. (2013). Both approaches are highlighted in details
regarding the additional computational steps with additional material in the Appendix
C (Appendix sections C.1 and C.2 respectively) especially for the latter one, in order
to demonstrate our ideas. Finally, this chapter ends with the applications of MCMC
methods for typical and augmented multinomial logistic regression in simulation and
real datasets. To conclude, Chapter 5 includes the discussion and the main directions
towards future developments, while Appendix C ends with sections C.3, C.4 and C.5
respectively for the problem of Bayesian variable selection in logistic models emerging
as a special case of the multinomial logistic regression.
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1.2 Statistical Models for Bayesian Model Selec-
tion

1.2.1 Definition of Statistical and Bayesian Models

Let y = (y1, . . . , yn)T be a set of i.i.d. observables that are realizations of a real-valued
random variable Y . A statistical model M is defined as a probabilistic law fM(.)
assigned to Y whose behaviour can be determined through a set of parameters θM .
The values of these parameters generate a set of distributions related to each other
whose differences depend only on the chosen values. This set is called parametric family
of distributions and is formally described as fM(y|θM). Usually, a statistical model is
characterized by the joint distribution of its observed values y

fM(y|θM) =
n∏

i=1
fM(yi|θM),

this joint distribution is called likelihood and it contains all appropriate information for
the sample and the structural dependencies connected with parameters of population.
Often models are usually constructed in order to assess or interpret causal or dependency
relationships among observed values of a response variable and parameters of interest.
For instance, a regression model can be seen as a probabilistic structure that contains
a deterministic component that links covariates (attributes of the population) with
observed values y. In addition, Bayesian theory treats the parameters of a model
θM and the model itself M as random variables assigning them (pure) probabilistic
distributions. These distributions π(θM), π(M) are called priors and represent the
prior beliefs over the model parameters and the model respectively denoted. In this
way, these prior distributions allow for additional uncertainty both at the level of model
parameters and the model itself.
Moreover, a Bayesian model can be expressed throughout the joint posterior of model
parameter vector θM and model M

f(θM ,M |y) ∝ fM(y|θM)π(θM)π(M),

which combines the information contained in sampling distribution fM (y|θM ) alongside
with prior beliefs π(θM) and π(M).
The former factorization is relevant for model selection since it allows to update initial
uncertainty of model parameters and model itself into a new knowledge represented by
the joint posterior distribution.
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1.2.2 Bayesian Model Selection

Model choice is one of the most important aspects of statistical inference and fetches
the final part of decisions. Generally, in model selection researchers represent models
as “claims" rephrased into probability statements and then they adopt a criterion
that will decide which model will be the best in the domain under consideration.
Standard model choice routines avoid completely model uncertainty and they apply
criteria whose distribution is not identifiable like Bayesian models, thus the Bayesian
version of model selection is essential in situations of these type. In this section, we
give the reader a “first taste" of the fundamentals of Bayesian model choice based on
calculations of posterior model probabilities and Bayes factors. The bibliography of
research contributions is vast surrounding Bayes factors, henceforth we mention only
the most distinguished. These include the research works of Smith and Spiegelhalter
(1980), Spiegelhalter and Smith (1982) Kass and Raftery (1995) and Hoeting et al.
(1999).
Mostly, marginal likelihoods and posterior model probabilities are a ramification of high
complexed integral which inspired researchers to publish many scrutiny achievements
utilizing numerical and Monte Carlo Approximations; see Gelfand and Dey (1994),
Kass and Raftery (1995), Kass and Wasserman (1995), Verdinelli and Wasserman
(1995), Chib (1995) and DiCiccio et al. (2006). On the other side, the latest progress
of computer technology enabled the usage of intricated MCMC methods in order
to obtain a more flexible and efficient model selection procedures towards unsolved
problems of last years. Although there were numerous attempts for MCMC methods
construction in various publications, we will focus only in model search algorithms of
George and McCulloch (1993) and Dellaportas et al. (2000) for the next chapters and
these represent the basis of this thesis.

1.2.2.1 Posterior Measures of Evidence

The formal approach to Bayesian model selection is based on the original work of Kass
and Raftery (1995). The main core of this approach is based on the calculation of
posterior model probabilities and posterior odds. Let K be a collection of competing
models M1, . . . ,Mk and y the available data generated probably by one of these models.
Each model Mk ∈ M specifies a different sampling density fMk

(y|θMk
) of the data y.

If model selection is priority, then applying the Bayes theorem

π(Mk′ |y) = m(y|Mk′ )π(Mk′ )∑K
k=1 m(y|Mk)π(Mk)

∝ m(y|Mk′ )π(Mk′ ), (1.1)
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the posterior probability of a model Mk′ , 1 ≤ k
′ ≤ K is computed, which is interpreted

as the probability that the true generating mechanism of the data y was model Mk′ .
Also, notice that expression (1.1) is up to a proportionality constant of product of two
terms. The first term is called marginal distribution of available data y under model
Mk′ or marginal or integrated likelihood of model Mk′ if we refer to model Mk′ and is
calculated

m(y|Mk′ ) =
∫

θM
k

′

fM
k

′ (y|θM
k

′ )π(θM
k

′ )dθM
k

′ ,

which integrates out the uncertainty of model parameters π(θM
k

′ ) together with
sampling distribution fM

k
′ (y|θM

k
′ ).

The Marginal likelihood is a key quantity in model selection for calculation of posterior
model probabilities. However, it is a demanding quantity due to the computational cost
that requires the evaluation of integrals. Furthermore, (Kass and Raftery, 1995) pointed
out the importance of marginal likelihood m(y|Mk′ ) as "the predictive distribution of
the data y given the model Mk′ ", that is interpreted as the probability of observing
the data before any data were seen under the assumption the model Mk′ holds.
The second term is the prior distribution of model Mk′ and represents the prior
knowledge of model Mk′ before observing the data y. In case of “prior ignorance", a
simple and popular prior specification is the uniform which assigns same probability to
all models of consideration. This prior takes the form of

π(Mk′ ) = 1
|K|

, (1.2)

where |K| denotes the cardinality of the set of models. Despite its conventional utility,
there is a major drawback with this prior choice discussed in the work of Chipman et al.
(2001). Although, someone might expect the same amount of probability to each model,
the latter situation will not hold. The authors mentioned this prior as “deceptive" due
to its preference of models of moderate size. For this reason, in variable selection for
regression models this prior is substituted with other types of priors that we will see in
next chapters. On the contrary, if we are interested in comparing two different models,
M1 and M0, we can calculate their ratio of posterior model probabilities

PO[M1:M0] = π(M1|y)
π(M0|y) = m(y|M1)

m(y|M0)
π(M1)
π(M0)

, (1.3)

where M0, M1 are complement elements of the model space M, implying that π(M1) =
1 −π(M0). The ratio of posterior model probabilities is also called posterior odds PO[.]
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of model M1 versus model M0 and depends on the products of respective ratios of
marginal likelihoods and prior model probabilities of model M1 versus M0. Posterior
odds “rests firmly" on the update of prior model uncertainty through the ratio of
marginal likelihoods. Posterior odds PO[M1:M0] with values larger than 1 indicate that
model M1 is favoured against model M0, while for values lesser than 1 there are claims
against model M1. If we consider the uniform prior (1.2) across models M0, M1, then
the ratio of prior model probabilities M1, M0 vanishes in (1.3) and posterior odds
PO[M1:M0] turns into

BF[M1:M0] = PO[M1:M0] = π(M1|y)
π(M0|y) = m(y|M1)

m(y|M0)
,

which depends exsclusively on the ratio of marginal likelihood called “Bayes factor of
model M1 versus M0" denoted as BF[M1:M0]. The Bayes factor, as stated by (Kass and
Raftery, 1995), measures “the accumulated evidence provided by the data of model
M1 against M0", in other words the way it favours model M0 or model M1. The term
“evidence" rests on the notion of marginal likelihood which is usually expressed in
log-scale. If M0 denotes the null model, a brief manual of Bayes factor’s quantification
BF[M1:M0] is provided in Tables (1.1) and (1.2) by Kass and Raftery (1995), which
contain a straightforward interpretation of Bayes factor both in log-scales log10(.),
loge(.).

log10BF[M1:M0] BF[M1:M0] Evidence against M0

0.0-0.5 1.0-3.2 Not worth than a bare mention
0.5-1.0 3.2-10 Substantial
1.0-2.0 10-100 Strong
> 2 > 100 Decisive

Table 1.1 Bayes factor interpretation of log10BF[M1:M0].

logeBF[M1:M0] BF[M1:M0] Evidence against M0

0-2 1-3 Not worth than a bare mention
2-5 3-12 Substantial
5-10 12-150 Strong
> 10 > 150 Decisive

Table 1.2 Bayes factor interpretation of logeBF[M1:M0].
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The null model M0 is considered as reference base model for model selection
purposes and in variable selection in regression is expressed as a model containing only
a constant term called intercept without covariates. If we now consider the previous
case of the set of models M1, . . . , Mk and include the null model M0 into this set,
an alternative definition of posterior model probabilities using Bayes theorem is the
following

π(Mk′ |y) = m(y|Mk′ )π(Mk′ )∑K
k=1 m(y|Mk)π(Mk)

= m(y|Mk′ )π(Mk′ )/m(y|M0)π(M0)∑K
k=1 m(y|Mk)π(Mk)/m(y|M0)π(M0)

=
PO[M

k
′ :M0]∑K

k=1 PO[Mk:M0]
,

which is based on the comparison of posterior odds PO[M
k

′ :M0] of each model Mk′

versus null model M0. In case of loss of information regarding which model is more
plausible, the use of uniform prior (1.2) reduces the previous expression to

π(Mk′ |y) = m(y|Mk′ )π(Mk′ )∑K
k=1 m(y|Mk)π(Mk)

=
PO[M

k
′ :M0]∑K

k=1 PO[Mk:M0]

=
BF[M

k
′ :M0]∑K

k=1 BF[Mk:M0]
,

which depends on Bayes factor BF[M
k

′ :M0] of model Mk′ versus null model M0.
To conclude, posterior model probabilities, posterior odds and Bayes factors depend on
marginal likelihood which is a high dimensional integral obtained in closed form only
for particular instances, whereas for most of the other cases analytic approximations
such as Laplace (normal) or Monte Carlo methods are used; the Laplace approach
Tierney et al. (1989) is presented in the next chapters, while Monte Carlo methods are
avoided, since they are not of applied in this thesis.

1.2.2.2 Model Set Approaches

Model selection techniques distract the attention of many researchers regarding the
interpretation of posterior model measures, from which including posterior model
probabilities, Bayes factors and marginal likelihoods; see for more Bernardo (1979). The
posterior calculation of model probabilities reflects the way how the model uncertainty
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is adjusted through the normalization over the models (see denominator of Bayes
theorem). When the goal is model determination, all computed probabilities are
compared and only the model with the highest posterior probability is selected as the
best model in consideration, commonly named as the maximum aposteriori model
(MAP). In this way, Bernardo (1979) proposed useful ideas for the set of Models M

1. M-closed view: Assume the true model MT is an unknown element of the model
space M.

2. M-completed view: Assume that the set of different models, “to be evaluated in
the light of the individuals separate actual belief model".

3. M-open view: Assume that the model space is the same set of competing models
under consideration.

M-closed view is often used due to direct perception of posterior model probability,
that is the probability that data were generated under the true model, however this
assumption is valid only in case of a simulation study design where we know the true
form of generating mechanism. In most other cases, especially in real world applications
where M-closed view seems too pragmatic, we approximate the underlying phenomenon
providing a representative set of “competing" models with similar behaviour with the
real one. Usually, we assess the performance of model either based on model fit of data
in total sample or in out of sample predictions. Model fit refers to the applied criterion
that describes adequately the data and out of sample predictions refers to the ability
of testing performance of model to new data. Both rely on the way of "learning" from
data. For example, in linear regression problems we asses performance of model based
on mean squared error, while in classification problem we calculate misclassification
errors.
On the other hand, a major drawback of posterior model probabilities in comparison
to posterior odds and Bayes Factor is their reduction in similar models; we invite the
reader to give a look to Consonni et al. (2018) as the authors present nice review
research contributions that covers important aspects of Bayesian model and prior
specification. As long as the size of models is large, the respective posterior model
probabilities are decreasing in magnitude, even for the MAP (Consonni et al., 2018).
This is related to the dilution of posterior mass probability shared to common areas of
model space, as stated in Consonni et al. (2018); see also George and McCulloch (1993).
Thus, one has to think carefully for alternative measures of posterior model selection.
The authors provide very nice suggestions regarding prior choice and variable selection.
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More precisely in variable selection, assume a collection of different models M1, . . . ,MΞ.
If any collection of this form Mj = {M ξ ∈ M : γj = 1} ⊂ M is the set of all mod-
els containing the independent variable Xj as subsets of model space M, we can
additionally compute the posterior inclusion probabilities of a respective covariate Xj

π(γj = 1|y) =
Ξ∑

ξ=1
π(Mξ|y) =

∑Ξ
ξ=1 PO[Mξ:M0]∑K
k=1 PO[Mk:M0]

, (1.4)

where γj is the binary indicator of covariate Xj, which indicates the inclusion or
exclusion depending on its value. The binary indicator vector γ includes each γj

respectively and usually substitutes the model indicator Mk, indexing the 2p possible
subsets of X1, . . . ,Xp, where p is the number of independent variables, see George and
McCulloch (1993). We will see in next chapters that is a quantity of central interest
when we will start talking about highly complexed methods called MCMC usually
adopted for model search algorithms in variable selection problem.
Posterior inclusion probabilities like Bayes factors and posterior odds, indicate the
accumulated evidence of favouring the inclusion of covariate Xj provided by clues
of data. They represent a useful and reliable tool of evidence in variable selection
problem. Most of their success is devoted to their capabilities to ensure better predictive
optimality than even the MAP highlighted by Barbieri and Berger (2004), when we
consider the median probability model (MPM) which contains only covariates posterior
inclusion probabilities greater than 0.5. According to Consonni et al. (2018), posterior
inclusion probabilities are not vulnerable unlike posterior model probabilities because
they can be rewritten as

π(γj = 1|y) = 1
1 +Oj

, (1.5)

Oj =
∑Ξ

ξ=1 PO[Mξ:M0]∑Ξ̄
ξ̄=1 PO[Mξ̄:M0 ]

, (1.6)

where Mj =
{
Mξ̄ ∈ M : γj = 0

}
⊂ M is the complement set of Mj, that is the set

of all models as elements of model space M excluding the independent variable Xj.
In the above expression, notice that Oj is simply a fraction of sums up to 2p−1 terms
which confirms robustness and flexibility in large model sizes overcoming "dilution"
stated before. Furthermore, quantities Oj are also used in steps of a model search
algorithm that we will further exploit in next chapter where we will discussing for
variable selection in regression models. Thus, posterior inclusion probabilities are
more trusted and faster estimated than individual posterior model probabilities due
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to large sizes of models that contain little but different from zero probability mass in
normalisation constant of Bayes theorem for model selection.

1.2.2.3 Jeffrey’s-Lindley’s Paradox

(Lindley, 1957) observed an odd phenomenon of Bayes factor when he experimented
with a simple Bayesian model comparison for the mean and he called it "paradox".
This deportment is delineated: "as the sample size n goes to infinity, the posterior
odds tends to zero supporting parsimonious models for every level of significance. In
frequentist stastistics the level of significance as long as the sample n becomes larger
tend to reject simpler models. Then, in order to conduct a Bayesian or frequentist
method doesn’t matter at all due to the fact that different practitioners will end up
"fairly" supporting completely different models, that is a completely contradiction.
(Bartlett, 1957) later discovered that for large values of prior variance the posterior
odds supports the parsimonious model. Given this discovery, a practitioner must
be careful and select with "care" priors with large variances. Thus, prior with large
variances may exhibit undesired features even in Bayesian model selection which can
be seen also as non-informative priors. Concluding, non-informative priors may result
problematic even for model choice, but objective Bayes methodology, presented in the
next sections, introducing a completely different point of view through unorthodox
Bayes factors promises alternative solutions.

1.3 Objective Bayesian Approach

Bayesian model selection usually starts by assigning prior distributions to the model
parameters and the model itself. However, a common burden within prior specification
is always transformed into two frequently asked questions that a researcher has to
justify, "how define prior elicitation?" and "what type of prior distribution should be
used?". Often there are two ways to elicit prior knowledge, the subjective and the
objective, while we restrict prior specification only for objective approach. We will
illustrate their difference in this section, while emphasis is given only to objective priors,
where Bayesian model selection is briefly introduced because is not of interest in this
thesi’s topic. We give a short overview of these different approaches based on Consonni
et al. (2018), while the most distinguished objective model selection approaches are
mentioned in the final part of this chapter.
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1.3.1 Prior Elicitation

A Bayesian approach for model selection requires the specification of prior distributions
for each model parameter and model itself. There are two usual manners of expressing
prior knowledge regarding unknown quantities, subjective and objective. If a subjective
approach is considered, priors should rely their information from past studies or
from expertisers knowledge, in this way one elicits prior information quantifying his
prior beliefs for parameters of interest. Subjective analysis is considered as a "great
source of information", especially in applications where there is available knowledge
of background for the case under study; see for additional information Morris (1983),
Consonni et al. (2018).
The term prior elicitation usually refers in the way that prior beliefs are expressed and
its characteristics. A widespread known method initially starts with noticing how many
values of the parameter are more likely to appear and then to assign a probability mass
or density function, which respectively sums up or integrates to one, possibly referring
to a discrete or continuous parameter space. Of course, graphical representation of
prior distribution may be helpful, but for multiparameter space things get difficult.
An intuitive idea, is to assume a prior distribution belonging to a parametric family
of distributions that fits our prior beliefs as much as possible. When someone uses a
known probabilistic rule for the unknown quantities, he wonders if there are better
alternatives for posterior inference than others. More precisely, researchers adopted
prior distributions devoted to their functional adaptability with likelihood which lead
to posterior conclusions belonging in the same family like the prior. These priors were
introduced by Morris (1983) and the basic result states that any likelihood sharing
characteristics of exponential family will always have a conjugate prior. Most of the
cases, belong to exponential family and therefore they are broadly used. Additional
nice statements on the ground of conjugate properties under exponential family are
found in Consonni and Veronese (1992).
On the other side, objective approach is adopted in situations where there is lack or
loss of information regarding parameters. Objectivity refers to the way of providing
prior information as minimal as possible without influencing data, so letting data
decide. These approaches are known respectively as subjective Bayesian and objective
Bayesian approaches, whereas emphasis is only given to methods and prior specification
of objective Bayes.
Objective Bayesian analysis has a long history and it was the main reason for intense
debate among Bayesians due its concepts, Berger underlined the main philosophical
parts of objective Bayes. Although, it seems reasonable for a practitioner to express
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his opinion into a prior distribution, in real world applications of high dimensions, an
authentic prior elicitation turns out problematic. A useful justification by Consonni
et al. (2018) alongside Berger in the previous statement, is that as long as there is
complex parameter space, it will be very difficult to capture all dependence connections
among parameters within prior specification.
For example, variable selection in multinomial logistic regression is a problem of this
type with a complex parameter and model space.
On the other hand, for many applications there will not be available information with
respect to unknown parameters before observing data, thus a researcher has to find
a way to depict the loss of information into a prior distribution. For this reason, we
will focus on objective Bayesian methods. This section is described as follows: first we
discuss specific objective prior specification, secondly we introduce the reader to basic
concepts related to objective model selection and finally reviewing the most important
objective Bayesian methods.

1.3.2 Objective Prior Specification

Specification of prior distributions has an important impact in Bayesian statistics. As
we mentioned above, prior information are usually expressed through past studies or
from opinions of an expertiser’s area. When there is little or no information available
for the respective parameters, non-informative priors are used; Carlin and Louis (1996).
According to (Consonni et al., 2018), "any kind of this prior was used for many decades
in an attempt to prepare the Bayesian omelette without breaking the Bayesian eggs",
based on the original work of Savage (1954). The main idea behind words of this kind, is
the connection between frequentist and Bayesian modeling that someone can summon
probabilistic likelihood inference, avoiding subjective prior distributions. In many
situations there will not be trusty prior information related to unknown parameters,
thus objective inference based purely on the data is desired. In these situations, the
prior distribution of θ shouldn’t contain any relevant information such that no value
of θ observed in the parameter space Θ should be preferred over others, notice for
simplicity we dropped the subscript of M from parameter θ. When the parameter
space is a finite set with discrete values such that Θ = {θ1, . . . , θD} the probability
mass function

π(θd) = 1
D
, d = 1, . . . , D,

is non-informative because it gives same probability amount to each value of θ, notice
also that in this example θ is only a scalar compared to before. If the parameter space
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is continuous and bounded Θ = (−∞,∞), with −∞ < δ̃ < ϵ̃ < ∞, the prior density
distribution is

π(θ) = 1
ϵ̃− δ̃

, δ̃ < 0 < ϵ̃.

Moreover, if the parameter space turns into an unbounded interval, the probability
density function of θ becomes

π(θ) = c̃, c̃ > 0,

which is called improper because holds,
∫
Θ

π(θ)dθ = ∞.

Even if it seems strange to use this prior, the integral involving the product of likelihood
and prior over θ may result a finite number and so a proper posterior provides us
regular conclusions.
The two examples analyzed before for finite parameter spaces either in the discrete
either in continuous are called uniform distributions respectively, like the uniform that
we presented in the section of Bayesian model selection previously for prior beliefs of
models.
A disadvantage of uniform prior is its invariance in transformations. This property
states that if a non-informative prior distribution π(θ) is used, any reparametrizations
of form G(θ) will not maintain the non-informativeness property, G(.) is usually a "1-1"
real-valued function. A convenient solution to this issue is the adoption of Jeffreys’
non-informative priors that are invariant to any kind of transformations and based on
expected Fisher information matrix. If we consider multiparameter θ, a Jeffreys’ prior
takes the following form

πJ(θ) ∝ det(I(θ))1/2, (1.7)

where I(θ) denotes the expected Fisher information matrix, whose generic element
Iij(θ) under regularity conditions and in the continuous case, is given by

Iij(θ) = −EY |θ

(
∂2

∂θi∂θj

log f(Y |θ)
)
,

where EY |θ(.) is the expected value over the observed random variable Y given θ. In
case of scalar parameter θ, Jeffreys’ prior reduces to

πJ(θ) ∝
√
I(θ), (1.8)

which is simpler. Fisher information matrix I(θ) requires intensive computational cost
especially in high dimensional settings, thus a useful recommendation is to derive its
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Jeffreys’ prior for each element of the parameter vector θ and then taking the joint
prior which is formed from the product of each individual Jeffreys’ prior. (Consonni
et al., 2018) underlines that Jeffreys’ prior enjoys many important properties besides
its invariance property. It is considered an automatic prior setup which maximizes
asymptotic divergence among prior and posterior for θ, increasing the optimality
conditions in absence of nuisance parameters.
Although, it is viewed as one of the most popular objective prior choice, it has many
limitations surrounded by incoherences and paradoxes which are further discussed
in Consonni et al. (2018). Other common objective prior choices not focuses on this
thesis include, the reference prior Bernardo (1979), Datta et al. (1995) and Datta
and Ghosh (1996) in multidimensional parameter spaces, the matching prior which
shares properties like frequentist confidence intervals and the maximum entropy prior
of Jaynes (2003), see Consonni et al. (2018) for more details.
To conclude, we summarized the most used prior specifications in objective Bayesian
analysis and in the next section we will describe the most important objective Bayesian
methods based on the current prior specification of non-informative priors.

1.3.3 Objective Model Selection

In this section, we introduce the main concepts of objective Bayesian model selection.
Let M1, . . . ,MK be a collection of K different models and observables y come possibly
from one of these models. In case of substantial lack of information, we represent this
ignorance with (objective) non-informative priors πN(θMk

). Note that the superscript
in πN(.) refers to class of non-informative priors.
Model determination begins with marginal distribution of data y under model Mk′ ,
mN(y|Mk′ ), which depends on the form of the non-informative prior πN(θM

k
′ ). This

suggests that the estimation is not affected, whereas model selection it does. The issues
of arbitrary constants influence strongly model selection and this is better illustrated
in the works of O’Hagan (1995), Berger and Pericchi (1996) and Berger and Pericchi
(2001). Hence, they cannot be used naively in objective model selection to calculate
marginal likelihoods and Bayes factors Berger and Pericchi (2001).
In last years many objective methods were established in order to surpass the inde-
terminacy of Bayes factors based on the use of non-informative priors. Among them,
we distinct the posterior Bayes factor of Aitkin (1991), the fractional Bayes factor of
O’Hagan (1995), the intrinsic Bayes factor of (Berger and Pericchi, 1996), the power
prior of Ibrahim and Chen (2000) and the expected posterior prior Pérez and Berger
(2002). These methods despite they are very interesting in theory, in practice may be
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not trivial and share the use of a thought experiment that will allow to convert the
improper prior to a proper one and then use this for model selection purposes. Often
some of them methods such as Aitkin (1991) and O’Hagan (1995) are inconsistent
because they using the data twice, violating the likelihood principle. To conclude, a
hybrid approach which couples the power priors and expected posterior priors, namely
power expected posterior priors, is found in Fouskakis and Ntzoufras (2012) and
Fouskakis et al. (2018) in variable selection for linear and generalized models settings
respectively. Next chapter introduces the problem of Bayesian variable selection in
linear regression from an objective point of view with mixtures of g-priors.
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Chapter 2

Bayesian Variable Selection in
Linear Regression

Regression is an approved and attractive tool in different fields of science for the
investigation of linear dependencies among independent variables and a response vari-
able. Usually, in order to build an ideal regression model, a common question is
"how many relevant pieces of information need to be added", which in the regression
context means including only the important predictor variables which are related to
Y , namely variable selection Marin and Robert (2014). Including variables that are
not related to the target variable Y may mask important attributes of the population
and increase the error of predictions. Thus, variable selection is regarded as one of the
most important aspects of model selection where each model corresponds to a different
subset of covariates that balances the predictive performance with good estimation
properties. Nowadays, variable selection remains an open area of research.
As traditional variable selection cannot adequately deal with the issue of model uncer-
tainty, research has proved Bayesian methods more efficient in terms of probabilistic
reasoning. Especially, when little or no information is available regarding the covariates,
objective Bayesian methods are proposed as an alternative tool.
Thus, it is often necessary to resort to some formal prior elicitations based especially
on objective Bayesian approach.
Generally, improper priors are prohibited in model selection procedure, as their dis-
tributional forms depend on proportionality constants, which are defined arbitrarily.
However, the latter doesn’t influence the estimation process since these constants are
added as products in the numerator and the denominator of the posterior, causing
them to cancel out. Moreover, these constants will not vanish in the model selec-
tion procedure, as the marginal likelihood will contain them leading to "ill" posterior
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2.1 The problem of Bayesian Variable Selection in Linear Models

measures of evidence like Bayes factors and posterior model probabilities. Hence, to
avoid undetermined model choice assessments, the use of conventional proper priors
is strongly suggested. For these reasons, in this chapter, we focus only on Bayesian
variable selection for linear regression models with mixtures of g priors Liang et al.
(2008), namely g-prior; an idea developed originally by Zellner (1986). These Bayesian
variable selection methods seem promising in terms of objective consistency and are
characterized by optimality properties such as sparsity and parsimony. The first
research developments of Bayesian variable selection have occurred in linear regres-
sion because of its simplicity and approximation to complicate relationships, such as
wavelets or splines which are expressed as linear functions of the covariates Chipman
et al. (2001). Research publications in Bayesian variable selection abound regarding
regression, especially for Gaussian linear models, making Bayesian variable selection
alone an area of study, which exceeds the limit of this publication. Furthermore, many
statistical models in Bayesian variable selection replace the whole model indicator Mk

with γ, such that Mk ∈ M ≡ γ ∈ {0, 1}p, where γ is a latent vector parameter that
indexes each subset of independent variables to the initial set of variables X1, . . . , Xp.
On the other hand, an evident disadvantage of variable selection is commonly known as
"curse of dimensionality"; this means that when the number of parameters grows serious
problems are caused even in the context of a "formal" Bayesian model selection. These
problems are notably related to the computation of the posterior model probabilities
and the size of the model space. Additionally, latest technology progress gave the
opportunity to deal with the problem using highly complex algorithms called MCMC
which successfully perform the variable selection process. The MCMC methods George
and McCulloch (1993) and Dellaportas et al. (2002) are the main computational tools
of this thesis and consist of model search algorithms that provide analytic summary
of Bayesian variable selection. Even if regression was highly regarded with favor for
its simple computational form and its adaptability, in terms of MCMC, with Gibbs
sampling, the latter is not trivial when mixtures of g-priors are adopted. This topic is
presented in the second part of this chapter.

2.1 The problem of Bayesian Variable Selection in
Linear Models

The variable selection in linear regression models is a widely used methodology in
various applications and remains a hot topic for many research publications in the
present. Variable selection is regarded as one of the major encountered problems of
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2.1 The problem of Bayesian Variable Selection in Linear Models

statistical modelling in practice which aims to find important covariates X1, . . . , Xp that
explain or predict a phenomenon measured through a response variable Y . However,
one must pay attention to the importance of explanatory variables because irrelevant
covariates may harm the predictive ability and create noise in the produced estimates.
Thus, it is essential to select which variables-among a large pool of explanatory variables
should be included in the model that ensures a good predictive accuracy Marin and
Robert (2014). A linear model, as stated in previous chapter, is a probabilistic structure
that embodies a systematic component among the observables and the population
parameters containing the covariates usually expressed in terms of a possible parameter
vector β. In addition, model choice in linear model formulation begins with a probability
density distribution of observed values y = (y1, . . . , yn)T for the response variable Y

Y |a,β, σ2 ∼ Nn

(
a1n +Xβ, σ2In

)
, (2.1)

where p denotes the number of covariates in the design matrix X = [X1, . . . ,Xp], a
denotes the intercept as a scalar quantity multiplied by a column of n ones, X denotes
the design matrix of dimension n× p, β is a vector of dimension p× 1 which denotes
the corresponding effects of each covariate, σ2 represents the variance related to the
measuring error of the linear model and In is the identity matrix of dimension n× n.
Notice that the relationship in (2.1) is expressed as a linear function of a and β which
is due to the centering of the design matrix X; this step plays a decisive role in prior
specification and model selection which will be highlighted in next sections.
The next step is to identify promising subsets of variables related to the linear model
(2.1) which are represented by the binary vector. This notation is quite handy, since
it indicates which covariates are included or not. According to (Liang et al., 2008)
variable selection can be seen alternatively as the restriction in each subspace of the
linear model (2.1) conditional on γ; thus each subspace is a reduced linear model or
subset of variables. Moreover, the parameter γ serves as model index and it maps each
corresponding model γ to the model space 2p. Under these considerations, for each
candidate model γ ∈ {0, 1}p, the variable selection problem in linear regression models
can be defined for the random variable Y as

Y |a, σ2,βγ ,γ ∼ Nn

(
a1n +Xγβγ , σ

2In
)
, (2.2)

where a denotes again the intercept and remains the same across all models γ, pγ
denotes the selected number of covariates in the design matrix Xγ of each model γ,
Xγ = [Xγ1, . . . ,Xγpγ

] denotes the design matrix of dimension n× pγ for model γ, βγ

19



2.1 The problem of Bayesian Variable Selection in Linear Models

is a vector of dimension pγ × 1 which denotes the corresponding effects of selected
covariates and σ2 is the variance related to the measuring error of model γ. Practically
speaking, the design matrix Xγ represents a sub-matrix of the full matrix X where
each column of it is included in model γ; the same applies to βγ respectively to β.
In other words, the variable selection problem becomes a decision problem where
candidate models are ranked using a corresponding criterion which determines the
model selection. Thus, there are 2p competitive models that enumerate the model
space and we search the best subset of X1, . . . ,Xp explanatory variables that describe
or explain at most the variability of the response variable Y .
To conclude, in the next section, we will present the essentials of prior choice for
Bayesian Variable Selection in linear regression models.

2.1.1 Prior Elicitation

Although there are many reasons behind a researcher’s plan to express his subjective
opinion through a prior distribution for a quantity of interest, in general it results in
a futile attempt, especially in real problems. The former situation emerges in multi-
parameter problems, where it is impossible to envelop all prior parameter features even
if an expert’s knowledge is available. Thus, objectivity becomes crucial in situations
where subjective information is non available. This justification becomes evident in
variable selection for regression models where explanatory variables X1, . . . , Xp enter in
competition in terms of the possible 2p subsets, as their representation will correspond
to a specific couple of prior parameters sharing completely distinct values conditional
on each model, yielding obviously problematic subjective prior information. For this
reason, it will be impossible to encapsulate individual model characteristics reflected in
each distinct prior internal feature and hence objective Bayesian methods are preferred.
In the setting of Bayesian variable selection we follow the approach of Jeffreys (1961)
which is presented in the next section afterwards the prior choice.

2.1.2 Prior Choice

In Bayesian variable selection, a special application of statistical modeling widely
accepted, it is a common practice to consider any subset of independent variables as the
probability density functions and then to compute the posterior distribution of all these
subsets in order to figure out the uncertainty on the model space 2p Consonni et al.
(2018). Thus, the model choice even for the variable selection, is summarized through
posterior model probabilities for all 2p models using the Bayes theorem compared to a
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base model γ0

π(γ ′|y) = m(y|γ ′)π(γ ′)∑2p

γ m(y|γ)π(γ) =
PO[γ′ :γ0]∑2p

γ PO[γ:γ0]
,

where π(γ) are the prior beliefs for each model γ and m(y|γ) is the marginal distribu-
tion of data y under model γ. Furthermore, posterior model probabilities often result
from the computation of marginal likelihoods for each model γ in the model space 2p

m(y|γ) =
∫
a

∫
σ2

∫
βγ

f(y|a, σ2,βγ ,γ)π(a,βγ , σ2|γ)dadσ2dβγ ,

where π(a,βγ , σ2|γ) denotes the joint prior distribution of parameters given model γ.
Apart from π(γ), apparently, for a given set of models the effectiveness of the Bayesian
approach depends exclusively on the prior π(a,βγ , σ2|γ) usually requiring the evaluation
of a highly complex integral which leads to closed forms only for some specific prior
forms Liang et al. (2008); whereas for the other cases Laplace approximation Tierney
et al. (1989) is used. Thus, the specification of a prior distribution needs to be handled
with utmost care. Prior elicitation for π(a,βγ , σ2|γ) will be based on the original work
of Jeffreys (1961) on "conventional" priors, which provide reasonable comparisons of
Bayes factors across the model space Forte (2014). On the other hand, prior model
probabilities π(γ) regarding the model space are not of interest in this section and will
be further discussed in the second part of this chapter, including the most popular by
Scott and Berger (2010).

2.1.2.1 Base Model Considerations and Jeffrey’s Approach

The Bayesian approach to model selection and consequently to variable selection is
regarded as simultaneous hypothesis testing through the calculation of Bayes factors and,
consequently, posterior model probabilities. In equation (1.1), posterior probabilities
result from the simultaneous comparison of Bayes factor of each model γ with respect
to a fixed model γ0, called base model. The choice of the base model is crucial and
affects the model selection from an objective point of view, whereas from a subjective
stance it can be ommited. Consequently, the prior distribution π(a, σ2,βγ |γ) needs
a careful specification because it takes part in every model comparison; hence its
construction depends exclusively on the characteristics of the model we are comparing
γ it with. The main intuition behind the base model is better understood in the next
example based on (Consonni et al., 2018) which originates from the work of Jeffreys
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(1961). Suppose we are interested in comparing two models, let’s say, γ and γ0 for
simplicity, assumed as sampling densities that govern the observables y

Model γ0 : f(y|θγ0 ,γ0), θγ0 = (a, σ2)T ∈ Rdγ0 ,

Model γ : f(y|θγ ,γ), θγ = (a, σ2,βT
γ )T ∈ Rdγ ,

where model parameters θγ0 , θγ have different dimensions dγ0 , dγ0 respectively. Note
the model dimensions correspond to dγ0 = 2 and dγ = 2 + pγ respectively for γ0 and γ.
When model γ0 is nested in model γ, which means that after additional restrictions on
the parameter space of model γ model γ0 is retrieved, we conventionally consider as
"common" the model parameters (a, σ2)T between the two models, whereas parameter
βγ is model "specific". The use of a "common" parameter (a, σ2)T in nested model
comparisons often permits the employment of the same improper prior for (a, σ2)T

across the model space. Despite its broad use due to the above simplification, it is
not appropriate in the intrinsic methodology as stated by Consonni et al. (2018). A
"plausible" choice of the base model γ0 in the example above is null model which is
nested in each respective model γ in consideration. This option is considered to be the
most plausible since model evaluation compares each Bayes factor of nested models γ0

and γ with common model parameters (a, σ2)T for γ0 and βγ specific for each γ, called
null-based approach Liang, (2008). Hence, each model γ univoquely captures different
features in the specific prior distribution π(a, σ2,βγ |γ). In this way, let π(a, σ2|γ0) be
prior under the null model γ0 and without loss of generality let the prior under model
γ, have the following hierarchical distribution form

π(a, σ2,βγ |γ) = π(βγ |a, σ2,γ)π(a, σ2|γ),

From the above prior formulation notice that for any other option of base model γ0

the common and specific model parameters will vary respectively for the Bayes factor
comparisons of each model γ with respect to γ0 which will also directly affect the
specific prior itself. To conclude, other prior distributions related to other optional
base model comparisons are found in Casella and Moreno (2006); Liang et al. (2008).

2.1.2.2 Default Prior Choice

Model choice remains indisputably one of the most important domains in statistics and
is considered the final stage of conclusions. From a Bayesian perspective, before taking
final decisions, any model is initialized after a researcher assigns prior distributions for
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the unknowns which are of central interest. Thus, any prior represents the so called
"kick off" of a Bayesian model and their choice is a delicate issue even for variable
selection which will be further explored throught this section. In this section, we
present a detailed prior specification as stated previously following the guidelines of
Jeffreys (1961) and Zellner and Siow (1980) based on the approach of Zellner (1986).
Although a subjective view is useful, in real life applications with moderate model
space subjectivity is rejected even for variable selection. Thus, objectivity is still helpful
if there is little information at hands for the problem under study. However, several
objective Bayesian methods are based on the convenient use of non-informative priors,
usually improper or Jeffreys’ priors, which typically lead to ill-determined comparisons
of Bayes factors due to arbitrary constants Berger and Pericchi (1996) and Berger and
Pericchi (2001). Only in some instances one can search for solutions regarding the
indeterminacy of Bayes factors; see Aitkin (1991), O’Hagan (1995), Pérez and Berger
(2002) and Casella and Moreno (2006). Moreover, researchers often prefer to act in
the framework of conjugate priors because of their computational tractability in the
marginal likelihood, nonetheless conjugate priors exhibit undesired behaviour in the
resulting posterior measures of evidence as the sample size grows. Likewise, although
vague priors depict prior ignorance suitably; there is still debate arguing to avoid them.
Therefore, the use of conjugate priors in Bayesian variable selection for linear regression
models has limited potentials and a more elaborate strategy must be used; see Marin
and Robert (2014). The core beyond this strategy borrows strength by the original
idea proposed by Zellner (1986)in the linear regression.
Hence, researchers resort to suitable methods of objective Bayesian model selection
which are insensitive to the matters stated above and then use priors on the semi-
conjugate sketch of Zellner (1986). The basic approach behind this idea is to allow
practitioners to introduce (possibly weak) information about the vector of regression
coefficients and to settle the matter of the prior specification of the scale hyperpa-
rameters, by comprising the variance-covariance matrix through the expected Fisher
information matrix. The original "pre-processed" g-prior, suggested by Zellner (1986)
alongside Jeffrey’s conventional directions, is based on a combined prior, expressed
through a Jeffreys’ prior for the common model parameter σ2 and a proper conjugate
prior for the specific model parameter βγ+1 which takes in practice the following form

π(a,βγ , σ2|γ + 1) = π(σ2|γ + 1)π(βγ+1|g, σ2,γ + 1), (2.3)
βγ+1|g, σ2,γ + 1 ∼ Npγ+1

(
0pγ+1 , gσ

2(XT
γ+1Xγ+1)−1

)
, (2.4)
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where π(σ2|γ + 1) ∝ 1
σ2 , βγ+1 = (a,βγT )T denotes the joint parameter vector βγ

including the intercept a. Its mean is centered to zero because we assume there is
an a-priori negligible effect of selected covariates and g is a positive scalar multiplied
by a variance-covariance matrix which depends on the observed data of the design
matrix Xγ+1. Nonetheless, this is not a crucial issue since the whole model γ + 1 is
conditional on Xγ+1 from construction. While the improper prior for σ2 is not intended
to provide information, some researchers prefer to use this prior in an informative sense
specifying a combined normal-inverse-gamma modification of (2.4). Furthermore, the
prior scale of (2.4) up to the scalar g is the expected Fisher information matrix which
is equivalent to the variance-covariance matrix for a maximum likelihood estimator
β̂γ+1 conditional on a model γ + 1. This prior form offers a major advantage in
the unification of objective Bayesian and frequentist analysis enabling us to consider
straightforward prior specifications without activating the Jeffrey’s-Lindley’s paradox
Lindley (1957) and Bartlett (1957). According to Zellner’s first ideas, dated in the 80s
and mainly inspired by Jeffrey’s work of conventional prior specification, the g-prior
was initially introduced in his first attempt to compare a simple hypothesis testing
for linear regression even if he didn’t consider explicitly nested scenarios. At least his
earlier exposition was satisfied by the orthogonality of Fisher information matrix which
was a prerequisite for adopting Jeffrey’s pioneering ideas. In this work, orthogonality
plays an important role for any objective prior specification in the Fisherian sense,
that implies a block diagonal matrix of parameters in developing objective Bayesian
methods. For instance, the main body of prior specification (2.3) for the full parameter
vector θγ+1 = (βγ+1, σ

2) is due to Fisher information matrix defined as

I(θγ+1) = −EY |θγ+1


∂2log((f(Y |βγ+1,σ2,γ+1))

∂σ4
∂2log(f(Y |βγ+1,σ2,γ+1))

∂σ2∂βγ+1

∂2log(f(Y |βγ+1,σ2,γ+1))
∂βγ+1∂σ2

T
∂2log(f(Y |βγ+1,σ2,γ+1))

∂β2
γ+1

 ,
where the EY |θγ+1(.) is taken with respect to the random variable Y given the parameter
θγ+1 which after simple algebraic steps becomes

I(θγ+1) =
 n

σ4 0pγ+1

0T
pγ+1

XT
γ+1Xγ+1

σ2

 =
 I(σ2) I(σ2,βγ+1)

I(βγ+1, σ
2)T I(βγ+1)

 ,
where the block diagonal part I(βγ+1)−1 is used in the main part of the scale specifi-
cation of the g-prior. Note that block diagonal element I(σ2) = n

σ4 can be used also
for the prior of σ2 which is also a Jeffreys’ prior due to the invariance principle under
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transformations.
In addition, another extension of the initial g-prior of Zellner, was introduced by Liang
et al. (2008) which became popular for its computational advantages in Bayesian
variable selection in linear models. This version is simply a modified version based on
the orthogonality (centering) of the design matrix Xγ which allows to express distinctly
model parameters a, βγ in the following joint prior specification

π(a,βγ , σ2|γ) = π(a, σ2|γ)π(βγ |g, σ2,γ), (2.5)

where in the above equation we define

π(a, σ2|γ) ∝ 1
σ2 , (2.6)

βγ |g, σ2,γ ∼ Npγ

(
0pγ , gσ

2(XT
γXγ)−1

)
, (2.7)

where the joint prior (2.5) reflects the main ideas of Jeffreys (1961) although the
intercept is no more conditional on the coefficients of the g-prior (2.7). Moreover, apart
from Jeffreys’, orthogonality, usually known as centering, one of the main computational
steps in the aspects of prior specification which coerces to adopt the same improper prior
for a, σ2 along with the prior independence of a, βγ is related to Fisher information
matrix of a, βγ . Although, Liang et al. (2008) took advantage of the centering step,
subtracting the mean of the design matrix from the own matrix, they miss the chance
to justify the employment of prior specification (2.5) in the Fisherian sense and this
important feature is taken into account in this thesis. Unlike with the original g-prior,
the Fisher information matrix of a, βγ is sufficient

I(a,βγ) = −EY |a,βγ ,σ2


∂2log((f(Y |a,βγ ,σ2,γ))

∂a2
∂2log(f(Y |a,βγ ,σ2,γ))

∂a∂βγ

∂2log(f(Y |a,βγ ,σ,γ))
∂βγ∂a

T
∂2log(f(Y |a,βγ ,σ2,γ))

∂β2
γ

 , (2.8)

which is computed after performing some mathematical steps

I(a,βγ) =
 n

σ2 0pγ

0T
pγ

XT
γ Xγ

σ2

 =
 I(a) I(a,βγ)

I(βγ , a)T I(βγ)

 ,
where the block diagonality of the above matrix is due to the centering assumption
,XT

γ1n = 0pγ , which justifies the plausible a-priori independence of a, βγ . The block
diagonal part I(βγ)−1 is used as variance-covariance matrix of Liang’s g-prior (2.7).
Another important feature is the interpretability of the g-prior approach represented
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in both equations (2.4) and (2.7). In the first equation, the original g-prior is the
posterior distribution of an imaginary sample y0 = (y01, . . . , y0n∗)T , that can be used
for a response Y0, whose values are a vector of zeros of dimension n∗ × 1 for a linear
model with known variance. Denoted as Y0|β, σ2, g ∼ Nn∗ ((1n∗X0)β, gσ2) , coupled
with a joint improper prior, π(β) ∝ 1, where X0 is any centered design matrix of
dimension n∗ × p for which holds (1n∗X0)T (1n∗X0) = (1n∗X)T (1n∗X); see Bové and
Held (2011). Similarly the same hold for Liang’s g-prior; for more information see
Appendix section A.1.
To conclude, in the next section we will see how the prior knowledge is incorporated
in the posterior and we discuss the fundamentals of model selection in the context
of Bayesian variable selection for linear regression models. In the next subsection,
we review the main prior specifications regarding the model space composed by the
possible subsets of independent variables.

2.1.2.3 Prior Choice for Model Space

Prior model probabilities π(γ) are essential in order to complete the model selection
procedure using the Bayes theorem through posterior model probabilities and Bayes
factors. If a subjective point of view is adopted, the additional uncertainty that arises
from the priors π(γ) would be updated properly and incorporated in the post summary
after we have seen the data y ; see (Chipman et al., 2001). Although it is a great source
of information, subjective opinion is forbidden due to practical limitations related to
the increased number of parameters and consequently the risen complexity and high
uncertainty Chipman et al. (2001). Perhaps the most important reason for rejecting the
subjective approach is that we cannot "naturally" describe this uncertainty (Chipman
et al., 2001). Variable selection is a problem of this type where it is impossible to
manage the possible elicitations of 2p subsets both at the level of model parameter and
the model itself, although in this section emphasis will be given only to the latter one.
As we mentioned in previous sections, we will deal with Bayesian approaches that use
prior specifications based on non-informative and semi-automatic formulations, using
objective methods. The main purpose of using an objective approach is to specify priors
that allow the posterior probability to accumulate near the true generating mechanism
that generated the data y. When M-closed view is used, a common choice to express
indifference between two or more competing subsets was for many years the uniform
distribution π(γ) = 1/2p which is used in the case of prior ignorance and it favours
equally each model γ (Consonni et al., 2018). Equivalently, in variable selection terms,
beyond those covariates which must be present in each subset, the uniform distribution
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is obtained when all covariates are equally probable to enter the subset.
The uniform prior simplifies the calculation of the posterior model probabilites since
they are expressed as a proportionality constant to the marginal likelihood π(γ|y) ∝
f(y|γ) and the prior model probabilites are cancelled out leading to a straightforward
comparison between Bayes factors. According to (Chipman et al., 2001); this non-
informative prior is characterized as deceptive due to the sensitivity to the model
complexity. The idea of assigning equally prior probability mass to each model, is not
preferable because the model size has a large impact on the resulting posterior causing
it to reallocate the posterior mass probability away from the true model probabilities.
Thus, the selected model based on the posterior model probabilites will not coincide
with the true generating mechanism that generated the data y.
In the next sections, when we will discuss Bayesian variable selection using MCMC,
we will introduce a more general class of priors on model space which spreads the
probability mass around plausible model neighborhoods without being affected by the
model complexity.

2.1.3 Model Choice

Model selection is one of the most important aspects in statistical modeling since it
decides which mathematical structure is more appropriate to describe the genuine
mechanism that produced the data y and then uses a criterion or a measure of
evidence to single out a unique representative of the model uncertainty. In Bayesian
model selection, since we are treating the unknown parameters under a probabilistic
framework, these measures that decide which model is better or not are based on
posterior probabilities and Bayes factors. Model selection in the context of Bayesian
variable selection is of particular interest when g-prior formulation of (2.5) is adopted.
Its advantages are the analytical tractability of marginal likelihood, the closed forms
for posterior estimation and the automatic elicitation based only on the specification of
g, which are presented in details throughout this section Liang et al. (2008) and Held
et al. (2015). With regard to the latter, some methods based on arbitrary assignment of
values and empirical Bayes are also mentioned instead of only Bayesian methods, since
g takes place both in parameter estimates and posterior measures. This might create
unexpected surprises and should be avoided in research. This is further discussed in
Liang et al. (2008), Lindley (1957) and Bartlett (1957). Despite most authors start
with estimation and then conclude their work with model selection, we would like to
start from the marginal likelihood expression and then proceed to the explanation
based on computed posterior closed forms. Afterwards this section finishes with the
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description of the possible choices of g. To begin with, marginal likelihood is a key
quantity since it is involved in the subsequent calculations of the posterior model
probabilities and the Bayes factors. In addition, based on the g-prior under equations
(2.6) and (2.7) combined with the Gaussian sampling distribution (2.2) the marginal
likelihood closed expression is obtained as

m(y|γ, g) =
Γ
(

n−1
2

)
π

n−1
2

||y − ȳ1n||−(n−1) (1 + g)
n−1−pγ

2

[1 + g(1 −R2
γ)]n−1

2
,

where R2
γ denotes the usual coefficient of determination of the regression model γ and

we notice that the marginal likelihood is expressed as a function of the coefficient of
determination and the parameter g induced by the g-prior; see Liang et al. (2008).
This expression derives from the fact that the marginal likelihood specified under
the g-prior, is a normal-inverse-gamma distribution, leading to posterior distributions
retrieved also in closed forms which belong to the same family as the prior distributions
for each respective parameter βγ , a, σ2; see Marin and Robert (2014); for more details
see also equations (A.2), (A.3) and (A.4) respectively found in Appendix section A.2.
However, the mean and variance-covariance structure of the posterior distribution
βγ |g,y, σ2,γ depend on g

g+1 , called shrinkage factor, which preserves nice properties
and shrinks the maximum likelihood estimator β̂γ to prior zero mean. The issue of
the shrinkage factor g

g+1 will be more discussed in the next sections, which refer to
fully Bayesian variable selection methods and how it takes part in the computation of
the marginal likelihood. In particular, the posterior mean enables the so-called data
linear dependent shrinkage, which is an adaptive shrinkage provided by the data. The
posterior mean of the parameter βγ of a given model γ is expressed as

E
(
βγ |g,y, σ2,γ

)
= β̂γ

1 + 1
g

,

where the above expression shows that the posterior mean E (βγ |g,y, σ2,γ) of βγ is a
weighted average of the data and the prior mean, with weights 1, 1

g
respectively.

The whole uncertainty regarding the model parameters can be integrated (averaged) in
the marginal likelihood leading to recognizable kernels of these distributions with some
mathematical steps which result in the calculation of the above marginal likelihood.
In addition, when model choice is of interest and a convenient base model is chosen
(in our case always the null model) Bayesian variable selection selection proceeds with
comparing each Bayes factor of model space with respect to the null model. In an
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alternative way, Bayes factors comparison is regarded as a simultaneous hypothesis
testing, where the null hypothesis restricts the values of parameter βγ . More precisely,
if there is no prior knowledge regarding model choice, often a uniform prior is used to
express the ignorance across model space, posterior model probabilities are up to a
proportionality constant of each model’s γ Bayes factor versus the null model γ0 as

π(γ|y, g) ∝ BF[γ:γ0](g),

where the Bayes factors BF[γ:γ0](.) is a function of g hyperparameter and the above is
a result of Jeffrey’s ideas that took into account in the original work of Liang et al.
(2008). Moreover, each Bayes factor of model γ versus γ0 is equal to

BF[γ:γ0](g) = (1 + g)
n−1−pγ

2 [1 + g(1 −R2
γ)]− n−1

2 .

The above expression is reduced due to the marginal likelihood of null model γ0 which
holds for pγ0 = 0, R2

γ0
= 0; see for more Liang et al., (2008).

On the other hand, even though default prior specification of g-prior leads to automatic
model selection procedure, the hyperparameter g remains an open discussion for many
research publications. After performing the model selection, its influence is most notably
evident in the estimation and model selection measures. This influence is related to
the specification of the g hyperparameter, which acts as a dimensionality penalty in
the model choice problem and causes strange behaviours. This dimensionality penalty
emerges from the fact that if the specification of g is large, the model selection procedure
enforces the selection of more parsimonious models, whereas it is small, saturated
models are favoured. This fact is deduced from Jeffreys paradox which was mentioned
above and is strongly related to the sensitivity of the large g specification which favors
sparse models, forcing the Bayes factor BF[γ:γ0] → 0; see Bartlett (1957) and Lindley
(1957). In the literature there are approaches which deal with the specification of
g either with prefixed values or by estimating a value from the corresponding data
y. Although, the specification of g was subject to intense debate, the use of a fixed
value has been less criticized for some cases, whereas empirical Bayes procedures
provide reasonable estimates over the corresponding marginal likelihood of g using the
data. These approaches are summarized as follows unit information prior Kass and
Wasserman (1995), risk inflation criterion Foster and George (1994), benchmark priors
Fernandez et al. (2001), local empirical Bayes and Global empirical Bayes George
and Foster (2000). Except for empirical Bayes methods, prefixed Bayesian methods
including those of unit information prior, risk inflation criterion and benchmark prior
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don’t resolve paradoxes related to information consistency. Liang mentioned in her
original paper that under prespecified g, the information paradox is encountered since
these values do not include information from the data and thus seem odd. This
paradox appears when a large quantity of evidence is accumulated for a particular
model γ, but instead of forcing the Bayes factor BF[γ:γ0] → ∞, it forces it to diverge
to the constant term (1 + g)

n−1−pγ
2 ; and this is unusual. Furthermore, empirical Bayes

procedures exhibit even stronger non linear shrinkage and completely ignore the model
uncertainty reflected in the estimated standard errors of g. Although, the approaches
described above are considered very useful in terms of dealing with the specification
of hyperparameter g, in general an arbitrary value to the unknown quantities may
cause bias in selecting the correct model or even providing estimators using the data
twice; see Liang et al. (2008). Thus, the need to use pragmatic methods to eliminate
the dependence on g and the need to account for the additional uncertainty of g
hyperparameter lead to fully Bayesian approaches using mixtures of g-priors which
will be analyzed in the context of Bayesian variable selection. These will represent the
main core of the present thesis completing the objective approach and are presented in
the next section.

2.1.4 Model Choice with Mixtures of g-Priors

The need for creating default fully Bayesian variable selection methods fascinated
researchers working intensively on extensions of g-priors. They surpassed the most
difficult aspects related to g, which led to the development of the so-called mixtures
of g-priors Liang et al. (2008). In this context, a prior distribution π(g) is assigned
to g to account for the additional uncertainty in a realistic sense rather than using
an odd or plug-in value for g. Priors of this type are born from the desire to create
automatic Bayesian variable selection procedures which assure consistency in model
selection providing shrinkage and sparsity in covariate terms. These notions will be
further discussed in the second part of this chapter when we will describe model
search algorithms for the variable selection problem George and McCulloch (1993) and
Dellaportas et al. (2002). In addition, the literature of Bayesian variable selection is
vastly centered on prior distributions on g but these approaches are beyond the scope
of the present thesis. Especially in linear regression, most of the research contributions
came into light due to the simplified version of prior covariance matrix of g-prior, which
did not depend on model coefficients. Some distinctive research contributions includes
the approaches of Zellner and Siow (1980), Liang et al. (2008), Cui and George (2008),
Maruyama and George (2011), Ley and Steel (2012) and Bayarri et al. (2012). The
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work of Liang et al. (2008) is of major interest along with that of Zellner and Siow
(1980). This thesis covers the topic related to Zellner and Siow (1980) prior and Liang
et al. (2008) hyper-g prior. Despite the enormous success of mixtures of g-priors in
Bayesian variable selection for linear models, in the generalized linear model settings
the case was just the opposite and this will be presented in the next chapter, Bové
and Held (2011) and Li and Clyde (2018). In this section, the reader is introduced to
the main points of mixtures of g-priors based on the work of Zellner and Siow (1980),
namely the Zellner-Siow prior. Then the hyper-g-prior will be presented.

2.1.4.1 Hierachical Prior Specification

A natural Bayesian determinant to the uncertainty regarding the choice of g, is a
hyper-prior on g to allow the data decide in an automatic manner. This will make
actually the analysis more robust sharing the ideas of objective Bayesian methods
with respect to the assumptions on g extending the prior specification (2.5). In this
section, we review the basic ideas regarding the g-prior combined with a proper prior
π(g) distribution for g based on Jeffreys (1961) and Zellner and Siow (1980) seminal
works. Appealing to Jeffrey’s ingenious ideas for a simple hypothesis testing for a
normal mean, (Zellner and Siow, 1980) proposed the use of multivariate Cauchy priors
for Bayesian variable selection. As is commonly accepted and highlighted in Liang’s
research paper, Cauchy priors inherit heavy tails like a t-student distribution and
can be easily expressed as a scale mixtures of normal priors. Thus, the Zellner-Siow
proposal prior for the variable selection problem results just as a modification of (2.5)

π(a,βγ , σ2, g|γ) = π(a, σ2|γ)π(βγ |σ2,γ), (2.9)

with
π(βγ |σ2,γ) =

∫ ∞

0
Npγ

(
βγ
∣∣∣0pγ

, gσ2(XT
γXγ)−1

)
π(g)dg,

where the previous represents the cauchy prior as integrated version of Liang’s g-prior
(2.7) over the hyper-prior π(g) for g. Distributions of such form are known from
probability theory as scale mixtures of normals and the corresponding π(g) is called
mixing function. An equivalent way of seeing mixing of distributions in (??), is like a
hierachical prior specification for constructing (2.5) starting from the coefficients vector
βγ given γ and then employing a proper prior for g. On the other hand, as we saw
previously g appears not only in posterior model probabilities and Bayes factors, but
even in the resulting posterior measures for estimation, as for example, in the posterior
mean and matrix covariance of βγ . Thus the prior specification must be selected
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carefully to allow tractable computation both in model selection and estimation terms.
When the goal is model determination, after adopting a base model comparison, the
calculation of the posterior model probabilities and Bayes factors of each model γ
based on the mixture representation are modified as

π(γ|y) ∝ BF[γ:γ0],

where,
BF[γ:γ0] =

∫ ∞

0
(1 + g)

n−1−pγ
2 [1 + g(1 −R2

γ)]− n−1
2 π(g)dg.

Notice that the previous posterior measures in are refined versions cleaned from the
dependence of hyperparameter g enabling a straightforward model comparison in
variable selection. While tractable marginal likelihood and prediction are essentials for
model selection, researchers often resort to prior specifications that lead to consistent
Bayesian variable selection methods. For this reason, in the next section we will present
in detail two default Bayesian methods, the so-called Zellner-Siow prior based on the
previous mixture representation through an inverse-gamma and the hyper g as special
mixing functions.

2.1.4.2 Model Choice with Zellner-Siow Priors

In the context of model selection, Jeffreys (1961) avoided the use of normal distributions
for testing a simple normal mean due to the paradoxes of the Bayes factors. Inspired
by Jeffrey’s, the first mixtures of g-priors was the Zellner-Siow’s prior, which can be
described through a multivariate Cauchy distribution satisfying consistency in terms of
Bayesian variable selection for regression model; see for more Zellner and Siow (1980).
However, the popularity of this family of mixture priors was restricted due to non
tractable forms in terms of model selection and posterior estimation. Consequently,
one has to apply numerical methods. The prior formulation (2.9) starts by assigning
for model parameters σ2, a a common Jeffreys’ prior as introduced by (2.6) and for
regression coefficients βγ of each model γ a multivariate Cauchy of the following form

π(βγ |σ2,γ) ∝
(

1 +
βTγX

T
γXγβγ

nσ2

)− pγ
2

.

However, Liang stated in her original paper that the computation of marginal likelihood
using Cauchy distribution doesn’t lead to closed form representation and when the
model dimension increases this computation becomes clearly unfeasible. Later, (Zellner
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and Siow, 1980) took advantage of mixture representation of Cauchy prior in expressing
it, as a mixture of normals over inverse-gamma distributions as

π(βγ |σ2,γ) =
∫ ∞

0
Npγ

(
βγ
∣∣∣0pγ

, gσ2(XT
γXγ)−1

)
πZS(g)dg,

where πZS(g) is a proper prior distribution on the hyperparameter g denoted as

πZS(g) = n
1
2

Γ
(

1
2

)g− 3
2 exp

{
− n

2g

}
, (2.10)

where the above implies g ∼ IG
(

1
2 ,

n
2

)
; see Liang et al. (2008). Note that for notation

reasons, πZS(.) denotes the hyper-prior of Zellner-Siow.
If we want to calculate the posterior model probabilities, one has to calculate first each
compared Bayes factor of a given model γ versus the null model γ0 expressed under
Zellner-Siow prior formulation

BFZS
[γ:γ0] = n

1
2

Γ
(

1
2

) ∫ ∞

0
(1 + g)

n−1−pγ
2 [1 + g(1 −R2

γ)]− n−1
2 g− 3

2 exp
{

− n

2g

}
dg, (2.11)

where the above Bayes factor is a unidimensional integral over the g hyperparameter
for which there are no available closed mathematical forms.
In order to handle such integrals of the form

∫∞
0 h(g)dg, where h(.) is a real-valued

function, it is recommended to use the Laplace approximation Tierney et al. (1989).
This approximation is valid only under certain regularity conditions and consists
of expanding a smooth unimodal function twice differentiable H(g) = log h(g) in a
Taylor series expansion of second order around ĝ, the mode of H(g). The Laplace
approximation can be implemented as the following∫ ∞

0
exp {H(g)} dg ≈

√
2πσ̂Hh(ĝ),

where σ̂H ≈
[

−d2H(g)
dg2

∣∣∣
g=ĝ

]− 1
2
; for more details see Appendix section A.3. The mode ĝ

will result as the solution of the equation dH(g)
dg

= 0.
In addition, Bayes factor of (2.11) under the Zellner-Siow prior (2.10) is approximated
by the Laplace approximation

B̂F
ZS

[γ:γ0] ≈ n
1
2

Γ
(

1
2

)√
2πσ̂HZSh(ĝZS),
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where σ̂HZS is the sampling error of posterior mode ĝZS and the mode ĝZS. The
quantities ĝZS and the mode ĝZS are based on Abramowitz and Stegun (1970) and
Liang et al. (2008); see also for more details on equations (A.9) and (A.10) Appendix
section A.4. Further details are described by Liang et al. (2008), where the mode ĝ of
Bayes factor (2.11) is provided as the solution of a cubic equation; see for more Liang
et al. (2008) Appendix section A.1.

2.1.4.3 Model Choice with Hyper-g-Priors

As an alternative to Zellner-Siow prior for the model choice problem, another family of
mixture of g-priors is the hyper-g-prior which is mainly preferred for its reasonable
analytical tractability of marginal likelihood, Bayes factors and its closed expressions
for all posterior statistics of interest. In addition to the original work of Liang et al.
(2008), we went a step further providing closed mathematical expressions for the first
and second posterior moments that represent important means of location and scale.
Similarly to Zellner-Siow, the mixture representation presented in the previous section
may be extended to a hierachical prior specification, but this time using the hyper-g-
prior. It is important to point out that this mixture of g-priors must not be confused
with that of Cauchy prior in the sense that it does not lead to Cauchy prior. The
hyper-g-prior borrows its name from the Gaussian hypergeometric function included in
posterior measures of evidence and estimation. The Gaussian hypergeometric function
2F1(.), is defined for a generic real variable x

2F1(a, b; c; z) = Γ(c)
Γ(b)Γ(c− b)

∫ 1

0

xb−1(1 − x)c−b−1

(1 − xz)a
dx,

where the integral is convergent for real |z| < 1 with c > b > 0 ; see Abramowitz
and Stegun (1970) and Liang et al. (2008). In addition, the mixture representation
provided initially by Jeffreys (1961) and Zellner and Siow (1980) regarding Bayesian
variable selection, allows to express the joint prior (2.5) implying the same improper
prior (2.6) and including the additional model uncertainty for g through a multivariate
distribution for βγ with a mixing distribution

π(βγ |σ2,γ) =
∫ ∞

0
Npγ

(
βγ
∣∣∣0pγ

, gσ2(XT
γXγ)−1

)
πhy(g)dg,

where πhy(g) is the hyper-g-prior on g denoted as

πhy(g) = α− 2
2 (1 + g)− α

2 , α > 2, (2.12)
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where the prior elicitation of parameter g depends on the choice of the hyperparameter
α. For values α > 2, this is a proper distribution and for values α ≤ 2 this is an
improper distribution. Notice for α = 2 it corresponds to the usual Jeffreys’ prior; see
Strawderman (1971) and Cui and George (2008). In general, any choice of α ∈ (2, 4]
lead to robust performance, apart from values near 2 that tend to activate Jeffrey’s-
Lindley’s Paradox. Notice again we denote as πhy(.) the prior indexed by the hyper-g.
Alternatively, an equivalent fully Bayesian analysis is obtained by translating the
hyper-g-prior for g into a Beta prior on the shrinkage factor g

g+1 common for all models
γ

g

g + 1 ∼ Beta
(

1, α2 − 1
)
, (2.13)

which leads to a prior mean equal to 2
α
. In a similar way, the elicitation of g is

determined by the values of α in the range [2,+∞). The choice of α = 4, results
non-informative in the sense that it turns the prior of the shrinkage factor g

g+1 into
uniform. A value close to 2, concentrates the probability mass on the shrinkage factor
close to 1. Conversely, any α > 4 concentrates probability mass near 0. Furthermore,
the authors derived the model specific posterior distribution of g and some posterior
statistics by relying on the integral representation of Gaussian hypergeometric function
2F1(a, b; c; z) which is computed in exact form

π(g|γ,y) = pγ + α− 2
2 2F1

(
n−1

2 , 1; pγ+δ
2 ;R2

γ

)(1 + g)
n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 .

In addition, when model selection is mandatory, the computation of posterior model
probabilities via the Bayes theorem include the comparison of Bayes factor of each
model in the model space versus the null model after adopting the hyper-g-prior

BF hy
[γ:γ0] = α− 2

2

∫ ∞

0
(1 + g)

n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 dg, (2.14)

which can be found in closed form based on previous considerations. The corresponding
Bayes factor (2.14) using either hyper-g-prior (2.12) either the hyper-g-prior (2.13)
for the shrinkage factor is calculated after recognizing the normalization constant in
posterior of g as

BF hy
[γ:γ0] = α− 2

pγ + α− 2 2F1

(
n− 1

2 , 1; pγ + α

2 ;R2
γ

)
, (2.15)

which is found in tractable form in terms of Gaussian hypergeometric function; see for
more Appendix section A.5. As it was mentioned before, the posterior distribution of
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g allows to derive important posterior summary statistics in closed form such as first
and second moments both for g and g

g+1 in comparison with Liang et al. (2008) who
rest only on the posterior mean of shrinkage factor, while we derived also the first and
second posterior moments of g and g

g+1 ; see for more equations (A.15), (A.17), (A.16)
and (A.18).
On the contrary, most notably, posterior expectations given in Liang et al., (2008)
involve ratios of Gaussian hypergeometric functions 2F1(.). The authors propose to
compute via Laplace approximations when the problem of numerical overflows appears.
Their approach, in order to avoid problems with the boundary of Zellner’s g parameter
space, uses a Laplace approximation after applying the transformation z = log(g) in
the corresponding Bayes factor (2.14)

B̂F
hy

[γ:γ0] ≈ α− 2
2

√
2πσ̂Hhyh(ẑhy),

where σ̂Hhy is the standard error of the mode ẑhy and the mode ẑhy is resulting as the
solution to a quadratic equation, all the above results are described further by Liang
et al. (2008) and Abramowitz and Stegun (1970); see also for additional details of the
respective calculations equations (A.21) and (A.22) in Appendix section A.6.

2.2 MCMC for Bayesian variable selection in Lin-
ear Models

Bayesian model selection is regarded as a dominant procedure in daily practice that
successfully deals with the model and parameter uncertainty. Model uncertainty is
translated into covariate uncertainty in Bayesian variable selection problem where
there are not sufficient guidelines on how to select an "ideal" subset. This problem is
encountered in many scientific areas where an automatic procedure sharing probabilistic
nature, like objective Bayesian methods, is always essential. More precisely, Bayesian
variable selection in linear regression models is considered one of the most important
aspects of model selection, useful for predictions and causal relationships between the
response variable and the explanatory variables, while at the same time it decides
which variables should be included or not in the model. In other words, the variable
selection problem arises when there is an unknown subset of explanatory variables with
regression coefficients too small that it would be preferable to ignore them Chipman
et al. (2001). In this way, variable selection in a regression problem is viewed as one of
inducing sparsity or parsimony and shrinkage inspired by the ingenious ideas of spike-
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slab priors. Moreover, parsimony and shrinkage, are two terms that are completing
each other in the sense that one implies the other and this refers in the way that
models are produced in the most notably simple form forcing noise variables to be
omitted. Equivalently, ignoring variables that are noise to the data produces simpler
models. Under this consideration, spike-slab priors gained much popularity for their
adaptability to the data both in prediction and in model selection.
In addition, the use of computers and technology progress reawakened new paths that
were clearly infeasible in the last decades and within the advent of Markov Chain
Monte Carlo (MCMC), the Bayesian core of variable selection received great attention
promising innovative solutions and ideas for complex models in high dimensional
settings. The MCMC methods provide a powerful tool regarding the model selection
avoiding the computational burden of the solid Bayesian oracle. We invite the reader
to give a short look to the main manual for MCMC provided by Gilks et al. (1996).
Two common problems that we encounter within the Bayesian variable selection are
the computation of the posterior model probability and the enumeration of the model
space. The Bayesian variable selection with MCMC methods was quite promising
to overcome these limitations. The MCMC methods in Bayesian variable selection
problem produce flexible inference by generating a simulated sample from the joint
posterior distribution of the model parameters and the model itself through a Markov
chain that operates on the model space converging to the target distribution. The joint
distribution generated by the sampler of MCMC, represents the posterior distribution
by imposing a hierarchical mixture prior on the regression coefficients; we will discuss
this hierarchical prior in the next section. Despite, these methods show an exclusive
way to calculate the posterior, they provide a substantial exploration of the model
space summarizing relevant information related to variable selection. The MCMC
methods in Bayesian variable selection for linear models is covered immensely in the
literature, as it gained much attention due to a variety of research accomplishments.
The most important research contributions were described by George and McCulloch
(1993), Madigan and Raftery (1994), Carlin and Chib (1995), Green (1995), Smith and
Kohn (1996), Raftery et al. (1997), Hoeting et al. (1999) , Kuo and Mallick (1998),
Dellaportas et al. (2002) and Ročková and George (2014) each of them describing a
special contribution. However, we will restrict our attention to the Stochastic Search
Variable Selection (SSVS) of George and McCulloch (1993), the Gibbs Variable Selection
(GVS) of Dellaportas et al. (2002), which are the main tools applied in the present
thesis and then we will summarize important features related to each variable selection
procedure. As a consequence, in this second part of this chapter we want to extend
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the above Bayesian variable selection for these methods using mixtures of g-priors
introduced by Liang et al. (2008), including Zellner-Siow prior and hyper-g-prior and
enlighting up some additional formulations which will be used within the frames of a
simulated and a real data-set in order to assess their performance. Before that, let us
introduce some basic concepts of a more general hierachical Bayesian variable selection
scheme in the next section.

2.2.1 Hierarchical Prior Specification for MCMC

Prior specification is regarded one of the most crucial steps to initialize a Bayesian
model selection method, while its choice deserves great attention. When, variable
selection takes place as a special case of model choice, prior elicitation becomes virtually
impossible as the number of independent variables grows, thus researchers have to resort
to alternative priors to deal with this issue, especially in high dimensional problems.
The prior specification to solve this problem, namely spike-slab, was introduced by
Mitchell and Beauchamp (1988) and then generalized by George and McCulloch (1993)
and Chipman et al. (2001). The main intuition behind these priors rests firmly on
the context of variable selection, through a hierachical construction conditional on the
values of a binary latent vector γ. Incorporating the binary indicator variable γ in
the analysis, implicitly indicates that the vector of coefficients β is an example of a
spike-slab prior distribution. More specifically, a spike-slab prior is a mixture of two
distributions, of a spike and of a slab respectively, where the spike is highly peaked
in a region of zero with small variance or precisely at zero capturing the coefficients
that are not significant towards zero and the slab prior is a more spread distribution
covering plausible values moving away from zero. In other words, we simply assign
less uncertainty reflected in the small variance of the spike component just to capture
the non significant effects and more uncertainty expressed in the large variance of the
slab component to allow the possibility for capturing important effects. In addition,
Mitchell and Beauchamp (1988) introduced these priors in order to facilitate the
variable selection problem putting additional constraints to the corresponding effects
of the independent variables being zero or not. Prior distributions of this form are
formulated component-wise for each element βj as

π(βj|γj) = γjπ
slab(βj) + (1 − γj)πspike(βj),

where πslab(.), πslab(.) denote the slab and spike components respectively and the
above expression implies prior independence between the individual elements of β,
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for j = 1, . . . , p. In their original approach Mitchell and Beauchamp (1988); used a
spike highly peaked at zero and a uniform slab large spread around plausible values.
Based on the current value of γj, the effect of βj will belong either to the spike or
to the slab. According to (Ročková and George, 2014); if there is strong evidence
provided by the data against the inclusion of the respective effect of the covariate, the
spike component will dominate the posterior for which it will effectively shrink the
posterior mean towards zero. Thus, the spike-slab distributions clarify which regression
coefficients are significant and which are not. Alternatively, the spike part will be
substituted by a continuous distribution with zero mean and small variance; see George
and McCulloch (1993); Dellaportas et al. (2002).

2.2.2 Stochastic Search Variable Selection

The stochastic search variable selection (SSVS) is one of the great fundamentals of
Bayesian variable selection and was introduced by George and McCulloch (1993) in their
attempt to extend the spike-slab, provided an efficient model exploration algorithm
using a Gibbs sampler. In parallel with the outbreak of MCMC methods, SSVS
was the main motivation that inspired many researcher to develop efficient Bayesian
variable selection methods for the exploration of model space and it is considered as
the predecessor of many methods. Even though it was introduced for variable selection
in linear regression, many extensions surrounding SSVS were also used for instance in
factor analysis and time series in many different areas of science. The SSVS approach
in linear regression begins describing the relationship between the response variable Y
and the set of predictors X1, . . . , Xp using a linear model of the form (2.1) where the
above is the usual regression setup. The latent binary vector γ was first introduced
by George and McCulloch (1993) and arose naturally for the interpretation of the
inclusion or exclusion of the respective covariates. In addition, for each covariate and
its respective effect, a mixture of two normal distributions with the one having most of
its mass concentrated around zero and the other one spread over plausible values, tuned
by possible additional hyperparameters, is assigned. Their choice ensures the good
mixing of the underlying MCMC method. This is achieved through a prior distribution
for each element βj conditional on the values of γj

π(βj|γj) = γjN(0, c2
jτ

2
j ) + (1 − γj)N(0, τ 2

j ),

where the parameters τj, cj are large and set respectively so that the distribution
N(0, c2

jτ
2
j ) and the N(0, τ 2

j ) is diffuse. The tuning of parameters τj, cj determine
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the performance of the procedure, while the magnitude of the shrinkage of the non
important covariates depends on τj. The authors in their original paper, mention
that the option of τj, cj is based on practical significance rather than statistical which
appears as a solution of the intersection points between the two densities N(0, c2

jτ
2
j )

and the N(0, τ 2
j ); see for details George and McCulloch (1993) and Chipman et al.

(2001). The intuitive idea behind the above prior specification implies that, when
γj = 1, the corresponding effect βj is included in the model with a prior that is sharp in
reasonable values away from zero in order to let the data decide through the posterior.
On the contrary, when γj = 0, βj is absent from the model with an informative prior
around zero; then the effect is shrunk to zero. Although, the initial prior construction
of George and McCulloch (1993) was developed for different τj, cj, we would like to
propose something slightly different but more flexible and automatic from the previous
consideration by assuming the same prior inputs τj = τ , cj = c for each regression
coefficients βj such that to obtain results near objective Bayesian approaches. The
above prior for each element βj , can be expressed also under a more general multivariate
normal β, which is described in George and McCulloch (1993) and Chipman et al.
(2001). Conditional on the binary vector γ, the prior for β is expressed as

β|γ ∼ Np(0p,DRD),

where R is the prior correlation matrix and D is a diagonal matrix with j-th entry
equal to γjcjτj + (1 − γj)τj that arranges the scale of prior-covariance. Although, the
choice ofR = Ip yields in equivalence this prior with the above, R = gσ2D(XTX)−1D

is adopted as the main objective choice based on g-prior. The SSVS ends with the
joint prior specification of parameters a, σ2, g,γ based on Jeffrey’s objective approach
for the linear model

πSSV S(a, β, σ2, g,γ) = π(a, σ2)πSSV S(β|g, σ2,γ)π(g)π(γ), (2.16)

where denotes π(a, σ2) the same improper Jeffreys’ prior as (2.6), but with the only
difference that the model indicator γ is ommited for simplicification purposes. Also,
regarding the prior for model space

π(γ) =
p∏

j=1
w

γj

j (1 − wj)1−γj ,

where the above prior is an independent Bernoulli with prior probability weights
of inclusion wj and exclusion 1 − wj for each respective covariate. This prior is a
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realistic choice which implies that the inclusion of one covariate is independent from
the inclusion of any one other; the same assumption holds also for exclusion. Prior
reduces to uniform prior which puts equal prior probability mass to each covariate,
in other words, the inclusion of each covariate is likely the same. Moreover, if we
consider w = wj the prior choice of γ may be extended to a more general class of
hierarchical prior which deals with the specification of prior weights wj as the following
w|p̃1, p̃2 ∼ Beta(p̃1, p̃2). If hyperparameters p̃1, p̃2 are set to one, prior becomes
non-informative, whereas there is an expert’s opinion stating that it can be used also as
an informative prior. Scott and Berger (2010) showed that the above hierarchical prior
is much preferable than that of Bernoulli distribution, with specified prior weights wj

as it preserves sparsity in high dimensional settings.
To conclude, regarding the prior for g, it is either adopted with a Zellner-Siow prior
(2.10) or with a hyper-g (2.12).
One important feature of the SSVS prior (2.16) , is that by construction it keeps
dimensionality constant across all models γ, which accomodates the incorporation of
the binary latent vector γ in main prior parameter specification, in contradiction with
formal Bayesian model selection which specifies prior model probabilities separately
after marginalizing the model parameters. The joint posterior distribution of the model
parameters and the model space is expressed as the product of the sampling density
(2.1) and the SSVS prior (2.16)

πSSV S(a, β, σ2, g,γ|y) ∝ f(y|a,β, σ2)π(a, σ2)πSSV S(β|g, σ2,γ)π(g)π(γ).

Notice in the above that the likelihood remains the same across model space in contra-
diction with the joint posterior that changes over each model γ and the joint posterior
remains in an unrecognised form. In this way, although the joint posterior distribu-
tion is intractable in closed form, MCMC methods facilitate exploration of the joint
posterior of the model. Model indicator parameters identify only the important areas
of model space with high posterior probability avoiding exhaustive exact calculation
of marginal likelihood and full enumeration of the model space. The corresponding
MCMC procedure is applied through a Gibbs sampler which samples indirectly from
the joint posterior distribution, using the full conditionals of each parameter a, β, σ2

and γ resulting as a sample from joint posterior distribution πSSV S(a, β, σ2, g,γ|y).
To conclude, analytical details and computations of full conditionals with respect to
model specific parameters are avoided because are out of the scope of this thesis and
hence we provide an analytic description of the implementation of SSVS in order to
familiarize the interesting reader; see for more details Appendix section A.7.
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2.2.3 Gibbs Variable Selection

The Gibbs variable selection (GVS) of Ntzoufras (1999) and Dellaportas et al. (2002)
can be considered a variant of SSVS. It was first proposed for Bayesian variable selection
in linear regression models and uses a similar but modified prior specification allowing
to safely jump from one model to another when different sizes are concerned. This
prior schema extends the idea of SSVS through a flexible prior mixture component
for the non present effects ensuring the dimensionality across different size of models.
In this approach, the linear relationship of the response Y and the set of predictors
X1,. . . , Xp is affected by the binary vector γ using a linear model of the form

Y |a,β, σ2,γ ∼ Nn

(
a1n +XΓβ, σ2In

)
, (2.17)

where Γ = diag(γ) is a matrix of dimension p× p. In comparison with SSVS of George
and McCulloch (1993), each effect βj of β is now assigned with a modified prior scale
mixture of normal distributions. Alike SSVS, this prior mixture incorporates the binary
indicators γj of βj as

βj|γj ∼ γjN(0, c2
jτ

2
j ) + (1 − γj)N(µ̄j, s̄

2
j),

where parameters τj, cj are set small and large respectively, whereas µ̄j, s̄j are means
and standard deviations of βj obtained by a pilot study for a saturated model. Thus,
the corresponding effect βj will be classified to diffuse either prior component N(0, c2

jτ
2
j )

or prior component N(µ̄j, s̄
2
j). Unlike SSVS, the mixture prior of GVS is distinguised

because of the mixture component N(µ̄j, s̄
2
j), commonly known as pseudo-prior, which

acts as a "passive" prior incorporating no additional knowledge for βj and hence does
not affect the data and the resulting posterior. In order to familiarize the reader
with the concept of pseudo-prior, we illustrate a simple example of the main prior
specification as adopted in Dellaportas et al. (2002). Let the above univariate mixture
prior be expressed in a more fashionable way like a mixture prior of SSVS with minor
differentiations as a multivariate distribution for the vector of effects β as the following

β|γ ∼ Np

(
µ, D̃

2
)
,

where we denote as µ = (1 − γ)µ̄ with µ̄ = (µ1, . . . , µp)T and D̃ a diagonal matrix
with j-th diagonal element equal to γjcjτj + (1 − γj)s̄j implying prior independence
given latent vector γ. Both µ, D̃ determine the prior mean and variance-covariance
structure of the prior which are the main ingredients that distinguish the GVS from
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the SSVS method. If we consider in our disposal a fixed value γ∗ = (1, 0, 1) for a given
model γ the full conditional of β is computed

π(β1, β2, β3|a, σ2γ∗,y) ∝ f(y|a, β1, β2, β3, σ
2,γ∗)π(β1, β2, β3|γ∗)

∝ exp
(

− 1
2σ2 [y − a1n −X1β1 −X3β3)T (y − a1n −X1β1 −X3β3]

)
,

exp
(

− β2
1

2c2
1τ

2
1

)
exp

(
−(β2 − µ̄2)2

2s̄2
2

)
exp

(
− β2

3
2c2

3τ
2
3

)
.

Notice above that the priors for the included coefficients β1,β3 are independent of the
pseudo-prior β2 and the likelihood doesn’t depend on β2 in contradiction with β1, β3

for which γ∗
1 = 1, γ∗

3 = 1. This suggests that the actual posterior will be based on
β1, β3 conditional on β2, whereas β2 will be updated only through the pseudo-prior as
the following full conditionals imply

π(β1, β3|a, σ2γ∗
1 = 1, γ∗

3 = 1,y) ∝

exp
(

− 1
2σ2 [y − a1n −X1β1 −X3β3)T (y − a1n −X1β1 −X3β3]

)
exp

(
− β2

1
2c2

1τ
2
1

)
exp

(
− β2

3
2c2

3τ
2
3

)
,

π(β2|γ∗
2 = 0,y) ∝ exp

(
−(β2 − µ̄2)2

2s̄2
2

)
.

If we consider the previous example, in a more general framework, the full conditional
of β in the previous example is computed

β|σ2,γ,y ∼

Np

((
ΓXTXΓ + σ2D̃

−2
)−1 (

ΓXTy + σ2D̃
−2
µ
)
, σ2

(
ΓXTXΓ + σ2D̃

−2
)−1

)
,

under the guidelines of Dellaportas et al. (2002), who shows that if we consider the
partition of β = (βγ ,β−γ)T denoting the inclusion and exclusion vectors of coefficient
vectors, the full conditional posterior distribution of the included effects is βγ

π(βγ |σ2,y) ∝


Npγ

((
XT

γXγ + σ2D̃
−2
γ

)−1
µ̃γ , σ

2
(
XT

γXγ + σ2D̃
−2
γ

)−1
)
, γ = 1pγ ,

Np−γ

(
µ−γ , D̃

−2
−γ

)
, γ = 0p−γ ,
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where µ̃γ =
(
XT

γy + σ2D̃
−2
γ µγ

)
, D̃γ , D̃−γ and µγ ,µ−γ are the partitions of D̃ and

µ respectively. The above shows that the full conditional of β is equivalent to the full
conditional of βγ as a product of the actual posterior times the pseudo-prior for β−γ

which doesn’t affect the posterior. Thus, if one either considered to use the joint full
conditional for β or the partitioned full conditional based on the included effects βγ
he would reach the same conclusions as shown in Paroli and Spezia (2006). In our
analysis, we follow this approach instead of the partitioned vector.
The above multivariate mixture prior was extended by Ntzoufras et al. (2002) and
Perrakis and Ntzoufras (2018) for adopting g-priors in a more fashionable way unlike
mixture prior of SSVS with minor differentiations into a multivariate distribution for
the vector of effects β with prior precision matrix D̃ defined as

D̃ =
(

ΓXTXΓ
g

+ diag(1 − γ) 1
s̄2

)−1

,

where s̄ = (s̄1, . . . , s̄p)T denotes the standard error vector obtained from a pilot run
of a saturated model. To illustrate the adoption of this prior specification through
pseudo-prior, consider the joint prior distribution of the partitioned vector βγ ,β−γ

π(βγ ,β−γ |σ2, g) ∝


Npγ

(
βγ
∣∣∣µγ , gσ2(XT

γXγ)−1
)
, γ = 1pγ ,

Np−γ

(
β−γ

∣∣∣µ−γ , D̃
−1
−γ

)
, γ = 0p−γ

,

where the above prior suggests that the actual prior of included effects βγ is generated
from the g-prior independently again of the pseudo-prior which is not affected in case we
update the whole parameter β. To conclude, the joint prior specification of parameters
a,β, σ2, g,γ is according to Jeffreys’ ideas likewise the joint prior for SSVS previously

πGV S(a, β, σ2, g,γ) = π(a, σ2)πGV S(β|g, σ2,γ)π(g)π(γ). (2.18)

On the other side, unlike SSVS, GVS maintains similar properties since the prior for
latent vector γ is embedded in joint prior specification (2.18). Under these settings,
GVS method produces a Markov chain which covers a substantial set of most likely
models and approximates sufficiently joint posterior distribution. This joint posterior
distribution of specific model parameters and model itself is expressed as the product
of the sampling density (2.17) and prior (2.18)

πGV S(a, β, σ2, g,γ|y) ∝ f(y|a,β, σ2,γ)π(a, σ2)πGV S(β|g, σ2,γ)π(g)π(γ), (2.19)
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where it should be noted that the likelihood changes dimension given γ and the joint
posterior remains in an intractable form. According to (Dellaportas et al., 2002),
most of the success of the GVS method is due to the pseudo-prior that speeds up
the convergence of the MCMC in order to target the distribution and maintains the
dimensionality difference which is balanced in conjuction with the likelihood. In order
to sample from the joint posterior πGV S(a, β, σ2, g,γ|y), an MCMC method is used
based on Gibbs algorithm that samples sequentially from full conditionals of each
parameter a, β, σ2, g, γ apart from the conditional of a which remains the same as
(??). Finally, we omit subsequent steps of how to recover the full conditionals of each
parameter for the same reasons as in SSVS; the kind reader may find also an analytic
implementation of GVS in Appendix section A.8.

2.2.4 Posterior Exploration of Model Space

The implementation of model search algorithms for variable selection usually consist of
two stages. The first stage entails setting the prior inputs to the hierarchical model,
for example cj, τj in case of SSVS, µ̄j, s̄2

j in GVS and the prior weights π(γ) so that
γ values corresponding to promising models are assigned higher posterior probability
under π(γ|y) Gilks et al. (1996). The second stage includes the identification of these
high posterior model probabilities via a Metropolis-Hastings step within Gibbs sampling
Gilks et al. (1996). These approaches avoid the overwhelmed computational cost of
computing all 2p posterior model probabilities by numerical or analytical methods.
Both variable selection methods use Gibbs sampler with Metropolis-Hastings step to
generate a sequence

γ(0), . . . ,γ(S),

which converges to the posterior distribution of model space π(γ|y). The relative
frequency of each model γ converges to its probability π(γ|y). In particular, those
values of γ with highest posterior model probability can be identified as those which
appear most frequently in this sequence. It should be noted that, in contrast to many
application of the Gibbs sampler, the goal here is not the evaluation of the entire
posterior distribution of model space π(γ|y). In practice, most of the 2p values of γ will
result with very low probability, in the sense that their appearance will be rare in the
sequence and so they can be ignored. In effect, SSVS and GVS use the Gibbs sampler
to explore the model space rather than evaluating the whole posterior distribution
π(γ|y). Consequently, the length of the sequence of γ is much smaller than the actual
of 2p possible subsets, and that’s why it serves to identify only the areas of model
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space with high posterior model probabilities. Both MCMC algorithms generate a
sequence by appending the Gibbs with Metropolis-Hastings step to the respective
joint posteriors πSSV S(a,β, σ2, g,γ|y) and πGV S(a,β, σ2, g,γ|y). Then, these produce
a complete sequence of couples of model specific parameters and model given the
iteration

a(0),β(0), σ2(0), g(0)γ(0) . . . , a(S),β(S), σ2(S), g(S)γ(S),

where a Markov chain operates on the model space converging to the joint posterior
in which the above sequence is embedded. These MCMC methods are implemented
as follows: the model specific parameters are initialized at some reasonable guess
a(0),β(0), σ2(0), g(0)γ(0) and are such that they might be obtained by generation from
the respective priors or frequentist estimators. To conclude, subsequent values are
generated in both algorithms iterating over the full conditional of model parameters
and the model itself as it was shown in the respective sections. In this way, a sample
containing all the appropriate information is provided by the MCMC methods.

2.3 Closing Remarks

In this chapter we revisited the variable selection problem for linear regression from a
fully Bayesian perspective. We reviewed step by step the main aspects of objective
prior specification and model selection based on Zellner’s g-prior and its mixtures for
Bayesian variable selection methods with full enumeration and MCMC methods. In
the first part of this chapter, we provided the notion of centering and its importance
in the Bayesian variable selection procedure. Closed form expressions of g and g

g+1
were derived in detail of the first and second posterior moments which are absent in
the bibliography and in Liang et al. (2008) in Appendix section A.5. Furthermore, in
the second half of this chapter, we outlined the Bayesian variable selection algorithms
of SSVS and GVS extended in the framework of mixtures of g-priors, which require
highly complex MCMC methods for their implementation (Appendix section A.7 and
A.8 respectively) in order to prepare the interesting reader for the next chapters. These
Bayesian variable selection methods, are not trivial especially in the case of hyper-g,
since the treatment of g, which is responsible for the shrinkage of covariates from the
data when the model is trained, requires a smart Metropolis-Hastings sampling in
order to complete the procedures. In addition, the performance of MCMC and formal
methods of full enumeration is assessed on both the simulated and the real data-set
which are compared to the Bayesian adaptive sampling of the R programming language
and GVS implemented in WINBUGS Appendix section A.9 and A.10. Regarding the
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simulation, the results were characterized by similarity and showed that the mixtures
of g-priors work well in practice towards the goal of identifying the correct model.
Similarly, regarding the real data-set, and whether the method applied is Zellner-Siow
or the hyper-g-prior the results led to models of different dimensionality. Specifically,
the use of the hyper-g-prior produces more complex models in comparison to the
Zellner-Siow, as was expected according to the bibliography. Concluding, the behavior
of the fixed g-priors is sparser due to the presence of the moderate sample size. Our
preference to assess the performance of Bayesian variable selection methods of full
enumeration and MCMC on small model space is justified as an attractive case for
comparisons.
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Chapter 3

Bayesian Variable Selection in
Generalized Linear Models

The variable selection problem has been well recognised in daily practice for its intensive
theoretical and computational challenge, whereas it still remains an open "quest" for
extensive research nowadays due to issues regarding a) prior elicitation and b) the exact
computation of all posterior model probabilities. The need to move beyond Gaussian
responses occupied the attention of many researchers who considered a broader family
of probabilistic structures, namely generalized linear models (GLMs) McCullagh and
Nelder (1989). The Bayesian approach to this subject is quite challenging and well
documented, Dey et al. (1999). Despite the popularity of generalized linear models,
Bayesian inference in this domain of statistical modelling is always a difficult task due
to the inconvenient form of the likelihood, which means that analytical approximations
Tierney et al. (1989) or MCMC methods Gilks et al. (1996) are needed. Under this
setup, variable selection applications emerge especially in classification problems where
a moderate number of covariates enters in disposal and the challenge is to find only a
small subset of the initial set that will "truely" affect the binary response variable.
From an objective Bayesian point of view, a probabilistic procedure is essential for the
variable selection problem when information regarding the inclusion or exclusion of
covariates is scarce or not available, whereas if a subjective approach is adopted, it is
immediately rejected due to the impracticability of considering prior elicitations that
control the prior structure of all 2p subsets of variables.
Hence, researchers resort to elicitations of objective Bayesian methods introduced by
Jeffreys in order to express in an automatic manner all possible prior features within
model and model specific parameters across the possible 2p subsets of covariates.
On the other hand, default objective priors based on improper priors are avoided in
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model determination procedure due to the known limitations related to indetermined
constants in posterior measures. In those measures semi-automatic priors based on
Zellner’s g-prior Zellner (1986) design coupled with mixtures of g Liang et al. (2008)
are preferred ensuring flexible performance across the model space. Although, Zellner’s
g-prior brought enormous success in Bayesian variable selection for linear models,
limited versions were established for generalized linear model settings due to the fact
that the expected Fisher information matrix depends on the regression coefficients.
Thus this was one of the main reasons that inspired practitioners to work hard over
this problem in order to enrich the research bibliography.
Chen and Ibrahim (2003) introduced for the first time conjugate priors for generalized
linear models based essentially on historical data (equivalent on the notion of imaginary
data sample) related with a scalar precision parameter which is similar to g-prior
sketch.
However, this prior was difficult to handle due to the intractable form of generalized
linear models apart from normal regression models. Therefore, researchers proposed
MCMC methods to deal with this issue. In particular, they proposed a unit infor-
mation g-prior based on Kass and Wasserman (1995) for variable selection and link
identification in logistic regression models through reversible-jump MCMC. Bové and
Held (2011) considered the asymptotic posterior distribution based on the original prior
construct of Chen and Ibrahim (2003), which coincides with the same g-prior introduced
by Ntzoufras et al. (2003). Their proposed method consisted of an integrated Laplace
approximation, based on Gauss-Hermite approximation after a log-transformation of
the initial g parameter, which allows the implementation of full enumeration or MCMC
in variable selection for small or moderate model spaces. Alternative prior formulations
for generalized linear models coupled with g-prior mixtures, were established also
under the empirical Bayes fashion as it was expected alike linear models, through
the observed or expected information matrix evaluated at the maximum likelihood
estimates described in the research works of Hansen and Yu (2003), Wang and George
(2007) and Li and Clyde (2018). A computational advantage of empirical Bayesian
methods is that the integrated Laplace approximation provides closed form expressions
as functions of the maximum likelihood estimators amenable for model selection like
exact functions. While Hansen and Yu (2003) evaluated Fisher’s information matrix
at maximum likelihood estimate likewise Ntzoufras et al. (2003) only for canonical link
functions, Wang and George (2007) used maximum likelihood estimates for the evalua-
tion of the observed information matrix instead of the expected Fisher’s information
matrix. On the other hand, Gupta and Ibrahim (2009) preferred to avoid the choice
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of maximum likelihood estimates and kept the expected Fisher information matrix
depending on model parameters, leading to undetermined Bayes factors.
Recently, Fouskakis et al. (2018) introduced the power expected posterior prior method-
ology coupled with mixtures of g-priors in the GLMs settings.
However, in this chapter, we focus on the main aspects of generalized linear models
emphasized in variable selection regarding the objective Bayesian methodology of
prior and model choice based on the seminal works of Bové and Held (2011) and
Li and Clyde (2013) as the main ingredients in order to illustrate step by step the
evolution of g-prior together with their extension for mixtures of g-priors Liang et al.
(2008). Both incorporate the innovative idea of mixtures of g-priors in generalized
liner models framework which was absent for many years due to the difficulties stated
above resulting in a big gap from the original work of Liang et al. (2008), where they
provided extensions to a more general class of hyperpriors, namely incomplete gamma
and compound confluent hypergeometric distribution. To conclude, the approach of
(Bové and Held (2011)) will serve as basis later for the introduction of last chapter,
and more precisely of Bayesian variable selection in multinomial logistic regression
with MCMC methods.

3.1 The problem of Bayesian variable selection in
Generalized Linear Models

Variable selection problem in linear regression models is very challenging and promises
very interesting applications nowadays. However, there are many instances where both
the assumptions of linearity and normality are violated for specific data, especially
when the support of the response variable is restricted to R+ or N, thus GLMs are
often required in such situations; see McCullagh and Nelder (1989) and Marin and
Robert (2014). The research bibliography of Bayesian variable selection in GLMs is
vast, with the most distinguished approaches of Hansen and Yu (2003), Chen and
Ibrahim (2003), Ntzoufras et al. (2003), Wang and George (2007), Chen et al. (2008),
Bové and Held (2011), Li and Clyde (2013) and Li and Clyde (2018). Usually, a GLM’s
set-up involves specifying for the observed values y = (y1, . . . , yn)T of random variable
Y a sampling density with probabilistic nature as

f(y|a,β,ϕ) = exp
(
yT Φ−1ψ − bT (ψ)1n + cT (y,ϕ)1n

)
, (3.1)
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where ψ = (ψ1, . . . , ψn)T , ϕ = (ϕ1, . . . , ϕn)T are unknown parameters that may depend
on p observed independent variables X1, . . . ,Xp (equivalently on a, β) representing
location and scale parameters respectively, Φ = diag(ϕ) the dispersion scale matrix
and together with the functions b(.), c(.), a separate distribution of the form (3.1) is
characterized each time sharing the features of exponential family.
More precisely, a GLM is usually equipped with a deterministic function η(.), called
linear predictor which encapsulates the covariates as η(a,β) = a1n +Xβ (possibly
through the parameters a, β), which is often expressed as function of the mean response
g(E(Y )) via a link function g(.). The link function is of major importance since it has
the ability to induce equality between the natural parameter ψ and linear predictor
η known as canonical link, denoted in mathematical terms ψ = a +Xβ; see Bové
and Held (2011). Although the dispersion parameter ϕ is unknown only for few
cases incorporating weights w̃ = (w̃1, . . . , w̃n)T through ϕi = ϕ

w̃i
, where ϕ is a scalar

parameter denoting the dispersion, will be assumed known through the work of this
thesis and hence it can be omitted. Moreover, the variance of the i-th response variable
V ar(Yi) = b

′′
(
(b′)−1(E(Yi))

)
ϕi

wi
results from expressing the natural parameter ψ as

function of the mean response E(Y ); see Bové and Held (2011).
In addition, variable selection problem in GLMs can be stated as follows: let γ be the
binary latent vector representing all the 2p possible subsets of independent variables
and assume the γ-th subset be of size pγ , in this way candidate models γ are entering
in competition where we consider to select only the "best" model of the form

g(Eγ(Y )) = a1n +Xγβγ , (3.2)

where the above shows that there is not only uncertainty related to model parameters
a, βγ but also uncertainty lying from the choice of each respective subset of each
respective model γ.

3.1.1 Prior Elicitation

One of the most hard topics that caught the attention of the Bayesian community
for many years was that of prior elicitation in variable selection which is crucial for
the computation of posterior model probabilities and the enumeration of model space.
More precisely, the same situation is more challenging in the GLMs framework where
a researcher’s design has not only to face the prior features of all possible 2p subsets,
but also the intractable product of prior with likelihood in the resulting posterior. In
the previous case, we shall remark that even standard conjugate priors are insufficient
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to overcome the problem, thus a researcher must select with care convenient priors
that allow flexible variable selection methods. As pointed in the previous chapter
of linear regression, the same problem of eliciting all prior structures across all 2p

elements of the model space results also impractical in GLMs settings even for with
expert’s opinion, whereas an objective point of view is often desired on behalf of the
fact that a researcher’s plan will always be rarely confident about the choice of the best
subset, hence objective stance is strongly suggested to elicit manually the whole prior
dependences. To conclude, we follow again the fundamentals of prior elicitation based
on Jeffreys (1961) and Zellner’s work Zellner (1986) in details in the next subsection
and we present the main ideas regarding prior formulation in GLMs framework.

3.1.2 Prior Choice

A common way to initialize a Bayesian method, is the prior specification which plays a
decisive role in between steps of the calculation of posterior model probabilities based
on Bayes factors and marginal likelihoods. When model selection is of interest, posterior
model probabilities are usually computed in order to find the maximum a posteriori
model as unique representative, where the Bayes theorem is an immediate consequence
of Jeffreys’ ideas through the comparison of each model’s γ Bayes factor versus the
null model γ0. Moreover, posterior model probabilities and hence Bayes factors usually
depend on the marginal distribution of data y given model γ accompanied by the prior
model probabilities π(γ)

m(y|γ) =
∫
a

∫
βγ

f(y|a,βγ ,ϕ,γ)π(a,βγ |γ)dβγda, (3.3)

which is a key quantity in order to proceed to model selection . However, the prior choice
of π(a,βγ |γ) is always a delicate issue which limits the broad use in GLMs framework
due to the analytic intractability of marginal likelihood m(y|γ). Furthermore, the
use of conjugate priors is often prohibited in order to derive closed form expressions
for marginal likelihood m(y|γ), which turns into a cumbersome "convenience" due
to the product of the likelihood (3.1) with the prior π(a,βγ |γ). Thus the use of
Laplace Tierney et al. (1989) or MCMC approximations Gilks et al. (1996) are usually
suggested even in this case. On the other hand, despite the choice of π(a,βγ |γ) is
always a computational burden to obtain exact inference, at least in can embody
special properties of Jeffreys’ approach in order to provide a consistent method in the
model space. To conclude, in the next section we assume that the interested reader
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is familiar with Jeffreys’ work and the notion of the base model which is outside the
scope of the present chapter. We will discuss the form of this prior and review the
main prior specification based on the semi-automatic design of Zellner (1986) adopted
by Liang et al. (2008).

3.1.2.1 Default Prior Choice

Prior choice has been problematical for statisticians for many years and is still a hot
topic in scientific research, especially in variable selection. More precisely, many research
publications were motivated from the desire to create automatic Bayesian procedures
for eliciting manually all 2p subsets when no or little information is available for the
best subset in consideration, while the intractability of marginal likelihood inspired
statisticians to work intensively based on Laplace Tierney et al. (1989) or MCMC
approximations Gilks et al. (1996). In this section, we present and review a detailed
prior specification based on Jeffreys (1961) surrounding the research establishment of
Zellner (1986) g-prior in the GLM framework. The Zellner’s g-prior consists one of
the standard objective choices that was initially introduced for variable selection in
linear regression models with the seminal paper of Liang et al. (2008) which gained
too much recognition extending the ideas of Zellner through the centering step of
design matrix. It’s utility is based on the semi-automatic specification only of g
parameter multiplied by the structure of variance covariance matrix of maximum
likelihood estimator which represents expected Fisher information matrix maintaining
the main bridge in the unification of frequentist and Bayesian approach. Furthermore,
the expected Fisher information matrix is free from any model specific parameters
without requiring additional specifications.
In addition, similar extensions of g-prior for the family of GLMs reveal to be a harder
task in the sense that their Fisher information matrices depend on the model parameters
which was further investigated from many authors stated in the introduction, from
which we restrict only to Bové and Held (2011) and Li and Clyde (2013). Therefore,
under the guidelines of Zellner (1986) in the GLMs framework, Liang’s g-prior takes
the form

π(a,βγ |ϕ,γ) = π(a|γ)π(βγ |g,γ), (3.4)
βγ |g,ϕ,γ ∼ Npγ

(
0pγ

, g(XT
γH(ψγ)Xγ)−1

)
, (3.5)

where we clarify that the form of improper prior π(a|γ) depends exclusively on the
Bayesian approach that is adopted and the above g-prior (3.5) differs from Liang’s
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g-prior only by the matrix H(.), which is a function of the natural parameter ψγ
depending on model γ. The prior variance-covariance matrix of (3.5) originates from
the fundamentals of g-prior related to maximum likelihood theory of the sampling
density of GLM (3.1), where the score function is obtained by differentiating the log-
likelihood function with respect to the natural parameter ψγ and hence the parameters
a, βγ as the following

∂log
(
f(Y |a,βγ ,ϕ,γ

)
∂ψγ

=

 ∂log((f(Y |a,βγ ,ϕ,γ))
∂a

∂2log(f(Y |a,βγ ,ϕ,γ))
∂βγ

 ,
which is reduced after some elementary algebraic step to the following

∂log
(
f(Y |a,βγ ,ϕ,γ

)
∂ψγ

=
 1T

nH(ψγ)zγ
XT
γH(ψγ)zγ

 ,
where zγ = (z1γ , . . . , znγ)T are the working responses with ziγ = Yi − Eγ(Yi) and
H(ψγ) = diag(h1γ , . . . , hnγ) with hiγ = 1

V arγ(Yi)g′ (Eγ(Yi))2 . The next step is to obtain
an expression of expected Fisher’s information matrix given by

I(ψγ) = −EY |a,βγ


∂2log((f(Y |a,βγ ,ϕ,γ))

∂a2
∂2log(f(Y |a,βγ ,ϕ,γ))

∂a∂βγ

∂2log(f(Y |a,βγ ,ϕ,γ))
∂βγ∂a

T
∂2log(f(Y |a,βγ ,ϕ,γ))

∂β2
γ

 ,
which is reduced after some mathematical steps

I(ψγ) =
 1T

nH(ψγ)1n 1T
nH(ψγ)Xγ

XT
γH(ψγ)1T

n XT
γH(ψγ)Xγ

 =
 I(a) I(a,βγ)

I(βγ , a)T I(βγ)

 .
As we can see the above Fisher information matrix I(ψγ) depends on model parameters
a, βγ and the non diagonal elements make the whole prior structure very complicated
implying additional correlation. Note also that the block diagonal element I(βγ)
is used in the scale part of generalized g-prior (3.5). A strong requirement for the
employment of generalized g-prior (3.4) rests firmly on a special centring step for matrix
H(ψγ) which is satisfied only in the case of block diagonality for the Fisher information
matrix, otherwise the prior specification (3.4 ) is not valid for the independence among
a and βγ due to the presence of H(ψγ). Under canonical link representation, the
linear predictor is incorporated in the matrix H(ηγ(a,β)) with elements wib

′′(ηiγ(a,β))
ϕ

and specific strategies of handling this matrix are reviewed and discussed in the next
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sections based on the approach of Bové and Held (2011) and Li and Clyde (2013).
To conclude, the approach of Bové and Held (2011) is adopted as the main prior
specification throughout this thesis in order to examine out Bayesian variable selection
in GLMs settings and evaluate the performance of MCMC model search algorithms in
the second part of this chapter.

3.1.2.2 Prior and Model Choice of Bove and Held Approach

The problem of variable selection in GLMs methodology was considered a special
matter for many years mainly for i) the intractability of marginal likelihood, ii) the
prior specification of the 2p subsets and iii) the dependence of the expected Fisher
information matrix on model specific parameters and still remains one of the most
challenging topics for the Bayesian community, which tries to propose quite promising
solutions based on the objectivity of g-priors. More precisely, the approach of Bové and
Held (2011) was the first research attempt which extended the ideas of g-priors and
consequently the mixtures of g-priors for variable selection under the GLM methodology
that consisted the main inspiration of a similar approach of Li and Clyde (2013). In
this section, we review and describe the major aspects of the prior specification and
model choice as presented by the authors in their paper. This approach consists of
adopting the authentic interpretation of g-prior as introduced initially by Zellner (1986)
and then by Chen and Ibrahim (2003) and Chen et al. (2008) through the use of
imaginary sample size for the construction of prior specification, whereas for model
selection a Laplace approximation is provided simplifying the computational steps of
marginal likelihood. It is worth telling that the actual predecessor of this approach
was that of Ntzoufras et al. (2003) who proposed to set up the model parameters equal
to the prior mean. To begin with, let an imaginary sample y0 = g−1(a)1n∗ of size n∗

for fixed values of the intercept a (assuming that the columns of design matrix Xγ

have been centred) and for simplicity wi = 1, if an improper joint prior π(a,βγ) ∝ 1
is adopted for a GLM (3.1) scaled by gϕ, the posterior distribution of βγ given the
imaginary data y0 is proportional to

π(βγ |y0, a, g,ϕ,γ) ∝ exp
(
yT

0 Φ−1ηγ(a,βγ) − bT (ηγ(a,βγ))1n

)
,

where the above distribution as long as n → +∞, converges to a multivariate normal
distribution

βγ |y0, a, g,ϕ,γ ∼ Npγ (µ̂γ(a), g(XT
γH(ηγ(a,0pγ ))Xγ)−1),
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where µ̂γ(a) denotes the posterior mode which results as function of the intercept a after
evaluating it to the imaginary sample size y0 and the diagonal matrixH(ηγ(a,0pγ )) has
elements b′′(ηiγ(a))

ϕ
. This posterior distribution can be reduced further as the following

βγ |y0, a, g,ϕ, δ,γ ∼ Npγ (µ̂γ(a), gI(BH)(µ̂γ(a))−1), (3.6)

where δ = 1
b′′(a) , I(BH)(µ̂γ(a)) = XT

γ Xγ

ϕδ
and note that the superscript I(.)(µ̂γ(a))

will refer to Bové and Held (2011) expected Fisher information matrix. The latter
asymptotic result was proposed by Bernardo (1979) and then used by Chen and Ibrahim
(2003) and Chen et al. (2008) in their attempt to develop conjugate prior distributions
in GLMs, whereas the posterior distribution (3.6) is a consequent step of the previous
approaches described in Bové and Held (2011) and its expected Fisher information
matrix is evaluated at the mode µ̂γ(a) for fixed values of the intercept a as shown in
Chen and Ibrahim (2003) and Chen et al. (2008). To end this, we remark an important
issue that lies within generalized g-prior of Bové and Held (2011), that is the constant’s
δ dependence on the fixed values of a, which remains undefined and for this reason
Held et al. (2015) suggested to set the value of a equal to zero or to the maximum
likelihood of the null or full model to avoid indeterminacies. Both choices work well
in practice, but in this thesis we set up the intercept a equal to zero instead of the
maximum likelihood estimator in order to vanish any trace of the intercept that may
cause correlation in the resulting g-prior, which will reduce the posterior mode to
µ̂γ(a) = 0pγ and consequently the posterior distribution (3.6) as the following

βγ |g,ϕ, δ,γ ∼ Npγ (0pγ , gI(BH)(0pγ )−1), (3.7)

which can be viewed as the original generalized g-prior of Bové and Held (2011)
evaluated at the mode 0pγ . In addition, an equivalent way to relate the previous result
(3.7 ) with the joint expected Fisher information matrix of Bové and Held (2011) is
based on the approach of Ntzoufras et al. (2003) that proposed to set the regression
coefficients equal to their prior means resulting in a block diagonal matrix of the
following form

I(BH)(ψγ) =
 1T

n 1n

ϕδ
0pγ

0T
pγ

XT
γ Xγ

ϕδ

 =
 I(BH)(a) I(BH)(a,0pγ )

I(BH)(0pγ , a)T I(BH)(0pγ )

 ,
where the block diagonal element I(BH)(0pγ )−1 is used in the g-prior scale (3.7) and
the above structure of the expected Fisher’s information matrix induces orthogonality
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between model specific parameters because of the centring step of the design matrix,
XT
γ 1n = 0pγ . In this way, the orthogonality allows to consider independence of

parameters a,βγ and adopting g-prior proposed by Zellner (1986), the generalized
g-prior formulation of Bové and Held (2011) is expressed as

π(BH)(a,βγ |ϕ, δ,γ) = π(BH)(a|γ)π(BH)(βγ |g,ϕ, δ,γ), (3.8)

where in the above equation we define

π(BH)(α|γ) ∝ 1, (3.9)

and π(BH)(βγ |g,ϕ, δ,γ) is the generalized g-prior (3.7) and.
On the other hand, if we might be interested in model selection, the marginal likeli-
hood computation is essential also for GLMs in Bayesian variable selection using the
generalized g-prior (3.7) of Bové and Held (2011)

m(BH)(y|γ) =
∫
a

∫
βγ

f(y|a,βγ ,ϕ,γ)π(BH)(a|γ)π(BH)(βγ |g,ϕ, δ,γ)dβγda, (3.10)

where the above quantity has no closed form and a numerical approximation based on
the Laplace method is presented in the work Bové and Held (2011).
This numerical approximation consists of expanding the unnormalized log-posterior
of πBH(βγ+1|y, g,ϕ, δ,γ) around it’s posterior mode µ̂γ+1 with precision matrix R̂γ+1

evaluated at µ̂γ+1 as the following

m̂(BH)(y|g,γ) ≈f(y|µ̂γ+1,ϕ,γ)(2π)
pγ +1

2 det(R̂γ+1)− 1
2 (2πgδϕ)− pγ

2

det(XT
γXγ) 1

2 exp
{

− 1
2gϕδ µ̂

T
γX

T
γXγµ̂

T
γ

}
, (3.11)

where the above calculation steps are simplified due to the assumption of considering the
joint parameter vector βγ+1 = (a,βT

γ )T in order to express prior (3.8) as a normal kernel
of the form π(BH)(βγ+1|g,ϕ, δ,γ) ∝ exp

{
−1

2β
T
γ+1R̃γ+1βγ+1

}
with singular precision

matrix R̃γ+1 = diag
(
0, 1

gϕδ
βT
γX

T
γXγβγ

)
; see for more details Bové and Held (2011)

and Appendix section B.1. In addition, when model selection is of interest, usually
a model comparison is made across each 2p subsets versus a base model, typically
the null model γ0. After adopting the null model γ0 as a reference, computation of
posterior model probabilities involves the Bayes factor BF[γ:γ0] pairwise comparisons
of each model γ versus the null model γ0, where the latter is of major importance
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since it indicates the clues provided by the data of supporting or rejecting a model.
The approximated Bayes factor based on (3.11) is expressed as function of g hyper-
parameter permitting the extension to mixtures of g-priors even in GLMs framework
for different choices of hyper-prior π(g) as the following

B̂F
(BH)
[γ:γ0] ≈

f(y|µ̂γ+1,ϕ,γ)
f(y|µ̂1,ϕ,γ0)

(2πgδϕ)− pγ
2 det(XT

γXγ) 1
2

( 1
σ̂1

)− 1
2

∞∫
0

det(R̂γ+1)− 1
2 exp

{
− 1

2gϕδ µ̂
T
γX

T
γXγµ̂

T
γ

}
π(g)dg, (3.12)

where the log-posterior of πBH(βγ+1|y, g,ϕ) under the null model γ0 reduces to log-
likelihood of f(y|µ̂1,ϕ,γ0) evaluated at the maximum likelihood estimate µ̂1 since
g-prior vanishes under the null model γ0 with σ̂1 denoting the standard error of the
respective log-likelihood. Moreover, the one dimensional integral involved in Bayes
factors (3.12) when mixtures of g-priors are employed has no closed form since g is
contained in the determinant det(R̂γ+1) and is carried out in log-scale using Gauss-
Hermite quadrature after applying the transformation z = log(g); see Salzer and
Zucker (1952), Naylor and Smith (19), and Bové and Held (2011); for more details see
Appendix section B.2. The authors suggested to initially approximate the posterior
moments of z, mainly, the mode ẑ and the variance σ̂z evaluated at the mode ẑ, which
is derived using the unnormalized posterior distribution of z

π(z|y,γ) ∝ f(y|z,γ)π(z)Jz,

where J. is the associated Jacobian of z due to the transformation on log-scale and
then the Gaussian-quadrature is applied on the resulting marginal likelihood.
Consequently, the step of Gaussian quadrature for the approximation of unidimensional
integral (3.12) reduces to Bayes factor

B̂F
(BH)
[γ:γ0] ≈

f(y|µ̂γ+1,ϕ,γ)
f(y|µ̂1,ϕ,γ0)

(2πgδϕ)− pγ
2 det(XT

γXγ) 1
2 det(R̂γ+1)− 1

2

( 1
σ̂1

)− 1
2

N∑
j=1

mjπ(zj|y,γ), (3.13)

where the weights mj = vj exp (t2j)
√

2σ̂z and nodes zj = ẑ+
√

2σ̂ztj depend on posterior
moments ẑ, σ̂z and consequently on vj, tj which are considered as original weights.
The approximation of Gaussian quadrature is accurate if and only if the unnormalized
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posterior π(z|y,γ) is the product of a normal distribution N(ẑ, σ̂z) with a polynomial
of order 2N − 1. To conclude, Bayes factor (3.12) varies based on the choice of the
hyper-prior π(g) leading to different approximated forms either Zellner and Siow (1980)
either hyper-g-prior Liang et al. (2008). In their work they introduced another form
of mixtures g-priors, namely incomplete gamma function which will not be further
discussed in this thesis. In the next section we will describe the recent method of Li
and Clyde (2013) also for GLMs with mixtures of g-priors.

3.1.2.3 Prior and Model Choice of Li and Clyde Approach

The approach of Li and Clyde (2013) is considered the last development of mixtures
of g-priors for Bayesian variable selection in GLMs framework and gathered all the
attention in recent years moving in similar grounds with the approach of Bové and
Held (2011). This approach consists of a special centring evaluated in maximum
likelihood estimators in terms of projection in order to ensure that Fisher’s information
matrix is block diagonal and free from any arbitrariness of regression coefficients.
Then it performs accordingly a Laplace approximation for the log-likelihood retrieving
approximated closed forms of Bayes factors. The special centring was initially presented
for linear models in Forte (2014) and then followed its extension by Li and Clyde (2013)
in the GLMs framework. Moreover, Li and Clyde (2013) introduced a more generic
family of g-priors mixtures which encompasses the main characteristics of the well
known hyper-g and Zellner-Siow as well as also other mixtures of g priors Bové and
Held (2011) and Maruyama and George (2011).
To begin with, consider the familiar GLM framework of model γ with design matrix
X̃γ prior to centring

g(Eγ(Y )) = ã1n + X̃γβγ , (3.14)

then the main intuition behind Li and Clyde’s special centring approach is to use
the projection matrix P̂ = 1n(1T

nH(ηγ(â, β̂γ))1n)−11T
nH(ηγ(â, β̂γ)) evaluated at the

maximum likelihood estimator (â, β̂γ) that turns a GLM γ into (3.2) with intercept
a and design matrix Xγ . The correspondence of ã to a and X̃γ to Xγ are defined
respectively as a = ã+ 1n(1T

nH(ηγ(â, β̂γ))1n)−1, Xγ = (In − P̂ )X̃γ . The interpreta-
tion of matrix P̂ rests firmly on projecting the matrix Xγ on the space created by the
span of 1n with inner product < c,d >= cTH(ηγ(â, β̂γ))d, where c,d ∈ Rn.
However, notice that the approach by Bové and Held (2011) corresponds to a special
case of Li and Clyde (2013) with projection matrix
P 0 = 1n(1T

nH(ηγ(a,0p,1n)−11T
nH(ηγ(a,0p)) = 1n(1T

n 1n)−11T
n evaluated at prior
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mean 0p for fixed values of a. The approach of Li and Clyde (2013) reflects an al-
ternative idea of centring which practically facilitates the whole structure of Fisher’s
information matrix after its evaluation to the maximum likelihood estimator

I(LC)(ψ̂γ) =
 1T

nH(ηγ(â, β̂γ))1n 0p

0T
p XT

γH(ηγ(â, β̂γ))Xγ


=
 I(LC)(â|γ) I(LC)(â, β̂γ)

I(LC)(β̂γ , â)T I(LC)(β̂γ)

 ,
where the block diagonal part I(LC)(β̂γ) will be used in generalized g-prior and
its diagonal structure implies the model parameters a,βγ to be orthogonal due to
the invariance of translating the maximum likelihood estimator, otherwise the prior
specification (3.4) will not be valid anymore for independence. For notational reasons,
the superscript I(.) shall refer here to Li and Clyde’s expected Fisher information
matrix and notice that the block diagonal element ILC(â|γ) of a depends on model γ
because it includes the linear predictor evaluated to maximum likelihood estimator
β̂γ which varies according to each model γ. Since, the above centring step facilitates
computational issues and implies plausibly a priori independence of a,βγ for each
model γ, then the generalized g-prior of Li and Clyde (2013) can be formulated as the
following

π(LC)(a,βγ |ϕ,γ) = π(LC)(a|γ)π(LC)(βγ |â, β̂γ , g,ϕ,γ), (3.15)

where in the above expression we define

a|n, v ∼ N(0, nv), v > 0, (3.16)
βγ |â, β̂γ , g,ϕ,γ ∼ Npγ (0pγ , gI(LC)(β̂γ)−1), (3.17)

where notice the generalized g-prior (3.17) is additionally conditional on the maximum
likelihood estimators â, β̂γ and v is a constant set as large as possible and when v → ∞
prior (3.16) degenerates to the usual improper prior π(LC)(a|γ) ∝ 1 as suggested by
Li and Clyde (2013). Hence, under Li and Clyde’s prior setup (3.15), model selection
initially proceeds with the calculation of marginal likelihood of a GLM γ

m(LC)(y|γ) =
∫
a

∫
βγ

f(y|a,βγ ,ϕ,γ)π(LC)(a|γ)π(LC)(βγ |â, β̂γ , g,ϕ,γ)dβγda, (3.18)

where the above marginal likelihood is difficult to manage even if the prior was factorized
with (3.15) and so a Laplace approximation is always suggested. More precisely, the
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authors proposed a Laplace approximation with expanding first the log-likelihood of
f(y|a,βγ ,ϕ,γ) around the maximum likelihood estimators â and β̂γ

m̂(LC)(y|g,γ) ≈ f(y|â, β̂γ ,ϕ,γ)
∫
a

exp
{

−1
2I

(LC)(â|γ)(a− â)2
}
π(LC)(a|γ)da

∫
βγ

exp
{

−1
2
(
βγ − β̂

)T
I(LC)(β̂γ)

(
βγ − β̂

)}
π(LC)(βγ |â, β̂γ , g,ϕ,γ)dβγ , (3.19)

and then the expanded log-likelihood combined with the factorized priors (3.16), (3.17)
allows to provide approximated closed form expressions of marginal likelihood (3.18)
as the following

m̂(LC)(y|g,γ) ≈ f(y|â, β̂γ ,ϕ,γ)[1 + nvI(LC)(â|γ)]− 1
2 exp

{
−1

2

(
â2I(LC)(â|γ)

1 + nvI(LC)(â|γ)

)}

(1 + g)− pγ
2 exp

{
− Qγ

2(g + 1)

}
, (3.20)

where Qγ = β̂
T

γI(LC)(β̂γ)β̂γ denotes a sum of squares regression analogue for a GLM;
see for more Li and Clyde (2013) and Li and Clyde (2018) and Appendix section B.3.
In addition, when the null model γ0 is adopted, model choice involves

B̂F
(LC)
[γ:γ0](g) ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
1 + nvI(LC)(â|γ)
1 + nvI(LC)(â|γ0)

]− 1
2

exp
{

−1
2

[
â2I(LC)(â|γ)

1 + nvI(LC)(â|γ) − â2I(LC)(â|γ0)
1 + nvI(LC)(â|γ0)

]}

(1 + g)− pγ
2 exp

{
− Qγ

2(g + 1)

}
, (3.21)

where the above expression is reduced due to the marginal likelihood of null model
γ0 for which holds pγ0 and Qγ0 = 0. The first term in Bayes factor (3.21) consists
of classical likelihood ratio test and additional penalty quantities contributed by the
intercept a, whereas the second term results from generalized g-prior; see for more Li
and Clyde (2013), Li and Clyde (2018). In addition, for large values v under prior
ignorance, the prior (3.16) becomes improper and then the Bayes factor (3.21) is
expressed

B̂F
(LC)
[γ:γ0](g) ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

(1 + g)− pγ
2 exp

{
− Qγ

2(g + 1)

}
. (3.22)
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Furthermore, posterior measures of model selection such as marginal likelihood and
Bayes factors usually depend on the parameter g which allows to express the Bayes
factor (3.22) with mixtures of g-priors after adopting a hyper-prior π(g)

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

∞∫
0

(1 + g)− pγ
2 exp

{
− Qγ

2(g + 1)

}
π(g)dg, (3.23)

where each choice π(g) implies a different g-prior mixture coupled with the integrated
likelihood which enables straightforward closed or numerical expressions. Possible
choices of π(g) include the Zellner-Siow which needs an additional Laplace approxi-
mation, whereas hyper-g provide closed forms in terms of confluent hypergeometric
function 1F1(.) based on a more generalized mixture of g-priors called confluent hyper-
geometric distribution; see Gordy (1998), Li and Clyde (2013) and Li and Clyde (2018).
Other mixtures of g-priors Maruyama and George (2011) and Bové and Held (2011)
are conjugate to the approximated Bayes factors of Li and Clyde’s approach but are
beyond the scope of this thesis. In this first part of this chapter we emphasize more on
mixtures of g-priors obtained under Li and Clyde (2013) approach due to the attractive
approximated closed forms than those obtained by Bové and Held (2011). To conclude,
the first part of this chapter finishes with the next subsection and then the section on
Bayesian variable selection with MCMC methods for GLMs with mixtures of g-priors
begins.

3.1.2.4 Confluent Hypergeometric Function

Mixtures of g-priors are a common choice in objective variable selection for linear
regression and have been well recognised for their automatic set-up when the subset
of variables is unknown. Moreover, they share adaptability properties that ensure
predictive optimalities and learning from the data through the shrinkage parameter g

g+1 ,
while they surpass information and Jeffreys Lindleys paradox Liang et al. (2008) Lindley
(1957) and Bartlett (1957). Even though, mixtures of g-priors are always a difficult task
in GLMs settings due to inconveniences of likelihood incompatibility when coupled with
the prior and the dependence on regression coefficients, Li and Clyde (2013) and Li
and Clyde (2018) introduced a more general hierarchical prior mixture called confluent
hypergeometric distribution (CH). This extension includes as special cases popular
choices of g-priors mixtures like Zellner-Siow and hyper-g, whereas the same authors
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proved that other mixtures of g-priors including beta-prime Maruyama and George
(2011) and incomplete gamma Bové and Held (2011) are comprised as special cases
into a more general family of distributions called compound confluent hypergeometric
distribution which will not be further discussed in this thesis. Recall that hyper-g-priors
became popular with respect to Zellner-Siow mainly for it’s attractive closed form
expressions of posterior measures in terms of the Gausian hypergeometric function.
However, when approximating marginal likelihood (3.20) or Bayes factor (3.22) with
hyper-g-prior a similar family of functions with Gaussian hypergeometric functions
called confluent hypergeometric functions are used to integrate out the additional
uncertainty related to hyperparameter g. Consider the usual variable selection problem
in GLMs framework, then the model selection under hyperg-prior π(hy)(g) proceeds
with the calculation of Bayes factor (3.23)

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

∞∫
0

(1 + g)− pγ
2 exp

{
− Qγ

2(g + 1)

}
πhy(g)dg, (3.24)

where the above integral is difficult to handle and only under affine transformation of g a
closed from expression is provided. In particular, the change of variable u = 1

g+1 , simpli-
fies the mathematical steps and leads to the general family of confluent hypergeometric
distribution introduced by Gordy (1998), a generalization of Beta distribution. In this
case, let the random variable x ∼ CH(e, d, r), where CH(., ., .) denotes the confluent
hypergeometric distribution, then we say that x follows a Confluent hypergeometric
distribution with probability density function of x

πCH(x) = xe−1(1 − x)d−1 exp (−rz)
B(e, d) 1F1(e, e+ d,−r) , x ∈ [0, 1],

where e > 0, d > 0, s ∈ R, B(.) is the Beta function and 1F1(.) is the confluent
hypergeometric function defined as

1F1(e, d, r) = Γ(d)
Γ(d− e)Γ(e)

∫ 1

0
xe−1(1 − x)e−d−1 exp (rx)dx.

To end this, the Bayes factor representation (3.24) after recognising the normalising
constant of posterior confluent hypergeometric distribution CH

(
pγ+α

2 − 1, pγ+α
2 , Qγ

2

)
in the integrand of g is computed as follows
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B̂F
(LC)
[γ:γ0] ≈α− 2

2
f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

B
(
pγ + α

2 − 1, 1
)

1F1

(
pγ + α

2 − 1, pγ + α

2 ,
Qγ
2

)
, (3.25)

see for more details Appendix section B.4. In addition, motivated by the confluent
hypergeometric distribution, Li and Clyde (2013) and Li and Clyde (2018) introduced
a novel mixture of g-priors of the form

πLC(g) =
g e

2 −1(1 + g)− e+d
2 exp ( r

2
g

g+1)
B( e

2 ,
d
2) 1F1( e

2 ,
e+d

2 , r
2)

,

whose construction is of major importance since the transformation u = 1
g+1 turns the

above prior into confluent hypergeometric distribution of Gordy (1998). Moreover,
based on this result, Li and Clyde (2013) and Li and Clyde (2018) approximated Bayes
factor (3.23)

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

∞∫
0

(1 + g)− pγ
2 exp

{
− Qγ

2(g + 1)

}
πLC(g)dg, (3.26)

which is reduced after applying the transformation u = 1
g+1 to the following

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

B
(

e+d+pγ

2 , d+pγ

2

)
1F1

(
d+pγ

2 , e+d+pγ

2 , r+Qγ

2

)
B( e

2 ,
d
2) 1F1( e

2 ,
e+d

2 , r
2)

, (3.27)

where the latter holds to due to the integrated kernel of posterior distribution
CH

(
d+pγ

2 , e+d+pγ

2 , r+Qγ

2

)
see for more information Appendix section B.5.

3.2 Closing Remarks

In this chapter, the Bayesian variable selection problem for generalized linear models
was introduced. At first, the fundamentals of objective Bayesian variable selection
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3.2 Closing Remarks

concerning the prior specification and model selection for Zellner’s g-prior and its
mixtures based on the approaches of Li and Clyde (2013) and Bové and Held (2011)
were reviewed. The importance of centering for the expected Fisher information matrix
in their respective analytical tools was underlined; the Laplace approximation was
verified step by step and demonstrated in the respective Appendix sections B.1 and
B.3 respectively.
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Chapter 4

Bayesian Variable Selection in
Multinomial Logistic Regression

Multinomial regression, a broader class of generalized linear models and binary re-
gression, has recently received immense attention regarding the variable selection
problem for multiclassification with many applications in household (Allenby et al.,
2005) and disease classification data (Aijun and Xinyuan, 2010) and (Aijun et al.,
2016), resulting in advancements, especially in marketing and biomedical sectors. Issues
related to class imbalance in this domain of research area often occur. Usually in
order to build a multinomial regression one has to set up identifiability constraints
using as reference (baseline) one of the categories of the response variable. In this
framework, the variable selection problem is regarded as simultaneous, intermediate
variable selection steps across different pairwise binary regressions to account for the
possible dependencies among the classes of response. The interest lies on seeking only
the important covariates that vary according to each class of the nominal response
variable, namely class specific predictor selection (Gustafson and Lefebvre, 2008). In
other words, the distribution of each class is said to vary conditional on covariates. Its
Bayesian variable selection version seems impractical regarding the computation of
posterior model probabilities related to prior elicitation and model complexity, thus
researchers search to find solutions by the use of MCMC. In the Bayesian paradigm,
the degree of sparseness is affected by imposing hierarchical mixture priors among the
different coefficients of each baseline binary regression forcing the redundant variables
to be zero or not, conditional on features of the model space Mitchell and Beauchamp
(1988), Bae and Mallick (2004), Park and Casella (2008) and Li and Lin (2010). From
an objective point of view the little or no information regarding the unknown subsets
across the different binary regression models suggest the use of g-priors Zellner (1986)
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and their mixtures Liang et al. (2008) and Li and Clyde (2013). This is very important
since it will allow to create automatic Bayesian variable selection methods for complex
models such as multinomial regression.
The first research bibliography establishments of multinomial regression were made
upon the probit regression owing to the simple data augmentation strategy of Albert
and Chib (1993). Several approaches among them are considered simply variants or
extensions of other existing methods. Yau et al. (2003) proposed a semi-parametric ap-
proach for Bayesian variable selection with application in multinomial probit regression.
This approach initially used a multivariate model for the unobserved latent variables to
express the probability of observing the response outcomes as the normal cumulative
evaluated at a smooth function of covariates without making any assumption of its
functional form and then approximated this smooth function by using a linear radial ba-
sis functions Holmes and Mallick (1998) to decompose it into two components for main
effects and two-way interactions. Their approach consisted of an ingenious Bayesian
variable selection method that implements an MCMC method in order to estimate
first the coefficients of the smooth function and then the probabilities of each response
outcome belonging to a class through Bayesian model selection and model averaging
procedures. However, this approach may bias the true model identification due to the
combinations of parametric and non parametric methods. Later Panagiotelis and Smith
(2008) considered a similar development for binary probit regression allowing more
functional components (splines) of the linear basis of covariates. The only difference
was that the binary indicators where also involved in the hierarchical prior specification
of the coefficients of functional components similarly to George and McCulloch (1993)
which focus more on sparsity rather than shrinkage as Yau et al. (2003).
Sha et al. (2004) extended a multivariate probit regression for Bayesian variable selection
to account for the structural dependences of the different outcomes of multicategorical
response by constructing a multivariate linear model based on the unobserved latent
variables analogous to the approach of Brown and Vannucci (1998), which can be
though as a generalization of SSVS George and McCulloch (1993). Their idea was
motivated by David’s arguments for matrix notations Dawid (1981). In order to avoid
the painful computational cost encountered in the Kronecker product if vectorized
forms were preferred, the authors enabled the implementation of a flexible MCMC
scheme for Bayesian variable selection based on the full conditionals of latent variables
and binary indicators, after the convenient marginalization of parameters of interest
as nuisance. The current approach is the extension of their previous work Kyeong
et al. (2003) for binary probit regression. Zhou et al. (2006) considered multinomial
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probit regressions for a cancer multi-classification problem. He introduced two different
Bayesian variable selection methods to identify the most relevant gene expressions that
vary based on the cancer type and to find out the strongest genes among all cancer
types. Their approach based on the first model accounts for the heterogeneity among
all different genes to explain the differences in each cancer type and responds to the
trace of our work. The second model controls the homogeneity discovery of the most
relevant genes that are responsible for the cancers. This is outlined respectively by
using different binary indicators for each gene expression (covariate) in the first case,
whereas in the second the binary vector is considered invariant according to each class
of cancer. However, both models leave observed variability in each case and fit well only
in practice depending on the authors’ research questions. A fast updating Bayesian
variable selection procedure with MCMC is outlined by integrating the parameters of
interest as nuisance and performing QR decomposition to increase the computational
speed, in such way that the algorithm is based only on the full conditionals of the
latent variables and binary inclusion indicators. The current approach resembles to
Sha et al. (2004) and represents actually the extension of Smith and Kohn (1996) in
the multivariate probit regression.
The notion of class specific predictor selection using a multinomial probit regression
was introduced for the first time by Gustafson and Lefebvre (2008) in order to model
the association of covariates and each class with respect to the baseline using a special
hierarchical prior characterized by a hyperparameter that decides the relevance or not
of covariates among the different classes that is set under the non informative sense. In
that way, they provided a flexible MCMC that produces estimates in terms of model
selection and model averaging.
Recently, Aijun et al. (2016) proposed a sparse Bayesian variable selection approach
for a multivariate probit regression using a two level hierarchical mixture prior for the
regression coefficients Mitchell and Beauchamp (1988) which responds also to the trace
of our work specifying the prior variances based on either the inverse-gamma Li and Lin
(2010) or the gamma distribution Park and Casella (2008). Based on this prior setup,
they developed a fast Bayesian variable selection method using an MCMC method by
updating jointly the pairs of latent variables with the prior variances and the regression
coefficients with binary inclusion vectors to reduce the strong posterior correlations.
Their approach implements a fast updating scheme based on the marginalization of
regression coefficients from the full conditionals of the latent variables, binary inclusion
indicators and Woodburry-Sherman Morison formula, which is used to reduce com-
putational complexity of the involved inverse. This development can be seen as the
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extension of the Bayesian lasso Park and Casella (2008) with varying variances and
Bayesian elastic net Li and Lin (2010) for multinomial probit regression. The same
approach turns out to be a successful generalization of Bae and Mallick (2004) since
it focuses further on sparsity and shrinkage rather than only shrinkage, accounting
for the uncertainty of the covariates through the incorporation of binary inclusion
vector in the prior specification. This approach adopts features from the work of Aijun
and Xinyuan (2010) where he introduced a different hierachical prior specification
based only on the included regression coefficients and marginalization of the regression
coefficients in order to implement efficiently the MCMC for variable selection method.
Other applications of Bayesian modelling, especially for multi-classification problems,
were based on support vector machines.
Chakraborty (2009) developed a Bayesian hierachical model for Bayesian variable
selection based on a reproduced kernel Hilbert space where they initially introduced
the latent variables to capture indirectly the true relationship among the observed
outcomes and the covariates and then they approximated the unknown function of
covariates with reproduction of the kernel functions especially based on Gaussian
kernels. A simultaneous variable selection method based on MCMC is implemented
efficiently based on the features of the underlying sampling density and hierarchical
prior specification resembling to an extension of stochastic search with respect to
support vector machines. This approach can be seen as the generalization of the
approach of Mallick et al. (2003) as the only difference is that they didn’t consider the
variable selection uncertainty.
Furthermore, from the above Bayesian variable selection approaches, only Kyeong
et al. (2003), Mallick et al. (2003) Zhou et al. (2006) and Aijun et al. (2016) used
a fixed g-prior approach for the regression coefficients, whereas mixtures of g-priors
remains an uncovered topic for the moment. More precisely the authors in the latter
approach introduced a novel g-prior for high dimensional settings when n << p based
on the generalized inverse of Moore-Penrose. Despite the vast research bibliography of
Bayesian variable selection in multinomial probit regression, multinomial regression
with probit link has been criticized for the interpretability of regression coefficients,
hence researchers chase alternatives in terms of multinomial logistic regression. More-
over, many variable selection methods are encountered in research bibliography with
respect to applications of multi-classification based on the frequentist approach but their
full presentation exceed the limits of the present work. These approaches include the
weighted voting scheme (Golub et al., 1999), the threshold number of misclassification
score (Ben-Dor et al., 2000), the significance analysis of micro-array statistic (Tusher
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et al., 2001), the mixture model algorithm (Pan, 2002), the ratio of between-groups to
within-groups sum of squares (Dudoit et al., 2002), the partial least squares (Nguyen
and Rocke, 2002), the Wilcoxon test statistic (Dettling, 2004) and the support vector
machines of (Bradley and Mangasarian, 1998) and (Guyon et al., 1992). However, all
the above methods share some important disadvantages: (a) lack of probability rea-
soning since the ignore model uncertainty; (b) they don’t account for the multivariate
correlations of covariates; (c) identification based on significance such as t or F tests,
are not reliable since the distribution of the implemented algorithm is not identifiable,
thus Bayesian variable selection methods are preferred in these situations.
On the other hand, the bibliography for Bayesian variable selection in multinomial
logistic regression is very scarce and that is the main reason we want to contribute with
the present work. More precisely, posterior intractability and model complexity issues
prevented multinomial logistic regression from being popularized in the context of the
Bayesian variable selection problem. Even for a standard MCMC method, the added
strong posterior correlations among regression coefficients of different class-specific
slow the convergence and result in poor mixing. Exactly this is the problem we would
like to address with the present work. Moreover, applications of g-priors Zellner (1986)
and their mixtures have been reduced dramatically in comparison with the standard
GLMs due to the severe complexity of the likelihood across the different pairwise
baseline-logits where even the approved approaches of Liang et al. (2008), Li and Clyde
(2013) cannot give a satisfying answer to the problem.
In the last decade, there was no computational tool that guaranteed flexible solutions
over the hard aspects of MCMC methods, such as Metropolis-Hastings. Recent ad-
vances of computer technology and MCMC methods changed the expectations as it
was possible to approximate complex model structures in Bayesian inference. That was
clearly impossible in the early 2000’s via smart sampling but became possible with the
development of data augmentation schemes of Tanner and Wong (1987) and Albert and
Chib (1993). These approaches share the flexible ideas of converting standard families
of generalized linear models through the incorporation of latent variables into familiar
model results. For instance, Bayesian variable selection is a data augmentation method
due to the incorporation of a latent binary vector that quantifies the importance of the
inclusion or exclusion of covariates. Furthermore, we note that the idea of data aug-
mentation originates from the frequentist statistics related to expected maximization
algorithm Dempster et al. (1977) in handling missing data mechanism. Although, the
work of Albert and Chib (1993) was developed initially for the probit regression model,
many researchers were inspired to transport similar ideas in logistic regression models
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Holmes and Held (2006), Polson et al. (2013) and Frühwirth-Schnatter (2016). These
research establishments are direct analogues of Albert and Chib’s data augmentation
in logistic regression, in the sense that the step of latent variables is substituted by
truncated logistic and Polya-Gamma distributions especially for the first two mentioned
approaches. Their difference, though lies substantially in content because they are
based on scale mixture rather than location. In particular, Polson et al. (2013) took
advantage of binomial likelihoods through the mixture of normal densities over Polya-
Gamma distributions. Their success was devoted not only to binomial likelihood but
also in generalizing the same concepts in other models like negative binomial regression
and multinomial logistic regression which is the main topic of this thesis. The topic
of data-augmentation strategies are further analysed in details in the second part of
this chapter. However, the authors provide clever data augmentations for multinomial
logistic regression only for estimation purposes rather than extending it to variable
selection uncertainty.
Moreover, it is important also to highlight the work of Ghosh et al. (2011) which brings
valuable research information for the reseach topic of this thesis, even if it doesn’t focus
at all in this research topic but remains a very important application of multinomial
logistic regression with data augmentation but under the aspect of latent class models.
In particular, the authors considered a two level latent class model, which accounts
simultaneously for estimation and variable selection uncertainty based on potential set
of covariates that are incorporated in the class probabilities of a multinomial logistic
regression arisen within the distribution of latent variables in order to explain the
eterogeneity of a univariate continuous response variable. By this way, conditional on
prior features of latent class models and spike-slab prior, the authors developed a clever
stochastic search Gibbs sampler that allows to explore the both the latent and model
space in order to deliver accurate estimates with primary interest in marginal inclusion
probabilities of covariates applied within model averaging framework. This approach
can be viewed as a hybrid extension of SSVS George and McCulloch (1993) and Holmes
and Held (2006) in latent class models, where the data augmentation of Holmes and
Held (2006) ensures the computational convenience of a collapsing Gibbs sampler based
on the categories of polychotomous latent variable. Even if their approach differs due
to the focus on latent class models, is absolutely related to our work, in the sense that
if the latent class labels were known, then the latent class model will reduce to the
original multinomial logistic regression uncertainty accounted in this thesis. Moreover,
in this work we considered similar extension of SSVS within the data augmentation
scheme of Polson et al. (2013). In this work, we take advantage of Polya-Gamma data
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augmentation and provide two similar sparse Bayesian variable selection methods for
multinomial logistic regression based on hierarchical prior specifications of George and
McCulloch (1993) and Dellaportas et al. (2002) as adopted in Bové and Held (2011).
In particular, we implement SSVS and GVS for multinomial logistic regression by
extending the covariate uncertainty in the framework of mixtures of g-priors both for
typical and augmented multinomial logistic regression models. This approach allowed
us to deal with the additional uncertainty of g in Bayesian variable selection parameter
by adopting a hyperprior on it, hence the model learns regarding the adaptive shrinkage
of data on the covariates. The success of our methods is encapsulated in the degree
of sparseness that is preserved conditional on covariate components that characterize
features of the model space, ensuring complete separation of the important covariates
from the noise ensuring optimal predictive properties in terms of multi-classification.
Although our method looks similar to the approach of Aijun et al. (2016), it differs in
the hierachical prior specification only by the spike component which was allowed to
lie with small variance in a region of zero rather placing a spike distribution at zero.
In addition, the research bibliography is enriched with novelty, in a way that the present
work with Polya-Gamma data augmentation, manages to reproduce the complexity of
an authentic multinomial logistic regression in terms of an amenable Gibbs sampling
technique with respect to known linear model results. In this way, a Q− 1 (number
of categories without baseline) nested Gibbs sampler is outlined based on Holmes
and Held (2006) and Polson et al. (2013) re-expressing the coefficients of each class
conditional on the rest and splitting the g-prior to subclass of g-priors according to
the coefficients of each class, then a flexible Bayesian variable selection method is
implemented in order to improve the mixing of the chain and surpass the difficult
aspects of MCMC in variable selection uncertainty.
We think SSVS and GVS prove extremely useful to accommodate the excessive model
uncertainty that lies within each baseline-logit for typical and augmented multinomial
logistic regression, whereas they are ideally suited for augmented multinomial logistic
regression since they were developed initially for linear models as the model structure
of augmented multinomial logistic regression is in fact identical to those of a linear
model. Furthermore, our approach deals effectively with sparsity issues of the response
variables regardless the sample size in contrast to Laplace approximation, which col-
lapses due to the small sample size Bové and Held (2011) and Li and Clyde (2013).
Finally, the discussed methodologies are compared in terms of typical and augmented
multinomial logistic regression with emphasis in the mixtures of g-priors and their
performance is assessed on simulated and real datasets.
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4.1 The problem of Bayesian Variable Selection in Multinomial Logistic
Regression Models

To conclude, the present work is organized as follows: in the first section we outline the
problem of Bayesian variable selection for multinomial logistic regression and discuss
the g-prior formulation, in the second section we introduce SSVS and GVS for typical
and augmented multinomial logistic regression respectively and the last section is
dedicated to the simulated and real dataset applications.

4.1 The problem of Bayesian Variable Selection in
Multinomial Logistic Regression Models

In the last decades, variable selection for multinomial logistic regression has received
great importance with the explosion of large scale datasets in bioinformatics and
marketing sectors promising very interesting applications in multi-classification. Most
of the real applications focus on diseases multi-classification according to a certain
profile of genes expression such as type of cancer either multi-classification of products
based on a specific advertising campaign profile. Multinomial logistic regression is used
to investigate linear relationships of a nominal polychotomous response and a set of
potentially covariates. Often, a multinomial logistic regression is initialized, after the
identifiability constraints are set to zero for the regression coefficients and the intercept
of the reference category (the first or the last category is chosen), called baseline. In
this setup, it is of central interest not only to seek the important covariates, but also
to describe the variability of each class membership of the nominal response based on
a set of covariates for given baseline. This suggests that modulating the effect of k-th
covariate on the q-th class membership of the response, is completely different from
modulating the effect of the same response on the q′-th class, hence the distribution of
each class-specific membership varies each time based on the respective set of covariates
given the baseline q∗.
Usually, the multinomial logistic regression involves specifying for the random variable
Y = (Y q∗ ,Y 1 . . . ,Y Q−1)T as linear function of covariates a model for i-th observed
values yi = (yi,1, . . . , yi,q)T as the following

Y i|a,β ∼ MU
(
1; pi,q∗(aq∗ ,βq∗), pi,1(a1,β1), . . . , pi,Q−1(aQ−1,βQ−1)

)
,

denoting with pi,q(aq,βq) = P (yi,q = q|aq,βq), the probability that the i-th obseva-
tion falls into q-th category encapsulating the effects of covariates except for those
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corresponding to baseline q∗.

pi,q(aq,βq) =


1

1+
∑Q−1

q=1 exp (aq+xiβq)
, q = q∗

exp (aq+xiβq)
1+
∑Q−1

q=1 exp (aq+xiβq)
, q ̸= q∗ ,

where MU (1; .) denotes the single sample unit multinomial distribution with nor-
malizing assumption ∑Q−1

q=1 pi,q(aq,βq) + pi,q∗(aq∗ ,βq∗) = 1, q∗ indexes the baseline
category with intercept and regression coefficients respectively aq∗ = 0, βq∗ = 0pq∗ ,
a = (a1, . . . , aQ−1)T denotes the complete intercept vector of dimension (Q − 1) × 1
without the baseline category q∗ including each q-th class-specific intercepts, β =
(βT

1 , . . . ,β
T
q−1)T denotes the complete regression coefficients vector of dimension (Q−

1)pq × 1 without the baseline category q∗ which includes each q-th class-specific re-
gression coefficients βq = (β1,q, . . . , βp,q)T of dimension pq × 1 and we assume that
the design matrix X has been centered in order to consider separately the regression
coefficients from the respective intercepts of each specific.
If we were interested in variable selection, covariate uncertainty would be accommo-
dated by assuming binary latent vectors for each class membership with respect to
the baseline denoting as (Q − 1)γq ∈ Cq∗ × 2pq ≡ Cq∗ × {0, 1}pq , where Cq∗ is the
joint reduced set of class memberships of the response Y given the baseline class q∗.
Equivalently, Bayesian variable selection formulation in multinomial logistic regression
is outlined as simultaneous variable selection steps across different pairwise logistic
regression models given the baseline class q∗ , which involves the binary inclusion
indicators as the following for q = 1, . . . , Q− 1

log
(
P (yi,q = q|aq,βq|γq

,γq)
P (yi,q∗ = q∗|aq∗ ,βq∗)

)
= aq +Xγq

βq|γq
= ηγq

(aq,βq|γq
), (4.1)

where γq = (γ1,q, . . . , γp,q) is the binary latent vector of q-th baseline logit or q-th
level of response variable Y given baseline class q∗, Xγq

= [Xγq ,1, . . . ,Xγq ,pγq
] denotes

the design matrix of dimension n × pγq
based only on the included components of

binary latent vector γq, βγ = (βT
1|γ1

, . . . ,βT
Q−1|γQ−1

)T denotes the complete included
regression coefficients vector of dimension pγ × 1 conditional on the complete latent
vector γ = (γ1, . . . ,γQ−1) with pγ = ∑Q−1

q=1 pγq
which contains each included q-th

class-specific regression coefficients βq|γq
= (β1,q|γq

, . . . , βp,q|γq
)T of dimension pγq

× 1
whose components only have been entered conditional on binary latent vector of each
q-th class-specific γq, and ηγq

(aq,βq|γq
) denotes the linear predictor of the q-th baseline

logit. The above variable selection procedure (4.1) is something more intuitive than
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representative, since it accounts also for the joint dependence among the possible
class outcomes of the response and finding the best subset of each 2pq combinations
according to each (Q− 1) baseline logit comparisons. Under this settings, a researcher
has to deal with the excessive uncertainty of parameters and covariate uncertainty in
a, βγ and γ using appropriate priors to proceed with an accurate Bayesian variable
selection procedure.

4.1.1 Prior Elicitation

Prior elicitation has been one of the most argued topics, which provoked debates
among Bayesians and is still considered charming among researchers in the context of
Bayesian variable selection. Even for a standard linear regression or logistic regression,
practice showed that to account for all 2p prior elicitation is not a trivial task and
hence special strategies must be considered. Serious issues emerge related to posterior
intractability and computation of posterior model probabilities within an ordinary
generalized linear model such as multinomial logistic regression. These problems are
notably seen in practice when one has to consider all joint prior features within model
and parametrical space for the possible subsets of each baseline logit given baseline
resulting in an excessive uncertainty. From a subjective stance, it will be difficult to
obtain information from past studies or practitioners in high dimensional settings, but
even if there was available it could not be pragmatic and hence is rejected. On the
contrary, we shall argue that it will be more plausible to adopt an objective point of
view. The latter choice is more intuitive rather than strategical, due to the fact that it
will be virtually impossible to envelop all the different key features of Cq∗ × 2pq possible
subsets encapsulating in a prior distribution if a subjective stance was adopted rather
than an objective. Even in that case the objective Bayesian methodology outmatches
Consonni and Veronese (1992). In fact, the excessive model uncertainty resulting
from each Cq∗ × 2pq possible subsets across each baseline logit and the little or no
guidelines regarding which variables to include or not favour the use of the objective
approach of Jeffreys (1961) and Zellner (1986) in order to elicit manually all prior
features of Bayesian variable selection. To end with this, we present the main idea of
prior elicitation based on the seminal papers of Jeffreys (1961) and Zellner (1986) in
details in the next subsection for the multinomial logistic regression framework.
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4.1.2 Default Prior Choice

Prior choice has been studied extensively for many decades. It is an important area
of research promising elegant applications even in Bayesian variable selection. Many
research works were motivated by a desire to develop reasonable objective Bayesian
methods for complex models without available guidelines regarding the best subset
and the difficult prior elicitations of each subset. Meanwhile the intractability of the
posterior encouraged the applications of numerical or MCMC approximations.
In the present section, we introduce a novel prior specification based on Zellner (1986)
g-prior extending the generalized g-prior methodology of Bové and Held (2011) for
Bayesian variable selection in the framework of multinomial logistic regression. The
Zellner’s g-prior was first popularized in linear regression settings and it represents
one of the most common objective tools with emphasis in Bayesian variable selection
procedure. This approach consists of a straightforward prior constructed by the
expected Fisher information matrix scaled by a scalar g surpassing the difficulties of
prior specification. Later Liang et al. (2008), Bové and Held (2011) and Li and Clyde
(2013) introduced mixtures of g priors completing the initial work of Zellner. They
established Bayesian variable selection procedures which allow the model to be trained
and learn about the shrinkage of covariates by simply adopting a hyper-prior for g.
In addition, similar extensions of g-priors and its mixtures are more challenging in
GLM settings and more specifically in multinomial logistic regression models since
the expected Fisher information matrix depends on the regression coefficients and its
structure is more complicated due to the added covariances matrices among different
class-specific baseline logits. Hence, a most elaborated strategy must be adopted to
deal with these issues.
Hence, adopting Zellner (1986) approach in the style of Liang’s g-prior, we define the
generalized g-prior for Bayesian variable selection in the framework of multinomial
logistic regression as

π(a,βγ |γ) = π(a|γ)π(βγ |g,γ), (4.2)
βγ |g,γ ∼ Npγ

(
0pγ

, gI(βγ)−1
)
,

where I(βγ) denotes the expected Fisher information matrix which includes all the
variance-covariance matrices belonging to the same baseline logit and the covariance
matrices of different class-specific regression coefficients given the baseline class. In
particular, the form of Fisher information matrix depends exclusively on each class-
specific regression coefficients embedded in each q-th logistic regression linear predictor
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given baseline class, suggesting a complex structure.
The above formula suggests prior independence among the parameters a, βγ which
is proved by the maximum likelihood estimation in the Fisher sense based on the
block diagonality in case of Bové and Held (2011) prior specification approach. The
prior variance covariance matrix results from maximum likelihood estimation for the
sampling density of the multinomial logistic regression (4.1) based initially on the score
function and then on the curvature of the log-likelihood.
To begin with, the score function is calculated with the differentiation of the log-
likelihood with respect to the linear predictor ηγ(a,βγ) as

∂log
(
f(Y |a,βγ ,γ

)
∂ηγ(a,βγ) =

 ∂log((f(Y |a,βγ ,γ))
∂a

∂log(f(Y |a,βγ ,γ))
∂βγ



=



∂log((f(Y |a,βγ ,γ))
∂a1...

∂log((f(Y |a,βγ ,γ))
∂aQ−1

∂log(f(Y |a,βγ ,γ))
∂β1|γ1...

∂log(f(Y |a,βγ ,γ))
∂βQ−1|γQ−1


,

which reduces after some mathematical steps to the following

∂log
(
f(Y |a,βγ ,γ

)
∂ηγ(a,βγ) =

 1T
n×Q−1y − 1T

n×Q−1p(a,βγ)
XT

γy −XT
γp(a,βγ)



=



1T
ny1 − 1T

np1(a1,β1|γ1
)

...
1T

nyQ−1 − 1T
npQ−1(aQ−1,βQ−1|γQ−1

)
XT

γ1
y1 −XT

γ1
p1(a1,β1|γ1

)
...

XT
γQ−1

yQ−1 −XT
γQ−1

pQ−1(aQ−1,βQ−1|γQ−1
)


,

where Xγ = [Xγ1 , . . . ,XγQ−1 ] denotes the complete design matrix of dimension
n × pγ based on each q-th latent vector γq or q-th class-specific, pq(aq,βq|γq

) ={
pi,q(aq,βq|γq

)
}n

i=1
denotes the probabilities of each i-th observation given q-th class-

specific, p(a,βγ) =
{
pi,q(aq,βq|γq

)
}n,Q−1

i=1,q=1
denotes all the probabilities of each i-th
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observation belonging to each q-th class-specific and yq = {yi,q}n
i=1, denotes the observed

values given q-th class-specific of the response variable Y .
The next step, involves expected Fisher information matrix after differentiating the
log-likelihood function twice with respect to the unknown parameters a, βγ as

I(ηγ(a,βγ)) = −EY |a,βγ


∂2log((f(Y |a,βγ ,γ))

∂α2
∂2log(f(Y |a,βγ ,γ))

∂α∂βγ

∂2log(f(Y |a,βγ ,γ))
∂βγ∂α

T
∂2log(f(Y |a,βγ ,γ))

∂β2
γ

 ,
where the above Fisher information suggests a complex structure which encapsulates
all the between and within cross-correlations of class-specific regression coefficients
and intercepts respectively. In particular, the expected Fisher information matrix to
account for all the cross-correlations may be reexpressed as

I(ηγ(a,βγ)) =
 I(a) I(a,βγ)

I(βγ ,a)T I(βγ)



=



I(a1) . . . I(a1, aQ−1) I(a1,β1|γ1
) . . . I(a1,βQ−1|γQ−1

)
... . . . ... ... . . . ...

I(aQ−1, a1) . . . I(aQ−1) I(βQ−1|γQ−1
, a1) . . . I(aQ−1,β1|γQ−1

)
I(β1|γ1

, a1) . . . I(βQ−1|γQ−1
, a1) I(β1|γ1

) . . . I(β1|γ1
,βQ−1|γQ−1

)
... . . . ... ... . . . . . .

I(a1,βQ−1|γQ−1
) . . . I(βQ−1|γQ−1

, aQ−1) I(βQ−1|γQ−1
,β1|γ1

) . . . I(βQ−1|γQ−1
)


where each I(aq), I(aq, aq′), I(aq,βq|γq

), I(aq,βq′|γq′ ), I(βq|γq
) , I(βq|γq

) and I(βq|γq
,βq′|γq′ )

are defined respectively as

I(aq, aq) =
 I(aq) = 1T

npq(aq,βq|γq
)(1n − pq(aq,βq|γq

))T 1n , q = q′

−1T
npq(aq,βq|γq

)pq′(aq′ ,βq′|γq′ )1n , q ̸= q′ ,

I(aq,βq|γq
) =

 1T
npq(aq,βq|γq

)(1n − pq(aq,βq|γq
))TXγq

, q = q′

−1T
npq(aq,βq|γq

)pq′(aq′ ,βq′|γq′ )Xγq′ , q ̸= q′ ,

I(βq|γq
,βq|γq

) =
 I(βq|γq

) = XT
γq
pq(aq,βq|γq

)(1n − pq(aq,βq|γq
))TXγq

, q = q′

−XT
γq
pq(aq,βq|γq

)pq′(aq′ ,βq′|γq′ )Xγq′ , q ̸= q′ ,

(4.3)

showing the respective correlations and cross-correlations of the intercepts and the
regression coefficients belonging to the same or different classes, the cross-correlations
among regression coefficients and intercepts belonging or not to to the same class.
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We notice that the joint Fisher information matrix includes in each main block I(a),
I(a,βγ), I(βγ ,a)T and I(βγ) the model parameters a,βγ and the non diagonal
blocks constitute the prior independence among them a special matter of attention.
Moreover, notice that the block diagonal I(βγ) corresponds to the Fisher information
matrix used as prior variance-covariance matrix in the g-prior formulation (4.2) and
differs only by the component pq(aq,βq|γq

)(1n − pq(aq,βq|γq
))T , which vanishes under

certain prior specification such as Bové and Held (2011) and its expression based on
(4.3) is more intuitive rather than representative which should be clarified to the inter-
esting reader. In particular, expression (4.3) shows that the variance-covariance matrix
and hence expected Fisher information matrix I(βγ) breaks into additional Fisher
information matrices for q = q′ and q ̸= q′ which add a nice interpretation with respect
to multinomial logistic model. For instance, the q = q′ refers to the variance-covariance
matrix of q-th baseline logit part of the multinomial logistic regression model, while the
latter only to the covariances across different logistic parts of the multinomial logistic
regression model. In ideal situations, we would like to the second part to be equal to
zero. By this way, we could decompose the problem to Q− 1 logistic regression which
is not of course the case here. In addition, a necessary and intuitive condition for the
adoption of the prior independence (4.2) among a, βγ is the block diagonality of the
joint expected Fisher information matrix preserved only by specific strategies, whereas
in other cases it results too pragmatic and hence must be avoided. This strategies
usually involve special centering and other methods to eradicate the dependence of
expected Fisher information matrix from the resulting regression coefficients such as
Bové and Held (2011) and Li and Clyde (2013).
To conclude, in the next subsection, we introduce and extend a detailed prior specifica-
tion based on Bové and Held (2011) for Bayesian variable selection in the multinomial
logistic regression framework.

4.1.3 Prior Choice of Bove and Held Approach

The problem of variable selection has been pervasive in daily practice for many years
in linear regression and GLMs due to common issues related to the intractability of the
posterior, computation of posterior model probabilities and arbitrary expected Fisher
information matrix based on the regression coefficients. The same problem seems to
be challenging in the multinomial logistic regression framework due to the complex
nature of the model, as we seek solutions in the framework of objective Bayesian
methods. Recently, approaches Liang et al. (2008) and Li and Clyde (2013) have been
proposed to deal with the above issues, based mainly on g-priors Zellner (1986) and
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its mixtures to obtain consistent Bayesian variable selection across the model space,
but in this chapter we will focus only on Bové and Held (2011). Consequently, in
this section we attempt to give a first taste of detailed extensions of g-priors and its
mixtures to the interesting reader based on a novel hierarchical prior specification
likewise Bové and Held (2011). In particular, we construct and present a detailed
generalized g-prior through the device of an imaginary sample size adopting the same
steps adopted by the authors in their original paper based on Chen and Ibrahim
(2003) and Chen et al. (2008) showing that is equivalent to Ntzoufras et al. (2003).
For instance, let an imaginary sample size, y0n∗×Q−1

=
{
y0i,q

}n∗,Q−1

i=1,q=1
= g−1(a)1

n∗×Q−1

for fixed values of a, where g−1(a) = (g−1
1 (a1), . . . , g−1

Q−1(aQ−1)) with each element
g−1

q (αq) =
{
g−1

i,q (αq)
}n∗

i=1
, denotes all inverse link functions for each i-th observation

given q-th class and consider the multinomial logistic regression sampling density for
y0n∗×Q−1

expressed as a multivariate GLM scaled by gϕ

f(y0n∗×Q−1
|a,βγ , g,ϕ,γ) = exp

(
1T

ny0n∗×q−1
Φ−1ηγ(a,βγ)1Q−1

)
exp

(
−1T

Q−1b
T (ηγ(a,βγ))1Q−1 + 1T

Q−1c
T (y0n∗×Q−1

,ϕ)1n∗

)
,

where b(ηγ(a,βγ)) = (b(ηγ1
(a1,β1|γ1

)), . . . , b(ηγQ−1
(aQ−1,βQ−1|γQ−1

))),
c(y0n∗×Q−1

,ϕ) = (c(y01 ,ϕ), . . . , c(y0Q−1
,ϕ))

with each element c(y0q
,ϕ) =

{
c(y0i,q

, ϕi)
}n∗

i=1
. Moreover, the specific functions g(.),

b(.) and c(.) can be recognised according to the multinomial logistic regression model
respectively as
g−1(a) = (p1(a1,0pγ1

), . . . ,pQ−1(aQ−1,0pγQ−1
)), b(ηγ(a,βγ)) = pq∗(aq∗ ,βq∗) and

c(y0n∗×Q−1
,ϕ) =

((
n
y01

)
, . . . ,

(
n

y0Q−1

))
, then if an improper joint prior π(a,βγ) ∝ 1

has been adopted for the above multinomial logistic regression model, the posterior
distribution of βγ conditional on imaginary sample size y0n∗×Q−1

is expressed as

π(βγ |a,γ) ∝ exp
(
1T

Q−1y
T
0n∗×Q−1

Φ−1ηγ(a,βγ)1Q−1
)

exp
(
−1T

Q−1b
T (ηγ(a,βγ))1n∗

)
,

where the above distribution converges as n → +∞, to the asymptotic multivariate
normal distribution Bernardo (1979)

βγ |y0n∗×Q−1
,a, g,ϕ, δ,γ ∼ Npγ (µ̂pγ

(a), gI(µ̂pγ
(a))−1),

80



4.1 The problem of Bayesian Variable Selection in Multinomial Logistic
Regression Models

where µ̂γ(a) denotes the posterior mode which results as function of class-specific
intercepts a after evaluating it to the imaginary sample size y0n∗×Q−1

, δ = δ(a) and
I(µ̂pγ

(a)) = δ(a)XT
γXγ

ϕ
is the expected Fisher information matrix evaluated at the mode

µ̂pγ
(a) as it was demonstrated in Chen and Ibrahim (2003), Chen et al. (2008) and

Bové and Held (2011). This expected Fisher information matrix is based on (4.3),
whether it belongs to the same class-specific q = q′ or to two different class-specifics
q ̸= q′ as the following implies

I(µ̂γq
(aq), µ̂γq

(aq)) =
 I(µ̂γq

(aq)) = δ(aq)XT
γq
Xγq′ , q = q′

−δ(aq, aq′)XT
γq
Xγq′ , q ̸= q′ ,

denoting with δ(a)

δ(aq, aq) =


δ(aq) =

(
exp (aq)

1+
∑Q−1

q=1 exp (aq)

)(
1 − exp (aq)

1+
∑Q−1

q=1 exp (aq)

)
, q = q′

exp (aq+aq′ )(
1+
∑Q−1

q=1 exp (aq)
)2 , q ̸= q′

.

Furthermore, assume for simplicity that Φ = I and notice that the expected Fisher
information matrix depends on a which can be substituted with zero or the maximum
likelihood estimator according to the guidelines Held et al. (2015). In order to avoid
its influence, we prefer to set it to zero to avoid any undesired correlation with the
class-specific regression coefficients and hence eliminating the dependence of imaginary
sample size y0n∗×Q−1

, reducing (4.4) to a posterior distribution evaluated at mode
µ̂γ(0pγ ) = 0pγ

βγ |Q, g, δ,γ ∼ Npγ (0pγ , gQ
2I(BH)(0pγ )−1), (4.4)

where the above generalized g-prior is a consequent step of simplification of the above
expressions to the following respectively

I(BH)(0pγq
,0pγq

) =
 I(BH)(0pγq

) = δ(0)XT
γq
Xγq′ , q = q′

−δ(0, 0)XT
γq
Xγq′ , q ̸= q′ , (4.5)

denoting with δ(0, 0)

δ(0, 0) =
 δ(0) = Q−1

Q2 , q = q′

1
Q2 , q ̸= q′ , (4.6)

differs from the standard g-prior Liang et al. (2008) only by the scalar Q2 and its
structure of this Fisher information matrix is also related to the approach of Ntzoufras
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et al. (2003) . In addition, the approach of Ntzoufras et al. (2003) proves useful to
relate the above generalized g-prior factorization (4.2) in Liang’s style, as he proposed
to set the regression coefficients to their prior means equal to zero, then based on
the resulting joint expected Fisher information matrix of class-specific intercepts and
regression coefficients we obtain

I(BH)(ηγ(a,0pγ )) =
 I(BH)(a) I(BH)(a,0pγ )

I(BH)(0pγ ,a)T I(BH)(0pγ )



=



I(BH)(a1) . . . I(BH)(a1, aQ−1) I(BH)(a1,0pγ1
) . . . I(BH)(a1,0pγQ−1

)
... . . . ... ... . . . ...

I(BH)(aQ−1, a1) . . . I(BH)(aQ−1) I(BH)(0pγQ−1
, a1) . . . I(BH)(aQ−1,0pγQ−1

)
I(BH)(0pγ1

, a1) . . . I(BH)(0pγq−1
, a1) I(BH)(0pγ1

) . . . I(BH)(0pγ1
,0pγQ−1

)
... . . . ... ... . . . . . .

I(BH)(a1,0pγQ−1
) . . . I(BH)(0pγQ−1

, aq−1) I(BH)(0pγQ−1
,0pγ1

) . . . I(BH)(0pγQ−1
)


,

where I(BH)(aq), I(BH)(aq, aq′), I(BH)(aq,0pγq
), I(BH)(aq,0pγq′ ) are defined as

I(BH)(aq, aq) =
 I(BH)(aq) = δ(aq)1T

n 1n , q = q′

−δ(aq, aq′)1T
n 1n , q ̸= q′ ,

I(BH)(aq,0pγq
) =

 0pγq
, q = q′

0pγq
, q ̸= q′ ,

where notice all the above steps are reduced due to the centering of the design matrix
Xγ implying XT

γq
1n = 0pγ to each q-th level design matrix. The following block

diagonal structure allows to express the joint expected Fisher information matrix as

I(BH)(ηγ(a,0pγ )) =
 I(BH)(a) 0pγ

0T
pγ

I(BH)(0pγ )

 ,
which suggests prior independence of a, βγ . In this case, the joint prior specification
based on generalized g-prior of Bové and Held (2011) is defined as the following

π(BH)(a,βγ |γ) = π(BH)(a|γ)π(BH)(βγ |Q, g, δ,γ)

=
Q−1∏
q=1

π(BH)(aq|γ)π(BH)(βγ |g,Q,γ), (4.7)

π(BH)(aq|γ) ∝ 1, for q = 1, . . . , Q− 1,
βγ |Q, g, δ,γ ∼ Npγ

(
0pγ

, gQ2I(BH)(0pγ )−1
)
, (4.8)
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where the joint prior of a can be considered as a product of independent improper
priors adopting Jeffreys (1961) approach. The expected Fisher information matrix
I(BH)(a) suggests correlation among the intercepts and this dependence can be omitted
since the parameters are not of interest and inference is not affected. To conclude,
since we highlight the main aspects of Bayesian variable selection and illustrate the
generalized g-prior, we can go a step further in the next sections by introducing the
Bayesian variable selection methods for multinomial logistic regression with MCMC.

4.2 MCMC for Bayesian Variable Selection in Multi-
nomial Logistic Models

Modern technology progress increased the tendency of classification datasets in the
latest century, where the problem of variable selection in multinomial logistic regression
models, as a special family of generalized linear models, has been an open topic for
a long time in the Bayesian community with respect to i) the irreconcilability of
posterior, ii) the prior specification and iii) the enumeration of model space through
the calculation of posterior model probabilities when the number of predictors is grows
super exponentially with specific-class memberships. This fact led Bayesians to consider
alternative variable selection methods based on construction of MCMC Gilks et al.
(1996) or MCMC with data augmentation Tanner and Wong (1987).
In this way, the variable selection in multinomial logistic regression turns into a decision
problem where there are distinct subsets of the initial variables, that compensate in
describing the distribution of each class membership of polychotomous response Y
given baseline class, while these identified subsets can be used for prediction purposes
in order to test if the observed value of the response’s class membership was classified
correctly or not.
From a Bayesian perspective, variable selection in multinomial logistic regression
is supplied with the probabilistic nature of each class-specific subset of variables
which captures successfully the additional uncertainty related to the pair model-
model parameter and then this uncertainty is rephrased as a post-summary containing
important information to variable selection. When there isn’t available information
about which subset to prefer, the issue is fairly treated from an objective point of view
adopting default prior designs based on Zellner (1986) g-prior and it’s mixtures Liang
et al. (2008).
In addition, recent advances of computer technology enabled the construction of MCMC
methods Gilks et al. (1996) that revived important pathways in complex statistical
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modelling likewise generalized linear models and led to consistent variable selection
solutions especially in high-dimensional settings when spike-slab priors are chosen. The
main intuition behind MCMC methods lies on creating automatic objective methods
coupled with the notions of g-priors mixtures even in multinomial logistic models
framework, where sparsity is preserved forcing noise covariates in an area near zero.
Despite, MCMC methods count an enormous cataloque of variable selection approaches
in generalized linear models, for the shake of feasibility we cannot describe every method
in detail, thus we emphasize only the most recent approaches related to g-priors and
their mixtures. Moreover, these approaches were summarized in details at the third part
of this chapter including Chen and Ibrahim (2003), Ntzoufras et al. (2003), Hansen and
Yu (2003), Wang and George (2007), Chen et al. (2008), Bové and Held (2011), Li and
Clyde (2013) and Li and Clyde (2018). These approaches suggest a different structure
of Fisher information matrix based on observed or expected Fisher information matrix
accompanied by an MCMC algorithm. Despite their utility, we will pay attention only
to Bové and Held (2011) prior specification and we propose model search algorithms for
variable selection based explicitly on SSVS and GVS. We think that these algorithms
suit ideally with the problem of variable selection for multinomial logistic regression,
in identifying the most probable subsets within a model space for each class-specific.
Despite the flexibility of these algorithms to create a Markov chain that operates on
the surface of the joint posterior distribution of model parameters and parameters
in linear regression models, their implementation is quite challenging in GLMs terms
and hence multinomial logistic models, in the sense that the likelihood is not anymore
conjugate, thus Metropolis-Hastings stages are added for the class-specifc regression
coefficients and intercepts.
On the other hand, the interaction of modern technology with the advent of MCMC
gave rise to data augmentation pioneering ideas of Tanner and Wong (1987) catalyzing
Bayesian variable selection methods especially in binary regression, a special case
of multinomial logistic regression. Under this approach, a latent layer of possibly
unobserved random variables are incorporated in the model reproducing an equivalent
pseudo-generated mechanism (augmented model) of the genuine one. This idea proves
very useful for computational and simplicity purposes in situations where the true
model nature is complex by construction. In this way, the sampling density of under-
study generating mechanism can be still retrieved by intergrating or summing the
augmented model over the latent variables, depending on the type of latent random
variables if they are continuous or not, but in this thesis interest lies only to models with
continuous latent components. A simple intuition behind a strategy of this kind, is just
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to incorporate as many as possible latent data points to reconstruct a similar behaviour
of the "unmanageable" true model, where the latent data points may be seen as hidden
pieces of information that gave rise to the observed values of the unmanageable model.
It should be stressed out that this idea actually originates from frequentist statistics
where usually a missing-data strategy is applied through an expectation-maximization
algorithm Dempster et al. (1977) for the joint sampling density of the missing and
observed data, so data augmentation can be thought of as the Bayesian version of
missing data.
In addition, the seminal paper of Albert and Chib (1993) was the first Bayesian model
with data augmentation scheme that was introduced for probit regression. Even so,
the original idea of frequentist probit regression shares the notion of latent variables as
exogenous pertubations that produced the observed binary responses, the Bayesian
version implies a flexible MCMC procedure that turns into known results of a standard
linear model in order to avoid the painful computational cost. On the contrary, the
need of extending data augmentation designs similar to that of Albert and Chib’s, was
the main motivation of not remaining stable on models without model interpretability
like probit regression and to proceed on grounds of logistic regression marking a new
revolutionary era with the papers of Holmes and Held (2006), Polson et al. (2013)
and Frühwirth-Schnatter (2016). The clever idea of these approaches lie in the same
directions of Albert and Chib (1993) data augmentation scheme where the original
sampling density may be expressed as an increased density after the incorporation
of latent variables which ends with a standard Gaussian density. Thus the posterior
for the regression coefficients is reduced also to familiar results with those of a linear
regression depending on the latent structure. While in the latent approach of Albert
and Chib (1993) the prior latent structure was based on truncated normal distributions,
the recent approaches of Holmes and Held (2006) and Polson et al. (2013) use instead
truncated logistic and Polya-Gamma distributions, which affect in a different way the
speed of convergence of MCMC methods. The latter family of distributions will be
examined further in the next sections when presenting the notion of data augmentation.
Despite the absence of Bayesian variable selection in multinomial logistic models, due
to the non closed form of posterior for many years, we aim to contribute in this thesis
by establishing the main bridge between linear regression and generalized linear models
by extending the model search algorithms SSVS of George and McCulloch (1993) and
GVS of Dellaportas et al. (2002) based on the clever introduction of the latent scheme
of Polson et al. (2013). We think that SSVS and GVS are the most appropriate to
apply for these Bayesian models since they were first introduced for linear models. The
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4.3 SSVS in Typical Multinomial Logistic Setup

main motivation behind the construction of these algorithms lie on creating automatic
Bayesian procedures that will manage to control the complex nature of the Cq∗ × 2pq

possible subsets of a multinomial logistic regression sharing the objective Bayesian
properties when mixtures of g-priors are adopted and to bypass the hard aspects of
MCMC methods through the tuning of posterior for regression coefficients.
To conclude, in this second part of this chapter, we will present and compare the typical
multinomial logistic model with the augmented model under mixtures of g-priors based
on Bové and Held (2011). Prior specification and their performance is assessed based
on simulation and real datasets. More precisely, this section is organized as follows:
we begin by introducing the model search algorithms SSVS and GVS for an ordinary
multinomial logistic model with mixtures of g priors, Zellner-Siow Zellner and Siow
(1980) and hyper-g Liang et al. (2008) and its augmented version, then we end up with
this chapter by illustrating the main results from both comparisons in simulated and
real datasets.

4.3 SSVS in Typical Multinomial Logistic Setup

SSVS has been the cornerstone of early 90’s in the Bayesian universe launching the
variable selection problem in the world of MCMC procedures promising very interesting
applications, while it represents the source of many existing Bayesian variable selection
methods. After its establishment, the research bibliography on the Bayesian variable
selection problem increased due to the ideas of quantifying and monitoring respectively
the uncertainty and importance of covariates via the binary vector γ and spike-slab prior
representation. In this way, noise covariates are omitted permitting the identification
of only important variables that contribute to actual relationship and prediction. Even
SSVS was popularized broadly in linear regression settings, its utility was limited
in GLMs framework due to strains of i) prior elicitation, ii) posterior intractability
and iii) computation of posterior model probabilities and especially in the case of
multinomial logistic regression due to the complexity of expected Fisher information
matrix. These are becoming more and more evident and intensive due to the additional
model complexity in the resulting (Q− 1)2pq possible subsets.
Here in this section, in order to deal with these issues, we present a novel detailed
Bayesian variable selection method based on SSVS of George and McCulloch (1993) with
mixtures of g-priors for Bayesian variable selection in multinomial logistic regression
models. We believe that the proposed method suits the context mentioned previously
and that the lack of available guidelines regarding the best subset of each q-th class-
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4.3 SSVS in Typical Multinomial Logistic Setup

specific with respect to the baseline q∗ prioritize the objective Bayesian methodology
based on g-priors and its mixtures coupled with Jeffrey’s approach. Moreover, the
current approach still proves useful in handling sparsity issues of polychotomous
response variable when standard Bayesian variable selection methods such as Laplace
approximation fail due to the small sample size. However, an obvious disadvantage for
the implementation of the underlying method is that the intractability of the regression
coefficients lead unavoidably to a sophisticated Metropolis-Hastings step (analogous
to a standard GLM) that accounts for the correlations and cross-correlations between
the same or different classes. Even this drawback, the desire to create automatic
Bayesian variable selection procedures, stems from the appealing property of handling
complex structures like multinomial logistic regression and is fulfilled in the present
work. To begin with, SSVS usually assumes for the observed values y a fixed sampling
density in multinomial logistic regression that captures the linear dependence of the
polychotomous response Y and the covariates as the following

f(y|a,β) =
exp

(∑Q−1
q=1 y

T
q

(
aq1n +Xβq

))
exp

(∑Q−1
q=1

(
n
yq

))
1T

n

(
1n +∑Q−1

q=1 exp (aq1n +Xβq)
) , (4.9)

where notice that the sampling density is suppressed from any dependence on binary
vector γ. The main intuition behind the binary latent vector γ lies on monitoring
the importance of covariates in such a way, that the important covariates of each
q-th class-specific and hence the respective effects are entering the model, whereas
the non significant are omitted by shrinking them to an area near zero. In other
words, the included and non included variables of each class-specific are separated by
adopting a hierarchical mixture representation conditional on features of the model
space, equivalently on the q-th class-specific subsets, which allows to decide whether
they have to enter or not in the respective class-specific subset based on the information
of the data y. Often, this hierarchical prior specification includes a two-component
spike-slab representation which is controlled by tuning parameters τ and c that adjust
the level of shrinkage tracking down the important variables that really affect the target
variable. However, their input values need care in order to ensure good mixing of the
chain and separation. In the case of multinomial logistic regression, the hierarchical
prior specification for the regression coefficients conditional on the latent vector γ is
defined

β|Q, g,γ ∼ Np(q−1)
(
0pq(Q−1),DR

(BH)D
)
, (4.10)
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4.3 SSVS in Typical Multinomial Logistic Setup

where D is a diagonal matrix of dimension (Q−1)pq × (Q−1)pq matrix with j-th entry
equal to γjcjτj + (1 − γj)τj, for j = 1, . . . , (Q − 1)pq and which can be alternatively
seen for each q-th class-specific γq as subsets of γ as

D =


D1 0pq 0pq

0pq

. . . 0pq

0pq 0pq DQ−1

 ,

where each Dq denote partitioned matrices of dimension pq ×pq with diagonal elements
γj,qcj,qτj,q + (1 − γj,q)τj,q for j = 1, . . . , pq and q = 1, . . . , Q− 1 referring to each q-th
class-specific γq and this notation will be useful in the next sections of augmented
multinomial logistic regression, R(BH) = gQ2I(BH)(0(Q−1)pq)−1 is the prior correlation
matrix under Bové and Held (2011), where I(BH)(0(Q−1)pq) denotes the expected Fisher
information matrix which encapsulates the variance-covariance and covariance between
the same q = q′ or two different class specifics q ̸= q′

I(BH)(0pq ,0pq) =
 I(BH)(0pq) = (Q− 1)XTX , q = q′

−XTX , q ̸= q′ , (4.11)

where notice that the above expected Fisher information matrix is of fixed dimension
suppressed from the dependence of γ. To deal with the issue of the prior specification,
we adopt the joint hierarchical prior specification for parameters α, β, g and γ based
on Bové and Held (2011) with directions over the objective Bayesian ideas of Jeffreys
(1961) and mixtures of g-priors Zellner (1986) and Liang et al. (2008) for multinomial
logistic regression as

πSSV S(a, β, g,γ) =
Q−1∏
q=1

π(BH)(aq)πSSV S(β|Q, g,γ)π(g)π(γ), (4.12)

where in the above equation we define

π(BH)(aq) ∝ 1, for q = 1, . . . , Q− 1,

where notice the model indicator γ is dropped for simplicity from the joint improper
prior and πSSV S(.|Q, g,γ) denotes the hierarchical mixture prior of SSVS for β under
Bové and Held (2011) generalized g-prior (4.8). Choices of priors on model space
include an independent Bernoulli in case of indifference among respective subsets in
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each baseline logit as

π(γ) =
p∏

j=1
w

γj

j (1 − wj)1−γj =
p∏

j=1

Q−1∏
q=1

w
γj,q

j,q (1 − wj,q)1−γj,q ,

with prior probabilities weights of inclusion wi or wj,q. The latter can be also extended
using the hierarchical prior of Scott and Berger (2010) for wi or wj,q. Regarding the
prior π(g), mixtures of g-priors based on Zellner and Siow (1980) and hyper-g-prior
Liang et al. (2008) allow to account for the additional uncertainty of g parameter.
Apart from the prior specification, SSVS has been distinguished among other Bayesian
variable selection methods mainly for its fixed dimension of the model space over the
sampling density which is updated successfully with the hierarchical prior (4.12) leading
to the joint posterior of parameters α, β, g and γ

πSSV S(a,β, g,γ|y) ∝ f(y|a,β)
Q−1∏
q=1

π(BH)(aq)πSSV S(β|Q, g,γ)π(g)π(γ), (4.13)

where the joint posterior (4.13) remains in an intractable and form which favors the
employment of MCMC procedures surpassing the common obstacles of formal Bayesian
variable selection methods. In particular, an MCMC method is constructed on the joint
parameter and model space that allows to deliver a simulated sample from the unknown
joint posterior (4.13) by iterating over the full conditionals of α, β, g and γ. This is a
natural consequence of the constant dimension of sampling density that accelerates the
convergence to the target posterior since the full conditional of γ, central to variable
selection, does not depend on the likelihood and hence the retrieved sample contains
relevant information for Bayesian variable selection regarding the possible subsets of
all 2pq subsets of each q-th class.
However, likewise GLMs in multinomial logistic regression, serious issues arise within
the implementation of SSVS. Since only the full conditionals of g for Zellner-Siow prior
and γ are amenable to Gibbs sampling, suggesting additional Metropolis-Hastings
steps for the rest of parameters, especially for each class-specific regression coefficients
β and intercepts α respectively, one has to select carefully proposals that mimic or
reproduce the underlying genuine structure in order to provide an ideal representative
of the target posterior. In this way, SSVS is based on successive Metropolis-Hastings
stages within Gibbs sampler and outlined as follows updating jointly the parameter β
including all class-specific regression coefficients βq given baseline class and separately
the parameter a based on each class-specific intercepts aq
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A. Set initial values γ(0), β(0), a(0)
1 , . . . , a

(0)
Q−1 and g(0). For fixed g = n, delete

Step 5.

B. For iterations s = 1, . . . , S:

Step 1: Set current values equal to γ = γ(s−1), β = β(s−1), a1 = a
(s−1)
1 , . . . , aQ−1 =

a
(s−1)
Q−1 and g = g(s−1).

Step 2: Sample γ(s)
j ∼ Bern

(
πSSV S

j

)
, for j = 1, . . . , (Q − 1)pq, given the current

states of γ(s−1)
−j β(s−1), σ2(s−1), a(s−1) and g(s−1), where γ−j are the compo-

nents of γ except element γj

(a) with probability inclusion of j-th covariate πSSV S
j = OSSV S

j /(1 +OSSV S
j ),

(b) with posterior odds OSSV S
j

OSSV S
j =

πSSV S(β|Q, g, δ, γj = 1,γ−j)π(γj = 1,γ−j)
πSSV S(β|Q, g, δ, γj = 0,γ−j)π(γj = 0,γ−j)

,

and set γ(s) = γ(s−1).

Step 3: Sample β(s) given the respective updated and current states γ(s), a(s−1)
1 , . . . , a

(s−1)
Q−1

and g(s−1) from full conditional
exp
(∑Q−1

q=1 y
T
q Xβq

)
1T

n

(
1n+

∑Q−1
q=1 exp (aq1n+Xβq)

)
exp

(
−βTD−1I(BH)(0(Q−1)pq )D−1β

2Q2g

)
based on a Metropolis-Hastings random

walk candidate density generator with properties

(a) a candidate value β(can) is generated as β(can) ∼ N(Q−1)pq(β, tD∗), where
D∗ =

(
D−1I(BH)(0(Q−1)pq)D−1/Q2g + I(β̂)

)−1
denotes the proposal

precision matrix and t the tuning of MCMC procedure determining the
jumps of posterior exploration. Furthermore, the precision matrix D∗ is
a combination of two precision matrices, D−1I(BH)(0(Q−1)pq)D−1/Q2g

and I(β̂), that encapsulates both the information from prior and likeli-
hood, hence the genuine structure of the unknown full conditional for β.
The matrix I(β̂) originates from maximum likelihood as the following

I(β̂q, β̂q) =
 I(β̂q) = XTpq(âq, β̂q)(1n − pq(âq, β̂q))TX , q = q′

−XTpq(âq, β̂q)pq′(âq′ , β̂q′)X , q ̸= q′ ,

where â and β̂ are the maximum likelihood estimators of full multinomial
logistic model (4.9) and preserve the constant dimension since they
don’t depend on each q-th γq specific class.
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(b) an acceptance-rate A(SSV S)
β of the proposed move in the log-scale

log(A(SSV S)
β ) = log

(
πSSV S(β(can)|a, Q, δ, g,γ,y)
πSSV S(β|a, Q, g, δ,γ,y)

q(β|β(can), Q, δ, g,γ,y)
q(β(can)|β, Q, δ, g,γ,y)

)

∝
Q−1∑
q=1

yT
qXβ

(can)
q − log

1T
n

1n +
Q−1∑
q=1

exp (aq1n +Xβ(can)
q )


−

Q−1∑
q=1

yT
q Xβq + log

1T
n

1n +
Q−1∑
q=1

exp (aq1n +Xβq)


−
βT (can)D−1I(BH)(0(Q−1)pq)D−1β(can)

2Q2g

+ βTD−1I(BH)(0(Q−1)pq)D−1β

2Q2g
,

(c) Set β(s) =

β
(can) , accept with probability A

(SSV S)
β ,

β , reject with probability 1 − A
(SSV S)
β ,

where q(.) denotes the candidate density generator and the respective
log-acceptance rate log(A(SSV S)

β ) is reduced due to the symmetry of ra-
tio q(β|β(can), Q, g, δ,γ,y)/q(β(can)|β, Q, g, δ,γ,y) of random walk.

Step 4: Sample a(s)
q , for q = 1, . . . , Q− 1, given the respective updated and current

states γ(s), β(s), a(s−1)
−q and g(s−1), where a−q is the vector of each class-

specific except q-th element aq, from full conditional exp (yT
q aq1n)

1T
n

(
1n+

∑Q−1
q=1 exp (aq1n+Xβq)

)
based on a Metropolis-Hastings random walk candidate density generator
with properties

(a) a candidate value a(can)
q is generated as a(can)

q ∼ N(aq, vaq), where va

denotes the proposed variance of the random walk.
(b) an acceptance-rate A(SSV S)

aq
of the proposed move in the log-scale

log(A(SSV S)
aq

) = log
πSSV S(a(can)

q |a−q,β,y)
πSSV S(aq|a−q,β,y)

q(aq|a(can)
q , vaq)

q(a(can)
q |aq, vaq)


∝ yTa(can)

q 1n − log
1T

n

1n +
Q−1∑
q=1

exp (a(can)
q 1n +Xβq)


− yTa(cur)

q 1n + log
1T

n

1n +
Q−1∑
q=1

exp (a(cur)
q 1n +Xβq)

 ,

91



4.3 SSVS in Typical Multinomial Logistic Setup

(c) Set a(s)
q =

a
(can)
q , accept with probability A(SSV S)

aq
,

aq , reject with probability 1 − A(SSV S)
aq

,

where the ratio q(aq|a(can)
q , vaq)/q(a(can)|a, vaq) is cancelled due to symmetry.

Step 5: given the updated states γ(s), β(s) and a
(s)
1 , . . . , a

(s)
Q−1

(A) if g ∼ IG
(

1
2 ,

n
2

)
,

sample g(s) ∼ IG
(
λ̂

(SSV S)
0,g , λ̂

(SSV S)
1,g

)
, where λ̂(SSV S)

0,g and λ̂(SSV S)
1,g denote

respectively the posterior shape and scale of g respectively as
(a) λ̂

(SSV S)
0,g = ((Q− 1)pq + 1)/2,

(b) λ̂
(SSV S)
1,g = 1

2

[
βTD−1I(BH)(0(Q−1)pq)−1D−1β/Q2 + n

]
,

and set g(s) = g(s−1).
(B) if π(g) ∝ (1 + g)− a

2 , sample g(s) from full conditional (1 + g)− α
2 g− (Q−1)pq

2

exp
(

−βTD−1I(BH)(0(Q−1)pq )−1D−1β

2Q2g

)
after translating the parameter space

of g on log-scale based on a Metropolis-Hastings random walk candidate
density generator with properties
(a) a candidate value g(can) is generated as log(g(can)) ∼ N(log(g), vg)

⇒ g(can) = exp(log(g(can))), where vg denotes the tuning variance
which determines the amount of jumps or the acceptance rate.

(b) an acceptance-rate A(SSV S)
g of the proposed move in log-scale

log(A(SSV S)
g ) = log

(
πSSV S(g(can)|β, Q, δ,γ,y)
πSSV S(g|β, Q, δ,γ,y)

q(g|g(can), vg)
q(g(can)|g, vg)

J

J (can)

)

∝ −α

2 log(1 + g(can)) − (Q− 1)pq

2 log(g(can))

+ α

2 log(1 + g) + (Q− 1)pq

2 log(g)

−
βTD−1I(BH)(0(Q−1)pq)−1D−1β

2Q2g(can)

+ βTD−1I(BH)(0(Q−1)pq)−1D−1β

2Q2g

+ log
(

1
g

)
− log

(
1

g(can)

)
(4.14)

where J denotes the associated Jacobian from transformation on the
original scale of g. Notice that the corresponding ratio q(g|vg)/q(gcan|vg)
cancel due to random walk.
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(c) Set g(s) =

g
(can) ,with probability A(SSV S)

g ,

g ,with probability 1 − A(SSV S)
g ,

C. Repeat all the steps untill convergence.

4.4 GVS in Typical Multinomial Logistic Setup

Gibbs variable selection Ntzoufras (1999) and Dellaportas et al. (2002) has been a
flexible alternative to SSVS popularized most notably for the introduction of latent
binary vector in the main model body and the notion of pseudo-priors that allow to
jump from one model to another of different dimensions. It also provides consistent
model selection that summarizes the variable selection uncertainty through the use
of MCMC surpassing the drawbacks of formal Bayesian methods. Although it was
initially developed to handle the problem of variable selection in linear regression, there
are still challenging motivations to apply the same ideas to generalized linear models
and more precisely to multinomial logistic regression relating then to the computation
of posterior probabilities, posterior intractability and the multiplicative increase of
the model space in terms of all class-specific subsets 2pq given baseline q∗. For these
reasons, we highlight and extend in detail a Bayesian variable selection procedure based
on GVS of Dellaportas et al. (2002) sharing the objective principles of mixtures of
g-priors for Bayesian variable selection in multinomial logistic regression models. We
think the current approach suits the problem since the lack of information regarding
each best subset of each q-th logit favors the objective Bayesian approach combined
with Jeffreys conventionality ideas regarding the model space and the g-priors mixtures.
Furthermore, it is automatically treated as an objective Bayesian method as there
is no requirement to tune the prior inputs likewise SSVS and is more robust than
any usual Bayesian variable selection method based on Laplace approximation that
collapse in the case of small sample size. However, similar issues arise within GVS
implementation with respect to the intractability of conditionals and especially in the
case of β, again a highly complex Metropolis-Hastings is added to deal with all the
correlations and cross-correlations of respective coefficients belonging to the same or
different class-specific. Even in that case, we are motivated to create a default Bayesian
variable selection procedure that rests firmly on the appealing property of constructing
complex structures like multinomial logistic regression, which is verified in the present
work. The GVS usually starts assuming for the observed values y, a model varying
sampling density in multinomial logistic regression for the linear relationship of the
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polychotomous response Y and the covariates, as the following

f(y|a,β,γ) =
exp

(∑Q−1
q=1 y

T
q

(
aq1n +XΓqβq

))
exp

(∑Q−1
q=1

(
n
yq

))
1T

n

(
1n +∑Q−1

q=1 exp (aq1n +XΓqβq)
) , (4.15)

where Γ = diag(γ) = diag(γ1, . . . ,γQ−1) is of dimension (Q− 1)pq and the sampling
density is affected by binary vector γ in difference with SSVS. Notice that the matrix
Γ incorporates each q-th class-specific γq which allows to update jointly the model
uncertainty across different Q− 1 baseline logits. The clever incorporation of binary
vector γ in the sampling density (4.15) in conjunction with a special hierarchical prior
specification for β allows the corresponding MCMC method to travel among model of
different size given that the model dimension is balanced through the pseudo-priors.
The concepts of pseudo-priors will not be presented again in this section since they were
covered in the previous chapters showing their utility. As it was discussed previously,
we adopt again the approach of Paroli and Spezia (2006) in order to update the
parameter β jointly rather than based on the respective subsets βγ and β−γ for the
current configuration of γ likewise Ntzoufras et al. (2003). In addition, the hierarchical
prior specification for β in the framework of g-prior mixtures can be extended for
multinomial logistic regression as the following

β|Q, g,γ ∼ Np

(
µ, D̃

−1
)
, (4.16)

with prior precision matrix D̃

D̃ =
(

Γ(R(BH))−1Γ + diag(1 − γ) 1
s̄2

)−1
, (4.17)

where µ = (1 − γ)µ̄ and µ̄, s̄2 are the prior mean and variance inputs respectively
obtained from a pilot run for pseudo-priors and R(BH) is again the prior precision
matrix based on Bové and Held (2011) generalized g-prior approach. This hierarchical
prior specification is better illustrated if we write the joint prior of the partitioned
vectors βγ , β−γ as the following

π(βγ ,β−γ |Q, g) ∝

Npγ

(
βγ
∣∣∣0pγ

, gQ2I(BH)(0pγ )−1
)
, γ = 1pγ ,

Np−γ

(
β−γ

∣∣∣µ−γ , D̃−γ
)
, γ = 0p−γ

(4.18)
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where I(BH)(0pγ ) is defined by (4.5) (4.6) and (4.8) and from the above the actual
prior of included effects βγ is generated from the generalized g-prior independently
of pseudopriors which suggests that if we decide to update jointly βγ , β−γ into the
vector β, the MCMC procedure will not be altered. This is justified by the fact that
the non active parameter vector β−γ is not involved in the likelihood for the respective
values of γ and their update is only based exclusively on pseudo-priors.
Usually, before initializing any MCMC procedure, one has to set up carefully a prior
specification preferably under the objective Bayesian guidelines of Jeffreys (1961) and
Zellner (1986) for Bayesian variable selection in multinomial logistic regression

πGV S(a, β, g,γ) =
Q−1∏
q=1

π(BH)(aq)πGV S(β|Q, g,γ)π(g)π(γ), (4.19)

where π(BH)(a) remains the same as in SSVS as (4.12), πGV S(.|Q, g,γ) denotes the
hierarchical mixture prior of GVS (4.16) for β based on generalized g-prior approach
of Bové and Held (2011) , π(γ) is defined by (??) and π(g) allows to extend the prior
formulation in the framework of mixtures of g-priors such as Zellner and Siow (1980)
or hyper-g Liang et al. (2008). Alternative hierarchical priors regarding the model
space, such as Scott and Berger (2010), are possibly adopted likewise SSVS and we
will not enter in details again.
In addition, the GVS algorithm is created based on an MCMC procedure that applies to
the joint posterior of model specific parameters and model respectively as the following

πGV S(a,β, g,γ|y) ∝ f(y|a,β,γ)
Q−1∏
q=1

π(BH)(aq)πGV S(β|Q, g,γ)π(g)π(γ), (4.20)

where the above product of the sampling density (4.15) and the joint hierarchical
prior specification (4.12) maintains the difference among models of different types due
to the incorporation of pseudo-priors. It also brings to light important information
related to variable selection. Moreover, the involved joint posterior (4.20) remains in
an intractable form and it becomes impossible to obtain valuable information regarding
the variable selection problem and hence MCMC procedures are priority for such
situations. In addition, the GVS allows to create a Markov chain that moves over
the intractable joint posterior discovering important regions of high posterior model
probabilities, which are of high interest for the variable selection, excluding those with
negligible posterior model probability. In this way, the implied MCMC procedure based
on GVS recovers a simulated sample indirectly originating from the unknown target
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4.4 GVS in Typical Multinomial Logistic Setup

joint posterior by updating sequentially over all the full conditionals of all parameters,
such as α, β, g and γ. In particular, GVS treats similar problems like the SSVS
and the MCMC procedure with additional Metropolis-Hastings steps within Gibbs
sampling are outlined because the full conditionals of β, a are only known up to
proportionality constant and the same holds for g if hyper-g is adopted, otherwise a
Gibbs step substitutes the previous Metropolis-Hastings step. The MCMC method of
GVS algorithm is outlined as the following based on the successive simulations of full
conditionals over each parameters and more precisely updating jointly β and separately
each aq likewise SSVS

A. Same as in SSVS.

B. For iterations s = 1, . . . , S:

Step 1: Same as in SSVS.

Step 2: Sample γ(s)
j ∼ Bern

(
πGV S

j

)
, for j = 1, . . . , (Q − 1)pq, given the current

states of γ(s−1)
−j β(s−1), σ2(s−1), a(s−1) and g(s−1)

(a) with probability inclusion of j-th covariate πGV S
j = OGV S

j /(1 +OGV S
j ),

(b) with posterior odds

OGV S
j =

f(y|a,β, γj = 1,γ−j)πGV S(β|Q, δ, g, γj = 1,γ−j)π(γj = 1,γ−j)
f(y|a,β, γj = 1,γ−j)πGV S(β|Q, δ, g, γj = 0,γ−j)π(γj = 0,γ−j)

,

notice the above expression GVS differs substantially from SSVS due
to the presence of sampling density.

and set γ(s) = γ(s−1).

Step 3: Sample β(s) given the respective updated and current states γ(s), a(s−1)
1 , . . . , a

(s−1)
Q−1

and g(s−1) from full conditional
exp
(∑Q−1

q=1 y
T
q XΓqβq

)
1T

n

(
1n+

∑Q−1
q=1 exp (aq1n+XΓqβq)

)
exp

−
(β−µ)T

(
ΓI(BH)(0(Q−1)pq

)−1Γ

Q2g
+diag(1−γ) 1

s̄2

)
(β−µ)

2

 based on a Metropolis-

Hastings random walk with properties

(a) a candidate value β(can) is generated as β(can) ∼ N(Q−1)pq(β, tD̃
∗),

where D̃∗ =
(
ΓI(BH)(0(Q−1)p)Γ/Q2g + diag(1 − γ)1/s̄2 + ΓĨ(β̂γ)Γ

)−1

denotes the proposal precision matrix. Furthermore, the precision ma-
trix D̃∗ can be thought as the composition of two precision matrices,
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4.4 GVS in Typical Multinomial Logistic Setup

ΓI(BH)(0(Q−1)p)Γ/Q2g+ diag(1 −γ)1/s̄2 and ΓĨ(β̂γ)Γ, that envelopes
the prior and likelihood features in the resulting authentic posterior
structure of the unknown full conditional for β. The precision matrix
Ĩ(β̂γ) is computed using maximum likelihood estimation as the following

Ĩ(β̂q|γq
, β̂q|γq

) =
 Ĩ(β̂q) = XT

γq
pq(âq, β̂q|γq

)(1n − pq(âq, β̂q|γq
))TXγq

, q = q′

−XT
γq
pq(âq, β̂q|γq

)pq′(âq′ , β̂q′|γq′ )Xγq′ , q ̸= q′

where â and β̂γ and are the maximum likelihood estimators of multi-
nomial logistic regression density (4.15) for the respective values of γ,
hence containing all the included class-specific regression coefficients.
Such a prior choice is simply based on the assumption that only the in-
cluded effects of each class-specific regression coefficient must contribute
to the posterior.

(b) an acceptance-rate A(GV S)
β of the proposed move in the log-scale

log (A(GV S)
β ) = log

(
πGV S(β(can)|a, Q, δ, g,γ,y)
πGV S(β|a, Q, δ, g,γ,y)

q(β|β(can), Q, δ, g,γ,y)
q(β(can)|β, Q, δ, g,γ,y)

)

∝
Q−1∑
q=1

yT
qXΓqβ

(can)
q − log

1T
n

1n +
Q−1∑
q=1

exp (aq1n +XΓqβ
(can)
q )


−

Q−1∑
q=1

yT
q XΓqβq + log

1T
n

1n +
Q−1∑
q=1

exp (aq1n +XΓqβq)


−

(
β(can) − µ

)T
D̃

∗(−1) (
β(can) − µ

)
2 + (β − µ)T D̃

∗(−1) (β − µ)
2 ,

(c) Set β(s) =

β
(can) , accept with probability A

(GV S)
β ,

β , reject with probability 1 − A
(GV S)
β ,

where q(β|β(can), Q, g, δ,γ,y)/q(β(can)|β, Q, g, δ,γ,y) is reduced due to
symmetry.

Step 4: Sample a(s)
q , for q = 1, . . . , Q− 1, given the respective updated and current

states γ(s), β(s) and g(s−1), from full conditional exp (yT
q aq1n)

1T
n

(
1n+

∑Q−1
q=1 exp (aq1n+XΓqβq)

)
based on a Metropolis-Hastings random walk with properties

(a) a candidate value a(can)
q is generated as a(can)

q ∼ N(aq, vaq), where va

denotes the proposed variance of the random walk.
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4.4 GVS in Typical Multinomial Logistic Setup

(b) an acceptance-rate A(GV S)
aq

of the proposed move in the log-scale

log(A(GV S)
aq

) = log
πGV S(a(can)

q |a−q,β,y,γ)
πGV S(aq|a−q,β,y,γ)

q(a(cur)
q |a(can)

q , vaq)
q(a(can)

q |a(cur)
q , vaq)


∝ yTa(can)

q 1n − log
1T

n

1n +
Q−1∑
q=1

exp (a(can)
q 1n +XΓqβq)


− yTa(cur)

q 1n + log
1T

n

1n +
Q−1∑
q=1

exp (a(cur)
q 1n +XΓqβq)

 .

(c) Set a(s)
q =

a
(can)
q , accept with probability A(GV S)

aq
,

aq , reject with probability 1 − A(GV S)
aq

,

where the ratio q(aq|a(can)
q , vaq)/q(a(can)|a, vaq) is cancelled due to symmetry.

Step 5: given the updated states γ(s), β(s) and a
(s)
1 , . . . , a

(s)
Q−1

(A) if g ∼ IG
(

1
2 ,

n
2

)
,

sample g(s) ∼ IG
(
λ̂

(GV S)
0,g , λ̂

(GV S)
1,g

)
, where λ̂

(GV S)
0,g and λ̂

(GV S)
1,g denote

respectively the posterior shape and scale of g respectively as
(a) λ̂

(GV S)
0,g = (pγ + 1)/2,

(b) λ̂
(GV S)
1,g = 1

2

[
(β − µ)T ΓI(BH)(0(Q−1)p)Γ (β − µ)/Q2 + n

]
,

and set g(s) = g(s−1).
(B) if π(g) ∝ (1 + g)− a

2 , sample g(s) from full conditional (1 + g)− α
2 g− pγ

2

exp
(

− (β−µ)T ΓI(BH)(0(Q−1)p)Γ(β−µ)
2Q2g

)
based on a Metropolis-Hastings ran-

dom walk with properties
(a) The same as in SSVS.
(b) an acceptance-rate A(GV S)

g of the proposed move in log-scale

log(A(GV S)
g ) = log

(
πGV S(g(can)|β, Q, δ,γ,y)
πGV S(g|β, Q, δ,γ,y)

q(g|g(can), vg)
q(g(can)|g, vg)

J

J (can)

)

∝ −α

2 log(1 + g(can)) − pγ
2 log(g(can)) + α

2 log(1 + g) + pγ
2 log(g)

−
(β − µ)T ΓI(BH)(0(Q−1)p)Γ (β − µ)

2Q2g(can)

+ (β − µ)T ΓI(BH)(0(Q−1)p)Γ (β − µ)
2Q2g

+ log
(

1
g

)
− log

(
1

g(can)

)
.
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4.5 SSVS vs GVS Within Typical Logistic Multinomial Setup

where notice that the corresponding ratio q(g|vg)/q(gcan|vg) cancels
also due to random walk.

(c) Set g(s) =

g
(can) ,with probability A(GV S)

g ,

g ,with probability 1 − A(GV S)
g ,

C. Repeat all the steps untill convergence.

4.5 SSVS vs GVS Within Typical Logistic Multi-
nomial Setup

The model selection algorithms SSVS and GVS are appropriate whenever the need
takes place for variable selection. However, their construction requires a different
hierarchical model and prior structure which should be addressed carefully. Moreover,
their implementation must be gauged apriori with caution in some instances. The
following summarizes the main parts and features of each algorithm in order to
familiarize their use to the interesting reader. These are also found in Ntzoufras (1999)
and Dellaportas et al. (2002). To begin with, SSVS assumes

(a) a constant model over the model space, such as likelihood (4.9).

(b) a hierarchical prior construction (4.12) conditional on γ and hence on γq of
included and excluded components via small and large prior variances of spike-
slab.

(c) The included and excluded components of γ, through hierarchical prior (4.12)
contribute respectively to the update of joint posterior and hence to the rest of
full conditionals of parameters.

whereas, GVS

(a) a varying model over the model space, such as likelihood (4.15), such that
depending on γ and hence on each class-specific γq.

(b) a hierarchical prior construction (4.16) given γ, and hence γq, configuration
decomposed as (4.18) into the main prior part for the included effects βγ and
the pseudo-prior part for the excluded effects β−γ.

(c) Only the included components of γ through the main prior part will contribute
respectively to the update of joint posterior and hence to the full conditionals,
the excluded components based on pseudo-priors vanish.
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4.6 Polya-Gamma Data Augmentation

Moreover the major differences of SSVS and GVS are the following with regard to
their initialized steps

• Posterior odds O(SSV S)
j in SSVS doesn’t depend from the model dependence γ,

whereas O(GV S)
j in GVS case is present due to the incorporation in the likelihood.

• The matrix I(β̂) originating from maximum likelihood and involved in the
proposal generation for β is of constant dimension in constrast with that of GVS.

• The full conditional of each class-specific intercept aq in SSVS doesn’t depend on
γ in contrast with GVS.

• For the generation of g whether Zellner-Siow or hyper-g is adopted, in SSVS are
affected by fixed dimension (Q− 1)p, whether in GVS are affected only from pγ

and pseudo-priors disappear, that’s why it appears only the first prior component
devoted to the main prior specificationin the respective posterior measures or
log-acceptance rate log(A(GV S)

g ).

4.6 Polya-Gamma Data Augmentation

The posterior of model probabilities and regression coefficients has been recognised as
the main computational requirement that has spurred the development of many MCMC
methods owing to the intractable form in the framework of Bayesian variable selection
in generalized linear models and hence in multinomial logistic models, including that
with data augmentation Tanner and Wong (1987).
One of the most popular approach is Albert and Chib (1993) data augmentation
initially developed for probit regression that for the first time introduced the notion of
latent variables in Bayesian inference. Under this approach, a layer of latent variables
are incorporated to convert the intractable likelihood into standard known linear model
results, and then a sequentially updating of parameters is permitted through Gibbs
sampling.
Two decades later, Polson et al. (2013) proposed an analogous method for logistic
regression, where they introduced a new class of distributions, namely, Polya-Gamma,
which are expressed as an infinite convolution of independent Gamma distributions. The
main core of this approach is to parametrize binomial likelihoods in terms of log-odds
written as mixture of normals with Polya-Gamma distributions, while their approach
is enriched with two novel satisfactory results. The first concerns the computational
efficiency of the method which accelerates the convergence owing to the simply closed
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4.6 Polya-Gamma Data Augmentation

form expressions of Laplace transform and the second entails the construction of
a general class for Polya-Gamma distribution after translating a sub-class of Polya-
Gamma distribution through an exponential tilting. Direct consequences of the previous
results, were the tractability of Polya-Gamma moments via the Laplace transform with
applications in missing data such as expectation maximization Durante et al. (2018)
and their connection to Rieman-Zeta distributions. The versatility of the underlying
method rests firmly on the binomial likelihood which is involved also to other statistical
models such as the negative binomial regression Polson et al. (2013) and Choi and
Román (2017), non linear mixed-effects and spatial for count data Linderman et al.
(2015) and hence to multinomial logistic regression models Polson et al. (2013), which
is the main topic of this thesis. Moreover, theorical results on uniform ergodicity of
Polya-Gamma data augmentation are derived by Choi et al. (2013)
Since the seminal paper of Albert and Chib (1993), the Bayesian community was on
the demand for a similar algorithm in logistic regression despite the excessive efforts in
scientific research. Although these attempts tried to reproduce the work of Albert and
Chib (1993) in logistic regression framework, they haven’t accomplished it yet, at least
in depth. In particular, the methods of the respective approaches seem more complex
than that of Albert and Chib and some simple versions of them are usually inaccurate
or misleading; see for example Holmes and Held (2006) and Frühwirth-Schnatter
(2016). Using a somewhat different approach, Polson et al. (2013) developed a direct
approach of the algorithm of Albert and Chib in logistic regression models. Even
though, there seems to be a sort of correspondence between the two methods, the two
differ substantially due to the mixture construction of latent variables. For example,
the approach of Albert and Chib is a location mixture, while the former approach
is a scale mixture. The approach of Polson et al. (2013) introduces a layer of latent
variables that are mixtures of normals with independent Polya-Gamma precision terms.
In this approach, a random variable ω is said to follow a Polya-Gamma distribution
with parameters b > 0 and η ∈ R, denoted ω ∼ PG(b, η), if

ω
d= 1

2π2

∞∑
k=1

Gk

(k − 1
2)2 + η2

4π2

,

where Gk ∼ G(b, 1) are independent Gamma random variables distributed with param-
eters b and 1. In addition, Polson et al. (2013) established two important definitions
regarding PG(b, η) probability density function. The first circumvents the main core
of this approach as they developed the fundamental identity between a typical and a
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4.6 Polya-Gamma Data Augmentation

Polya-Gamma model, for ζ ∈ R and η ∈ R

(exp (η))ζ

(1 + exp (η))b = 2−b exp (kη)
∞∫

0

exp
(

−η2ω

2

)
π(ω|b, 0)dω, (4.21)

where k = ζ − b
2 and ω|b, 0 ∼ PG(b, 0) denotes the Polya-Gamma density with

parameters b and 0. The second concerns the conditional distribution π(ω|b, η) ∼
PG(b, η) which arises from an exponential tilting of the PG(b, 0)

π(ω|b, η) =
exp

(
−η2ω

2

)
π(ω|b, 0)

Eω

{
exp

(
−η2ω

2

)} =
exp

(
−η2ω

2

)
π(ω|b, 0)∫∞

0 exp
(
−η2ω

2

)
π(ω|b, 0)dω

, (4.22)

where the expectation Eω(.) is taken with respect to the Polya-Gamma density PG(b, 0).
In particular, they demonstrate that the conditional distribution (4.22) can be ex-
pressed in terms of infinite convolution of Gamma’s through the Laplace transform of
PG(b, η) which coincides with the definition (??). A key feature that solves the subse-
quent calculations in the previous definition, was the Laplace transform of PG(b, 0)
which results in a special case of the general class of PG(b, η) equal to cosh−b

(√
t
2

)
in conjunction with the Weierstrass factorization theorem. In this way, they took
advantage of PG(b, 0) Laplace’s transform and conditional distribution (4.22) in order
to result to the main identity (4.21)

(exp (η))ζ

(1 + exp (η))b = (exp (η))ζ(
2 cosh

(
η
2

)
exp

(
η
2

))b = 2−b (exp (η))ζ− b
2(

cosh
(

η
2

))b

= 2−bEω

{
exp

(
−η2ω

2

)}
= 2−b exp (kη)

∞∫
0

exp
(

−η2ω

2

)
π(ω|b, 0)dω.

Furthermore, the Laplace transform of the general family PG(b, c) can be computed in
closed form

Eω {exp (−ωt)} =
coshb

(
η
2

)
coshb

(√
η2
2 +t

2

) ,

Eω(ω) = b

2η

(
exp (b) − 1
exp (b) + 1

)
,

Eω(ω2) = b

(b+ 1)
(

exp (b) − 1
exp (b) + 1

)2

+ 1
4η2 − 1

8

(
η2

4

)− 3
2
 .
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Furthermore, the variance of a Polya-Gamma class can still be calculated based on the
above quantities as the following

V ar(ω) = Eω(ω2) − Eω(ω)2

= b

(b+ 1)
(

exp (b) − 1
exp (b) + 1

)2

+ 1
4η2 − 1

8

(
η2

4

)− 3
2
−

(
b

2η

(
exp (b) − 1
exp (b) + 1

))2

.

On the contrary, the main intuition behind the identity (4.21), is the equivalence of
writing binomial likelihoods up to a mixture of normals over Polya-Gamma distributions
from which a different model results each time according to the specified pair of ζ, b.
The logistic regression likelihood is a special case of this identity for η = ηi(a,β),
ζ = yi, b = 1. In this way, the Polya-Gamma data augmentation scheme is interpreted
as a data contribution of one data point yi, which is equivalent to an augmented data
pair ωi, yi as the following does

f(yi|a,β) = 2−b exp (kiηi(a,β))
∞∫

0

exp
(

−ηi(a,β)2ωi

2

)
π(ωi|b, 0)dωi

=
∞∫

0

exp
{

−ωi

2 (zi − ηi(a,β))2
}
π(ωi|b, 0)dωi

=
∞∫

0

f(zi|a,β, ωi)π(ωi|b, 0)dωi,

where f(.|a,β, ωi) denotes the Gaussian density with observed zi with unknown preci-
sion terms ωi mixed with PG(.|b, 0) prior density for ωi, zi = ki

ωi
, ki = yi − 1

2 .
Next, all the available information regarding the sample can be obtained in an equivalent
way from the augmented likelihood factorization of n data pairs ωi, yi, for i = 1, . . . , n,
based on

f(y|a,β) =
n∏

i=1

∞∫
0

f(zi, |a,β, ωi)π(ωi|b, 0)dωi,

which means that the information will give the same result if the typical likelihood has
been taken into consideration. Based on (4.23), Polson and Scott described a flexible
data augmentation scheme applied via Gibbs sampling towards the same approach.
This would be obtained for linear models if a multivariate normal prior is adopted for β
and an improper prior is adopted for a, but this time the Gaussian likelihood depends on
the observables z, and consequently on y, ω which allows first to sample the parameters
of interest β, α from known full conditionals, and then the n layers of Polya-Gamma
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using the result of the conditional distribution (4.22). Finally, we point out that the full
description of Polya-Gamma random variates generation are highlighed in Polson et al.
(2013), and is beyond the scopes of this thesis. The Polya-Gamma random variates
are generated through Bayes Logit package in R programming language. To conclude,
in the next sections we discuss how the idea of data augmentation incorporates into
the problem of Bayesian variable selection and we highlight the benefits of using
the Bayesian variable selection algorithms, such as SSVS and GVS for augmented
multinomial logistic regressions, combined with latent variables.

4.7 SSVS in Augmented Multinomial Logistic Setup

SSVS has been recognised one of the greatest tools in the history of Bayesian modelling
as it was the first procedure that introduced the concepts of Gibbs sampling in order
to avoid the computation of posterior probabilities and the exhaustive enumeration
of model space for the problem of variable selection, promising a vast number of
research publications in this domain within the advent of MCMC methods Gilks et al.
(1996). Despite its direct implementation in the linear regression framework, similar
thoughts in generalized linear models are based on the idea that the full conditionals
are not available in closed forms forcing the sampler into cumbersome Metropolis-
Hastings sampling. Especially in multinomial logistic regression the same issue becomes
more painful due to the extreme model complexity, hence researchers pursue flexible
alternatives through the device of data augmentation. Recently, Polson et al. (2013)
introduced a clever data augmentation scheme which approximated binomial likelihoods
parametrized in log-odds, by introducing Polya-Gamma latent variates amenable to
Gibbs sampling and familiar linear model results, providing similar extensions also to
negative binomial and multinomial logistic regression. More precisely, in the case of
multinomial logistic regression, they took advantage basically of three main facts: i)
the mixture of normal densities with Polya-Gamma random variables, ii) the marginal
distributions of the observed response belonging to q-th class-specific yq, follow a
binomial distribution and iii) the conditional probabilities of each class-specific were
modified in such a way that were obtained for a typical logistic regression, in order to
express the typical multinomial logistic model as many individual augmented logistic
regression models as the existing classes given the baseline. In particular, they isolated
the information contained in the authentic sampling density considering the conditional
sampling density of each specific-class regression coefficients for the respective observed
values of response yq with respect to the rest. This allowed the prior specification
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for each class-specific regression coefficients, to take part in each successive step by
extracting successfully an equivalent sample from the unknown joint posterior of the
typical multinomial logistic regression if the unknown target posterior was available
and this strategy is commonly referred to as a nested Gibbs sampler.
In this section, we present in details a mixed Bayesian variable selection procedure that
couples the ideas of George and McCulloch (1993) and Polson et al. (2013), extended
for multinomial logistic regression framework. More precisely, we introduce a new SSVS
method that incorporates the Polya-Gamma latent variables in order to approximate
the Bayesian variable selection uncertainty for multinomial logistic regression, by
converting the respective intractable sampling density into a likelihood of convenience
as those of linear regression models, via a Q− 1 nested Gibbs sampler. By this way,
we believe that the proposed method is compliant to the objective Bayesian rules since
it frees the procedure from any drawbacks of the MCMC including those regarding
tuning and proposals. The non available information across the different Q− 1 baseline
logits regarding which subset is the most appropriate for each respective baseline logit,
supports the use of default objective Bayesian specification based on g-prior Zellner
(1986). Moreover, our method is completed by a detailed prior specification based on
Zellner’s g prior design by adopting for each class-specific regression coefficients, a
reduced Zellner g-prior representative as resulting from the joint g-prior structure that
encapsulates the variance-covariance and covariance of the same q = q′ or different
q ̸= q′ multinomial logistic regression counterparts. As a consequence, we extend also
the Bayesian variable selection problem with mixtures of g-priors such as Zellner-Siow
and hyper-g for multinomial logistic regression, but under the linear model perspective.
Before presenting the main exposition of the proposed SSVS, it is essential to introduce
the reader who is interesting to some basic notions that will help him understand better
the structure of the augmented SSVS. To begin with, consider the typical multinomial
logistic regression likelihood as proportional to each binomial likelihood of the observed
response yq belonging to q-th class-specific with respective probabilities as the following

f(y|a,β) =
n∏

i=1

Q−1∏
q=1

(
n

yi,q

)
pi,q(aq,βq)yi,q ∝

n∏
i=1

pi,q(aq,βq)yi,q(1 − pq(aq,βq))1−yi,q

=
(
pq(aq,βq)T

)yq (1n − pq(aq,βq))1n−yq = f(aq,βq|yq,β−q,a−q),

where f(.|yq,β−q,a−q) denotes the conditional likelihood of q-th class-specific coeffi-
cients aq and βq given the rest of regression coefficients and observed values yq, then
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the probabilities belonging to q-th class-specific given baseline q∗ are modified as

pi,q(aq,βq) =
exp (aq + xiβq)

1 +∑Q−1
q=1 exp (aq + xiβq)

=
exp (aq + xiβq)

exp (aq + xiβq) + 1 +∑
q ̸=q′ exp (aq′ + xiβq′)

=
exp

(
η̃i,q(aq,βq)

)
1 + exp

(
η̃i,q(aq,βq)

)
where η̃i,q(aq,βq) = aq +xiβq −Ci,q and Ci,q = log(1 +∑q ̸=q′ exp (aq′ + xiβq′)) ; see for
more details Holmes and Held (2006) and Polson et al. (2013). In this way, the basic
insight behind each conditional likelihood is to express it as a q-th individual logistic
model given baseline class with the above conditional probabilities, which will allow
the contribution between one data point yi,q given q-th class and augmented data pair
ωi,q, yi,q via Polya-Gamma data augmentation identity (4.21) as the following shows

f(aq,βq|yi,q,β−q,a−q) = 2−b exp (ki,qη̃i,q(aq,βq))
∞∫

0

exp
(

−
η̃i,q(aq,βq))2ωi,q

2

)
π(ωi,q|b, 0)dωi,q

∝
∞∫

0

exp
{

−ωi,q

2 (zi,q − η̃i,q(aq,βq))2
}
π(ωi,q|b, 0)dωi,q

=
∞∫

0

f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)dωi,q,

where f(.|aq,βq, ωi,q) denotes the Gaussian density with observed zi,q with unknown
precision terms ωi,q with respect to PG(.|b, 0) prior density for ωi,q, zi,q = ki,q

ωi,q
, ki,q =

yi,q − 1
2 .

Next, all information included in each respective conditional likelihood regarding the yq

observables for fixed class-specific q, can be summarized from the augmented likelihood
factorization of n data pairs ωi,q, yi,q, for i = 1, . . . , n, based on Polya-Gamma mixture
identity

f(aq,βq|yq,β−q,a−q) =
n∏

i=1

∞∫
0

f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)dωi,q.

In addition, all the available information of the sample regarding the typical multinomial
logistic sampling density can be obtained by the factorization of each conditional
likelihood regarding the yq observables for varying class-specific q, of n data sampling
points ωi,q, yi,q, for i = 1, . . . , n and q = 1, . . . , Q − 1 based on Polya-Gamma latent
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representation

f(y|a,β) =
Q−1∏
q=1

f(aq,βq|yq,β−q,a−q)

=
Q−1∏
q=1

n∏
i=1

∞∫
0

f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)dωi,q,

which means that the information will result the same if we had in our disposal the
typical multinomial logistic likelihood. In this way, we may write the augmented
multinomial logistic regression model as the following

f(y,ω|a,β) =
Q−1∏
q=1

n∏
i=1

f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0). (4.23)

Moreover, any Bayesian method with MCMC like SSVS needs a suitable prior specifi-
cation for implementing it carefully and this cannot be other from the joint hierarchical
prior specification (4.12) based on objective approach of Jeffreys (1961) and Bové and
Held (2011) for parameters α, β, g and γ. We illustrated this prior specification in
the previous section of SSVS for typical multinomial logistic regression and hence it
will not be mentioned again in details. Regarding its implementation, it seems that
SSVS inherits the fixed dimensionality like authentic SSVS as the γ is not present in
the augmented sampling density (4.23), accelerating the convergence and identifiability
of high posterior model probabilities when the sampling (4.23) is multiplied with the
hierarchical prior specification (4.12). Thus, the joint variable selection and parameter
uncertainty can be described in the resulting joint posterior as the following

π̃SSV S(a,β, g,γ|y,ω) ∝
Q−1∏
q=1

n∏
i=1

f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)

π(BH)(aq)πSSV S(β|Q, g, δ,γ)π(g)π(γ), (4.24)

where in the above it is evident that the latent variables are unseen and that is the
main reason we did not consider them explicitly in the main prior specification, whereas
they were considered known and contributed to the joint posterior only after seen the
complete data y, ω.
By this way, the joint model and parameter uncertainty is updated given the complete
data y, ω and important aspects of variable selection are summarized, even though
the joint posterior (4.24) remains intractable employing the use of MCMC and more
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precisely the Gibbs sampler. In particular, the respective MCMC based on Polya-
Gamma data augmentation offers the computational advantage of recovering the
full conditionals of β and a in closed forms by considering each time the respective
class-specific regression coefficients βq and intercepts aq for a fixed q-th class-specific
in comparison with the typical multinomial logistic regression, which rests only on
Metropolis-Hastings sampling within Gibbs sampler. The current SSVS is an immediate
extension of George and McCulloch (1993) in multinomial logistic regression and of
SSVS with Polya-Gamma data augmentation presented in the previous chapter for
Bayesian variable selection in logistic regression with the only difference that each
aq and βq are updated through Nn

(
zq|η̃q(aq,βq),Ω−1

q

)
for zq, where Ωq = diag(ωq),

hence the full conditionals look similarly to those of a linear model. The full conditional
of γ, can be obtained respectively by considering each respective full conditional of γq

since the augmented likelihood does not take part in the update.
Finally, regarding the mixtures of g-priors, if Zellner-Siow or hyper-g are adopted they
lead to Gibbs sampler or Metropolis-Hastings step respectively.
In addition, in order to illustrate better this exposition of ideas, consider the joint
posterior density (4.24) for fixed q class-specific as the following

π̃SSV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)π(BH)(aq)

πSSV S(β|Q, g, δ,γ)π(g)π(γ), (4.25)

in that case, a nested Gibbs sampler based on the full conditionals of each class-specific
model parameters aq, βq, γq and g is described as follows

A. Set initial values γ(0)
1 , . . . ,γ

(0)
Q−1, β

(0)
1 , . . . ,β

(0)
Q−1, a

(0)
1 , . . . , a

(0)
Q−1, ω

(s−1)
1 , . . . , ω

(s−1)
Q−1

and g(0). For fixed g = n, delete Step 6.

B. For iterations s = 1, . . . , S:

C. For specific-class q = 1, . . . , Q− 1:

Step 1: Set current values equal to γ1 = γ
(s−1)
1 , . . . ,γQ−1 = γ

(s−1)
Q−1 , β1 = β

(s−1)
1 , . . . ,

βQ−1 = β
(s−1)
Q−1 , a1 = a

(s−1)
1 , . . . , aQ−1 = a

(s−1)
Q−1 and g = g(s−1).

Step 2: Sample γj,q ∼ Bern
(
π̃SSV S

j,q

)
, for j = 1, . . . , pq, given the current states of

γ
(s−1)
−j,q , γ(s−1)

−q β(s−1)
q and g(s−1), where γ−j,q are the components of γq except

element γj,q, γ−q are the components of γ excluding element γq and β−q

are the components of β excluding element βq
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(a) with probability inclusion of j-th covariate given q-th class-specific
π̃SSV S

j,q = ÕSSV S
j,q /

(
1 + ÕSSV S

j,q

)
,

(b) with posterior odds ÕSSV S
j,q

ÕSSV S
j,q =

π̃SSV S(βq|β−q, Q, δ, g, γj,q = 1,γ−j,q,γ−q)π(γj,q = 1,γ−j,q)
π̃SSV S(βq|β−q, Q, δ, g, γj,q = 0,γ−j,q,γ−q)π(γj,q = 0,γ−j,q)

,

where βq|β−q, Q, δ, g,γq,γ−q is a multivariate normal distribution with
prior mean µ(SSV S)

βq
and variance-covariance matrix V (SSV S)

βq
defined

βq|β−q, g, Q,γq,γ−q ∼ Npq

(
µ

(SSV S)
βq

, gV
(SSV S)
βq

)
(4.26)

(a) µ(SSV S)
βq

= V βq

(∑
q ̸=q′ D−1

q I(BH)(0pq ,0pq′ )D−1
q′ βq′/Q2

)
,

(b) V (SSV S)
βq

=
(
D−1

q I(BH)(0pq ,0pq)D−1
q /Q2

)−1

and set γ(s)
q = γ(s−1)

q .

Step 3: Sample β(s)
q ∼ Npq

(
µ̂

(SSV S)
βq

, V̂
(SSV S)
βq

)
, given the respective updated and

current states γ(s)
q , γ(s−1)

−q , a(s−1)
q , a(s−1)

−q , ω(s−1)
q and g(s−1), where µ̂(SSV S)

βq

and V̂ (SSV S)
βq

denote the posterior mean and variance-covariance matrix of
β defined respectively as

(a) µ̂(SSV S)
βq

= V̂ βq

(
gL(SSV S)

q +∑
q ̸=q′ D−1

q I(BH)(0pq ,0pq′ )D−1
q′ βq′/Q2

)
,

where L(SSV S)
q = XT ΩqCq +XT Ωqzq − aqX

T Ωq1n

(b) V̂ (SSV S)
βq

=
(
gXT ΩqX +D−1

q I(BH)(0pq ,0pq)D−1
q /Q2

)−1
,

and set β(s)
q = β(s−1)

q .

Step 4: Sample a(s)
q ∼ N

(
µ̂(SSV S)

aq
, σ̂2(SSV S)

aq

)
, given the updated and current states

respectively a(s−1)
−q , β(s−1)

q , β(s−1)
−q and ω(s−1)

q where the µ̂(SSV S)
aq

and σ̂2(SSV S)
aq

denote the posterior mean and variance of aq respectively as

(a) µ̂(SSV S)
aq

= σ̂2(SSV S)
µaq

[
1T

n

(
yq − 1

21n

)
+ 1T

n ΩqCq − βT
qX

T Ωq1n

]
,

(b) σ̂2(SSV S)
aq

= (∑n
i=1 ωi,q)−1,

and set a(s) = a(s−1).

Step 5: Sample ω(s)
i,q ∼ PG(b, η̃i,q(aq,βq)), for i = 1, . . . , n given updated states a(s)

q ,
a

(s−1)
−q , β(s)

q , β(s−1)
−q , where ωi,q is the i-element of ωq

and set ω(s)
q = ω(s−1)

q

Step 6: End of step C..
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Step 7: for a fixed q-th class-specific, given the updated states γ(s)
1 , . . . ,γ

(s)
Q−1,

β
(s)
1 , . . . ,β

(s)
Q−1,

(A) if g ∼ IG
(

1
2 ,

n
2

)
,

sample g(s) ∼ IG
(
λ̃

(SSV S)
0,g , λ̃

(SSV S)
1,g

)
, where λ̃(SSV S)

0,g and λ̃(SSV S)
1,g denote

respectively the posterior shape and scale of g respectively as
(a) λ̃

(SSV S)
0,g = ((Q− 1)pq + 1)/2 + 1

2 ,
(b) λ̃

(SSV S)
1,g

1
2

[
λ̃q − 2∑q ̸=q′ βT

q D
−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′/Q2 + n
]
,

where λ̃q = βT
qD

−1
q I(BH)(0pq ,0pq)D−1

q βq/Q
2,

and set g(s) = g(s−1).
(B) if π(g) ∝ (1 + g)− a

2 , sample g(s) from full conditional (1 + g)− α
2 g− (Q−1)pq

2

exp
(

−βT
q D

−1
q I(BH)(0pq ,0pq )D−1

q βq

2gQ2

)
exp

(∑
q ̸=q

′ βT
q D

−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2

)
af-

ter translating g on log-scale based on a Metropolis-Hastings with
properties
(a) The same as in typical SSVS.
(b) an acceptance-rate Ã(SSV S)

g of the proposed move in the log-scale

log(Ã(SSV S)
g ) =

log
(
π̃SSV S(g(can)|βq,β−q,γq,γ−q,y)
π̃SSV S(g|βq,β−q,γq,γ−q,y)

q(g|g(can), vg)
q(g(can)|g, vg)

J

J (can)

)

∝ −α

2 log(1 + g(can)) − (Q− 1)pq

2 log(g(can))

+ α

2 log(1 + g) + (Q− 1)pq

2 log(g)

−
βT

qDqI(BH)(0pq ,0pq)D−1
q βq

2g(can)Q2 +
∑

q ̸=q′ βT
q′D−1

q′ I(BH)(0pq′ ,0pq′ )D−1
q′ βq′

g(can)Q2

+
βT

qD
−1
q I(BH)(0pq ,0pq)D−1

q βq

2gQ2 −
∑

q ̸=q′ βT
q′D−1

q′ I(BH)(0pq′ ,0pq′ )D−1
q′ βq′

gQ2

+ log
(

1
g

)
− log

(
1

g(can)

)
,

where q(.) denotes candidate density generator and J the associated
jacobian which results from transformation on the original scale of g.
Notice that the corresponding ratio q(gcur|vg)/q(gcan|vg) vanishes
due to symmetry feature of the normal random walk.

(c) Set g(s) =

g
(can) , accept with probability Ã(SSV S)

g ,

g , reject with probability 1 − Ã(SSV S)
g ,
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D. Repeat all the steps untill convergence,

in this way a complete summary of variable selection problem among different baseline-
logits for each class-specific is obtained with respect to baseline. A detailed proof of all
this Bayesian variable selection procedure is found on Appendix C section C.1.

4.8 GVS in Augmented Multinomial Logistic Setup

GVS of Ntzoufras (1999) and Dellaportas et al. (2002) has been considered a clever
alternative to SSVS. It introduced new aspects in the Bayesian variable selection
procedure such as the switching sampling density conditional on model dimensionality
and the pseudo-priors that allow an ingenious Gibbs sampler to resolve the problems of
formal Bayesian variable selection procedures. Characterized by its flexibility to deal
with the enumeration of model space and computation of posterior model probabilities,
mainly in the linear regression problem, the authors provide equivalent developments
also in the GLM by approaching the intractability of the posterior and hence the full
conditionals of regression coefficients through the adaptive rejection sampling. However,
similar developments in the current thesis are avoided due to the fact that we prefer
to approach the problem by adopting MCMC methods based on Metropolis-Hastings
to deal with Bayesian variable selection in multinomial logistic regression. Moreover,
even in that case, MCMC methods based on Metropolis-Hastings lose their potential
as the model dimensionality increases interfering with the decrease of acceptance rates
and the ill conditioned variance covariance matrices which reveal the use of data
augmentation. In particular, the Polya-Gamma data augmentation of Polson et al.
(2013) has been the principal spark for the present thesis that spurred our interest
to illuminate the variable selection problem in multinomial logistic regression, as the
authors left undefined statements regarding the variable selection uncertainty. As
data augmentation Polson et al. (2013) was introduced in the previous section and
chapter, it needs no further clarification also because the logic of the GVS is the
same with just minor differentiations. In the present section, we propose a detailed
hybrid Bayesian variable selection method based on research works of Dellaportas et al.
(2002) and Polson et al. (2013) in multinomial logistic regression settings emphasized
for Bayesian variable selection uncertainty. In particular, we introduce a new GVS
method that takes advantage of the Polya-Gamma data augmentation scheme in order
to reduce the problem of Bayesian variable selection in multinomial logistic regression
equivalently with that of linear regression by the convienient factorization of latent
variables in the resulting sampling density of each q-th class-specific baseline logit given
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4.8 GVS in Augmented Multinomial Logistic Setup

the baseline class. This proves useful in applying the objective Bayesian principles of
Jeffreys (1961) and Zellner and Siow (1980) as no guidelines on best subsets according
to each baseline logit are available and problems such as any hard trace of MCMC
such as tuning and candidate distribution generators are avoided. Furthermore, the
versatility of the implied method rests on the pseudo-priors that constitute it as default
Bayesian method since there is no need to tune prior inputs unlike SSVS. Moreover,
our approach is based again in a prior specification of Zellner’s g prior similar to SSVS,
which aims to encapsulate the features of each regression coefficient belonging to a
class-specific, outlined in a subclass Zellner g-prior as originating from the authentic
joint g-prior. This accounts for the possible correlations and cross-correlations within
and among specific classes. An immediate consequence includes the Bayesian variable
selection problem extension within the g-priors mixtures framework, such as Zellner-
Siow and hyper-g in multinomial logistic regression, but under the aspect of linear
model formulation. Again, it proves useful to fix some notations and definitions in
order to facilate the exposition of the GVS. Assume that the typical multinomial
logistic regression sampling density for GVS is up to the proportionality constant for
the binomial likelihood of the observed response yq of q-th class-specific with respective
probabilities as the following

f(y|a,β,γ) =
n∏

i=1

Q−1∏
q=1

(
n

yi,q

)
pi,q(aq,βq|γq)yi,q

= f(aq,βq|yq,β−q,a−q,γq,γ−q),

where f(.|yq,β−q,a−q,γq,γ−q) denotes the conditional likelihood of q-th class-specific
coefficients aq and βq given the rest, observed values yq , binary latent indicators γq

and γ−q, then the probabilities of q-th class given baseline q∗ are modified as

pi,q(aq,βq|γq) =
exp

(
η̃i,q(aq,βq|γq)

)
1n + exp

(
η̃i,q(aq,βq|γq)

) ,
where η̃i,q(aq,βq|γq) = aq +xiΓqβq − C̃i,q and C̃i,q = log(1+∑q ̸=q′ exp (aq′ + xiΓq′βq′))
; see Holmes and Held (2006) and Polson et al. (2013). The main purpose of each
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conditional likelihood (??) is to express the following identity

f(aq,βq|yi,q,β−q,a−q,γq,γ−q) = 2−b exp (ki,qη̃i,q(aq,βq|γq))
∞∫

0

exp
(

−
η̃i,q(aq,βq|γq))2ωi,q

2

)
π(ωi,q|b, 0)dωi,q

=
∞∫

0

exp
{

−ωi,q

2 (zi,q − η̃i,q(aq,βq|γq))2
}
π(ωi,q|b, 0)dωi,q

=
∞∫

0

f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)dωi,q,

where f(.|aq,βq, ωi,q,γ) denotes the Gaussian density with observed zi,q and unknown
precision terms ωi,q with respect to PG(.|b, 0) prior density for ωi,q.
All information regarding each conditional likelihood with respect to the yq observables
for fixed specific class q, can be summarized from the augmented likelihood factorization
of n data pairs ωi,q, yi,q, for i = 1, . . . , n, based on Polya-Gamma mixture identity

f(aq,βq|yq,β−q,a−q,γq,γ−q) =
n∏

i=1

∞∫
0

f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)dωi,q.

In addition, all the incorporated information from the sample for the typical multinomial
logistic likelihood can be obtained from the joint product of each conditional likelihood
regarding the yq observables for each specific class q, as n data sampling points ωi,q, yi,q,
for i = 1, . . . , n and q = 1, . . . , Q− 1 based on Polya-Gamma latent representation

f(y|a,β,γ) =
Q−1∏
q=1

f(aq,βq|yq,β−q,a−q,γq,γ−q)

=
Q−1∏
q=1

n∏
i=1

∞∫
0

f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)dωi,q. (4.27)

We may write the augmented multinomial logistic regression model as the following

f(y,ω|a,β,γ) =
Q−1∏
q=1

n∏
i=1

f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0). (4.28)

In addition, for the implementation of GVS based on Polya-Gamma data augmentation
we adopt again the default joint prior (4.19) based on the objective approach of Jeffreys
(1961) and Zellner (1986) for parameters α, β, g and γ and hence will not be described

113



4.8 GVS in Augmented Multinomial Logistic Setup

again.
On the contrary, regarding its implementation, GVS maintains γ the balance among
different sizes of models, when the sampling (4.28) is combined with the hierachical
prior specification (4.19). Thus, the joint variable selection and parameter uncertainty
can be updated respectively based on the following joint posterior

π̃GV S(a,β, g,γ|y,ω) ∝
Q−1∏
q=1

n∏
i=1

f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)

π(BH)(aq)πGV S(β|Q, g,γ)π(g)π(γ), (4.29)

where in the above the latent variables did not take part in the main prior specification
because they are included in the data augmentation. Then, the joint model and
parameter uncertainty is updated respectively based on the complete data y, ω and im-
portant information of variable selection is obtained, despite the joint’s posterior (4.29)
intractable form. The information regarding the Bayesian variable selection problem is
provided by unlocking the inctractability of the joint posterior based on Polya-Gamma
data augmentation of full conditionals of β, a that are found in closed forms for the
respective regression coefficients βq and aq for fixed q-th specific class in comparison
with the typical multinomial logistic regression. The respective GVS represents a
straighforward expansion of Dellaportas et al. (2002) and of GVS with Polya-Gamma
data augmentation presented Bayesian variable selection in logistic regression with the
only difference that each aq and βq are updated through Nn

(
zq|η̃q(aq,βq|γq),Ω−1

q

)
for

zq, where Ωq = diag(ωq), hence the full conditionals resemble those of a linear model.
The full conditional of γ, can be obtained like SSVS by considering each respective full
conditional of γq. However, the sampling density based on the latent data structure
is included this time. The same things hold for GVS in typical multinomial logistic
model.
In order to simplify the description of the underlying MCMC method, assume the joint
posterior density (4.29) for fixed q specific class as expressed in the following

π̃GV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)π(BH)(aq)

πGV S(β|Q, g,γ)π(g)π(γ), (4.30)

in this case, the GVS based on the full conditionals of each q-th specific-class model
parameters aq, βq, γq, ωq and g allow a nested Gibbs sampler based on the full
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conditionals of each class-specific model parameters aq, βq, γq and g is described as
follows

A. The same as in augmented SSVS.

B. For iterations s = 1, . . . , S:

C. For specific-class q = 1, . . . , Q− 1:

Step 1: The same as in augmented SSVS.

Step 2: Sample γj,q ∼ Bern
(
π̃GV S

j,q

)
, for j = 1, . . . , pq, given the current states of

γ
(s−1)
−j,q , γ(s−1)

−q , β(s−1)
q , β(s−1)

−q , a(s−1)
q , a(s−1)

−q , ω(s−1)
q and g(s−1)

(a) with probability inclusion of j-th covariate given q-th class-specific
π̃GV S

j,q = ÕGV S
j,q /

(
1 + ÕGV S

j,q

)
,

(b) with posterior odds ÕGV S
j,q

ÕGV S
j,q =

f(zq|aq,βq, ωi,q, γj,q = 1,γ−j,q,γ−q)
f(zq|aq,βq, ωi,q, γj,q = 0,γ−j,q,γ−q)
π̃GV S(βq|β−q, Q, δ, g, γj,q = 1,γ−j,q,γ−q)π(γj,q = 1,γ−j,q)
π̃GV S(βq|β−q, Q, δ, g, γj,q = 0,γ−j,q,γ−q)π(γj,q = 0,γ−j,q)

,

where βq|β−q, Q, δ, g,γq,γ−q is a multivariate normal distribution with prior
mean µ(GV S)

βq
and variance-covariance matrix V (GV S)

βq
defined respectively as

βq|β−q, Q, δ, g,γq,γ−q ∼ Npq

(
µ

(GV S)
βq

,C
(GV S)
βq

)
(4.31)

(a) µ(GV S)
βq

= C
(GV S)
βq

F q,
where

F q =
ΓqI(BH)(0pq ,0pq)µq

gQ2

+
∑

q ̸=q′

(
ΓqI(BH)(0pq ,0pq′ )Γq′βq′ − ΓqI(BH)(0pq ,0pq′ )Γq′µq′

)
gQ2

(b) C(GV S)
βq

= D̃
−1
q ,

where D̃q = ΓqI(BH)(0pq ,0pq)Γq/gQ
2 + d̃q, d̃q = diag(1 − γq) 1

s̄2
q

and
µq = (1 − γq)µ̄q. Denoting with F q components originating from
prior of βq and d̃q, µq are the counterparts of pseudo-prior for q-th
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class-specific regression coefficients, which are regarded as subsets of
the prior precision matrix D̃ in typical multinomial logistic model.

and set γ(s)
q = γ(s−1)

q .

Step 3: Sample β(s)
q ∼ Npq

(
µ̂

(GV S)
βq

, Ĉ
(GV S)
βq

)
, given the respective updated and

current states γ(s)
q , γ(s−1)

−q , β(s−1)
−q , a(s−1)

q , a(s−1)
−q , ω(s−1)

q and g(s−1), where
µ̂

(GV S)
βq

and Ĉ
(GV S)
βq

denote the posterior mean and variance-covariance
matrix of β defined respectively as

(a) µ̂(GV S)
βq

= V̂
(GV S)
βq

(
L(GV S)

q + F q

)
, where

L(GV S)
q =

[
ΓqX

T ΩqC̃q + ΓqX
T Ωqzq − aqΓqX

T Ωq1n

]
,

F q =
ΓqI(BH)(0pq ,0pq)µq

gQ2

+
∑

q ̸=q′

(
ΓqI(BH)(0pq ,0pq′ )Γq′βq′ − ΓqI(BH)(0pq ,0pq′ )Γq′µq′

)
gQ2

+ d̃qµq,

denoting withL(GV S)
q components originating from augmented likelihood

of q-th class-specific regression coefficients,
(b) V̂ (GV S)

βq
=
(
D̃q + ΓqXΩqXΓq

)−1
,

and set β(s)
q = β(s−1)

q .

Step 4: Sample a(s)
q ∼ N

(
µ̂(GV S)

aq
, σ̂2(GV S)

aq

)
, given the updated and current states

respectively γ(s)
q , γ(s−1)

−q , a(s−1)
−q , β(s−1)

q , β(s−1)
−q and ω(s−1)

q where the µ̂(GV S)
aq

and σ̂2(GV S)
aq

denote the posterior mean and variance of aq respectively as

(a) µ̂(GV S)
aq

= σ̂2(GV S)
µaq

[
1T

n

(
y − 1

21n

)
+ 1T

n ΩqC̃q − βT
q ΓqX

T Ωq1n

]
,

(b) σ̂2(GV S)
aq

= (∑n
i=1 ωi,q)−1,

and set a(s) = a(s−1).

Step 5: Sample ω(s)
i,q ∼ PG(b, η̃i,q(aq,βq|γq)), for i = 1, . . . , n, given updated and

current states respectively γ(s)
q , γ(s−1)

−q β(s)
q , β(s−1)

−q , a(s)
q , a(s−1)

−q ,
and set ω(s)

q = ω(s−1)
q

Step 6: End of step C..

Step 7: for a fixed q-th class-specific, given the states γ(s)
1 , . . . ,γ

(s)
Q−1, β(s)

1 , . . . ,β
(s)
Q−1,

(A) if g ∼ IG
(

1
2 ,

n
2

)
, sample g(s) ∼ IG

(
λ̃

(SSV S)
0,g , λ̃

(GV S)
1,g

)
, where λ̃(GV S)

0,g and
λ̃

(SSV S)
1,g are denoted as
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(a) λ̃
(GV S)
0,g = (pγ + 1)/2 + 1

2 ,
(b) λ̃

(GV S)
1,g = 0.5 [F 1,q + F 2,q + n], where

F 1,q = (βq − µq)T ΓqI(BH)(0pq ,0pq)Γq(βq − µq)/Q2,

F 2,q = −2
∑
q ̸=q′

(βq − µq)T ΓqI(BH)(0pq ,0pq′ )Γq′(βq′ − µq′)/Q2,

and set g(s) = g(s−1).
(B) if π(g) ∝ (1 + g)− a

2 , sample g(s) from full conditional (1 + g)− α
2 g

pγ
2

exp
(
−F 1,q+F 2,q

2gQ2

)
based on a Metropolis-Hastings with properties

(a) The same as in typical SSVS.
(b) an acceptance-rate Ã(GV S)

g of the proposed move in the log-scale

log(Ã(GV S)
g ) =

log
(
π̃GV S(g(can)|βq,β−q,γq,γ−q,y)
π̃GV S(g|βq,β−q,γq,γ−q,y)

q(g|g(can), vg)
q(g(can)|g, vg)

J

J (can)

)

∝ −α

2 log(1 + g(can)) − pγ
2 log(g(can))

+ α

2 log(1 + g) + pγ
2 log(g)

− F 1,q + F 2,q

2g(can)Q2 + F 1,q + F 2,q

2gQ2

+ log
(

1
g

)
− log

(
1

g(can)

)
, (4.32)

where q(gcur|vg)/q(gcan|vg) vanishes due to symmetry feature of the
normal random walk.

(c) Set g(s) =

g
(can) , accept with probability Ã(GV S)

g ,

g , reject with probability 1 − Ã(GV S)
g ,

D. Repeat all the steps untill convergence,

by this way a complete description of variable selection uncertainty is summarized
among Q− 1 different baseline-logits for each class-specific given baseline class, which
is obtained indirectly from the sample of augmented posterior (4.29). A detailed proof
of this Bayesian variable selection procedure is found on Appendix C section C.2.
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4.9 SSVS vs GVS Within Augmented Multinomial
setup

Polya-Gamma data augmentation provides flexible alternative within the Bayesian
variable selection algorithms SSVS and GVS which suits ideally under the aspect of
linear regression. This will allow to surpass the encountered difficulties within the
framework of standard MCMC methods, especially in multinomial logistic regression.
The implementation of SSVS and GVS stands for its computational ease that allows to
recover the full conditionals of each class-specific intercept and regression coefficients
respectively into normal distribution in contrast with cumbersome Metropolis-Hastings
steps. Moreover, their implementation must be gauged apriori with caution in some
instances. Next, we summarizes the main points and parts of each algorithm in order
to familiarize their use to the interesting reader. These can be seen as consequent
extensions of Ntzoufras (1999) and Dellaportas et al. (2002). To begin with, SSVS
includes

(a) an augmented model of fixed dimension (4.23).

(b) the same hierarchical prior construction (4.12) given γ, is modified in such
way to adapt it for each q-th class-specific regression coefficients given the rest,
representing a sub-class prior of the original one taking advantage of the variance-
covariance structure of expected Fisher information matrix.

whereas, GVS

(a) a likelihood (4.28) changing with model dimension.

(b) the same hierarchical prior construction (4.16) given γ, which allows to be adapted
similarly as SSVS augmented for each q-th class-specific regression coefficients
given the rest, encapsulating also respective parts of the main prior specification
and pseudo-priors for the same and different class-specific.

The implementations steps of the two approaches differ only by the fact that in GVS is
incorporated the the class-specific γq. In the possible disadvantages, of both methods
we can add the computational complexity related to the increased computational time.
Moreover, GVS augmented version with respect to SSVS, will be more overburden with
uncertainty of each q-class specific subset due to the incorporation of the augmented
likelihood which depends on the observed of response and configurations of Polya-
Gamma latent variables.
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4.10 Simulated Experiments

In this section, we used the simulation study of Ghosh et al. (2011) for multinomial
regression with fewer predictors and classes regarding the Bayesian variable selection
using MCMC methods with mixtures of g-priors. Our simulation study sub-divides the
simulation of Ghosh et al. (2011) into two simulated scenarios with pq = 10 covariates
to each class and Q = 3 classes such that different multinomial logistic regression
models are implemented. These covariates were obtained as independent standardized
normal vectors X1, . . . ,X10 iid ∼ N200(0, 1). Moreover, these two sparse scenarios are
examined within each design to describe the true generating mechanism of data as the
following implies

Scenario Class True regression coefficients

no-overlapping
2

a2 β2,1 β2,2 β2,3 β2,4 β2,5 β2,6 β2,7 β2,8 β2,9 β2,10

0.8 1 2 0.9 0 0 0 0 0 0 0

3
a3 β3,1 β3,2 β3,3 β3,4 β3,5 β3,6 β3,7 β3,8 β3,9 β3,10

0.3 0 0 0 0 0 0 0 -1 1.7 -2

overlapping
2

a2 β2,1 β2,2 β2,3 β2,4 β2,5 β2,6 β2,7 β2,8 β2,9 β2,10

0.8 1 2 0.9 0 0 0 0 0 0 0

3
a3 β3,1 β3,2 β3,3 β3,4 β3,5 β3,6 β3,7 β3,8 β3,9 β3,10

0.3 1 -2 0.8 0.9 0 0 0 0 0 0

Table 4.1 Multinomial logistic regression sparse scenarios using independent variables

where the coefficients of the Table (4.1) were set to be sparse similarly to Ghosh
et al. (2011) and their values were chosen so that the true predictors of classes 2 and
3 differ in the first simulated design, whereas in the second, most of those of classes
2 and 3 are overlapping but with different magnitudes. In both simulated scenarios,
in comparison with Ghosh et al. (2011), the third regression coefficient of class 2 is
set equal to β2,3 = 0.9 rather than 0.5 because we considered smaller sample size to
address class imbalance for the polychotomous respose Y . The usefulness of these
scenarios rests firmly on describing how the importance of covariates is altered if the
same covariates were drawn as important or important and non-important across two
different class-specific. Our aim is to assess the performance of Bayesian variable
selection methods with MCMC both for a typical and augmented multinomial logistic
regression. Furthemore additional analysis is performed to evaluate the computational
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efficiency of each method based on effective sample size (ESS) and MCe Monte Carlo
standard error, since we will expect similar results. We generated the class labels from
a multinomial distribution (4.1) where the baseline was considered the class 1.
In addition, we illustrate the main results of simulations using again as basic tools the
SSVS and GVS computational algorithms in the settings of g-priors and its mixtures
adopted each time for the typical and augmented multinomial logistic regression. In
particular, among methods using hyper-g we used the usual value α = 3 suggested by
Liang et al. (2008) and a Metropolis-Hastings random walk step with tuning variance
ug = 1 for good mixing of the chain. Regarding the tuning of proposals of intercepts
and regression coefficients β, a of each specific class respectively for both typical
methods SSVS and GVS, we used t = 0.2, va2 = 1 and va2 = 3, respectively to ensure
the good mixing of the chains. With respect to MCMC methods, prior inputs τj = 0.02
and cj = 50 for j = 1, . . . , (Q − 1)pq were set on practical significance for SSVS to
achieve similar results with the objective Bayesian methods and µ̄, s̄2 were computed
from pilot runs under the full model for GVS of each simulated dataset repetition
among the methods for typical multinomial logistic regression, whereas for methods
of augmented logistic regression we can easily extract them from the previous prior
inputs respectively for SSVS and GVS, if we consider the prior inputs τj,q, cj,q and µj,q,
s̄2

j,q according to each class-specific covariates for j = 1, . . . , pq and q = 1, . . . , Q − 1.
The option of prior input τj and cj are such that τj = 0.02 << τjcj = 1. A detailed
prescription of acronyms and references for all Bayesian variable selection methods are
included in Table (4.3).

Prior Inputs-Initial Values
Parameter Value
τ 0.02
c 50
γ(0) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T

β(0) β̂

a(0) â

g(0) n

ω(0)
q (1, . . . , 1)

Table 4.2 Prior-inputs and initial values

The no available or little guidelines regarding the choice of subsets of variables for
each class-specific covariates suggest the use of objective Bayesian methodology to each
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specific model parameter and model itself. In particular, we adopted the joint prior
specifications of Bové and Held (2011) for both typical and augmented multinomial
logistic regresion in SSVS and GVS to depict the possible prior dependences among
parameters a,β,γ and g. All the compared methods under Zellner-Siow prior used
prior specification (2.10) for g, whereas those including hyper-g-prior used (2.12).
Furthermore, since the number of covariates is equal to 10 of each specific class, which
results equal to 20 if we consider the total number of covariates, we will adopt the
sparse prior specification of Scott and Berger (2010) regarding the model space in order
to avoid the dilution of prior probabilities.

Acronym Computational Method Prior Model
1 ssvs.hyp.typ Stochastic Search Variable Selection Hyper-g Typical

for α = 3, τ = 0.02, c = 50,
ua2 = 1, ua2 = 1, t = 0.2, ug = 1

2 ssvs.hyp.aug Stochastic Search Variable Selection Hyper-g Augmented
for α = 3, τ = 0.02, c = 50, ug = 1

3 gvs.hyp.typ Gibbs Variable Selection Hyper-g Typical
for α = 3, ua2 = 1, ua2 = 1, t = 0.2, ug = 1

4 gvs.hyp.aug Gibbs Variable Selection Hyper-g Augmented
for ug = 1

5 ssvs.ZS.typ Stochastic Search Variable Selection Zellner-Siow Typical
for τ = 0.02, c = 50, ua2 = 1, ua2 = 1, t = 0.2

6 ssvs.ZS.aug Stochastic Search Variable Selection Zellner-Siow Augmented
for τ = 0.02, c = 50

7 gvs.ZS.typ Gibbs Variable Selection Zellner-Siow Typical
for ua2 = 1, ua2 = 1, t = 0.2

8 gvs.ZS.aug Gibbs Variable Selection Zellner-Siow Augmented
9 ssvs.g.typ Stochastic Search Variable Selection g-prior Typical

for τ = 0.02, c = 50, ua2 = 1, ua2 = 1, t = 0.4, g = n

10 ssvs.g.aug Stochastic Search Variable Selection g-prior Augmented
for τ = 0.02, c = 50, g = n

11 gvs.g.typ Gibbs Variable Selection g-prior Typical
for ua2 = 1, ua2 = 1, t = 0.4, g = n

12 gvs.g.aug Gibbs Variable Selection g-prior Augmented
for g = n

Table 4.3 Acronyms of Bayesian variable selection methods with MCMC for multinomial
logistic regression

Applying Bayesian variable selection methods to this simulating design, model
fitting was performed through a Gibbs sampling with subsequent Metropolis-Hastings
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steps and pure Gibbs sampler with or no Metropolis-Hastings step depending on
the prior choice respectively for typical and augmented Bayesian variable selection
methods. In this framework, we generated 40000 valid values of Markov chains to obtain
convergence for the Bayesian variable selection methods of typical and augmented
multinomial logistic regression. In particular, for typical multinomial logistic regression
Bayesian variable selection methods we considered as initial values α(0), β(0) the
maximum likelihood estimators respectively for α and β and for the binary indicator γ
the γ(0), whereas for augmented logistic regression Bayesian variable selection methods
the initial values are simply resulting as partitions of previous initial values as the
following imply α(0)

q , β(0)
q , γ(0)

q for q = 1, . . . , Q− 1 regarding each specific class given
baseline q∗ and for ω the initial value ω(0)

q is used; see for more information; see for
more information Table (4.2).
Results based on the frequency of identifying the true generating mechanism of data
through the maximum aposteriori model for the typical and augmented multinomial
logistic regression over 100 replicated simulations of each sparse scenario are provided
in Tables (4.4) and (4.5) respectively. Paired evaluations of Bayesian variable selection
methods with mixtures of g-priors approaches versus the rest of the methods show the
following behaviour

i) In general, the Bayesian variable selection methods with mixtures of g-priors
perform successfully in 2 out of the 2 scenarios. The best method of identifying
the true generating mechanism of the data includes one of the methods with
mixtures of g-priors.

ii) In the no-overlapping scenario, all procedures with mixtures of g-priors trace
correctly the true generating data model. Both true model rates are very satisfying
for the identification of subsets of covariates belonging to class 2 and 3 given
baseline class 1.

iii) In the overlapping scenario, all computational methods under the various prior
specifications perform poorly with almost tracing the true model. The true model
rate of specific class 2 versus baseline class 1 is better with respect to that of
class 3 versus the baseline class 2.

iv) In the overlapping scenario, even if the true model identification for class 3
versus baseline class 1 is considerable low, the highest true model rates are those
including methods with mixtures of g-priors such gvs.ZS.typ and gvs.ZS.aug.
The same holds also for true model rate of class 2 versus baseline class 1 with
the only difference that is higher for gvs.hyp.aug and gvs.g.typ
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Both mixtures of g-priors and fixed g-priors are perfoming similarly in the two sparse
scenarios guaranteeing no particular differences among them. For these reasons, further
results comparing mixtures of g-priors versus fixed are depicted in Figures (4.1), (4.2),
(4.3) and (4.4) in order to stress out in depth their difference based on the marginal
posterior inclusion probabilities and the MPM over the 100 simulated repetitions under
the various Bayesian variable selection procedures respectively for specific classes 2
and 3 given baseline class 1. From these results, as it was expected, the non important
variables with random g methods exhibit more variability in the resulting marginal
posterior inclusion probabilities with respect to fixed g-priors methods. More precisely,
are showing higher marginal posterior inclusion probabilities with direction towards 0.5,
whereas the Zellner-Siow prior are less affected. This behaviour is actually related to the
different model complexity supported by each prior specification of g and the additional
variability of random g Bayesian variable selection methods that overweights the non
certain covariates, thus hyper-g Bayesian variable selection procedures prefer more
complex models with respect to Zellner-Siow methods that exhibit more shrinkage
in the non important covariates. Even if the MAP didn’t work at all only in the
overlapping scenario, we observe that the MPM is identified for both simulated design
scenarios separately within each class 2 and 3 given baseline class 1. This is deduced
by the fact that the only important covariates that were supposed to enter the model
due to simulation construction, coincided with those that exhibited marginal posterior
inclusion probabilities over 0.5. Thus, the MPM as shown in this cases maximized the
overall predicted profit with directions towards the true conclusions.
On the other hand, additional highlights are underlined based on the comparison of
Bayesian variable selection methods with mixtures of g-priors with the respect to the
rest of the methods among typical and augmented multinomial logistic regression which
are presented as follows

i) Overall, Bayesian variable selection methods of mixtures of g-priors with data
augmentation perform satisfactorily as in 2 out of the 2 scenarios the best method
of identifying the true generating mechanism of the data was one of the methods
with mixtures of g-priors with data augmentation

ii) In general, methods with data augmentation perform satisfactorily as in 2 out of
2 scenarios; the best method of identifying the true generating mechanism of the
data included one of the methods with data augmentation.

iii) Generally, there are no striking differences among Bayesian variable selection
methods for typical and augmented logistic regression apart only for the current
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cases as the following (no-overlapping case for class 3: ssvs.hyp.typ-ssvs.hyp.aug,
ssvs.ZS.typ-ssvs.hyp.aug and gvs.g.typ-gvs.g.aug, overlapping case for class 2:
ssvs.ZS.typ-ssvs.ZS.aug and overlapping case for class 3: ssvs.hyp.typ-ssvs.hyp.aug,
ssvs.ZS.typ-ssvs.ZS.aug and ssvs.g.typ-ssvs.g.aug).

iv) All the methods with data augmentation multinomial logistic regression model
seem to perform equally well under the different scenarios as their typical ana-
logues apart from the exceptions (in most cases data augmentation outperformed
of typical Bayesian variable selection method and vice versa) mentioned above.

In addition, major differentiations are encountered with respect to the properties of
mixtures g-priors versus fixed g-priors based on Bayesian variable selection methods
of typical and augmented multinomial logistic regression models. In particular, from
Figures (4.1), (4.2), (4.3) and (4.4) it is obvious that Bayesian variable selection
methods with data augmentation suffer from additional uncertainty accumulated in
uncertain covariates for mixtures of g-priors, which are inflated higher towards 0.5
compared to the respective methods of typical multinomial logistic regression, even
though the preference of model complexity remains the same among Bayesian variable
selection methods of the two types. In particular, in Figures (4.1) and (4.2) there
are no highlighted important differences apart from the uncertain covariates as we
mentioned previously, whereas in Figures (4.3) and (4.4) Bayesian variable selection
methods with data augmentation shrink also the important covariates in difference
with the methods of typical multinomial logistic regression. Furthermore, additional
information regarding the posterior density of shrinkage factor g

g+1 over 100 repeated
simulations are found on Figures (4.9), (4.10), (4.11) and (4.12) respectively for both
sparse scenarios among typical and augmented multinomial Bayesian variable selection
methods with mixtures of g-priors, which don’t seem to exhibit strange departures.
Since these results based on posterior measures were expected to be close relatively, we
examined further the computational efficiency of each method with respect to typical
and augmented multinomial regression within SSVS and GVS based on the effective
sample size ESS and Monte Carlo standard error MCe for the respective two scenarios.
According to (Holmes and Held, 2006) and (Polson et al., 2013), the effective sample
size can be defined for a binary model indicator γj as

ESSj = B/(1 + 2
K∑

k=1
ρj(k)),
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where B is the number of post-burnin-in samples and ρj(k) is the k-th autocorrelation
of γj. The ESS is used to asses how much iterations need to converge and MCe

measures how much error is attributed to sampling of MCMC method. It makes sense
to compute each estimate only for the non included covariates and hence the respective
binary model indicators. These are computed across the two different scenarios for
each class specific 2 and 3 given baseline 1 which are found respectively in Tables (4.6),
(4.7), (4.8), (4.9), (4.10), (4.11), (4.12) and (4.13) only for one simulated repeatition
out of 100, since the we would expect similar results across the simulated samples. The
results suggests that

• All computational methods with data augmentation under the three different
prior setups show larger effective sample size ESS with respect to their typical
versions.

• All computational methods with data augmentation strategy under the three
different prior choices conserve Monte Carlo errors MCe than their typical setup.

Such behaviour is expected since the incorporation of additional latent variables is
proportional to the number of iterations and hence to the model complexity. Regarding
the computational efficiency among SSVS and GVS we summarize that

• The typical version of SSVS shows always lower effective sample size and larger
sampling error in contrast with the typical of GVS.

• The typical version and augmented version of SSVS are exposed to larger sampling
errors in contrast with their respective versions of GVS.

• The typical version and augmented version of GVS are insensitive and behave
similarly with respect to sampling errors, despite the large ESS for augmented
GVS.

In addition, results based on the frequency of true model identification through
the maximum aposteriori model for the typical and augmented multinomial logistic
regression over 100 repeated simulated datasets of each sparse scenario are also provided
in Tables (4.14) and (4.15) for sample size equal to n = 500. The compared results
among Bayesian variable selection methods show the following

i) In this case, Bayesian variable selection methods with fixed g-priors are more
robust over the random g methods as in 2 out of the 2 scenarios the best method
of tracing the true generating mechanism of the data includes one of the methods
with fixed g-priors.

125



4.10 Simulated Experiments

ii) In the no-overlapping scenario, all procedures show a very high true model rate
as they trace correctly again the true generating mechanism of data. Both true
model rates are very high for identifying the subsets of covariates belonging to
class 2 and 3 given baseline class 1.

iii) In the overlapping scenario, all Bayesian variable selection methods under the
different prior specifications outperform tracing correctly the true model. The
true model rates of specific class 2 and 3 versus baseline class 1 are improved
and show an increasing tendency towards the true results.

iv) Overall, each Bayesian variable selection method between typical and augmented
logistic regression converge in the respective posterior measures as the sample
size grows. Even small gaps between them are decreased.

Similar conclusions, come in agreement also with Figures (4.5), (4.6), (4.7) and (4.8)
which describe the marginal posterior inclusion probabilities of sample (n=500) over
the 100 simulated repeated experiments under the different Bayesian variable selection
algorithms for specific class 2 and 3 versus baseline class 1. It is evident that due to
the impact of large sample size, there is smaller uncertainty accumulated inside the
non certain covariates as shown the respective boxplots. Finally, the model preference
of mixtures with g-priors remains the same as in the previous settings. To conclude,
we evaluate also the performance of all Bayesian variable selection methods under
model selection consistency as long as the sample size grows for values equal to
n = 200, 500, 1000and5000 only for the no-overlapping scenario and one generated data
simulation and provided in Figure (4.13). These results are depicted in sub-Figures
(??) and (4.13b) respectively which show that among typical versus augmented SSVS
and GVS separately

• For initial values of sample size posterior model probabilities deviate slightly
where some methods prevail of other and viceversa both in SSVS and GVS.

• As long as the sample size increases the difference among typical and augmented
respectively for SSVS and GVS diminish as it was expected increasing the
probability of the true model towards 1.

• The typical setup methods across the three different priors within SSVS and
GVS show a slightly increased posterior model probability in comparison with
their respective augmented analogues.
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We deduce that the last observation is a consequence of data augmentation schemes
which suffer from additional uncertainty accumulated in the generation of binary latent
vectors of each q-th class-specific, especially in GVS where the augmented likelihood
takes part in the generation of γq. These are reasonable since the priors used in the
augmented scheme as part of the original one in the typical setup is just a sub-class
prior both in SSVS and GVS. That is why model selection consistency is preserved
also for the augmented setup methods.
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Scenario Class

Bayesian variable selection methods
ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs.
hyp. hyp. hyp. hyp. ZS. ZS. ZS. ZS. g. g. g. g.
typ aug typ aug typ aug typ aug typ aug typ aug

no-overlapping
2 79 82 84 80 83 83 83 81 84 83 79 82
3 76 83 76 78 77 82 78 79 80 85 74 80

Table 4.4 Number of 100 simulated samples that the MAP coincides with the true
generating model of Table (4.1) for no-overlapping scenario for specific class 2 and 3
versus baseline class 1 (row-wise largest value in bold)
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no−overlapping model, specific class 2 versus baseline class 1

Fig. 4.1 Posterior inclusion probabilities for 100 repetitions of no-overlapping scenario
regarding specific class 2 versus baseline class 1
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no−overlapping model, specific class 3 versus baseline class 1

Fig. 4.2 Posterior inclusion probabilities for 100 repetitions of no-overlapping scenario
regarding specific class 3 versus baseline class 1
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4.10 Simulated Experiments

Scenario Class

Bayesian variable selection methods
ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs.
hyp. hyp. hyp. hyp. ZS. ZS. ZS. ZS. g. g. g. g.
typ aug typ aug typ aug typ aug typ aug typ aug

overlapping
2 52 52 50 53 50 45 51 51 50 48 53 52
3 46 41 45 45 46 36 49 49 43 35 47 44

Table 4.5 Number of 100 simulated samples that the MAP coincides with the true
generating model of Table (4.1) for overlapping scenario for specific class 2 and 3 versus
baseline class 1 (row-wise largest value in bold)
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Fig. 4.3 Posterior inclusion probabilities for 100 repetitions of overlapping scenario
regarding specific class 2 versus baseline class 1
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Fig. 4.4 Posterior inclusion probabilities for 100 repetitions of overlapping scenario
regarding specific class 3 versus baseline class 1
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4.10 Simulated Experiments

ESS, No-overlapping scenario
Class 2 versus baseline class 1

Method γ4,2 γ5,2 γ6,2 γ7,2 γ8,2 γ9,2 γ10,2

ssvs.hyp.typ 374 621 579 299 494 553 415
ssvs.hyp.aug 1687 2234 2615 917 2290 2737 2157
gvs.hyp.typ 2078 3598 4848 1224 2132 3002 1496
gvs.hyp.aug 6650 9723 12652 3726 11042 9323 6975
ssvs.ZS.typ 421 718 619 283 563 685 599
ssvs.ZS.aug 2000 2806 3027 1184 2395 3029 2342
gvs.ZS.typ 2607 6432 6397 1627 3314 3028 2185
gvs.ZS.aug 6235 10288 11216 3917 9901 11892 7617
ssvs.g.typ 689 1888 963 459 835 984 1387
ssvs.g.aug 3630 5634 4334 1652 3165 5471 4633
gvs.g.typ 6574 14151 7727 2186 8093 3563 5023
gvs.g.aug 9556 15198 15070 4350 12801 12182 9673

Table 4.6 Effective sample size comparison (in bold lowest value).

MCe, No-overlapping scenario
Class 2 versus baseline class 1

Method γ4,2 γ5,2 γ6,2 γ7,2 γ8,2 γ9,2 γ10,2

ssvs.hyp.typ 0.025 0.017 0.018 0.027 0.021 0.017 0.022
ssvs.hyp.aug 0.011 0.009 0.008 0.016 0.009 0.008 0.009
gvs.hyp.typ 0.010 0.007 0.006 0.014 0.009 0.008 0.011
gvs.hyp.aug 0.006 0.004 0.004 0.008 0.004 0.004 0.005
ssvs.ZS.typ 0.020 0.014 0.016 0.029 0.018 0.014 0.015
ssvs.ZS.aug 0.010 0.007 0.007 0.014 0.008 0.007 0.008
gvs.ZS.typ 0.008 0.004 0.005 0.012 0.007 0.006 0.008
gvs.ZS.aug 0.006 0.004 0.004 0.007 0.004 0.003 0.005
ssvs.g.typ 0.014 0.006 0.009 0.018 0.011 0.010 0.007
ssvs.g.aug 0.006 0.003 0.004 0.010 0.005 0.004 0.004
gvs.g.typ 0.004 0.002 0.004 0.010 0.003 0.005 0.004
gvs.g.aug 0.004 0.002 0.003 0.007 0.003 0.003 0.003

Table 4.7 Monte Carlo error comparison (in bold lowest value).
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4.10 Simulated Experiments

ESS, No-overlapping scenario
Class 3 versus baseline class 1

Method γ1,3 γ2,3 γ3,3 γ4,3 γ5,3 γ6,3 γ7,3

ssvs.hyp.typ 380 547 519 477 414 523 268
ssvs.hyp.aug 1904 2311 1476 1887 1635 2077 824
gvs.hyp.typ 1546 2833 3432 2116 3292 4300 930
gvs.hyp.aug 6531 10055 9300 7617 9771 10225 3455
ssvs.ZS.typ 389 603 643 660 380 489 292
ssvs.ZS.aug 2021 2831 2347 2429 1879 2768 1106
gvs.ZS.typ 2104 3422 4337 3585 5311 8161 1273
gvs.ZS.aug 6727 9662 8518 7339 9182 11668 3156
ssvs.g.typ 612 1527 939 1548 619 1251 407
ssvs.g.aug 2396 4471 3359 5641 3045 5431 1468
gvs.g.typ 3031 3127 9302 5657 13451 24693 1548
gvs.g.aug 7830 8764 10327 10285 14469 17379 3965

Table 4.8 Effective sample size comparison (in bold lowest value).

MCe, No-overlapping scenario
Class 3 versus baseline class 1

Method γ1,3 γ2,3 γ3,3 γ4,3 γ5,3 γ6,3 γ7,3

ssvs.hyp.typ 0.024 0.017 0.020 0.020 0.020 0.020 0.020
ssvs.hyp.aug 0.010 0.008 0.012 0.010 0.012 0.010 0.017
gvs.hyp.typ 0.012 0.008 0.007 0.009 0.008 0.006 0.016
gvs.hyp.aug 0.006 0.004 0.004 0.005 0.005 0.004 0.008
ssvs.ZS.typ 0.021 0.015 0.016 0.015 0.023 0.019 0.029
ssvs.ZS.aug 0.009 0.007 0.009 0.008 0.010 0.008 0.015
gvs.ZS.typ 0.009 0.006 0.006 0.006 0.006 0.004 0.014
gvs.ZS.aug 0.005 0.004 0.005 0.005 0.005 0.004 0.008
ssvs.g.typ 0.014 0.007 0.010 0.006 0.014 0.008 0.021
ssvs.g.aug 0.008 0.005 0.006 0.003 0.007 0.004 0.011
gvs.g.typ 0.007 0.006 0.003 0.004 0.003 0.002 0.012
gvs.g.aug 0.005 0.003 0.003 0.003 0.003 0.002 0.007

Table 4.9 Monte Carlo error comparison (in bold lowest value).
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4.10 Simulated Experiments

ESS, Overlapping scenario
Class 2 versus baseline class 1

Method γ4,2 γ5,2 γ6,2 γ7,2 γ8,2 γ9,2 γ10,2

ssvs.hyp.typ 853 843 842 1166 650 645 470
ssvs.hyp.aug 3570 5224 5879 4529 3299 3694 2763
gvs.hyp.typ 7036 19036 14946 17194 19144 15126 12196
gvs.hyp.aug 15863 13728 15797 17258 12351 16034 11564
ssvs.ZS.typ 732 973 1443 978 657 647 623
ssvs.ZS.aug 3993 4939 6063 6550 3395 4929 3059
gvs.ZS.typ 13661 22718 22102 27400 20176 18277 13654
gvs.ZS.aug 17942 21840 24977 22387 17939 23731 16339
ssvs.g.typ 1290 1076 1191 2242 629 741 563
ssvs.g.aug 5559 7876 9653 8870 6103 8069 4279
gvs.g.typ 11874 27965 28369 34863 30140 18984 23024
gvs.g.aug 15679 26503 26096 32913 19668 27642 18665

Table 4.10 Effective sample size comparison (in bold lowest value).

MCe, Overlapping scenario
Class 2 versus baseline class 1

Method γ4,2 γ5,2 γ6,2 γ7,2 γ8,2 γ9,2 γ10,2

ssvs.hyp.typ 0.010 0.010 0.011 0.008 0.013 0.013 0.017
ssvs.hyp.aug 0.005 0.004 0.003 0.004 0.006 0.005 0.006
gvs.hyp.typ 0.003 0.002 0.002 0.002 0.002 0.002 0.003
gvs.hyp.aug 0.002 0.002 0.002 0.002 0.003 0.002 0.003
ssvs.ZS.typ 0.011 0.009 0.007 0.009 0.011 0.013 0.014
ssvs.ZS.aug 0.004 0.003 0.003 0.003 0.005 0.004 0.005
gvs.ZS.typ 0.002 0.001 0.001 0.001 0.002 0.002 0.003
gvs.ZS.aug 0.002 0.001 0.001 0.001 0.002 0.001 0.002
ssvs.g.typ 0.007 0.007 0.007 0.004 0.012 0.009 0.013
ssvs.g.aug 0.003 0.002 0.002 0.002 0.003 0.002 0.004
gvs.g.typ 0.002 0.001 0.001 0.001 0.002 0.002 0.002
gvs.g.aug 0.002 0.001 0.001 0.001 0.002 0.001 0.002

Table 4.11 Monte Carlo error comparison (in bold lowest value).
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4.10 Simulated Experiments

ESS, Overlapping scenario
Class 3 versus baseline class 1

Method γ5,3 γ6,3 γ7,3 γ8,3 γ9,3 γ10,3

ssvs.hyp.typ 587 838 1014 866 562 991
ssvs.hyp.aug 3110 3492 3533 4550 3044 3896
gvs.hyp.typ 13995 15960 15916 13709 12432 13943
gvs.hyp.aug 10609 12670 12717 12891 10054 13297
ssvs.ZS.typ 631 761 931 1065 662 883
ssvs.ZS.aug 3831 4703 4764 4636 3423 4250
gvs.ZS.typ 21132 22638 18091 16738 16603 16656
gvs.ZS.aug 14890 16393 18816 18991 12218 14287
ssvs.g.typ 862 1273 898 1106 851 950
ssvs.g.aug 5629 6349 7079 7469 4132 5465
gvs.g.typ 29981 32333 25980 22341 30701 20601
gvs.g.aug 16655 23502 21549 18130 15453 19446

Table 4.12 Effective sample size comparison (in bold lowest value).

MCe, Overlapping scenario
Class 3 versus baseline class 1

Method γ5,3 γ6,3 γ7,3 γ8,3 γ9,3 γ10,3

ssvs.hyp.typ 0.014 0.011 0.009 0.011 0.015 0.009
ssvs.hyp.aug 0.007 0.006 0.006 0.005 0.007 0.006
gvs.hyp.typ 0.003 0.002 0.002 0.002 0.003 0.002
gvs.hyp.aug 0.004 0.003 0.003 0.003 0.004 0.003
ssvs.ZS.typ 0.012 0.010 0.009 0.008 0.014 0.010
ssvs.ZS.aug 0.006 0.005 0.005 0.005 0.006 0.005
gvs.ZS.typ 0.002 0.002 0.002 0.002 0.002 0.002
gvs.ZS.aug 0.003 0.002 0.002 0.002 0.003 0.003
ssvs.g.typ 0.008 0.006 0.009 0.007 0.010 0.008
ssvs.g.aug 0.004 0.003 0.003 0.003 0.005 0.004
gvs.g.typ 0.002 0.001 0.001 0.001 0.002 0.002
gvs.g.aug 0.002 0.002 0.002 0.002 0.002 0.002

Table 4.13 Monte Carlo error comparison (in bold lowest value).
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4.10 Simulated Experiments

Scenario Class

Bayesian variable selection methods (n=500)
ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs.
hyp. hyp. hyp. hyp. ZS. ZS. ZS. ZS. g. g. g. g.
typ aug typ aug typ aug typ aug typ aug typ aug

no-overlapping
2 87 89 87 87 89 91 87 89 94 94 85 88
3 91 96 92 94 94 96 94 96 97 97 91 96

Table 4.14 Number of 100 simulated samples that the MAP coincides with the true
generating model of Table (4.1) for no-overlapping scenario for specific class 2 and 3
versus baseline class 1 (n=500) (row-wise largest value in bold)

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
● ●●

●

●●●●●●●

●

●●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●
●
●●●●

●

●
●
●
●●

●

●●●●
●

●●

●

●●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●
● ●●●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●●●●●●●● ●

●

●●●
●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●
● ●●●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●
●●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●● ●●●

●

●●●●●

●

●●●●●●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●● ●●

●

●●●
●
●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●
●●●
●

●

●●●●●●●●●●●
●●●
●

●

●●●

●

●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Variables

P
os

te
rio

r 
in

cl
us

io
n 

pr
ob

ab
ili

ty Method

ssvs.hyp.typ
ssvs.hyp.aug
gvs.hyp.typ
gvs.hyp.aug
ssvs.ZS.typ
ssvs.ZS.aug
gvs.ZS.typ
gvs.ZS.aug
ssvs.g.typ
ssvs.g.aug
gvs.g.typ
gvs.g.aug

no−overlapping model, specific class 2 versus baseline class 1

Fig. 4.5 Posterior inclusion probabilities for 100 repetitions of no-overlapping scenario
regarding specific class 2 versus baseline class 1 (n=500)
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no−overlapping model, specific class 3 versus baseline class 1

Fig. 4.6 Posterior inclusion probabilities for 100 repetitions of no-overlapping scenario
regarding specific class 3 versus baseline class 1 (n=500) (row-wise largest value in
bold)

134



4.10 Simulated Experiments

Scenario Class

Bayesian variable selection methods (n=500)
ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs.
hyp. hyp. hyp. hyp. ZS. ZS. ZS. ZS. g. g. g. g.
typ aug typ aug typ aug typ aug typ aug typ aug

no-overlapping
2 82 87 79 82 83 87 81 84 88 89 79 86
3 89 91 83 85 93 91 91 89 95 91 93 92

Table 4.15 Number of 100 simulated samples that the MAP coincides with the true
generating model of Table (4.1) for overlapping scenario for specific class 2 and 3 versus
baseline class 1 (n=500) (row-wise largest value in bold)
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Fig. 4.7 Posterior inclusion probabilities for 100 repetitions of overlapping scenario
regarding specific class 2 versus baseline class 1 (n=500)
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Fig. 4.8 Posterior inclusion probabilities for 100 repetitions of overlapping scenario
regarding specific class 2 versus baseline class 1 (n=500)
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Fig. 4.9 Distributions of g
g+1 for 100 repetitions of no-overlapping scenario
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Fig. 4.10 Distributions of g
g+1 for 100 repetitions of no-overlapping scenario
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Fig. 4.11 Distributions of g
g+1 for 100 repetitions of overlapping scenario
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Fig. 4.13 Model selection consistency of SSVS and GVS in typical vs augmented
multinomial logistic setup respectively.
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4.11 Real Application

4.11 Real Application

In this section, we illustrate a real application of Bayesian variable selection in multi-
nomial logistic regression with mixtures of g-priors for the Cardiotography dataset
Ayres-de Campos et al. (2000), with more emphasis given for hyper-g-prior and fixed g-
priors for comparability reasons. In obstetrics, cardiotography is a method of measuring
the fetal heartbeat and the uterine contractions during the last trimester of pregnacy
and it aids to recognise patterns associated with fetal activity and detect anomalies,
thus is prevalent in order to evaluate the well being of the fetus before delivery (Arif,
2015). This dataset was used also by Arif (2015), Kamath and Kamat (2016) and
Pereira et al. (2016). This dataset contains 2126 measurements of cardiotocograms
collected in the Maternity and Gynecological Clinic (University Hospital of Porto in
Portugal) based of fetal heart recordings of prenatal babies and pq = 21 covariates
that best describe their profile. The response variable Y is the cardiotography whose
outcome was determined by 3 experienced obstetricians with 3 class labels, each one
denoting with 1="normal fetal state", 2="suspect fetal state" and 3="pathologic fetal
state" and the covariates are the fetal heart baseline value (X1), the accelerations in
fetal heart rate (X2), the fetal movement (X3), the uterine contractions (X4), the
percentage of time with abnormal short term variability (X5), the mean value of short
term variability (X6), the percentage of time with abnormal long term variability
(X7), the mean value of long term variability (X8), the light decelerations (X9), the
severe decelerations (X10), the prolonged decelerations (X11), the width of histogram
(X12), the low frequency of histogram (X13), the high frequency of histogram (X14),
the number of histogram peaks (X15), the number of histogram zeros (X16), the mode
of histogram (X17), the mean of histogram (X18), the median of histogram (X19),
the variance of histogram (X20) and the histogram density with 3 categories where
-1="left asymmetric", 0="symmetric" , 1="right asymmetric" (X21). Notice that the
last covariate is considered as continuous in this analysis. This application is designed to
address issues related to class imbalance of the response and multicollinearity between
covariates for which we will try to answer through this application.

Class (Fetal state) Number of cases
Normal 1655
Suspect 295
Pathologic 176

Table 4.16 Class distribution of cardiotography’s recordings
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4.11 Real Application

More precisely, Tables (4.16) and (4.17) depict respectively the distribution of
the response variable based on cardiotography recordings and the highest pair-wise
correlations between variables.

Pair-wise variables r
X1 −X17 0.708
X1 −X18 0.723
X1 −X19 0.789
X13 −X12 -0.898
X15 −X12 0.747
X14 −X12 0.690
X18 −X17 0.893
X19 −X17 0.933
X19 −X18 0.948

Table 4.17 Largerst pair-wise correlation among covariates

Our aim in this application is to asses the performance of Bayesian variable selection
methods of typical and augmented multinomial logistic regression data with hyper-g-
prior and g-prior for out-of-sample values for both SSVS and GVS. We point out to
the interesting reader that all Bayesian variable selection methods with hyper-g-prior
and fixed g-prior for typical and multinomial logistic regression maintain the same
acronyms as those of Table (4.3). Prior to the main analysis we standardized the
covariates and we split the data for 70% of training (ntr = 1489) and 30% of test
(nte = 637) sets, in order to evaluate the out-of-sample accuracy. We considered as
baseline class 1 in order to have more balance the rest of categories. Then, we evaluate
the predictive ability of each MCMC methods based on the maximum aposteriori
model MAP, median probability model MPM and Bayesian model averaging (BMA)
by calculating the accuracy (ÂCC) and Cohen’s kappa statistic (k̂c). Before the
exposition of the main results, we initialized the Bayesian variable selection methods
based on prior inputs as following: methods with hyper-g used the usual value α = 3
suggested by Liang et al. (2008) and a Metropolis-Hastings random walk step with
tuning variance ug = 1 for g and the tuning of proposals of intercepts and regression
coefficients β, a of each specific class respectively for both typical methods SSVS
and GVS, we used t = 0.1, va1 = 1 and va2 = 1 respectively to ensure the good
mixing of the chains proportional to the number of parameters especially for β, prior
inputs τj = 0.02 and cj = 50 for j = 1, . . . , 42 were set on practical significance
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4.11 Real Application

for SSVS to achieve similar results with the objective Bayesian methods and µ̄ =
(−1.014,−4.628, 0.610,−0.516, 1.731,−0.494, 0.478, 0.205,−0.215,−0.003, 1.612,−0.036,
0.313, 0.437, 0.584,−0.130,−1.289, 2.590, 1.072, 1.042, 0.112, 3.015,−6.011, 1.204,−1.201,
3.674,−0.936, 1.601, 0.434,−0.325, 0.557, 1.863, 0.422, 0.429, 1.625,−1.639, 0.466,−0.756,
−1.234,−3.935, 1.911, 0.534)T , s̄2 = (0.138, 0.457, 0.014, 0.0214, 0.053, 0.101, 0.018, 0.050,
0.125, 735, 0.136, 0.011, 0.011, 0.044, 0.077, 0.042, 0.015, 0.242, 0.922, 0.976, 0.075, 0.037,
0.523, 2.333, 0.047, 0.108, 0.301, 0.268, 0.070, 0.218, 0.169, , 186.2, 0.118, 0.050, 0.117,
0.172, 0.295, 0.095, 0.803, 0.811, 2.034, 0.178, 0.100)T were computed from pilot runs
under the frequentist full multinomial logistic regression model for GVS of the real
dataset among the methods for typical multinomial logistic regression, whereas for
methods of augmented logistic regression, the previous prior inputs respectively for
SSVS and GVS result as if we consider the prior inputs τj,q, cj,q and µ̄j,q, s̄2

j,q ac-
cording to each class-specific covariates for j = 1, . . . , 21 and q = 2, 3. The option
of priors input is again τj and cj such that τj = 0.02 << τjcj = 1, whereas µ̄2 =
(−1.014,−4.628, 0.610,−0.516, 1.731,−0.494, 0.478, 0.205,−0.215,−0.003, 1.612,−0.036,
0.313, 0.437, 0.584,−0.130,−1.289, 2.590, 1.072, 1.042, 0.112)T , µ̄3 = (3.015,−6.011, 1.204,
− 1.201, 3.674,−0.936, 1.601, 0.434,−0.325, 0.557, 1.863, 0.422, 0.429, 1.625,−1.639,
0.466,−0.756,−1.234,−3.935, 1.911, 0.534)T , s̄2

2 = (0.138, 0.457, 0.014, 0.0214, 0.053,
0.101, 0.018, 0.050, 0.125, 735, 0.136, 0.011, 0.011, 0.044, 0.077, 0.042, 0.015, 0.242, 0.922,
0.976, 0.075, 0.037)T , s̄2

3 = (0.523, 2.333, 0.047, 0.108, 0.301, 0.268, 0.070, 0.218, 0.169,
186.2, 0.118, 0.050, 0.117, 0.172, 0.295, 0.095, 0.803, 0.811, 2.034, 0.178, 0.100)T .
The little information regarding the choice of variables to enter in each class-specific
covariates evidence the use of objective Bayesian methodology to each specific model
parameter and model itself. In particular, we adopt again the joint prior specifications
of Bové and Held (2011) for both typical and augmented multinomial logistic regresion
in SSVS and GVS to express the possible prior dependences among parameters a,β,γ
and g. All the compared methods under hyper-g-prior used prior specification (2.12) for
g. Furthermore, since the number of covariates is equal to 21 of each specific class and
results equal to 42 totally, if we consider the total number of covariates in each class,
we adopt the sparse prior specification of Scott and Berger (2010) regarding the model
space in order to avoid the dilution of prior probabilities. Applying Bayesian variable
selection methods to this simulating design, model fitting was performed through a
Gibbs sampling with additional Metropolis-Hastings steps and pure Gibbs sampler
with or no Metropolis-Hastings step depending on the prior choice respectively for
typical and augmented Bayesian variable selection methods. In this framework, 40000
valid values were generated from Markov chains to obtain convergence for the Bayesian
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variable selection methods of typical and augmented multinomial logistic regression
respectively.
In particular, for Bayesian variable selection methods have been considered as initial
values α(0), β(0) the maximum likelihood estimators respectively for α and β and for
the binary indicator γ the γ(0) a vector of 42 one’s, whereas for augmented logistic
regression Bayesian variable selection methods the initial values are simply resulting as
partitions of previous initial values as the following imply α(0)

q , β(0)
q , γ(0)

q for q = 2, 3
regarding each specific class given baseline q∗ and for ω the initial value ω(0)

q a vector
of 1489 one’s is used.
The predictive ability of all Bayesian variable selection methods is verified through
the predictive distribution of independent and identically distributed random vari-
ables Y ∗(s) = (Y ∗(s)

q∗ , . . . ,Y
∗(s)
Q−1)T given baseline q∗, whose observed values y∗(s)

i =
(y∗(s)

i,q , . . . , y
∗(s)
i,Q−1)T are generated for i = 1, . . . , nte as the following

Y ∗
i |â(s), β̂

(s) ∼ MU
(

1; p∗(s)
i,q∗ (aq∗(s) ,βq∗(s)), p∗(s)

i,1 (â(s)
1 , β̂

(s)
1 ), . . . , p∗(s)

i,Q−1(â
(s)
Q−1, β̂

(s)
Q−1)

)
,

denoting with p
∗(s)
i,q (â(s)

q , β̂
(s)
q ) = P ∗(s)(y∗(s)

i,q = q|â(s)
q , β̂

(s)
q ), the probability the i-th

observation belongs to q-th class defined as

p∗
i,q(âq, β̂q) =


1

1+
∑Q−1

q=1 exp (̂a(s)
q +xte

i β̂
(s)
q )

, q = q∗

exp (̂a(s)
q +xte

i β̂
(s)
q )

1+
∑Q−1

q=1 exp (̂a(s)
q +xte

i β̂
(s)
q )

, q ̸= q∗
,

where â(s)
q and β̂(s)

q are the posterior samples of q-th class specific intercepts aq and
regression coefficients β(s)

q based either on the MAP, MPM or BMA obtained from
the training set of the s-th iteration of the respective MCMC procedure. Then, based
on the posterior samples from the predictive distribution, we compute the confusion
matrix of the predictive response set y∗(s) versus the respective response of test set yte

yte

Normal Suspect Pathologic

y∗(s)
Normal Cm

(s)
1,1 Cm

(s)
1,2 Cm1,3

Suspect Cm
(s)
2,1 Cm

(s)
2,2 Cm

(s)
2,3

Pathologic Cm
(s)
3,1 Cm

(s)
3,2 Cm

(s)
3,3

Table 4.18 Confusion matrix at s-th MCMC iteration of the predictive response set
y∗(s) versus the respective response of test set yte
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where from the above we can calculate the accuracy as
ÂCC

(s)
≈

∑3
q=1 Cm

(s)
q,q∑3

i=1

∑3
q=1 Cm

(s)
i,q

and Cohen’s kappa statistic based on the proportions of

observed (ôa(s)) and expected agreement (êa(s)) as the following shows

ôa(s) ≈ ÂCC
(s)
,

êa(s) ≈
∑3

q=1 Cm
(s)
1,.

∑3
i=1 Cm

(s)
.,1(∑3

i=1
∑3

q=1 Cm
(s)
i,q

)2

+
∑3

q=1 Cm
(s)
2,.

∑3
i=1 Cm

(s)
.,2(∑3

i=1
∑3

q=1 Cm
(s)
i,q

)2

+
∑3

q=1 Cm
(s)
3,.

∑3
i=1 Cm

(s)
.,3(∑3

i=1
∑3

q=1 Cm
(s)
i,q

)2 ,

k̂(s)
c ≈ ôa(s) − êa(s)

1 − êa(s) ,

where from the above measures we would expect that the values y∗(s) should resemble as
much as with yte in order to achieve good performance rates for trusting the prediction
accuracy, thus we accompany the estimated accuracy ÂCC

ÂCC ≈
∑S

s=1 ÂCC
(s)

S
,

with Cohen’s kappa κ̂c such as

k̂c ≈
∑S

s=1 k̂
(s)
c

S
,

since this index is more robust to account for the overall intern observed and
expected agreement of each class; the results are presented in Tables (4.20), (4.21)
and (4.22) for the MAP, MPM and BMA respectively where only the subscripts of
acronyms of important covariates are reported in these Tables.
Generally, we cannot claim that a method is dominant to others in terms of predictive
ability as the estimated values of predictions are more or less similar to the three
different prior set-ups of typical and augmented multinomial logistic regression models.
More precisely, with respect to the compared results of MAP, the highest predictive
precision among Bayesian variable selection procedures for typical and augmented
multinomial logistic regression models is observed (notice the numbers in bold in column-
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wise) for ssvs.hyp.aug, gvs.hyp.typ, ssvs.g.aug and gvs.g.typ. Regarding the results
based on the MPM findings, the higher predictions are evidenced for ssvs.hyp.aug,
gvs.hyp.aug, ssvs.g.aug and gvs.g.aug, whereas in case of BMA, the best methods are
ssvs.hyp.aug, gvs.hyp.aug, ssvs.g.aug and gvs.g.typ. Under these settings, Bayesian
variable selection methods of augmented setup, tend to select slightly different model
complexity with respect to their typical versions, but conserving similar complexity.
Notice that the model complexity between Bayesian variable selection methods of
typical and augmented setup differ only by 2 or 3 additional covariates mostly. Even if
Bayesian variable selection methods among typical and augmented setup seem they
didn’t support exactly the same model, in the end these models will look very similar
and equivalent due to the extreme collinear model space, this is why also the model
complexity is quite similar among all Bayesian variable selection methods. Thus,
adding or deleting some covariates respectively, may add other variables that will
contribute more or less the same as the previous covariates. Additionally, we report
the best predictions under the MAP, MPM and BMA that occured for ssvs.hyp.typ
resulting with the highest accuracy and Cohen’s kappa statistic, including one of the
methods with data augmentation. However, we should be aware that SSVS is less
trustworthy in contrast to GVS which is exposed to larger in sampling errors due
to MCMC method. Finally additional results are illustrated in Figures (4.14) and
(4.15) which depict the convergence diagnostics for the shrinkage factor g

g+1 over 40000
MCMC values for Bayesian variable selection methods with hyper-g-prior both for
augmented and typical multinomial logistic regression which seem reasonable and Table
(4.19) shows the satisfying acceptance rates for respective parameters. Furthermore,
posterior distributions of ÂCC and κ̂c based on BMA from the predictive distributions
are depicted in Figures (4.16) and (4.17) for each Bayesian variable selection method.
We didn’t consider the respective posterior distribution based on the MAP and MPM
because the model frequency was negligible in with respect to the number og iterations.
To conclude, Bayesian variable selection methods for augmented multinomial logistic
regression work better under the MPM and BMA in predicting the state of fetals based
on cardiotography recordings, whereas in the case of MAP the truth is lies somewhere
in the middle of the two types of Bayesian variable selection methods.
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Acceptance Rate
Method a2 a3 β g

ssvs.hyp.typ 0.135 0.228 0.269 0.264
ssvs.hyp.aug - - - 0.268
gvs.hyp.typ 0.134 0.227 0.269 0.319
gvs.hyp.aug - - - 0.323
ssvs.g.typ 0.134 0.237 0.224 -
ssvs.g.aug - - -
gvs.g.typ 0.136 0.229 0.272 -
gvs.g.aug - - - -

Table 4.19 Results of acceptance rates for parameters a2, a3, β and g of each Bayesian
variable selection methods for typical and augmented multinomial logistic regression
model with mixtures of g-priors over 40000 of MCMC values.

Method Class Covariates MAP ÂCC k̂c

ssvs.hyp.typ
2 9 1, 2, 3, 4, 5, 7, 11, 15, 18

0.855 0.585
3 13 1, 2, 3, 4, 5, 7, 10, 11, 14, 15, 19, 20, 21

ssvs.hyp.aug
2 10 1, 2, 3, 4, 5, 7, 11, 15, 17, 18, 20

0.867 0.617
3 11 2, 3, 4, 5, 7, 11, 14, 15, 16, 17, 20

gvs.hyp.typ
2 11 1, 2, 3, 4, 5, 7, 10, 11, 14, 15, 18

0.856 0.603
3 13 1, 2, 3, 4, 5, 7, 10, 11, 14, 15, 18, 19, 20

gvs.hyp.aug
2 9 1, 2, 3, 4, 5, 7, 11, 15, 18

0.830 0.567
3 10 1, 3, 4, 5, 7, 8, 10, 11, 19, 20

ssvs.g.typ
2 12 1, 2, 3, 4, 5, 7, 10, 11, 15, 18, 19, 20

0.858 0.554
3 11 1, 2, 3, 4, 5, 7, 10, 11, 15, 18, 20

ssvs.g.aug
2 11 1, 2, 3, 4, 5, 7, 10, 11, 15, 18, 20

0.862 0.567
3 12 1, 2, 3, 4, 5, 7, 10, 11, 14, 15, 19, 20

gvs.g.typ
2 11 1, 2, 3, 4, 5, 7, 11, 15, 17, 18, 20

0.854 0.597
3 12 1, 2, 3, 4, 5, 7, 10, 11, 12, 15, 19, 20

gvs.g.aug
2 9 1, 2, 3, 4, 5, 7, 11, 15, 18

0.840 0.560
3 10 1, 3, 4, 5, 7, 8, 10, 11, 19, 20

Table 4.20 Results of all Bayesian variable selection methods under the MAP for each
specific class 2 and 3 given baseline class 1
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Method Class Covariates MPM ÂCC k̂c

ssvs.hyp.typ
2 12 1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 18, 20

0.860 0.605
3 12 1, 2, 3, 4, 5, 7, 10, 11, 12, 15, 19, 20

ssvs.hyp.aug
2 14 1, 2, 3, 4, 5, 7, 10, 11, 14, 15, 17, 18, 19, 20

0.864 0.610
3 15 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 15, 16, 17, 19, 20

gvs.hyp.typ
2 11 1, 2, 3, 4, 5, 7, 11, 15, 17, 18, 20

0.859 0.604
3 13 1, 2, 3, 4, 5, 7, 8, 10, 11, 14, 15, 19, 20

gvs.hyp.aug
2 7 1, 2, 3, 4, 5, 7, 11, 15, 17, 18, 20

0.862 0.605
3 11 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 19, 20

ssvs.g.typ
2 14 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 18, 20

0.832 0.542
3 14 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 19, 20

ssvs.g.aug
2 11 1, 2, 3, 4, 5, 7, 10, 11, 15, 18, 20

0.862 0.567
3 12 1, 2, 3, 4, 5, 7, 10, 11, 14, 15, 19, 20

gvs.g.typ
2 10 1, 2, 3, 4, 5, 7, 11, 15, 17, 18, 20

0.840 0.582
3 11 1, 2, 3, 4, 5, 7, 10, 11, 15, 19, 20

gvs.g.aug
2 11 1, 2, 3, 4, 5, 7, 11, 15, 18, 20

0.856 0.588
3 11 1, 2, 3, 4, 5, 7, 10, 11, 15, 19, 20

Table 4.21 Results of all Bayesian variable selection methods under the MPM for each
specific class 2 and 3 given baseline class 1

Method ÂCC κ̂c

ssvs.hyp.typ 0.860 0.555
ssvs.hyp.aug 0.863 0.565
gvs.hyp.typ 0.846 0.548
gvs.hyp.aug 0.849 0.554
ssvs.g.typ 0.862 0.566
ssvs.g.aug 0.862 0.606
gvs.g.typ 0.861 0.562
gvs.g.aug 0.849 0.554

Table 4.22 Results of all Bayesian variable selection methods under the BMA for each
specific class 2 and 3 given baseline class 1
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Fig. 4.14 Traceplots of shrinkage factor g
g+1 .
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Fig. 4.15 Ergodic means of shrinkage factor g
g+1 .
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Fig. 4.16 Posteriors of accuracy ÂCC.

148



4.11 Real Application

0.0

2.5

5.0

7.5

10.0

0.4 0.5 0.6 0.7
Coehn's kappa

P
os

te
rio

r 
de

ns
ity

(a) Posterior of ssvs.hyp.typ

0.0

2.5

5.0

7.5

10.0

12.5

0.4 0.5 0.6 0.7
Cohen's kappa

P
os

te
rio

r 
de

ns
ity

(b) Posterior of ssvs.hyp.aug

0

2

4

6

0.2 0.3 0.4 0.5 0.6 0.7
Cohen's kappa

P
os

te
rio

r 
de

ns
ity

(c) Posterior of gvs.hyp.typ

0

2

4

6

0.3 0.4 0.5 0.6 0.7
Coehn's kappa

P
os

te
rio

r 
de

ns
ity

(d) Posterior of gvs.hyp.aug

0

4

8

12

0.4 0.5 0.6 0.7
Coehn's kappa

P
os

te
rio

r 
de

ns
ity

(e) Posterior of ssvs.g.typ

0

5

10

0.50 0.55 0.60 0.65 0.70
Coehn's kappa

P
os

te
rio

r 
de

ns
ity

(f) Posterior of ssvs.g.aug

0

3

6

9

12

0.5 0.6 0.7
Coehn's kappa

P
os

te
rio

r 
de

ns
ity

(g) Posterior of gvs.g.typ

0

2

4

6

0.3 0.4 0.5 0.6 0.7
Coehn's kappa

P
os

te
rio

r 
de

ns
ity

(h) Posterior of gvs.g.aug

Fig. 4.17 Posteriors of Coehn’s kappa κ̂c.
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4.12 Closing Remarks

In this chapter, the problem of variable selection in multinomial logistic regression
was enlighted from a pure Bayesian point of view, which is the main research topic of
this thesis. We introduced the main aspects concerning objective prior specification
and model selection with mixtures of g-priors in the domain of this research area,
with emphasis on novel model-based inference via MCMC. Initially, we attempted to
provide an extended prior specification as that of Bové and Held (2011) for purposes of
multinomial logistic regression, where the centering step facilitated the whole procedure,
rendering it priority before initializing any of MCMC methods.
Next, these Bayesian variable selection methods based on the approaches George and
McCulloch (1993) and Dellaportas et al. (2000) are presented and described in detail,
when additional issues related to class imbalance and different covariate uncertainty
except the solid such as posterior intractability and computation of posterior model
probabilities, are encountered for the implementation of a typical multinomial logistic
regression. We also provided the relative extensions of these Bayesian variable selection
methods owing to Polya-Gamma data augmentation, as alternatives in order to cope
with appeared problems. Both types of Bayesian variable selection methods were
compared and evaluated in the same posterior measures for simulated and real data-
sets. Overall, with regard to simulated experiments, results showed good performance
(depending on the simulated scenario, type of true model identification, the specific
class and the sample size). In particular, all Bayesian variable selection methods
between typical and augmented multinomial logistic regression worked well for both
sparse scenarios under the MPM, whereas in the case of MAP’s class-specific, they only
worked for no-overlapping scenario. Moreover, with respect to the compared results of
Bayesian variable selection methods between typical and augmented multinomial logistic
regression, we cannot say that some methods dominated the other, since both methods
achieve similar or better performance as the sample sizes increases (model selection
consistency) (depending on the simulated scenario, type of true model identification,
the specific class and the sample size), whether at initial values of sample size some
methods prevail of other and so on. Even, if the between results of these methods were
similar on posterior measures identifiability, we compared the computational efficiency
of the two types multinomial logistic setups which showed that augmented methods
require more iterations to converge proportional to the number of latent variables and
are more precise in sampling efficiency. On the other hand, the main analysis of the real
dataset was restricted only for Bayesian variable selection methods with hyper-g-prior
and fixed g-prior. The aforementioned Bayesian variable selection methods showed
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good overall performance regarding the real dataset of cardiotocography, in terms of
accuracy and Cohen’s kappa, despite the high correlation among some variables and
class imbalance. The leading results, suggested different model complexity within each
class-specific 2 and 3 given baseline class 1 in predicting effectively the fetal state of
prenatal babies. These results came to different conclusions towards the selection of
final model according to the respective type of model identification, whether it was the
MAP or MPM and BMA. In this settings, final conclusions evidenced Bayesian variable
selection methods for augmented multinomial logistic regression with higher predictive
ability under the MPM and BMA, whereas in the case of BMA both methods performed
well in practice. All results even it seems that they traced completely different models
across the class-specific, in reality there were considered neighbouring models within
the strong collinearity effect which reduced them to similar models among the two
types of multinomial logistic setups. To conclude, we contributed by developing
and improving the traditional implementation of Bayesian variable selection methods
with mixtures of g-priors in multinomial logistic regression via Polya-Gamma data
augmentation, which was the principal spark inspired by Polson et al. (2013) to expose
and support these ideas. The latter is a direct consequence of a nested Gibbs sampler
that operates over Q− 1 intractable augmented joint posteriors based on Polson et al.
(2013) conditional likelihood identity, which result as the product of each specific
class-coefficients conditional likelihoods and g-prior, if we might express this original
g-prior for each specific class given then rest. In this way, the proposed methodology
with the subsequent use of Gibbs sampler amenable to standard linear model results
and Bayesian variable selection approaches of Bové and Held (2011) and Dellaportas
et al. (2002), substitutes definitely Metropolis-Hastings sampler, surpassing the hard
aspects of MCMC. Consequently, we considered also the Bayesian variable selection in
logistic models as resulting a special case of multinomial logistic setup in Appendix
sections C.3, C.4 and C.5. Both aforementioned Bayesian variable selection methods
were compared and evaluated in the same posterior metrics for simulated and real
data-sets showing similar results. Regarding the simulated study, results suggest
better or similar performance of mixtures of g-priors (depending on the simulated
scenario) in terms of the true model rate identification and the posterior marginal
inclusion probabilities between typical and augmented logistic regression models for
each respective MCMC method. In the contrary, the performance of the posterior
coefficient estimators for the real dataset is similar. Practice showed, according to
bibliography, that the Bayesian variable selection methods, in relation to each family of
g-priors mixtures used, differentiate on terms of model complexity preference. It should
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be noted that the hyper-g prior family supported the models with the higher complexity.
To conclude, we contributed by ameliorating the Bayesian variable selection methods
by data augmentation, an idea which was ignited by contemplating on the use of
Polya-Gamma data augmentation in the logistic regression context. The subsequent
use of the Gibbs Sampler instead of the Metropolis - Hastings gains more stable
estimates in terms of precision and autocorrelation.
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Chapter 5

Conclusions and Future Research

This thesis investigated the main aspects of variable selection problem concerning
objective prior specification and model selection via MCMC model-based methods
with mixtures of g-priors in linear regression and generalized linear models, and then
emphasized on multinomial logistic regression, which was the main topic of this research
project. We developed the traditional implementation of Bayesian variable selection
methods George and McCulloch (1993) and Dellaportas et al. (2002) based on prior
specification of Bové and Held (2011) under sparse regularity constraints imposed by
spike-slab priors, in order to explore sufficiently the model space and to ensure maxi-
mized the profit of predictions, when issues of class imbalance, posterior intractability
and computation of posterior model probabilities are encountered for a typical multino-
mial logistic model. In addition, we proposed extensions of the aforementioned methods
based on the Polya-Gamma data augmentation Polson et al. (2013) to overcome these
difficulties, through a nested Gibbs sampler manageable to familiar results, under the
aspect of linear models. We applied the proposed methodologies to sparse simulation
settings and to the analysis of cardiotography data Ayres-de Campos et al. (2000),
providing insightful comments on the comparison between the two different types
of Bayesian variable selection methods. We illustrated through simulations designs
on two different sparse scenarios that both methods perform more or less the same,
here considered two different metrics of model identifiability respectively, reaching
the same conclusions with respect to the true generating mechanism of data. The
final conclusions here were the obvious ones, methods with same priors give similar
results. Methods with different priors support slightly different models according to
the characteristics of these priors. This is why interest was given to the computational
efficiency of each method based on effective sample size and Monte Carlo standard
errors. On the contrary, with respect to the real data restricting the comparisons only
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between hyper-g-prior and fixed g-prior for typical and augmented multinomial logistic
regression respectively, the main results of this application suggested that both Bayesian
variable selection methods preferred different model complexity under three measures
of model identifiability, from which result more or less different models. In particular,
all Bayesian variable selection methods for augmented multinomial logistic regression
methods achieved better predictive accuracy under the MPM and BMA, whereas the
MAP indicated both methods of Bayesian variable selection. Based on this research
finding, we shall argue that MPM and MAP are not trustworthy when comparing
them with BMA, especially MAP, because they don’t take the model uncertainty into
account as BMA does.
Furthermore, we clarify that even a magnitude of predictive accuracy in the observed
range of 0.83-0.88 in the underlying estimation, can be extremely competitive given the
high correlations and class imbalance of this dataset. Moreover, the implementation
of all Bayesian variable selection was based on a generalized inverse Moore-Penrose
rather than the authentic, in order to surpass the singularity of authentic g-prior.
Finally, we didn’t consider any further comparison with state of arts methods because
we emphasized more on the between comparison of typical and augmented multinomial
logistic regression methods.
Finally, we discuss the possible research avenues for future development of this thesis.
At first, more synthetic and accurate Bayesian variable selection may be produced
assessing the overall significance of covariates in each class-specific subsets possibly,
where they will investigate further the irrelevant alternatives domain and problems
associated with more classes. Some other important issues in multinomial models are
the following

• How the selection of the baseline category influence the results?

• How to extend the methods in order multinomial models?

• How to merge categories of the polychotomous response?

• What is the implication on the resultsand the augmented method if the g-prior
is specified conditionallyon the latent variables?.

Next, our proposed Bayesian variable selection methods with or without data augmen-
tation may be extended to, especially for GVS according to (Dellaportas et al. (2002)),
to reversible jump of Green (1995) for larger model spaces. In addition, even if we
didn’t mentioned in GLMs chapter because we focused on moderate model spaces,
the approach of Zucknick and Richardson (2014) consists of a complete summary of
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applications with emphasis on Bayesian variable selection with data augmentation
schemes of Holmes and Held (2006) and Albert and Chib (1993) addressing the small
n and large p problem Zucknick and Richardson (2014), which can extend the idea of
this thesis also in high dimensional settings by integrating the respective class-specific
intercepts and regression coefficients since the posteriors are normal.
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Appendix A

Bayesian Variable Selection in
Linear Regression

A.1 Posterior Interpretation of g-Prior

Let us suppose that we have the linear model with known variance,
Y0|β, σ2, g ∼ N (X0β, gσ

2In) and the corresponding prior is the usual improper one
f(β) ∝ 1. The corresponding posterior of β can be derived through the Bayes theorem
as the following

π(β|y0, g, σ
2)∝f(y0|β, σ2, g)π(β)

∝ exp
{

− 1
2gσ2

[
(y0 −X0β)T (y0 −X0β)

]}

= exp
{

− 1
2gσ2

[
(y0 −X0β̂)T (y0 −X0β̂) + 2(y0 −X0β̂)TX0(β̂ − β)

]}

exp
{

− 1
2gσ2

[
(β̂ − βT )(XT

0 X0)(β̂ − β)
]}

∝ exp
{

− 1
2gσ2

[
2(y0 −X0β̂)TX0(β̂ − β) + (β − β̂)T (XT

0 X0)(β − β̂)
]}
,

from the last step, we can observe that

(y0 −X0β̂)TX0(β̂ − β) = yT0X0β̂ − yT0X0β − β̂T (XT
0 X0)β̂ + β̂T (XT

0 X0)β
= yT0X0(XT

0 X0)−1y0 − yT0X0β − yT0X0(XT
0 X0)−1y0

+ yT0X0(XT
0 X0)−1(XT

0 X0)β
= 0,
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A.2 Deriving the Joint Posterior of a, βγ and σ2

where this step leads to the posterior distribution of β as the following

π(β|y0, g, σ
2) ∝ exp

{
− 1

2gσ2

[
(β − β̂)T (XT

0 X0)(β − β̂)
]}
, (A.1)

whereas (A.1) can be recognized as the kernel of a normal density distribution,
Np(β̂, gσ2(XT

0 X0)−1), where β̂ reduces to 0p for a imaginary sample size y0 = 0n∗ .

A.2 Deriving the Joint Posterior of a, βγ and σ2

Let’s assume that we have the γ linear model y,βγ , σ2|γ ∼ N(a1n +Xγβγ , σ
2) with

prior under Zellner’s g-prior π(α,βγ , σ2|γ) = π(a, σ2|γ)π(βγ |g, σ2,γ), where π(a, σ2),
π(βγ |g, σ2,γ) are denoted through (2.6), (2.7) respectively. The posterior can be
calculated again through Bayes theorem as

π(βγ , a, σ2|y, g)∝f(y|βγ , a, σ2,γ)π(a,βγ , σ2|γ)

= (σ2)−1(σ2)− n
2 (σ2)− pγ

2

exp
{

− 1
2σ2

[
(y − ȳ1n −Xγβγ)T (y − ȳ1n −Xγβγ)

]}
exp

{
− 1

2σ2

[
2(y − ȳ1n −Xγβγ)T ((ȳ − a)1n))

]}
exp

{
− 1

2σ2

[
((ȳ − a)1n)T ((ȳ − a)1n)

]}
exp

{
− 1

2gσ2

[
(βγ)(XT

γXγ)(βγ)
]}
,

and we notice that the last step can be further reduced as

(y − ȳ1n −Xγβγ)T ((ȳ − a)1n)) = (ȳ − a)(y − ȳ1n −Xγβγ)T1n
= (ȳ − a)(yT1n − ȳ1Tn1n − βTγX

T
γ 1n)

= nȳ − nȳ

= 0,
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A.2 Deriving the Joint Posterior of a, βγ and σ2

so taking into account the previous steps, we may write the posterior as

π(βγ , a, σ2|y, g)∝f(y|βγ , a, σ2,γ)π(a,βγ , σ2|γ)

= (σ2)−1(σ2)− n
2 (σ2)− pγ

2

exp
{

− 1
2σ2

[
(y − ȳ1n −Xγβ̂γ)T (y − ȳ1n −Xγβ̂γ)

]}
exp

{
− 1

2σ2

[
2(y − ȳ1n −Xγβ̂γ)TXγ(β̂γ − βγ)

]}
exp

{
− 1

2σ2

[
(β̂γ − βγ)T (XT

γXγ)(β̂γ − βγ)
]}

exp
{

− 1
2σ2

[
n(ȳ − a)2

]}
exp

{
− 1

2gσ2

[
(βγ)T (XT

γXγ)(βγ)
]}
,

where the last expression may be simplified as

(y − ȳ1n −Xγβ̂γ)TXγ(β̂γ − βγ) =
= (y − ȳ1n)TXγβ̂γ − (y − ȳ1n)TXγβγ − (β̂γ)T (XT

γXγ)(β̂γ) + (β̂γ)T (XT
γXγ)(βγ)

= (y − ȳ1n)TXγ(XT
γXγ)−1XT

γ (y) − (y − ȳ1n)TXγβγ

− (y)TXγ(XT
γXγ)−1XT

γ (y) + (y)TXγ(XT
γXγ)−1XT

γXγβγ

= 0.

Then, we can rexpress the posterior as

π(βγ , a, σ2|y, g)∝f(y|βγ , a, σ2,γ)π(a,βγ , σ2|γ)

= (σ2)−1(σ2)− n
2 (σ2)− pγ

2

exp
{

− 1
2σ2

[
(y − ȳ1n −Xγβ̂γ)T (y − ȳ1n −Xγβ̂γ)

]}
exp

{
− 1

2σ2

[
(β̂γ − βγ)T (XT

γXγ)(β̂γ − βγ)
]}

exp
{

− 1
2σ2

[
n(ȳ − a)2

]}
exp

{
− 1

2gσ2

[
(βγ)T (XT

γXγ)(βγ)
]}
,

and this expression is further reduced as the following

(β̂γ − βγ)T (XT
γXγ)(β̂γ − βγ) =

= (βγ)T (XT
γXγ)βγ − 2(βγ)T (XT

γXγ)β̂γ + (β̂γ)T (XT
γXγ)(β̂γ),
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A.2 Deriving the Joint Posterior of a, βγ and σ2

where the posterior is modified as follows

π(βγ , a, σ2|y, g)∝f(y|βγ , a, σ2,γ)π(a,βγ , σ2|γ)

= (σ2)−1(σ2)− n
2 (σ2)− pγ

2 exp
{

− 1
2σ2

[
(y − ȳ1n −Xγβ̂γ)T (y − ȳ1n −Xγβ̂γ)

]}
exp

{
− 1

2σ2

[
(βγ)T (XT

γXγ)(βγ)
]}

exp
{

− 1
2σ2

[
−2(βγ)T (XT

γXγ)(β̂γ)
]}

exp
{

− 1
2σ2

[
(β̂γ)T (XT

γXγ)(β̂γ)
]}

exp
{

− 1
2gσ2

[
(βγ)T (XT

γXγ)(βγ)
]}

exp
{

− 1
2σ2

[
n(ȳ − a)2

]}
,

and finally we factorize the joint posterior as the following

π(βγ , a, σ2|y, g)∝f(y|βγ , a, σ2,γ)π(a,βγ , σ2|γ)

= (σ2)−1(σ2)− n
2 (σ2)− pγ

2 exp
{

− 1
2σ2

[
(y − ȳ1n −Xγβ̂γ)T (y − ȳ1n −Xγβ̂γ) − 1

g
µ̂Tγ Ĉ

−1
γ µ̂γ

]}

exp
{

− 1
2σ2

[
(β̂γ)T (XT

γXγ)(β̂γ)
]}

exp
{

− 1
2gσ2

[
(βγ)T Ĉ−1

γ (βγ) − 2(βγ)T Ĉ−1
γ µ̂γ + µ̂Tγ Ĉ

−1
γ µ̂γ

]}

exp
{

− 1
2σ2

[
n(a− ȳ)2

]}
,

where Ĉγ = (g + 1)−1(XT
γXγ)−1 and µ̂γ = gĈ−1

γ (XT
γXγ)(β̂γ). These posterior

distributions, for each respective parameter, are denoted as

a|y, σ2,γ ∼ N

(
â,
σ2

n

)
, (A.2)

βγ |g,y, σ2,γ ∼ Npγ

(
g

g + 1 β̂γ , σ
2 g

g + 1(XT
γXγ)−1

)
, (A.3)

σ2|g,y,γ ∼ IG

(
n− 1

2 , s2
γ + 1

g + 1 β̂
T
γX

T
γXγβ̂γ

)
, (A.4)

where

β̂γ = (XT
γXγ)−1XT

γ (y), (A.5)

â = ȳ, (A.6)

denote the maximum likelihood estimators of the parameters βγ , a , s2
γ = ||y − ȳ1n −

Xγβ̂γ || corresponds to classical residual sum of squares for each model γ and ||.||
denotes the L1 norm
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A.3 Laplace Approximation

A.3 Laplace Approximation

This approximation consists of expanding a smooth unimodal function twice differen-
tiable H(g) = log h(g) in a Taylor series expansion of second order around ĝ, the mode
of H(g). The Laplace approximation is precise only if there exists a unique mode ĝ,
which for large samples the behaviour of integrals are depending exclusively from the
mode ĝ; see Tierney et al. (1989). The mode ĝ will result as a solution of the equation
dH(g)

dg
= 0. The Laplace approximation can be implemented as following

∫ ∞

0
exp {H(g)} dg ≈

∫ ∞

0
exp

H(ĝ) + dH(g)
dg

∣∣∣∣∣
g=ĝ

(g − ĝ) + 1
2
d2H(g)
dg2

∣∣∣∣∣
g=ĝ

(g − ĝ)2

 dg
≈
∫ ∞

0
exp

H(ĝ) + 1
2
d2H(g)
dg2

∣∣∣∣∣
g=ĝ

(g − ĝ)2

 dg
≈ exp {H(ĝ)}

∫ ∞

0
exp

1
2
d2H(g)
dg2

∣∣∣∣∣
g=ĝ

(g − ĝ)2

 dg
≈ exp {H(ĝ)}

∫ ∞

0
exp

−1
2

−d2H(g)
dg2

∣∣∣∣∣
g=ĝ

(g − ĝ)2

 dg,
in the steps above it is evident dH(g)

dg

∣∣∣
g=ĝ

= 0 and the term∫∞
0 exp

{
−1

2
−d2H(g)

dg2

∣∣∣
g=ĝ

(g − ĝ)2
}
dg, is recognized as the integrated kernel of a normal

distribution denoted asN
(
ĝ,
[

−d2H(g)
dg2

∣∣∣
g=ĝ

]−1
)

, while all steps are leading to a complete

Laplace approximation written as∫ ∞

0
exp {H(g)} dg ≈

√
2πσ̂Hh(ĝ),

where σ̂H =
[

−d2H(g)
dg2

∣∣∣
g=ĝ

]− 1
2
. Moreover, it is important to notice that ĝ is the mode of

H(g), equivalently of h(g), because the logarithm is a bijective function and becomes
the mode due to the fact that σ̂H must be a positive quantity and to be positive, this
quantity must be negative −d2H(g)

dg2

∣∣∣
g=ĝ

in order to evaluate the Laplace approximation;
see for more information (Liang et al., 2008); (Tierney et al., 1989).
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A.4 Laplace Approximation for Zellner-Siow Priors

A.4 Laplace Approximation for Zellner-Siow Pri-
ors

For the Bayes factor of (2.11) we consider

HZS(g) = (n− pγ − 1)
2 log(1 + g) − (n− 1)

2 log
[
1 + (1 −R2

γ)g
]
− 3

2 log g− n

2g , (A.7)

where the respective derivative is computed as

dHZS(g)
dg

= (n− pγ − 1)
2

1
1 + g

− (n− 1)
2

[
1 −R2

γ

1 + (1 −R2
γ)g

]
− 3

2
1
g

+ n

2g , (A.8)

and in order to obtain the mode ĝZS of HZS we have to solve equation dHZS(g)
dg

= 0 as
the following

2g2g(1 + g)
[
1 + (1 −R2

γ)g
] (n− pγ − 1)

2
1

1 + g

− 2g2g(1 + g)
[
1 + (1 −R2

γ)g
] (n− 1)

2

[
1 −R2

γ

1 + (1 −R2
γ)g

]
− 3

2g2g2g(1 + g)
[
1 + (1 −R2

γ)g
]

2g2g(1 + g)
[
1 + (1 −R2

γ)g
] n

2g2 = 0,

where after some mathematical steps we have

g2g
[
1 + (1 −R2

γ)g
]

(n− pγ − 1) − g2g(1 + g)(n− 1)(1 −R2
γ)

− 3g2(1 + g)
[
1 + (1 −R2

γ)g
]

+ g(1 + g)
[
1 + (1 −R2

γ)g
]
n = 0,

and going on with calculations we have

g3(n− pγ − 1) + g4(1 −R2
γ)(n− pγ − 1) − g3(n− 1)(1 −R2

γ) − g4(n− 1)(1 −R2
γ)

− 3g3 − 3g4(1 −R2
γ) − 3g2 − 3g3(1 −R2

γ) + ng + ng2(1 −R2
γ) + ng2 + ng3(1 −R2

γ) = 0,

The previous expression is reduced on a cubic equation since g > 0 with coefficients a2,
a1, a0

g3 + a2g
2 + a1g + a0 = 0,
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A.4 Laplace Approximation for Zellner-Siow Priors

where a2, a1, a0 are expressed as

a2 = −
[
n− pγ − 4 − 2(1 −R2

γ)
(1 −R2

γ)(pγ + 3)

]
,

a1 = −
[
n(2 −R2

γ) − 3
(1 −Rγ)(pγ + 3)

]
,

a0 = −
[

n

(1 −R2
γ)(pγ + 3)

]
.

The previous coefficients are resulted useful, in the calculation of the unique real mode
ĝZS according to (Abramowitz and Stegun, 1970) and Liang et al. (2008) as

ĝZS =
([
r + (q3 + r2) 1

2
] 1

2 +
[
r − (q3 + r2) 1

2
] 1

2
)

− a2

3 , (A.9)

where the quantities r, q are calculated as

r = 1
6(a1a2 + 3a0) − 1

27a
3
2,

q = 1
3a1 − 1

9a
2
2,

which coincide with equations. The standard error of the mode ĝZS is found by plugging
in the mode in the second derivative of HZS. This is done by first calculating the
second derivative of HZS as the following

d2HZS(g)
dg2 = −n− pγ − 1

2
1

(g + 1)2 + n− 1
2

[
1 −Rγ

1 + (1 −Rγ)g

]2

+ 3
2

1
g2 − n

g3 ,

secondly we compute the standard error σ̂HZS of the mode ĝZS as

σ̂HZS =
−d2HZS(g)

dg2

∣∣∣∣∣
g=ĝZS

− 1
2

. (A.10)
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A.5 Calculation of Bayes Factor and Posterior Moments of g and g
g+1

A.5 Calculation of Bayes Factor and Posterior Mo-
ments of g and g

g+1

The Bayes factor (2.14) of hyper-g prior

BF hy
[γ:γ0] = α− 2

2

∫ ∞

0
(1 + g)

n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 dg,

where in the above integral we use the transformation u = g
g+1 in order to deal in a

more easier way. The transformed prior can be found by the transform theorem of
distributions as the following

u = g

g + 1 ⇔ g = u

1 − u
, (A.11)∣∣∣∣∣dgdu

∣∣∣∣∣ =
( 1

1 − u

)2
, (A.12)

g > 0 ⇔ u

1 − u
> 0 ⇔ u ∈ (0, 1), (A.13)

π(u) = α− 2
2 u

α
2 −2, (A.14)

where from (A.14) we notice that the transformed variable u ∼ Beta
(
1, α

2 − 1
)

which
coincides with the prior distribution of the shrinkage factor u = g

g+1 . Based on these
calculations, the Bayes factor (2.14) of hyper-g prior is modified in terms of u as

BF hy
[γ:γ0] = α− 2

2

∫ 1

0
(1 − u)

pγ +α

2 −2[1 − uR2
γ ]− n−1

2 du,

where the above integral consists of a well known form distribution which can be
handled by the Gaussian hypergeometric function 2F1(.) as the following

BF hy
[γ:γ0] =

(
α− 2

2

) Γ(1)Γ
(

pγ+α
2 − 1

)
2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

)
Γ
(

pγ+α
2

)
=
(
α− 2

2

) Γ
(

pγ+α
2

)
2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

)
(

pγ+α
2 − 1

)
Γ
(

pγ+α
2

)
= α− 2
pγ + α− 2 2F1

(
n− 1

2 , 1; pγ + α

2 ;R2
γ

)
,
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A.5 Calculation of Bayes Factor and Posterior Moments of g and g
g+1

which corresponds to equation (2.15). On the other hand, the posterior expectation of
g is defined as

E(g|γ,y) =
∫∞

0 gπ(g|γ,y)dg∫∞
0 π(g|γ,y)dg =

=
∫∞

0 g(1 + g)
n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 dg∫∞
0 (1 + g)

n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 dg
,

the integral representation in the last step is computed in simpler form using again the
transformation u = g

g+1 which includes the Gaussian hypergeometric function 2F1(.) as

E(g|γ,y) =
∫ 1

0 u(1 − u)
pγ +α

2 −3[1 − uR2
γ ]− n−1

2 du∫ 1
0 (1 − u)

pγ +α

2 −2[1 − uR2
γ ]− n−1

2 du

=
Γ
(

pγ+α
2

)
Γ(2)Γ

(
pγ+α

2 − 2
)

2F1
(

n−1
2 , 2; pγ+α

2 ;R2
γ

)
Γ
(

pγ+α
2

)
Γ(1)Γ

(
pγ+α

2 − 1
)

2F1
(

n−1
2 , 1; pγ+α

2 ;R2
γ

)
=

Γ
(

pγ+α
2 − 2

)
2F1

(
n−1

2 , 2; pγ+α
2 ;R2

γ

)
(

pγ+α
2 − 2

)
Γ
(

pγ+α
2 − 2

)
2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

)
=

2 2F1
(

n−1
2 , 2; pγ+α

2 ;R2
γ

)
(pγ + α− 4) 2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

) . (A.15)

The posterior mean of g
g+1 is defined as

E
(

g

g + 1γ,y
)

=
∫∞

0

(
g

g+1

)
π(g|γ,y)dg∫∞

0 f(g|γ,y)dg

=
∫∞

0 g(1 + g)
n−1−pγ −α

2 −1[1 + g(1 −R2
γ)]− n−1

2 dg∫∞
0 (1 + g)

n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 dg
,

the above integral form in the last step is handled in a more easier way using the
transformation u = g

g+1 which includes the Gaussian hypergeometric function 2F1(.) as
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g+1

the following

E
(

g

g + 1γ,y
)

=
∫ 1

0 u(1 − u)
pγ +α

2 −2[1 − uR2
γ ]− n−1

2 du∫ 1
0 (1 − u)

pγ +α

2 −2[1 − uR2
γ ]− n−1

2 du

=
Γ
(

pγ+α
2

)
Γ(2)Γ

(
pγ+α

2 − 1
)

2F1
(

n−1
2 , 2; pγ+α

2 + 1;R2
γ

)
Γ
(

pγ+α
2 + 1

)
Γ(1)Γ

(
pγ+α

2 − 1
)

2F1
(

n−1
2 , 1; pγ+α

2 ;R2
γ

)
=

Γ
(

pγ+α
2

)
2F1

(
n−1

2 , 2; pγ+α
2 + 1;R2

γ

)
Γ
(

pγ+α
2 + 1

)
2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

)
=

Γ
(

pγ+α
2

)
2F1

(
n−1

2 , 2; pγ+α
2 + 1;R2

γ

)
(

pγ+α
2

)
Γ
(

pγ+α
2

)
2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

)
=

2F1
(

n−1
2 , 2; pγ+α

2 + 1;R2
γ

)
(

pγ+α
2

)
2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

)
=

2 2F1
(

n−1
2 , 2; pγ+α

2 + 1;R2
γ

)
(pγ + α) 2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

) . (A.16)

In addition, the posterior mean of g2 is defined as

E(g2|γ,y) =
∫∞

0 g2f(g|γ,y)dg∫∞
0 f(g|γ,y)dg =

∫∞
0 g2(1 + g)

n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 dg∫∞
0 (1 + g)

n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 dg
,

where again the integral representation in the last step is computed in simpler form
using again the transformation u = g

g+1 which includes the Gaussian hypergeometric
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g+1

function 2F1(.) as

E(g2|γ,y) =
∫ 1

0 u
2(1 − u)

pγ +α

2 −4[1 − uR2
γ ]− n−1

2 du∫ 1
0 (1 − u)

pγ +α

2 −2[1 − uR2
γ ]− n−1

2 du

=
Γ
(

pγ+α
2

)
Γ(3)Γ

(
pγ+α

2 − 3
)

2F1
(

n−1
2 , 3; pγ+α

2 ;R2
γ

)
Γ
(

pγ+α
2

)
Γ(1)Γ

(
pγ+α

2 − 1
)

2F1
(

n−1
2 , 1; pγ+α

2 ;R2
γ

)
=

2Γ
(

pγ+α
2 − 3

)
2F1

(
n−1

2 , 3; pγ+α
2 ;R2

γ

)
Γ
(

pγ+α
2 − 1

)
2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

)
=

2Γ
(

pγ+α
2 − 2

)
2F1

(
n−1

2 , 3; pγ+α
2 ;R2

γ

)
(

pγ+α
2 − 3

) (
pγ+α

2 − 2
)

Γ
(

pγ+α
2 − 2

)
2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

)
=

8 2F1
(

n−1
2 , 3; pγ+α

2 ;R2
γ

)
(pγ + α− 6) (pγ + α− 4) 2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

) . (A.17)

The posterior mean of
(

g
g+1

)2
is defined as

E

[ g

g + 1

]2

γ,y

 =
∫∞

0

(
g

g+1

)2
f(g|γ,y)dg∫∞

0 f(g|γ,y)dg

=
∫∞

0 g2(1 + g)
n−1−pγ −α

2 −2[1 + g(1 −R2
γ)]− n−1

2 dg∫∞
0 (1 + g)

n−1−pγ −α

2 [1 + g(1 −R2
γ)]− n−1

2 dg
,

the above integral form in the last step is handled in a more easier way using the
transformation u = g

g+1 which includes the Gaussian hypergeometric function 2F1(.) as
the following

E

[ g

g + 1

]2

γ,y

 =
∫ 1

0 u
2(1 − u)

pγ +α

2 −2[1 − uR2
γ ]− n−1

2 du∫ 1
0 (1 − u)

pγ +α

2 −2[1 − uR2
γ ]− n−1

2 du

=
2Γ
(

pγ+α
2 + 1

)
2F1

(
n−1

2 , 3; pγ+α
2 + 2;R2

γ

)
Γ
(

pγ+α
2 + 1

) (
pγ+α

2

) (
pγ+α

2 + 1
)

2F1
(

n−1
2 , 1; pγ+α

2 ;R2
γ

)
=

8 2F1
(

n−1
2 , 3; pγ+α

2 + 2;R2
γ

)
(pγ + α) (pγ + α + 2) 2F1

(
n−1

2 , 1; pγ+α
2 ;R2

γ

) . (A.18)
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A.6 Laplace Approximation for Hyper-g Priors

For the Bayes factor of (2.14) after the change of variables z = log(g) we consider

Hhy(z) = (n− 1 − pγ − α)
2 log [1 + exp(z)]

− (n− 1)
2 log

[
1 + (1 −R2

γ) exp(z)
]

+ z, (A.19)

where the respective derivative is written as

dHhy(z)
dz

= (n− 1 − pγ − α)
2

[
exp(z)

1 + exp(z)

]

− (n− 1)
2

[
(1 −R2

γ) exp(z)
1 + (1 −R2

γ) exp(z)

]
+ 1, (A.20)

and the mode ẑhy of Hhy is found solving the equation dHhy(z)
dz

= 0 with respect to z,
as the following

2 [1 + exp(z)]
[
1 + (1 −R2

γ) exp(z)
] (n− 1 − pγ − α)

2

[
exp(z)

1 + exp(z)

]

− 2 [1 + exp(z)]
[
1 + (1 −R2

γ) exp(z)
] (n− 1)

2

[
(1 −R2

γ) exp(z)
1 + (1 −R2

γ) exp(z)

]
+ 2 [1 + exp(z)]

[
1 + (1 −R2

γ) exp(z)
]

= 0,

where we obtain after some mathematical steps

exp(z)
[
1 + (1 −R2

γ) exp(z)
]

(n− 1 − pγ − α) − exp(z) [1 + exp(z)] (n− 1)(1 −R2
γ)

+ 2 [1 + exp(z)]
[
1 + (1 −R2

γ) exp(z)
]

= 0,

and going on with calculations we have

exp(z)(n− 1 − pγ − α) + exp(2z)(n− 1 − pγ − α)(1 −R2
γ)

− exp(z)(1 −R2
γ)(n− 1) − exp(2z)(n− 1)(1 −R2

γ) = 0,

The previous expression is reduced in a quadratic equation with coefficients κ2, κ1, κ0

κ2 exp(2z) + κ1 exp(z) + κ0 = 0,
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where κ2, κ1, κ0 are calculated as

κ2 =
[
(2 − pγ − α)(1 −R2

γ)
]
,

κ1 =
[
4 − pγ − α +R2

γ(n− 3)
]
,

κ0 = 2.

The previous coefficients are resulted useful, in the calculation of the unique real mode
ẑhy through the discriminant α

∆ =
√
κ2

1 − 4κ2κ0,

According to (Abramowitz and Stegun, 1970) and (Liang et al, 2008); the mode ẑhy is
computed as

ẑhy = −κ1 +
√

∆
2κ2

.

and in more precise form as

ẑhy = log
−

[
4 − pγ − α +R2

γ(n− 3)
]

+
√

∆
2
[
(2 − pγ − α)(1 −R2

γ)
]

 . (A.21)

The standard error of the mode ẑhy is retrieved by substituting the mode in the second
derivative of Hhy. Firstly, we start calculating the second derivative of Hhy as the
following

d2Hhy(z)
dz2 =


[(
n− 1 − pγ − α

2

){exp(z) [1 + exp(z)] − exp(2z)
[1 + exp(z)]2

}]

−
(n− 1)(1 −R2

γ)
2

exp(z)
[
1 + (1 −R2

γ) exp(z)
]

− exp(2z)[
1 + (1 −R2

γ) exp(z)
]2



,

and in the next step, we compute the standard error σ̂Hhy of the mode ẑhy as

σ̂Hhy =
[

−d2Hhy(z)
dz2

∣∣∣∣∣
z=ẑhy

]− 1
2

.
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which leads to

σ̂Hhy =

−

(
n− 1 − pγ − α

2

)exp(ẑhy)
[
1 + exp(ẑhy)

]
− exp(2ẑhy)

[1 + exp(ẑhy)]2




+
(n− 1)(1 −R2

γ)
2

exp(ẑhy)
[
1 + (1 −R2

γ) exp(ẑhy)
]

− exp(2ẑhy)[
1 + (1 −R2

γ) exp(ẑhy)
]2




− 1
2

.

(A.22)

A.7 Implementation of Stochastic Search Variable
Selection

The SSVS through Gibbs sampler is outlined as follows

A. Set initial values γ(0), β(0), σ2(0), a(0) and g(0). For fixed g = n, delete Step 6.

B. For iterations s = 1, . . . , S:

Step 1: Set current values equal to γ = γ(s−1), β = β(s−1), σ2 = σ2(s−1) a = a(s−1)

and g = g(s−1).

Step 2: Sample γ(s)
j ∼ Bern

(
πSSV S

j

)
, for j = 1, . . . , p, given the current states of

γ
(s−1)
−j β(s−1), σ2(s−1), a(s−1) and g(s−1), where γ−j are the components of γ

except element γj

(a) with probability inclusion of j-th covariate πSSV S
j = OSSV S

j /(1 +OSSV S
j ),

(b) with posterior odds OSSV S
j

OSSV S
j =

πSSV S(β|g, σ2, γj = 1,γ−j)π(γj = 1,γ−j)
πSSV S(β|g, σ2, γj = 0,γ−j)π(γj = 0,γ−j)

,

and set γ(s) = γ(s−1).

Step 3: Sample β(s) ∼ Np

(
µ̂

(SSV S)
β , Ĉ

(SSV S)
β

)
, given the respective updated and

current states γ(s), σ2(s−1), a(s−1) and g(s−1), where µ̂(SSV S)
β and Ĉ(SSV S)

β

denote the posterior mean and variance-covariance matrix of β defined
respectively as

(a) µ̂(SSV S)
β = g

(
gXTX +D−1XTXD−1

)−1
XTy,

(b) Ĉ(SSV S)
β = gσ2

(
gXTX +D−1XTXD−1

)−1
,
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and set β(s) = β(s−1).

Step 4: Sample σ2(s) ∼ IG
(
λ̂

(SSV S)
0,σ2 , λ̂

(SSV S)
1,σ2

)
, given the respective updated and

current states γ(s), β(s), a(s−1) and g(s−1), where
res(SSV S) =

(
y − a1n −Xβ)T (y − a1n −Xβ

)
, the λ̂(SSV S)

0,σ2 and λ̂
(SSV S)
1,σ2

denote respectively the posterior shape and scale of σ2 respectively as

(a) λ̂
(SSV S)
0,σ2 = (n+ p)/2,

(b) λ̂
(SSV S)
1,σ2 = 1

2

[
res(SSV S) + βTD−1XTXD−1β/g

]
,

and set σ2(s) = σ2(s−1).

Step 5: Sample a(s) ∼ N (µ̂a, σ̂
2
a), given the updated state σ2(s), where the µ̂a and

σ̂2
a denote the posterior mean and variance of a respectively as

(a) µ̂a = ȳ,
(b) σ̂2

a = σ2/n,

and set a(s) = a(s−1)

Step 6: given the updated states γ(s), β(s), σ2(s) and a(s)

(A) if g ∼ IG
(

1
2 ,

n
2

)
,

sample g(s) ∼ IG
(
λ̂

(SSV S)
0,g , λ̂

(SSV S)
1,g

)
, where λ̂(SSV S)

0,g and λ̂(SSV S)
1,g denote

respectively the posterior shape and scale of g respectively as
(a) λ̂

(SSV S)
0,g = (p+ 1)/2,

(b) λ̂
(SSV S)
1,g = 1

2

[
βTD−1XTXD−1β/σ2 + n

]
,

and set g(s) = g(s−1).
(B) if π(g) ∝ (1 + g)− a

2 , sample g(s) from full conditional (1 + g)− α
2 g− p

2

exp
(
−βTD−1XTXD−1β/2gσ2

)
based on a Metropolis-Hastings with

(a) a candidate value g(can) is generated as log(g(can)) ∼ N(log(g), vg)
⇒ g(can) = exp(log(g(can))), where vg denotes the tuning variance.

(b) an acceptance-rate A(SSV S)
g of the proposed move in the log-scale

log(A(SSV S)
g ) = log

(
π(g(can)|β, σ2,γ,y)
π(g|β, σ2,γ,y)

q(g|vg)
q(g(can)|vg)

J

J (can)

)

∝ −α

2 log(1 + g(can)) − p

2 log(g(can)) − βTD−1XTXD−1β

2g(can)σ2

+ α

2 log(1 + g) + p

2 log(g) + βTD−1XTXD−1β

2gσ2

− log
(

1
g(can)

)
+ log

(
1
g

)
,
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where q(.) denotes candidate density generator and J the associated
jacobian which results from transformation on the original scale of g.
Notice that the corresponding ratio q(gcur|vg)/q(gcan|vg) vanishes
due to symmetry feature of the normal random walk.

(c) Set g(s) =

g
(can) , accept with probability A(SSV S)

g ,

g , reject with probability 1 − A(SSV S)
g ,

C. Repeat all the steps untill convergence,

where we clarify that all the detailed steps of full conditionals are ommited for brevity,
assuming that the kind reader is familiar with the SSVS George and McCulloch (1993).

A.8 Implementation of Gibbs Variable Selection

The corresponding MCMC procedure is applied through a Gibbs sampler which samples
indirectly from the joint posterior distribution as the following

A. Same as in SSVS.

B. Same as in SSVS.

Step 1: Same as in SSVS.

Step 2: Sample γ(s)
j ∼ Bern

(
πGV S

j

)
, for j = 1, . . . , p, given the current states of

γ
(s−1)
−j β(s−1), σ2(s−1), a(s−1) and g(s−1), where γ−j are the components of γ

except element γj

(a) with probability inclusion of j-th covariate πGV S
j = OGV S

j /(1 +OGV S
j ),

(b) with posterior odds OGV S
j

OGV S
j =

f(y|a,β, σ2, γj = 1,γ−j)πGV S(β|g, σ2, γj = 1,γ−j)π(γj = 1,γ−j)
f(y|a,β, σ2, γj = 0,γ−j)πGV S(β|g, σ2, γj = 0,γ−j)π(γj = 0,γ−j)

,

where the OGV S
j is one of the main additional features that differentiates from

SSVS method due to appearance of likelihood depending on γ configuration
and set γ(s) = γ(s−1).

Step 3: Sample β(s) ∼ Np

(
µ̂

(GV S)
β , Ĉ

(GV S)
β

)
, given the respective updated and

current states γ(s), σ2(s−1), a(s−1) and g(s−1), where µ̂(GV S)
β and Ĉ(GV S)

β

denote the posterior mean and variance-covariance matrix of β defined
respectively as
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(a) µ̂(GV S)
β =

(
ΓXTXΓ + σ2D̃

−1
)−1 (

ΓXTy + σ2D̃
−1
µ
)
,

(b) Ĉ(GV S)
β = σ2

(
ΓXTXΓ + σ2D̃

−1
)−1

,

and set β(s) = β(s−1).

Step 4: Sample σ2(s) ∼ IG
(
λ̂

(SSV S)
0,σ2 , λ̂

(SSV S)
1,σ2

)
, given the respective updated and

current states γ(s), β(s), a(s−1) and g(s−1), where
res(GV S) =

(
y − a1n −XΓβ)T (y − a1n −XΓβ

)
, the λ̂(GV S)

0,σ2 and λ̂
(GV S)
1,σ2

denote respectively the posterior shape and scale of σ2 respectively as

(a) λ̂
(GV S)
0,σ2 = (n+ pγ)/2,

(b) λ̂
(GV S)
1,σ2 = 1

2

[
res(GV S) + (β − µ)T ΓXTXΓ(β − µ)/g

]
,

and set σ2(s) = σ2(s−1).

Step 5: Same as in SSVS.

Step 6: given the updated states γ(s), β(s), σ2(s) and a(s)

(A) if g ∼ IG
(

1
2 ,

n
2

)
,

sample g(s) ∼ IG
(
λ̂

(GV S)
0,g , λ̂

(GV S)
1,g

)
, where λ̂

(GV S)
0,g and λ̂

(GV S)
1,g denote

respectively the posterior shape and scale of g respectively as
(a) λ̂

(GV S)
0,g = (pγ + 1)/2,

(b) λ̂
(GV S)
1,g = 1

2

[
(β − µ)T ΓXTXΓ (β − µ)/σ2 + n

]
,

and set g(s) = g(s−1).
(B) if π(g) ∝ (1 + g)− a

2 , sample g(s) from full conditional (1 + g)− α
2 g−pγ

exp
(
−(β − µ)T ΓXTXΓ (β − µ)/2gσ2

)
using a Metropolis-Hastings

with properties
(a) Same as in SSVS.
(b) an acceptance-rate A(GV S)

g of the proposed move in log-scale

log(A(GV S)
g ) = log

(
π(g(can)|β, σ2γ,y)
π(g|β, σ2γ,y)

q(g|vg)
q(g(can)|vg)

J

J (can)

)

∝ −α

2 log(1 + g(can)) − pγ
2 log(g(can)) − (β − µ)T ΓXTXΓ (β − µ)

2g(can)σ2

+ α

2 log(1 + g) + pγ
2 log(g) + (β − µ)T ΓXTXΓ (β − µ)

2gσ2

+ log
(

1
g

)
− log

(
1

g(can)

)
.
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Notice again, the corresponding ratio q(gcur|vg)/q(gcan|vg) vanishes
due to symmetry feature of the normal random walk.

(c) Set g(s) =

g
(can) , accept with probability A(SSV S)

g ,

g , reject with probability 1 − A(SSV S)
g ,

C. Repeat all the steps untill convergence,

where notice that in the above Step4 and Step6, the posterior of σ2 and g are affected
only by the included components pγ given the respective configuration of γ which is
an essential ingredient of pseudo-priors and hence GVS. All the computed steps of full
conditionals are avoided for the same reasons likewise SSVS; for additional information
see Ntzoufras (1999) and Dellaportas et al. (2002).
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A.9 Simulated Experiment

In this section, we used a simulated example of George and McCullogh, (1993) con-
cerning the Bayesian variable selection using full enumeration and MCMC methods
with mixtures of g-priors applied for the linear regression. This dataset consists of
p = 5 covariates of length n = 60. The covariates were obtained as independent stan-
dardized normal vectors X1, . . . ,X5 iid ∼ N60(0, 1), so that they were uncorrelated.
The dependent variable is generated according to the model

Y = 2 +X4 + 1.2X5 + ϵ,

where the error term ϵ ∼ N60(0, σ2I60) with noise σ = 2.5. In comparison with the
example of George and McCullogh, (1993), the only difference is the intercept included
in the generated model. The maximum likelihood estimators for these data were â, β̂,
σ̂ and are found respectively in Table (A.1). Each respective covariate X1, X2, X3,
X4, X5 was centered for Liang’s approach and in order to obtain more comparable
results in-sample values. We initially proceed with a multiple scatterplot regarding
the relationship of the response variable Y with each respective covariate X1, X2, X3,
X4, X5. From Figure (A.1) it is evident that the covariates X1, X2, X3, X4, X5

seem linearly associated with the response variable Y whereas the covariates X4, X5

are positively associated with the response variable Y as it was expected from the
model construction. Our primary aim is to evaluate the performance of the MCMC
methods for Bayesian variable selection in linear regression with respect to the current
simulated dataset.

Fig. A.1 Multiple scatterplots of the dependent variable Y versus each covariate X1,
X2, X3, X4, X5.
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Even if the model space is 25 = 32, which is attractive for Bayesian variable selection
with full enumeration, we still prefer to approximate the model space through MCMC
methods compared with the formal methods.
We present the results for Bayesian variable selection using SSVS and GVS in the R
programming language as the main computational tools, compared with the formal
methods of Bayesian variable selection in the context of mixtures of g-priors. Across all
methods using hyper-g we considered the suggested value α = 3 followed by indications
of Liang et al. (2008) and a Metropolis-Hastings random walk scheme with proposed
moves ug = 1 which was applied in order to achieve satisfatory acceptance rates a.r for
the model search procedures. Additional comparisons are based on the GVS method
implemented in WINBUGS Spiegelhalter et al. (2003) and the Bayesian adaptive
sampling Clyde et al. (2011) (BAS package) in R in order to verify the accordance of
the between results.

Prior Inputs-Initial Values
Parameter Value
β̂ (−0.236, 0.418,−0.462, 1.220, 1.447)T

â 2.026
σ̂2 2.644
τ 0.02
c 50
µ̄ β̂

s̄2 (0.124, 0.124, 0.124, 0.120, 0.119)T

γ(0) (1, 1, 1, 1, 1)T

β(0) β̂

a(0) â

σ2(0) σ̂2

g(0) n

Table A.1 Prior-inputs and initial values

With regard to MCMC methods, prior inputs τ and c for j = 1, . . . , p were set on
practical significance for SSVS to achieve similar results with the frequentist and formal
Bayesian approach and µ̄, s̄2 were computed from a pilot run under the full model
for GVS. The option of prior input τj and cj are such that τj = 0.02 << τjcj = 1. All
these information are available on Table (A.1).
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Acronym Computational Method Prior
1 ssvsR.g Stochastic Search Variable Selection g-prior

for τ = 0.02, c = 50, g = n

2 ssvsR.ZS Stochastic Search Variable Selection Zellner-Siow
for τ = 0.02, c = 50

3 ssvsR.hy Stochastic Search Variable selection Hyper-g
for τ = 0.02, c = 50, α = 3, ug = 1

4 gvsR.g Gibbs Variable Selection g-prior
for g = n

5 gvsR.ZS Gibbs Variable Selection Selection Zellner-Siow
6 gvsR.hyp Gibbs Variable Selection Selection Hyper-g

for α = 3, ug = 1
7 gvsW.g Gibbs Variable Selection g-prior

for g = n

8 gvsW.ZS Gibbs Variable Selection Selection Zellner-Siow
9 gvsW.hyp Gibbs Variable Selection Selection Hyper-g

for α = 3
10 fe.g Full Enumeration g-prior

for g = n

11 fe.hyp Full Enumeration Hyper-g
for α = 3

12 bas.g Bayesian Adaptive Sampling g-prior
for g = n

13 bas.ZS Bayesian Adaptive Sampling Zeller-Siow
14 bas.hyp Bayesian Adaptive Sampling Hyper-g

for α = 3

Table A.2 Acronyms of Bayesian variable selection methods.

A detailed description of all Bayesian variable selection methods which are used as
references in Figures and in Tables, are summarized in Table (A.2). In addition, as
there is little information available, Bayesian variable selection turns into an objective
approach, assigning objective priors to each respective model specific parameter and to
the model. More presicely, we used the joint hierarchical mixture priors (2.16), (2.18)
for SSVS and GVS to encapsulate the dependencies among parameters a, σ2 β, g, γ,
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whereas for standard Bayesian methods based on full enumeration we adopted the
combined Liang’s g-prior (2.9) in the mixture sense for g.

g-prior Highest Posterior Model Probability
Model Bayesian Variable Selection Methods
γ ssvsR.g gvsR.g gvsW.g fe.g bas.g
X4,X5 0.573 0.576 0.577 0.574 0.574
X3,X4,X5 0.143 0.139 0.137 0.139 0.139
X2,X4,X5 0.112 0.113 0.114 0.114 0.114
X1,X4,X5 0.077 0.077 0.078 0.078 0.078
X2,X3,X4, X5 0.031 0.033 0.031 0.032 0.032

Table A.3 Posterior model probabilities of top 5 models.

Zellner-Siow Highest Posterior Model Probability
Model Bayesian Variable Selection Methods
γ ssvsR.ZS gvsR.ZS gvsW.ZS bas.ZS
X4,X5 0.475 0.497 0.495 0.465
X3,X4,X5 0.154 0.149 0.151 0.157
X2,X4,X5 0.121 0.125 0.125 0.131
X1,X4,X5 0.083 0.085 0.086 0.090
X2,X3,X4, X5 0.053 0.051 0.051 0.057

Table A.4 Posterior model probabilities of top 5 models.

Hyper-g Highest Posterior Model Probability
Model Bayesian Variable Selection Methods
γ ssvsR.hyp gvsR.hyp gvsW.hy fe.hyp bas.hyp
X4,X5 0.323 0.329 0.328 0.327 0.327
X2,X4,X5 0.165 0.163 0.162 0.163 0.163
X3,X4,X5 0.136 0.140 0.139 0.139 0.139
X1,X4,X5 0.096 0.099 0.101 0.101 0.101
X2,X3,X4, X5 0.085 0.088 0.089 0.089 0.089

Table A.5 Posterior model probabilities of top 5 models.

All the compared approaches under Zellner-Siow prior used (2.10), whereas for
hyper-g-prior used (2.12). Moreover, regarding the prior of model space, we assigned a
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uniform prior distribution to each model γ reflecting our prior ignorance, regarding
the preference in a small model space. In the main analysis, we have used also a
frequentist perspective of full linear model for comparison reasons with the main results
of Bayesian variable selection methods under prior ignorance, where the variables
X5, X4 were statistically significant with p-value lower than 0.05. Applying Bayesian
variable selection MCMC methods to these data, the model fitting was performed
using a Gibbs algorithm with a Metropolis-Hastings step as implemented in the R
programming language and we simulated a Markov chain of 100000 valid values to
achieve convergence. More precisely, for parameter vector of effects we have used as
initial values β(0), for intercept a(0), for variance σ2(0), for parameter vector of model
indicators γ(0) and g(0) for g; the interesting reader may find more details on Table
(A.1).
On the other hand, we preferred to illustrate only the best 5 models of each method
because they are the only which assign negligible posterior probability mass. All
methods seem to perform well in the correct model identification which includes
variables X4, X5, but with different posterior model probability for each method.
Moreover, the traced submodels of all methods coincide across the three different prior
setups. The current model selected by these procedures coincides with the model
under the frequentist approach. Predictors X4, X5 are statistically significant with
p-value 0.000876, and 0.000106 respectively. With respect to the results of Table
(A.3) for methods ssvs.gR, gvs.gR under g-prior, the posterior model probabilities
are larger in magnitude with comparison to those of Zellner-Siow (see Table (A.4),
and hyper-g (see Table (A.5) for all respective methods which are known from the
bibliography. This is attributed to Jeffrey’s-Lindley’s paradox which tends to support
parsimonius models reflected in the increased posterior model probabilities among all
methods. On the contrary, the lower posterior probability is observed in table (A.5) for
methods ssvs.hypR, gvs.hypR under hyper-g because of favouring the non significant
variables, while methods of Table (A.4) based on Zellner-Siow correspond always to
higher posterior model probabilities with respect to hyper-g. Among all models of
all methods under each prior setup of Tables (A.3), (A.4) and (A.5) the results are
homogeneous with slight differences, apart from the Zellner-Siow approach where the
MCMC procedures outperform versus bas.ZS method. In general, the behaviour of
posterior model probabilities among GVS, full enumeration and BAS for g-prior and
hyper-g are sharing similar behaviour as pointed out by (Perrakis and Ntzoufras, 2015)
and (Perrakis and Ntzoufras, 2018) which are convalidated across R and WINBUGS
leading to similar posterior model probabilities. In addition, an attractive alternative
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of maximum posterior probability is provided by the median probability model of
Barbieri and Berger (2004). Except the formal methods based on full enumeration, all
previously mentioned Bayesian variable selection methods are compared and analyzed
through their marginal posterior inclusion probability. From the results of Table (A.6),
it is clear that all MCMC methods select covariates X4, X5 as significant, since their
marginal posterior inclusion probabilities are greater than 0.5, according to the median
posterior probability model by (Barbieri and Berger, 2004). On the contrary, the
independent variables X1, X2, X3 have marginal posterior inclusion probabilities
lower than 0.5 between all methods and appear to be non significant.

Median Probability Model
Independent Variables

Method X1 X2 X3 X4 X5

ssvsR.g 0.121 0.169 0.203 0.982 0.997
gvsR.g 0.121 0.172 0.202 0.984 0.997
gvsW.g 0.122 0.171 0.198 0.983 0.997
bas.g 0.122 0.172 0.201 0.983 0.997
ssvsR.ZS 0.161 0.221 0.260 0.967 0.984
gvsR.ZS 0.162 0.220 0.251 0.984 0.997
gvsW.ZS 0.161 0.221 0.252 0.986 0.997
bas.ZS 0.175 0.238 0.271 0.986 0.997
ssvsR.hyp 0.261 0.334 0.376 0.976 0.992
gvsR.hyp 0.260 0.331 0.363 0.979 0.994
gvsW.hyp 0.262 0.330 0.364 0.980 0.995
bas.hyp 0.262 0.331 0.364 0.979 0.994

Table A.6 Marginal posterior inclusion probabilities for each independent variable Xj

regarding Bayesian variable selection methods.

Furthermore, MCMC methods under the g-prior have lower marginal posterior
inclusion probabilities for the non significant covariatesX1, X2, X3. On the other hand
MCMC methods under mixtures of g-priors give results towards 0.5 since the additional
randomness related to g increases the uncertainty of the non significant variables X1,
X2, X3. The latter behaviour naturally arises as additional randomness of the g
parameter affecting the posterior inclusion measures through the adaptive shrinkage
of factor g

g+1 . Moreover, the Bayesian adaptive sampling and GVS in WINBUGS
verify the previous results of MCMC procedures in R. Additional analysis has been
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performed for the shrinkage factor g
g+1 in Figures (A.2), (A.3), (A.5) in order to evaluate

the efficiency of the MCMC methods. GVS and SSVS under Zellner-Siow posterior
distributions of g seem appropriate to describe uncertainty. More precisely, we observe
from Table (A.7) that methods ssvsR.hyp, gvsR.hyp are achieving larger posterior
means with lower standard errors in comparisons with ssvsR.ZS, gvsR.ZS which seem
more confident regarding model uncertainty and share increased marginal inclusion
posterior probabilities. The convergence of shrinkage factor g

g+1 was monitored through
the Figures (A.2), (A.3), (A.4) and (A.5) which do not exhibit strange variation for
MCMC methods with random g. To conclude, Bayesian variable selection methods
using MCMC perform successfully regarding the approximation of the model space
and the tracing of the most probable models producing the same results given by
the frequentist approach, namely the methods of full enumeration, Bayesian adaptive
sampling and those of GVS implemented in WINBUGS. In accordance with the
results of the median posterior probability model and the highest posterior probability
model we conclude that X1, X2 are important variables which coincide with the true
generating mechanism of the data.
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(d) Autocorrelation function.

Fig. A.2 Convergence diagnostics of shrinkage factor g
g+1 for ssvsR.ZS.
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(d) Autocorrelation function.

Fig. A.3 Convergence diagnostics of shrinkage factor g
g+1 for gvsR.ZS.

Shrinkage factor

0.25 0.50 0.75 1.00
0

2

4

g/(g+1)

P
os

te
rio

r 
de

ns
ity

(a) Posterior density.

Shrinkage factor

0 25000 50000 75000 1e+05

0.25

0.50

0.75

1.00

MCMC iterations

Tr
ac

ep
lo

t

(b) Traceplot.
Shrinkage factor

0 25000 50000 75000 1e+05

0.75

0.80

0.85

MCMC iterations

E
rg

od
ic

 m
ea

n

Chain

1

(c) Ergodic mean.

Shrinkage factor

0 10 20 30 40 50
−1.0

−0.5

0.0

0.5

1.0

Lag

A
ut

oc
or

re
la

tio
n

(d) Autocorrelation function.

Fig. A.4 Convergence diagnostics of shrinkage factor g
g+1 for ssvsR.hyp.

181



A.10 Real Dataset

Shrinkage factor

0.25 0.50 0.75 1.00
0

2

4

g/(g+1)

P
os

te
rio

r 
de

ns
ity

(a) Posterior density.

Shrinkage factor

0 25000 50000 75000 1e+05

0.25

0.50

0.75

1.00

MCMC iterations

Tr
ac

ep
lo

t

(b) Traceplot.
Shrinkage factor

0 25000 50000 75000 1e+05

0.6

0.7

0.8

MCMC iterations

E
rg

od
ic

 m
ea

n

Chain

1

(c) Ergodic mean.

Shrinkage factor

0 10 20 30 40 50
−1.0

−0.5

0.0

0.5

1.0

Lag

A
ut

oc
or

re
la

tio
n

(d) Autocorrelation function.

Fig. A.5 Convergence diagnostics of shrinkage factor g
g+1 for gvsR.hyp.

Posterior Summary Statistics
Method Mean Standard Error Acceptance Rate
ssvs.zs 0.963 0.027 -
gvs.zs 0.962 0.027 -
ssvs.hyp 0.864 0.106 0.566
gvs.hyp 0.866 0.104 0.560

Table A.7 Results of posterior summary statistics regarding each Bayesian variable
selection methods for mixtures of g-priors.

A.10 Real Dataset

In this section, we illustrate an application of Bayesian variable selection for the data of
prostate cancer Stamey et al. (1989). This dataset consists of n = 97 observations and
p = 8 covariates and was also used by Giron et al. (2006) and Moreno and Girón (2008).
The response variable Y is the level of prostate-specific antigen, and the covariates
are the logarithm of cancer volume (X1), the logarithm of prostate weight (X2), the
age of patient (X3), the amount of benign prostatic hyperplasia (X4) in log-scale, the
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seminal vesicle invasion (X5), the capsular penetration in log-scale (X6), the gleason
score (X7) and the percent of gleason scores 4 and 5 (X8).

Prior Inputs-Initial Values of 1st Analysis
Parameter Value
β̂ (0.665, 0.266,−0.158, 0.140, 0.315,−0.148, 0.035, 0.125)T

â 2.478
σ̂ 0.699
τ 0.02
c 50
µ̄ β̂

s̄2 (0.103, 0.086, 0.082, 0.084, 0.099, 0.125, 0.112, 0.123)T

γ(0) (1, 1, 1, 1, 1, 1, 1, 1)T

β(0) β̂

a(0) â

σ2(0) σ̂2

g(0) 97

Table A.8 Prior-inputs and initial values of 1st Analysis

Prior Inputs-Initial Values of 2nd Analysis
Parameter Value
β̂ (0.530, 0.319,−0.201, 0.213, 0.230, 0.041,−0.083, 0.228)T

â 2.626
σ̂ 0.682
τ 0.02
c 50
µ̄ β̂

s̄2 (0.152, 0.112, 0.107, 0.110, 0.158, 0.157, 0.166, 0.177)T

γ(0) (1, 1, 1, 1, 1, 1, 1, 1)T

β(0) β̂

a(0) â

σ2(0) σ̂2

g(0) 50

Table A.9 Prior-inputs and initial values of 2nd Analysis
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Furthermore, a maximum likelihood perspective was applied to the full model
obtaining estimates β̂, â, σ̂ where (X1), (X2), (X5) were found statistically significant;
see for more information Table A.8. Prior to the main analysis, covariates were pre-
processed by subtracting their mean in order to adopt Liang’s approach for mixtures of
g-priors. Our goal is to assess the performance of Bayesian variable selection methods
considering both in-sample and out-of-sample values across the three prior setups of
this real dataset. At the same time we retain the same acronyms for the methods of
Table (A.2) and emphasis is given only to MCMC. For the out-of-sample analysis, we
will split the data at half randomly and then compare the performance of MCMC by
calculating at each iteration of each method the mean squared error (MSE). More
precisely, we begin with a preliminary analysis of Bayesian model selection procedures
using MCMC in order to identify important covariates through the highest and median
posterior model probability. Then, we proceed with an additional analysis to evaluate
the predictive ability of each MCMC method based on the maximum aposteriori model
and the median probability model. We perform the analysis for Bayesian variable
selection using SSVS and GVS in R programming language in the framework of
mixtures of g-priors. Additional comparisons are based on GVS method implemented
in WINBUGS Spiegelhalter et al. (2003) and Bayesian adaptive sampling Clyde et al.
(2011) BAS package using R in order to verify the intermediate results. The prior
inputs of Table (A.2) are considered the same (apart for g-prior where g=97) in order
to obtain similar results alongside the frequentist and objective Bayesian approach,
while µ̄, s̄2 computed from a pilot run under the full model for GVS for the first
analysis and second respectively; see for additional details Tables (A.8) and (A.9).
In addition, when information is not available with respect to the subset of variables,
it is preferable to adopt an objective prior elicitation for model parameters and model
itself. More presicely, we used again the hierarchical mixture priors (2.16), (2.18) for
SSVS and GVS to envelop the prior structures among parameters a, σ2 β, g, γ. When
mixtures of g priors are used for SSVS and GVS, are based on (2.10) if Zellner-Siow
prior is adopted, whereas for hyper-g-prior is used (2.12). Moreover, regarding the prior
of model space, a uniform prior distribution γ was adopted reflecting the indifference of
models like in the work of Fouskakis and Ntzoufras (2013). Bayesian variable selection
model search algorithms were applied to these data, where model fit was implemented
using a Gibbs sampler with a Metropolis-Hastings stage in R programming language
and a Markov chain of 80000 generated values was simulated to achieve convergence.
More precisely, for parameter vector of effects β we have used as initial values β(0), for
variance σ2(0), for parameter vector of model indicators initial values γ(0) and g(0) for
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g; the kind reader may refer to the Tables (A.8) and (A.9) regarding the initial values
of first and second analysis.

Highest Posterior Probability
Method X1+X2+X5

ssvsR.g 0.401
gvsR.g 0.375
gvsW.g 0.370
bas.g 0.372
ssvsR.ZS 0.304
gvsR.ZS 0.320
gvsW.ZS 0.324
bas.ZS 0.304
ssvsR.hyp 0.214
gvsR.hyp 0.254
gvsW.hyp 0.251
bas.hyp 0.255

Table A.10 Results of posterior model probabilities regarding Bayesian variable selection
methods.

Moreover, we preferred to illustrate only the best model under consideration of
each method because each method traces different submodels. All methods identify
the same model which includes as variables X1, X2, X5 but with different posterior
model probability for each method across the three prior different setup. The same
conclusions are drawn also in the work of Fouskakis and Ntzoufras (2013) The current
model selected by these procedures coincides also with the model under the frequentist
approach, where predictors X1, X2, X5 are statistically significant. The results of
Table (A.10) suggest that under the fixed g-prior, methods ssvs.gR, gvs.gR, show
higher posterior model probability versus random g methods including Zellner-Siow
and hyper-g. This result is justified again by Jeffrey’s-Lindley’s paradox which tends
to support simpler models due to the influence of the sample n = 97. On the other
hand, as it was expected regarding the methods ssvs.hypR, gvs.hypR under hyper-g, the
posterior probability is smaller compared to the other methods and this is related to
the inflation of non important variables towards the "cut-off" of significance, resulting
in the decrease of the same posterior measure.
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Median Probability Model
Independent Variables

Method X1 X2 X3 X4 X5 X6 X7 X8

ssvsR.g 1.000 0.945 0.173 0.271 0.919 0.093 0.106 0.141
gvsR.g 1.000 0.947 0.192 0.250 0.916 0.111 0.124 0.161
gvsW.g 1.000 0.946 0.190 0.251 0.913 0.115 0.123 0.163
bas.g 1.000 0.946 0.192 0.253 0.916 0.110 0.124 0.162
ssvsR.ZS 0.999 0.946 0.240 0.342 0.928 0.089 0.161 0.195
gvsR.ZS 1.000 0.945 0.232 0.289 0.921 0.136 0.151 0.190
gvsW.ZS 1.000 0.948 0.229 0.291 0.921 0.134 0.150 0.186
bas.ZS 1.000 0.949 0.246 0.301 0.924 0.144 0.157 0.200
ssvsR.hyp 1.000 0.946 0.313 0.436 0.953 0.074 0.225 0.282
gvsR.hyp 1.000 0.948 0.284 0.338 0.925 0.172 0.184 0.230
gvsW.hyp 1.000 0.948 0.288 0.338 0.927 0.173 0.184 0.231
bas.hyp 1.000 0.948 0.286 0.337 0.926 0.172 0.184 0.231

Table A.11 Marginal posterior inclusion probabilities for each independent variable Xj

regarding each Bayesian variable selection method.

Among all methods under the three different prior setup, posterior model probabili-
ties show very small differentiations with one exception for the g-prior approach where
the SSVS procedure indicates higher posterior measure than the other methods for the
g.prior. Posterior model probabilities of GVS implemented in R and WINBUGS are
showing similar results with those of BAS for g-prior, hyper-g which are validated in
this way. In addition, a median probability model approach was added in the analysis
to illustrate better the performance of the MCMC methods.
Regarding the convergence of shrinkage factor g

g+1 , Figures (A.6), (A.7), (A.8), (A.9)
verify the convergence for each Bayesian variable selection method. The computational
methods of Table (A.11), are compared in terms of marginal posterior inclusion proba-
bility. From the results of Table (A.11) we deduce that MCMC methods included as
important covariates X1, X2, X5 since their marginal posterior inclusion probabilities
are higher than 0.5. Furthermore, all computed methods for g-prior exhibit a decreased
magnitude of marginal posterior inclusion probabilities for the non important covariates
X3, X4, X6, X7, X8 whereas in the case of mixtures of g-priors those are directed
towards 0.5. The latter behaviour naturally arises as additional randomness of the g
parameter which affects the posterior inclusion measures through the adaptive shrink-
age of factor g

g+1 . Moreover, the Bayesian adaptive sampling and GVS in WINBUGS
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verify the previous results of MCMC procedures in R. On the contrary, the predictive
ability of each Bayesian variable selection method is assesed based on the computation
of MSE

M̂SE ≈

√√√√∑S
s=1

∑nte
i=1(yte

i − a(s) − xte
i β

(s))2

Snte

,

where yte
(.) are the test values for the response of the tested sample nte, xte

(.) are the
row-wise of the test design matrix X te and a(s), β̂(s) are the estimated values from each
iteration step of each method of intercept and regression coefficients respectively. The
maximum aposteriori and median probability model coincided for each computational
method identified from the sample of model search algorithms. The predictive ability
of SSVS and GVS was similar in terms of MSE with a difference of 2% where SSVS
outperformed slightly in Tables (A.12), (A.13), (A.14), (A.15), (A.16), (A.17). Figures
(A.10), (A.11 ), (A.12), (A.13), (A.14), (A.15) depict the posterior distribution of MSE
for each MCMC method under the three different prior setups where both subfigures
show convergence. To conclude, our analysis seems effective both in model fitting and
prediction with including only covariates such as the logarithm of cancer volume (X1),
the logarithm of prostate weight (X2) and the seminal vesicle invasion (X5). The
same conclusions were found also for maximum aposteriori and median probability
model regarding the first and second analysis respectively Fouskakis and Ntzoufras
(2013) and Leng et al. (2014).
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(d) Autocorrelation function.

Fig. A.6 Convergence diagnostics of shrinkage factor g
g+1 for ssvsR.ZS.
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(d) Autocorrelation function.

Fig. A.7 Convergence diagnostics of shrinkage factor g
g+1 for gvsR.ZS.
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(d) Autocorrelation function.

Fig. A.8 Convergence diagnostics of shrinkage factor g
g+1 for ssvsR.hyp.
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Fig. A.9 Convergence diagnostics of shrinkage factor g
g+1 for gvsR.hyp.
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A.10 Real Dataset
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Fig. A.10 Convergence diagnostics of mean squared error MSE for ssvsR.g.

MSE Posterior Summary Statistics
Method Mean Standard Error
ssvs.g 2.553 0.008

Table A.12 Posterior summary statistics of mean squared error MSE for ssvsR.g.
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(d) Autocorrelation function.

Fig. A.11 Convergence diagnostics of mean squared error MSE for gvsR.g.

MSE Posterior Summary Statistics
Method Mean Standard Error
gvs.g 2.571 0.027

Table A.13 Posterior summary statistics of mean squared error MSE for gvsR.g.
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Fig. A.12 Convergence diagnostics of mean squared error MSE for ssvsR.ZS.

MSE Posterior Summary Statistics
Method Mean Standard Error
ssvs.ZS 2.554 0.008

Table A.14 Posterior summary statistics of mean squared error MSE for ssvsR.ZS.
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A.10 Real Dataset

MSE

2.52 2.56 2.60 2.64 2.68 2.72

0

50

100

value

co
un

t

(a) Posterior density.

MSE

0 250 500 750

2.55

2.60

2.65

2.70

Iteration

va
lu

e
(b) Traceplot.

MSE

0 250 500 750

2.560

2.565

2.570

2.575

Iteration

R
un

ni
ng

 M
ea

n

Chain

1

(c) Ergodic mean.

MSE

0 10 20 30 40 50

−1.0

−0.5

0.0

0.5

1.0

Lag

A
ut

oc
or

re
la

tio
n

(d) Autocorrelation function.

Fig. A.13 Convergence diagnostics of mean squared error MSE for gvsR.ZS.

MSE Posterior Summary Statistics
Method Mean Standard Error
gvs.ZS 2.573 0.028

Table A.15 Posterior summary statistics of mean squared error MSE for gvsR.ZS.
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Fig. A.14 Convergence diagnostics of mean squared error MSE for ssvsR.hyp.

MSE Posterior Summary Statistics
Method Mean Standard Error
ssvs.hy 2.553 0.007

Table A.16 Posterior summary statistics of mean squared error MSE for ssvsR.hyp.
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Fig. A.15 Convergence diagnostics of mean squared error MSE for gvsR.hyp.

MSE Posterior Summary Statistics
Method Mean Standard Error
gvs.hy 2.571 0.0283

Table A.17 Posterior summary statistics of mean squared error MSE for gvsR.hyp.
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Appendix B

Bayesian Variable Selection in
Generalized Linear Models

B.1 Laplace Approximation of Bove and Held

The authors provide a Laplace approximation of second order Taylor series expanding
the unormalized log-posterior of π(BH)(βγ+1|y, g,ϕ) around it’s posterior mode µ̂γ+1

with precision matrix R̂γ+1 evaluated µ̂γ+1 as the following

log
{
f(y|βγ+1,ϕ,γ)π(BH)(βγ+1|g,ϕ, δ,γ)

}
≈ log

{
f(y|µ̂γ+1,ϕ,γ)π(BH)(µ̂γ+1|g,ϕ, δ,γ)

}
+
(
βγ+1 − µ̂γ+1

)T

∂log
{
f(y|βγ+1,ϕ,γ)π(BH)(βγ+1|g,ϕ, δ,γ)

}
∂βγ+1

∣∣∣∣∣
βγ+1=µ̂γ+1


− 1

2
(
βγ+1 − µ̂γ+1

)T
R̂γ+1

(
βγ+1 − µ̂γ+1

)
,

where
(
βγ+1 − µ̂γ+1

)T

∂log{f(y|βγ+1,ϕ,γ)π(BH)(βγ+1|g,ϕ,δ,γ)}
∂βγ+1

∣∣∣∣∣
βγ+1=µ̂γ+1

 = 0,

because µ̂γ+1 is the mode with prior precision matrix R̂γ+1

R̂γ+1 =
−

∂2log
{
f(y|βγ+1,ϕ,γ)π(BH)(βγ+1|g,ϕ, δ,γ)

}
∂β2

γ+1

∣∣∣∣∣
βγ+1=µ̂γ+1



=


−∂2log{π(BH)(βγ+1|y,g,ϕ)}

∂β2
γ

∣∣∣∣∣
βγ+1=µ̂γ+1

−∂2log{π(BH)(βγ+1|y,g,ϕ)}
∂a∂βγ

∣∣∣∣∣
βγ+1=µ̂γ+1

−∂2log{π(BH)(βγ+1|y,g,ϕ)}
∂βγ∂a

∣∣∣∣∣
βγ+1=µ̂γ+1

−∂2log{π(BH)(βγ+1|y,g,ϕ)}
∂a2

∣∣∣∣∣
βγ+1=µ̂γ+1

 ,
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B.2 Gaussian Quadrature Approximation with Mixtures Of g-priors

the above Laplace approximation may be reduced in the following

log
{
f(y|βγ+1,ϕ,γ)π(BH)(βγ+1|g,ϕ, δ,γ)

}
≈ log

{
f(y|µ̂γ+1,ϕ,γ)π(BH)(µ̂γ+1|g,ϕ, δ,γ)

}
− 1

2
(
βγ+1 − µ̂γ+1

)T
R̂γ+1

(
βγ+1 − µ̂γ+1

)
,

using this expression into the marginal likelihood (3.10) for the joint vector βγ+1 we
have

m(BH)(y|γ, g) =
∫

βγ+1

exp
{
log

{
f(y|βγ+1,ϕ,γ)π(BH)(βγ+1|g,ϕ, δ,γ)

}}
dβγ+1

≈f(y|µ̂γ+1,ϕ,γ)π(BH)(µ̂γ+1|g,ϕ, δ,γ)∫
βγ+1

exp
{

−1
2
(
βγ+1 − µ̂γ+1

)T
R̂γ+1

(
βγ+1 − µ̂γ+1

)}
dβγ+1,

the last step of the above expression may be reduced using (3.9), (3.7)

m(BH)(y|γ, g) ≈f(y|µ̂γ+1,ϕ,γ)(2πgδϕ)− pγ
2 det(XT

γXγ) 1
2 exp

{
− 1

2gϕδ µ̂
T
γX

T
γXγµ̂

T
γ

}

(2π)
pγ +1

2 det(R̂γ+1)− 1
2 ,

hence, the last step is equal to (3.11) is verified due to the integrated normal kernel of
the multivariate normal distribution Npγ

(
µ̂γ , R̂

−1
γ+1

)
.

B.2 Gaussian Quadrature Approximation with Mix-
tures Of g-priors

It is known that univariate integrals of the form for a real valued function f(z)

∞∫
−∞

exp (−z2)f(z)dz,

may be approximated with a Gaussian-type formula

N∑
j=1

vjf(zj),
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B.2 Gaussian Quadrature Approximation with Mixtures Of g-priors

where
vj = 2N−1N !

√
π

N2 [Hen−1(zj)]

and zj is the j-th zero Hermite polynomial Hen−1(z); for more details see Davis and
Rabinowitz (1986). Moreover, the remainder function has the form

RN = N !
√
π

2N(2N)!f
(2N)(q),

for some q, if f(z) is indeed a polynomial of degree 2N − 1, the Gaussian quadrature
(B.1) will be precise and will result with a remainder function RN = 0. If F (z) is a
suitably regular function, then

g(z) = F (z)(2πr2)− 1
2 exp

{
−1

2

(
z − m̄

sm̄

)2}
,

where m̄, sm̄ are the mean and standard deviation of z respectively and after the
substitution of variables z = m̄+

√
2sm̄t using

dz

dt
=

√
2sm̄,

considering the transformation step for the integral

∞∫
−∞

g(z)dz =
∞∫

−∞

1√
π
F (m̄+

√
2sm̄t) exp

{
−t2

}
dt,

which has the form of (B.1). Using Gaussian quadrature formula (B.1), the above
integral is approximated as

∞∫
−∞

g(z)dz ≈
N∑

j=1
vj

1√
π
F (m̄+

√
2sm̄tj) (B.1)

≈
N∑

j=1
vj exp (t2j)

√
2sm̄F (m̄+

√
2sm̄tj) (B.2)

≈
N∑

j=1
mjF (zj),

where we denote the actual weights mj = vj exp (t2j)
√

2sm̄ and nodes zj = m̄+
√

2sm̄tj .
Tables of tj ,vj and vj exp (t2j) are available for N and the error term decreases if F (z) is
approximately a polynomial. Since, in Bayesian inference the integrals involve usually
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B.2 Gaussian Quadrature Approximation with Mixtures Of g-priors

posterior densities, m̄, sm̄ will be substituted by the posterior mean and standard
deviation ẑ, σ̂z. The Gaussian quadrature will have satisfactory results if the posterior
density is approximated by the product of a normal density and a polynomial degree
at most of order 2N − 3.
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B.3 Laplace Approximation of Li and Clyde

B.3 Laplace Approximation of Li and Clyde

The authors provide a Laplace approximation (integrated Laplace approximation)
based on a Taylor series expansion of second order for the log-likelihood function
f(y|a,βγ ,ϕ,γ) around the maximum likelihood estimator (â, β̂γ) of model γ

log
{
f(y|a,βγ ,ϕ,γ)

}
≈ log

{
f(y|â, β̂γ ,ϕ,γ)

}
+
 a− â

βγ − β̂γ

T
∂log

{
f(y|â, β̂γ ,ϕ,γ)

}
∂ψ̂γ

∣∣∣∣∣∣
(̂a,β̂γ)=(̂a,β̂γ)


− 1

2

 a− â

βγ − β̂γ

T

I(LC)(ψ̂γ)
 a− â

βγ − β̂γ

 ,

where the following expression hold ∂log {f(y|̂a,β̂γ ,ϕ,γ)}
∂ψ̂γ

∣∣∣∣∣
(̂a,β̂γ)=(̂a,β̂γ)

=


∂log {(f(y|̂a,β̂γ ,ϕ,γ)}

∂â
∂log(f(y|̂a,β̂γ ,ϕ,γ))

∂β̂γ

,

 a− â

βγ − β̂γ

T
∂log {f(y|̂a,β̂γ ,ϕ,γ)}

∂ψ̂γ

∣∣∣∣∣∣
(̂a,β̂γ)=(̂a,β̂γ)

 = 0, because of the maximum likeli-

hood estimator (â, β̂γ) with observed Fisher information matrix I(LC)(ψ̂γ) denoted
as

I(LC)(ψ̂γ) =

−
∂2log

{
f(y|â, β̂γ ,ϕ,γ)

}
∂ψ̂

2
γ

∣∣∣∣∣∣
(̂a,β̂γ)=(̂a,β̂γ)


=
 I(LC)(â|γ) 0p

0T
p I(LC)(β̂γ)

 ,
the above Laplace approximation may be reduced in the following

log
{
f(y|a,βγ ,ϕ,γ)

}
≈ log

{
f(y|â, β̂γ ,ϕ,γ)

}
− 1

2

 a− â

βγ − β̂γ

T

I(LC)(ψ̂γ)
 a− â

βγ − β̂γ

 ,
and after some linear algebra steps the above expression is reduced as

log
{
f(y|a,βγ ,ϕ,γ)

}
≈ log

{
f(y|â, β̂γ ,ϕ,γ)

}
− 1

2I
(LC)(â|γ) (a− â)2

− 1
2
(
βγ − β̂γ)TI(LC)(β̂γ)(βγ − β̂γ

)
,
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B.3 Laplace Approximation of Li and Clyde

substituting this expression into the marginal likelihood (3.18) we have

m(LC)(y|γ, g) ≈ f(y|a,βγ ,ϕ,γ)
∫
a

exp
{

−1
2I

(LC)(â|γ) (a− â)2
}
π(LC)(a|γ)da

∫
βγ

exp
{

−1
2
(
βγ − β̂γ)TI(LC)(β̂γ)(βγ − β̂γ

)}
π(LC)(βγ |â, β̂γ , g,ϕ,γ)dβγ ,

the last step of the above expression may be reduced in the following using (3.16),
(3.17) as

m(LC)(y|γ, g) ≈ (2πnv) 1
2 (2π)− pγ

2 det(I(LC)(β̂γ)) 1
2 g− pγ

2 f(y|a,βγ ,ϕ,γ)

exp
{

−1
2I

(LC)(â|γ)â2
} ∫

a

exp
{

−1
2

[(
1 + nvI(LC)(â|γ)

nv

)
a2 − 2aâI(LC)(â|γ)

]}
da

exp
{

−1
2 β̂

T

γI(LC)(β̂γ)β̂γ
}

∫
βγ

exp
{

− 1
2g
[
(g + 1)βT

γI(LC)(β̂γ)βγ − 2gβT
γI(LC)(β̂γ)β̂γ

]}
dβγ ,

m(LC)(y|γ, g) ≈ (2πnv) 1
2 (2π)− pγ

2 det(I(LC)(β̂γ)) 1
2 g− pγ

2 f(y|a,βγ ,ϕ,γ)

exp
{

−1
2I

(LC)(â|γ)â2
}

exp
1

2

(
1 + ncI(LC)(â|γ)

nv

)a2I(LC)(â|γ)2
(

nv

1 + nvI(LC)(â|γ)

)2
∫

a

exp
{

−1
2

(
1 + ncI(LC)(â|γ)

nv

)[
a2 − 2aâI(LC)(â|γ)

(
nv

1 + nvI(LC)(â|γ)

)]}
da

exp
{

−1
2 β̂

T

γI(LC)(β̂γ)β̂γ
}

exp
{

1
2g v̂

T
γ V̂

−1
γ v̂γ

}
∫
βγ

exp
{

− 1
2g

[
βT
γ V̂

−1
γ βγ − 2βT

γ V̂
−1
γ v̂γ + v̂T

γ V̂
−1
γ v̂γ

]}
dβγ ,

where V̂ γ = (g + 1)−1I(LC)(β̂γ)−1, v̂γ = gV̂
−1
γ I(LC)(β̂γ)βγ and after some algebra

we recognise that in the final step the integrals are just the integrated kernels of the
posterior distributions βγ |y, g,γ ∼ Npγ

(
v̂γ , gV̂ γ

)
,

a|y,γ ∼ N
(
âI(LC)(â|γ)

(
nv

1+nvI(LC) (̂a|γ)

)
,
(

1+I(LC) (̂a|γ)
nv

)−1)
.

Moreover, after some elementary algebra these posteriors are written equivalently
βγ |y, g,γ ∼ Npγ

(
g

g+1 β̂γ ,
g

g+1I
(LC)(β̂γ)−1

)
,
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B.4 Hyper-g-prior Laplace Approximation of Li and Clyde

a|y,γ ∼ N
(
âI(LC)(â|γ)

(
nv

1+nvI(LC) (̂a|γ)

)
,
(

1+I(LC) (̂a|γ)
nv

)−1)
and the marginal likelihood

finally can be written as

m̂(LC)(y|g,γ) ≈ f(y|â, β̂γ ,ϕ,γ)[1 + nvI(LC)(â|γ)]− 1
2 exp

{
−1

2

(
â2I(LC)(â|γ)

1 + nvI(LC)(â|γ)

)}

(1 + g)− pγ
2 exp

{
− Qγ

2(g + 1)

}

which is identical to (3.20).

B.4 Hyper-g-prior Laplace Approximation of Li
and Clyde

The computation of Bayes factor (3.24) under hyper-g-prior is derived by

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

α− 2
2

∞∫
0

(1 + g)− pγ
2 exp

{
− Qγ

2(g + 1)

}
(1 + g)

− α
2 dg,

where in the above expression we can use the transformation u = 1
g+1 in order to handle

calculations in an easier way. The transformed prior can be found by the transform
theorem of distributions as the following

u = 1
g + 1 ⇔ g = 1 − u

u
,∣∣∣∣∣dgdu

∣∣∣∣∣ = 1
u2 ,

g > 0 ⇔ 1 − u

u
> 0 ⇔ u ∈ (0, 1),

π(u) = α− 2
2 u

α
2 −2, (B.3)

where from (B.3) we notice that the transformed variable u ∼ Beta
(
1, α

2 − 1
)

which
coincides with the prior distribution of the shrinkage factor u = g

g+1 . Based on these
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B.5 Confluent Hypergeometric Laplace Approximation of Li and Clyde

calculations, the Bayes factor (3.24) of hyper-g-prior is modified in terms of u as

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2 α− 2

2

1∫
0

u
pγ
2 + α

2 −2 exp
{

−uQγ2

}
du,

the above integral although it appears difficult to manipulate, it belongs to the
general family of distributions which are called confluent hypergeometric distributions;
see for more Gordy (1998). So, taking in consideration the result of the confluent
hypergeometric distribution, the Bayes factor is reformulated as

B̂F
(LC)
[γ:γ0] ≈α− 2

2
f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

B
(
pγ + α

2 − 1, 1
)

1F1

(
pγ + α

2 − 1, pγ + α

2 ,−Qγ
2

)
,

where the last step is identical to (3.25) and verified due to the fact that the term∫ 1
0 u

pγ
2 + α

2 −2 exp
{
−uQγ

2

}
du can be recognized as the normalizing constant of the poste-

rior distribution
CH

(
pγ+α

2 − 1, pγ+α
2 ,−Qγ

2

)
.

B.5 Confluent Hypergeometric Laplace Approxima-
tion of Li and Clyde

After accounting for the hyper-prior (3.26), we can compute Bayes factor (3.26)

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

1
B( e

2 ,
d
2) 1F1( e

2 ,
e+d

2 , r
2)

∞∫
0

g
e
2 −1(1 + g)− pγ +e+d

2 exp
{

−1
2

(
Qγ − rg

g + 1

)}
dg,

where the transformation u = 1
g+1 accommodates a more appropriate form of the above

integral through the confluent hypergeometric distribution. The transformed prior can
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B.5 Confluent Hypergeometric Laplace Approximation of Li and Clyde

be found by the transform theorem of distributions as the following

u = 1
g + 1 ⇔ g = 1 − u

u
,∣∣∣∣∣dgdu

∣∣∣∣∣ = 1
u2 ,

g > 0 ⇔ 1 − u

u
> 0 ⇔ u ∈ (0, 1),

π(u) =
u

d
2 −1(1 + g) e

2 −1 exp
{

r
2(1 − u)

}
B( e

2 ,
d
2) 1F1( e

2 ,
e+d

2 , r
2)

, (B.4)

where from (B.4) we notice that the transformed variable u ∼ CH
(

d
2 ,

e
2 ,

r
2

)
; see Li and

Clyde (2013). The Bayes factor can be rewritten in terms of u as

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2

1
B( e

2 ,
d
2) 1F1( e

2 ,
e+d

2 , r
2)

1∫
0

u
d+pγ

2 −1u
e+d+pγ

2 −1 exp
{

−1
2 [u(Qγ + r) − r]

}
du

where in the above appears the normalizing constant,∫ 1
0 u

d+pγ
2 −1u

e+d+pγ
2 −1 exp

{
−1

2 [u(Qγ + r) − r]
}
du

∝
∫ 1

0 u
d+pγ

2 −1u
e+d+pγ

2 −1 exp
{
−1

2 [u(Qγ + r)]
}
du, of CH

(
d+pγ

2 , e+d+pγ

2 , r+Qγ

2

)
. Therefore

taking in consideration the result of confluent hypergeometric distribution, the Bayes
factor is modified as the following

B̂F
(LC)
[γ:γ0] ≈

f(y|â, β̂γ ,ϕ,γ)
f(y|â,ϕ,γ0)

[
I(LC)(â|γ)
I(LC)(â|γ0)

]− 1
2 B

(
e+d+pγ

2 , d+pγ

2

)
1F1

(
d+pγ

2 , e+d+pγ

2 , r+Qγ

2

)
B( e

2 ,
d
2) 1F1( e

2 ,
e+d

2 , r
2)

.

which is the same as (3.27).
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Appendix C

Bayesian Variable Selection in
Multinomial Logistic Regression

C.1 Proof of SSVS in Augmented Multinomial Lo-
gistic Setup

Consider again the joint posterior (4.25) for fixed q and notice that the prior for β
may be written as follows in terms of each regression coefficients specific class βq with
respect to the rest given the baseline class q∗ as follows

πSSV S(β|Q, δ, g,γ) ∝ exp
(

−
βT

qD
−1
q I(BH)(0pq ,0pq)D−1

q βq

2gQ2

)

exp
−

∑
q ̸=q′ βT

q′D−1
q′ I(BH)(0pq′ ,0pq′ )D−1

q′ βq′

2gQ2


exp

−
−2∑q ̸=q′ βT

qD
−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2


= exp

−
βT

qD
−1
q I(BH)(0pq ,0pq)D−1

q βq − 2∑q ̸=q′ βT
q D

−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2


exp

−
∑

q ̸=q′ βT
q′D−1

q′ I(BH)(0pq′ ,0pq′ )D−1
q′ βq′

2gQ2

 (C.1)

= π̃SSV S(βq|β−q, Q, δ, g,γq,γ−q)
∏

q ̸=q′
π(βq′|Q, δ, g,γq′), (C.2)

where π̃SSV S(βq|.) is defined by (4.26) and
βq′|Q, δ, g,γq′ ∼ Npq′ (0p′

q
, Q2gDq′I(BH)(0pq′ ,0pq′ )−1Dq′) that allows to write the joint
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C.1 Proof of SSVS in Augmented Multinomial Logistic Setup

posterior (4.25) as the following

π̃SSV S(aq,βq,γq,a−q,β−q, g,γ−q|yj,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)π(BH)(aq)

π̃SSV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′ |Q, δ, g,γq′)π(g)π(γ).
(C.3)

By this way, we aim to apply the Gibbs sampler by starting from the full conditional
of aq as the following does

π̃SSV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)π(BH)(aq)

π̃SSV S(βq|β−qQ, δ, g,γq,γ−q)π(βq′|Q, δ, g,γq′)π(g)π(γ)

∝
n∏

i=1
f(zi,q|aq,βq, ωi,q)π(BH)(aq)

∝a2
q

n∑
i=1

ωi,q + 2aq1T
n ΩqXβq − 2aq1T

n ΩqCq − 2aq1T
n Ωqzq

= π(aq|a−q,βq,β−qωq,yq), (C.4)

where π(aq|.) is found in the implementation Step 4: of augmented SSVS.
Next, we are interested in retrieving the full conditional of βq based on the joint
posterior (C.3) by writting the joint posterior as follows

π̃SSV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)π(BH)(aq)

π̃SSV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′|Q, δ, g,γq′)π(g)π(γ)

∝
n∏

i=1
f(zi,q|aq,βq, ωi,q)π̃SSV S(βq|β−q, Q, δ, g,γq,γ−q)

∝ exp
(

− 1
2gβ

T
q

(
gXT ΩqX +D−1

q I(BH)(0pq ,0pq)D−1
q /Q2

)
βT

q

)

exp
(

− 1
2g
(
−2βT

q

(
g
[
XT ΩqCq +XT Ωqzq − aqX

T Ωq1n

])))

exp
−1

2

−2βT
q

∑
q ̸=q′

D−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′/Q2

 (C.5)

= π(βq|β−q, aq,a−q, g, δ,γq,γ−q,yq,ωq), (C.6)
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C.1 Proof of SSVS in Augmented Multinomial Logistic Setup

where π(βq|.) is found in the implementation Step 3: of augmented SSVS. The next
step it to obtain the full conditional of γq expressing the joint prior (C.3) as follows

π̃SSV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)π(BH)(aq)

π̃SSV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′|Q, δ, g,γq′)π(g)π(γ)

=
n∏

i=1
f(zi,q|aq,βq, ωi,q)π(ωi,q|b, 0)π(BH)(aq)

π̃SSV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′|Q, g,γq′)π(g)
Q−1∏
q=1

π(γ)

∝ π̃SSV S(βq|Q,β−q, g,γq,γ−q)π(γq) (C.7)
= π(γq|βq,β−q, g,γ−q), (C.8)

where π(γq|.) is obtained in the implementation Step 2: of augmented SSVS. After-
wards, the full conditional for g is obtained based on the joint posterior (C.1)

π̃SSV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝

exp
−

βT
qD

−1
q I(BH)(0pq ,0pq)D−1

q βq − 2∑q ̸=q′ βT
qD

−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2


exp

−
∑

q ̸=q′ βT
q′D−1

q′ I(BH)(0pq′ ,0pq′ )D−1
q′ βq′

2gQ2


∝ g− (Q−1)pq

2

exp
−

βT
qD

−1
q I(BH)(0pq ,0pq)D−1

q βq − 2∑q ̸=q′ βT
qD

−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2

 π(g),

where if Zellner-Siow is adopted for g, then the full conditional of g is found as

π̃SSV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝ g− (Q−1)pq
2

exp
−

βT
qD

−1
q I(BH)(0pq ,0pq)D−1

q βq − 2∑q ̸=q′ βT
qD

−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2

 πZS(g)

∝ exp
−

βT
q D

−1
q I(BH)(0pq ,0pq)D−1

q βq − 2∑q ̸=q′ βT
qD

−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2


g(− (Q−1)pq

2 − 3
2 ) exp

(
−n

2 g
)

(C.9)

= πZS(g|Q,βq,β−q,γq,γ−q,y), (C.10)
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C.2 Proof of GVS in Augmented Multinomial Logistic Setup

where πZS(g|.) is obtained in the implementation Step 7: A. of augmented SSVS,
otherwise for hyper-g the full conditional remains in an intractable form suggesting
the use of Metropolis-Hastings

π̃SSV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝ g− (Q−1)pq
2

exp
−

βT
q D

−1
q I(BH)(0pq ,0pq)D−1

q βq − 2∑q ̸=q′ βT
q D

−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2

 πhy(g)

∝ exp
−

βT
q D

−1
q I(BH)(0pq ,0pq)D−1

q βq − 2∑q ̸=q′ βT
q D

−1
q I(BH)(0pq ,0pq′ )D−1

q′ βq′

2gQ2


g− (Q−1)pq

2 (1 + g)− α
2

= πhy(g|Q,βq,β−q,γq,γ−q,y), (C.11)

where πhy(g|.) is obtained in the implementation Step 7: B. of augmented SSVS.

C.2 Proof of GVS in Augmented Multinomial Lo-
gistic Setup

Consider again the joint posterior (4.30) for fixed q and notice that the prior (4.16) for
β may be written as follows in terms of each regression coefficients specific class βq

with respect to the rest given the baseline class q∗ as follows

πGV S(β|Q, δ, g,γ) ∝ exp

−
(βq − µq)T

(
ΓqI(BH)(0pq ,0pq )Γq

gQ2 + d̃q

)
(βq − µq)

2


exp

−
−2∑q ̸=q′(βq − µq)T ΓqI(BH)(0pq ,0pq′ )Γq′(βq′ − µq′)

2gQ2



exp

−

∑
q ̸=q′(βq′ − µq′)T

(
Γq′I(BH)(0pq′ ,0pq′ )Γq′

gQ2 + d̃q′

)
(βq′ − µq′)

2

 (C.12)
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C.2 Proof of GVS in Augmented Multinomial Logistic Setup

πGV S(β|Q, δ, g,γ) ∝ exp
(

−
βT

q ΓqI(BH)(0pq ,0pqβq)Γqβ

2gQ2

)
exp

(
−

−2βT
q ΓqI(BH)(0pq ,0pq)µq

2gQ2

)

exp
−

−2∑q ̸=q′ βT
q ΓqI(BH)(0pq ,0pq′ )Γq′βq′

2gQ2

 exp
−

−2∑q ̸=q′ βT
q ΓqI(BH)(0pq ,0pq′ )Γq′µq′

2gQ2


exp

(
−1

2
[
βT

q d̃qβq − 2βT
q d̃qµq

])
exp

−1
2

∑
q ̸=q′

(
βT

q′d̃q′βq′ − 2βT
q′d̃q′µq′

)
= π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)

∏
q ̸=q′

π(βq′ |Q, δ, g,γq′), (C.13)

where π̃GV S(βq|. is defined by (4.31) and βq′ |Q, δ, g,γq′ ∼ Npq′ (µq′ , d̃
−1
q′ ) permits to

express the joint posterior (4.30) as the following

π̃GV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)π(BH)(aq)

π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)
∏

q ̸=q′
π(βq′ |Q, δ, g,γq′)π(g)π(γ). (C.14)

From the above joint posterior, we outline the Gibbs sampler basically starting from
the full conditional of aq as the following

π̃GV S(aq,βq,γq,a−q,β−q,g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)π(BH)(aq)

π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′|Q, δ, g,γq′)π(g)π(γ)

∝
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π(BH)(aq)

∝a2
q

n∑
i=1

ωi,q + 2aqβ
T
q ΓqXΩq1n − 2aq1T

n ΩqC̃q − 2aq1T
n Ωqzq

= π(aq|a−q,βq,β−qωq,γq,γ−q,yq), (C.15)

where π(aq|.) is defined in in the implementation Step 4: of augmented GVS. The
next step involves the full conditional of βq which can be retrieved in closed form by
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C.2 Proof of GVS in Augmented Multinomial Logistic Setup

the joint posterior (C.14) as follows

π̃GV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)π(BH)(aq)

π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)
∏

q ̸=q′
π(βq′ |Q, δ, g,γq′)π(g)π(γ)

∝
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)

∝ exp
(

−1
2β

T
q

(
ΓqI(BH)(0pq ,0pq)Γq

gQ2 + ΓqX
T ΩqXΓq + d̃q′

)
βT

q

)

exp
(

−1
2
(
−2βT

q

([
ΓqX

T ΩqC̃q + ΓqX
T Ωqzq − aqΓqX

T Ωq1n

])))

exp
(

−1
2

(
−2βT

q

(
ΓqI(BH)(0pq ,0pq)Γqµq

gQ2

)))

exp
−1

2

−2βT
q

∑q ̸=q′

(
ΓqI(BH)(0pq ,0pq′ )Γq′βq′ − ΓqI(BH)(0pq ,0pq′ )Γq′µq′

)
gQ2


exp

(
−1

2
(
−2βT

q d̃qµq

))
(C.16)

= π(βq|Q,β−q, g,γq,γ−q,yq,ωq), (C.17)

where π(βq|.) is defined in the implementation Step 3: of augmented GVS.
Then proceeding with the Gibbs sampler, the full conditional of γq is extracted in
closed form from the joint prior (C.14) as follows

π̃GV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)π(BH)(aq)

π̃GV S(βq|β−qQ, δ, g,γq,γ−q)π(βq′|Q, δ, g,γq′)π(g)π(γ)

=
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)π(BH)(aq)

π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′|Q, δ, g,γq′)π(g)
Q−1∏
q=1

π(γ)

∝ π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)π(γq) (C.18)
= π(γq|βq,β−q, aq,a−q, g,γ−q), (C.19)
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C.2 Proof of GVS in Augmented Multinomial Logistic Setup

where π(γq|.) is defined in the implementation Step 2: of augmented GVS. Afterwards,
the full conditional for g is obtained based on the joint posterior (C.14)

π̃GV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
n∏

i=1
f(zi,q|aq,βq, ωi,q,γq)π(ωi,q|b, 0)π(BH)(aq)

π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′ |Q, δ, g,γq′)π(g)π(γ)
∝ π̃GV S(βq|β−qQ, δ, g,γq,γ−q)π(βq′|Q, δ, g,γq′)π(g), (C.20)

where if a Zellner-Siow is adopted for g, then the following full conditional is retrieved
in closed form as following

π̃GV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′|Q, δ, g,γq′)πZS(g)

∝ exp
(

− 1
2gQ2

(
βq − µq

)T
ΓqI(BH)(0pq ,0pq)Γq

(
βq − µq

))

exp
 1
gQ2

∑
q ̸=q′

(
βq − µq

)T
ΓqI(BH)(0pq ,0pq′ )Γq′

(
βq′ − µq′

) (C.21)

= πZS(g|Q,βq,β−q,γq,γ−q,y), (C.22)

where πZS(g|.) is obtained in the implementation Step 7: A. of augmented GVS,
otherwise for hyper-g

π̃GV S(aq,βq,γq,a−q,β−q, g,γ−q|yq,ωq) ∝
π̃GV S(βq|β−q, Q, δ, g,γq,γ−q)π(βq′ |Q, δ, g,γq′)πhy(g)

exp
(

− 1
2gQ2

(
βq − µq

)T
ΓqI(BH)(0pq ,0pq)Γq

(
βq − µq

))

exp
 1
gQ2

∑
q ̸=q′

(
βq − µq

)T
ΓqI(BH)(0pq ,0pq′ )Γq′

(
βq′ − µq′

) (C.23)

(1 + g)− α
2 g− pγ

2 (C.24)
= πhy(g|Q,βq,β−q,γq,γ−q,y) (C.25)

where πhy(g|Q,βq,β−q,γq,γ−q,y) is obtained in the implementation Step 7: B. of
augmented GVS.
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C.3 Bayesian Variable Selection in Logistic Regres-
sion

Logistic regression models can be considered a special family of multinomial logistic
regression reducing only to a binary response variable. All MCMC of Bayesian variable
selection of typical and augmented logistic regression are special cases of multinomial
logistic regression presented in the third chapter of this thesis and for the sake of
feasibility we cannot describe in detail, since they are created similarly. In this setup,
the variance-covariance and covariance structure of expected Fisher information matrix
between the same or different logistic regression will be dropped especially for the
covariance structure, since only the involved part of variance-covariance of the same
class will be used and for Q = 2, we recover the logistic regression problem.

C.4 Simulated Experiments

In this section, we used two simulation examples, with independent and correlated
predictors for logistic regression presented also in Hansen and Yu (2003), Li and Clyde
(2013) and Chen et al. (2008) regarding the Bayesian variable selection methods using
MCMC methods with mixtures of g-priors. These datasets contain p = 5 covariates
of n = 100 values. In case of the independent design (r = 0) the covariates were
obtained as independent standardized normal vectors X1, . . . ,X5 iid ∼ N100(0, 1),
whereas in the correlated design (r = 0.75) each one was drawn from standardized
normal distribution with pairwise correlations given by

corr(Xi, Xj) = r|i−j|, 1 ≤ i < j ≤ p. (C.26)

Scenario
Logistic

a β1 β2 β3 β4 β5

null 0.1 0 0 0 0 0
sparse 0.1 0.7 0 0 0 0
medium 0.1 1.6 0.8 -1.5 0 0
full 0.1 1.75 1.5 -1.1 1.4 0.5

Table C.1 Logistic regression scenarios using independent (r = 0) and correlated
predictors (r = 0.75).
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C.4 Simulated Experiments

Moreover, four sparse scenarios are examined within each design to describe the
true generating models based on Table (C.1), where the coefficients of this Table were
smaller than of Hansen and Yu (2003) set such that the odds ratios were 2, 2.5 and 3.5
for sparse, medium and full scenarios respectively based on Fouskakis et al. (2018).

Prior Inputs-Initial Values
Parameter Value
τ 0.02
c 50
γ(0) (1, 1, 1, 1, 1)T

β(0) β̂

a(0) â

g(0) n

ω(0) (1, . . . , 1)

Table C.2 Prior-inputs and initial values

Our goal is to assess the performance of MCMC for Bayesian variable selection
methods. In particular, we present the main body of the results using as basis the
SSVS and GVS computational methods in the framework of g-priors and its mixtures
adopted each time for the typical and augmented logistic regression. Moreover, we
examine further also the computational efficiency based on the effective sample size
and Monte Carlo standard error estimates related to the discrepancy of iterations
convergence and sampling error attributed to the MCMC method. In particular, among
methods using hyper-g we considered the proposed value α = 3 by Liang et al., (2008)
and a Metropolis-Hastings random walk step with tuning variance ug = 1 in order
to obtain convergence. Regarding the tuning of proposals of a, β for both SSVS and
GVS, we used t = 0.4 and va = 1 respectively to ensure the good mixing of the chains.
With respect to MCMC methods, prior inputs τj and cj for j = 1, . . . , p were set on
practical significance for SSVS to achieve similar results with the objective Bayesian
methods and µ̄, s̄2 were computed from pilot run under the full model for GVS of
each simulated dataset repetition. The option of prior input τj and cj are such that
τj = 0.02 << τjcj = 1; see for more Table C.2. A detailed description of all Bayesian
variable selection methods which are used as references in Figures and in Tables, are
summarized in Table C.3.
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Acronym Computational Method Prior Model
1 ssvs.hyp.typ Stochastic Search Variable Selection Hyper-g Typical

for α = 3, τ = 0.02, c = 50,
ua = 1, t = 0.4, ug = 1

2 ssvs.hyp.aug Stochastic Search Variable Selection Hyper-g Augmented
for α = 3, ug = 1

3 gvs.hyp.typ Gibbs Variable Selection Hyper-g Typical
for α = 3, ua = 1, t = 0.4, ug = 1

4 gvs.hyp.aug Gibbs Variable Selection Hyper-g Augmented
for α = 3, t = 0.4

5 ssvs.ZS.typ Stochastic Search Variable Selection Zellner-Siow Typical
for τ = 0.02, c = 50, ua = 1, t = 0.4

6 ssvs.ZS.aug Stochastic Search Variable Selection Zellner-Siow Augmented
for τ = 0.02, c = 50

7 gvs.ZS.typ Gibbs Variable Selection Zellner-Siow Typical
for ua = 1, t = 0.4

8 gvs.ZS.aug Gibbs Variable Selection Zellner-Siow Augmented
for ua = 1, t = 0.4

9 ssvs.g.typ Stochastic Search Variable Selection g-prior Typical
for τ = 0.02, c = 50, ua = 1, t = 0.4, g = n

10 ssvs.g.aug Stochastic Search Variable Selection g-prior Augmented
for τ = 0.02, c = 50, g = n

11 gvs.hyp.typ Gibbs Variable Selection g-prior Typical
for ua = 1, t = 0.4, g = n

12 gvs.hyp.aug Gibbs Variable Selection g-prior Augmented
for g = n

Table C.3 Acronyms of Bayesian variable selection methods with MCMC for logistic
regression.

Scarce information regarding which variables to include or not in the model, favours
the adoption of objective priors to each respective model, specific parameter and to the
model itself. In particular, we used the joint hierarchical mixture priors (4.12), (4.19 )
of Bové and Held (2011) adopted in the style of logistic regression in SSVS and GVS to
account for the joint prior dependences among parameters a, β, g, γ. All the compared
approaches under Zellner-Siow prior used (2.10), whereas for hyper-g-prior was used
(2.12). Moreover, since the number of covariates p is small, we use a uniform prior on
model space to reflect our prior ignorance on which models to prefer. Implementing
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Bayesian variable selection MCMC methods to these simulated data, model fitting was
applied through a Gibbs algorithm with successive Metropolis-Hastings steps using
the R programming language. We simulated Markov chains of 40000 valid values
to achieve convergence for both typical and augmented logistic regression Bayesian
variable selection methods. More precisely, for all methods we used the maximum
likelihood estimators for parameters β and intercept a as initial values for each repeated
dataset β(0), a(0), for the vector of model indicators γ we used as initial values γ(0),
for g we used g(0) and for the methods with the latent data we used ω(0); please refer
to Table (C.2).
Results based on the frequency of identifying the true data-generating model through
the maximum aposteriori model for the typical and augmented logistic regression over
100 repeated simulations of each scenario and correlation design are provided in Table
(C.4). Comparison of Bayesian variable selection methods with mixtures of g-priors
approaches versus the rest of the methods shows the following

Scenario r

Bayesian variable selection methods
ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs.
hyp. hyp. hyp. hyp. ZS. ZS. ZS. ZS. g. g. g. g.
typ aug typ aug typ aug typ aug typ aug typ aug

null
0.00 45 40 55 46 90 91 90 90 87 85 85 84
0.75 53 58 53 47 92 93 85 85 89 90 85 85

sparse
0.00 63 67 64 65 67 66 67 67 71 69 68 69
0.75 63 61 57 57 70 69 70 71 73 74 73 73

medium
0.00 80 80 79 80 79 78 78 78 79 79 78 79
0.75 36 34 31 30 32 30 27 27 31 33 26 26

full
0.00 3 3 3 3 3 3 3 3 3 3 3 3
0.75 21 23 17 17 20 21 14 15 18 19 12 12

Table C.4 Number of 100 simulated samples that the MAP coincides with the true
generating model of Table (C.1) under various scenarios for independent and correlated
covariates (row-wise largest value in bold).

i) Generally, the procedures with mixtures of g-priors perform successfully in 6 out
of the 8 scenarios. The best method of identifying the true generating mechanism
of the data includes one of the methods with mixtures of g-priors

ii) In the null scenario, all methods with some exceptions (ssvs.hyp.typ, ssvs.hyp.aug,
gvs.hyp.aug) of mixtures g-priors trace correctly the true generating mechanism in
the independent covariates design, whereas in correlated covariates, the mentioned
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exceptions along with the rest of the methods show an increasing tendency of
the true model rate

iii) In the sparse scenario, all computational methods under the various prior choices
perform well with good true model rate both in the independent and correlated
covariates design, whereas in the medium scenario they only perform very well in
the independent in comparison with the correlated covariates design.

iv) In the full scenario, all Bayesian variable selection methods seem to perform
equally poorly in identifying the true data generating model with true model rate
3% in the independent covariates design, whereas in the correlated covariates de-
sign their performance is improved with increasing magnitude in the identification
of the true model rate.

Regarding the comparison of methods with fixed g versus random, we observe that
they are more robust. Moreover, Zellner-Siow priors and g-priors behave similarly
in comparison with the hyper-g. This is not a surprise since both methods tend to
prefer sparser models resulting in similar results. Additional information based on
comparisons made between all the methods are found in Figures (C.1), (C.2) which
depict the marginal posterior inclusion probabilities over the 100 simulated repetitions
under the various Bayesian variable selection methods. From these results we observe
that mixtures of g-priors exhibit larger posterior inclusion probabilities only for the
non important covariates with respect to fixed g-priors methods. In particular, hyper-g
priors suffer from the inflation of posterior inclusion probabilities towards 0.5, whereas
the Zellner-Siow posterior inclusion probabilities are less inflated. This is a direct
consequence of the additional stochasticity of the random g accumulated in the non
certain covariates. This behaviour was expected since hyper-g priors tend to support
saturated models in comparison with the Zellner-Siow priors. Moreover, Zellner-Siow
priors are the only mixtures of g-priors that exhibit strong shrinkage in terms of
the non important covariates. Similar conclusions hold for the posterior regression
coefficients as the marginal posterior inclusion probabilities of all Bayesian variable
selection methods based on Figures (C.3) and (C.4). On the other hand, additional
remarks based on comparison of Bayesian variable selection methods with mixtures
of g-priors approaches versus the rest of the methods between typical and augmented
logistic regression models are also summarized as follows

i) Overall, methods with mixtures of g-priors with data augmentation perform
satisfactorily as in 6 out of the 8 scenarios the best method of identifying the true
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generating mechanism of the data includes one of the methods with mixtures of
g-priors with data augmentation

ii) In general, methods with data augmentation perform satisfactorily in 7 out of
the 8 scenarios; the best method of identifying the true generating mechanism of
the data includes one of the methods with data augmentation.

iii) Generally, there are no quite differences among Bayesian variable selection
methods for typical and augmented logistic regression apart only in the case
(null case for r=0.00: gvs.hyp.typ-gvs.hyp.aug, null case for r=0.75: ssvs.hyp.typ-
ssvs.hyp.aug, medium case: r=0.75: gvs.g.typ-gvs.g.aug).

iv) All the methods with data augmentation logistic regression model seem to perform
equally well under the various scenarios and design correlations as the typical
analogues apart from the exceptions specified above

Scenario r

Bayesian variable selection methods (n=500)
ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs. ssvs. ssvs. gvs. gvs.
hyp. hyp. hyp. hyp. ZS. ZS. ZS. ZS. g. g. g. g.
typ aug typ aug typ aug typ aug typ aug typ aug

null
0.00 49 55 59 54 97 98 95 95 95 96 95 94
0.75 68 69 68 67 99 99 96 96 98 98 96 96

sparse
0.00 82 82 80 80 96 96 93 93 96 96 93 93
0.75 78 79 81 82 95 95 92 92 95 95 92 92

medium
0.00 91 90 89 89 95 95 92 92 95 95 94 93
0.75 92 93 93 92 94 94 91 91 93 94 91 90

full
0.00 93 94 94 94 93 93 94 94 93 92 94 94
0.75 68 69 61 60 62 60 56 56 58 58 54 52

Table C.5 Number of 100 simulated samples that the MAP coincides with the true
generating model of Table (C.1) under various scenarios for independent and correlated
covariates (row-wise largest value in bold).

Regarding the properties of mixtures g-priors versus fixed g-priors based on Bayesian
variable selection methods of typical and augmented logistic regression models, the
conclusions are the same for all the scenarios under the independent and correlated
design. Since conclusions based on posterior measures were expected to be in agreement,
we further investigated the computational efficiency of each method with respect to
typical and augmented logistic regression within SSVS and GVS based on the effective
sample size ESS and Monte Carlo standard error MCe only for the scenarios that traced
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the true model. These are computed only for the non important covariates across the
five different scenarios which are found respectively in Tables (C.6), (C.7), (C.8), (C.9),
(C.10), (C.11), (C.12), (C.13), (C.14) and (C.15) for only one simulated repetition,
since we will expect similar results across the rest of 99 samples. In Particular, the
results suggests that

• All computational methods within data augmentation under the three different
prior setups show larger effective sample size ESS with respect to their typical
versions.

• All computational methods with data augmentation scheme for the three different
prior choices are more prone to lower Monte Carlo errors MCe than their typical
setup.

This seams reasonable since model complexity in data augmentation overburdens with
the incorporation of additional latent variables the ESS and hence increase the number
of iterations to converge. Regarding the computational efficiency among SSVS and
GVS we summarize that

• The typical version of SSVS shows always lower effective sample size and larger
sampling error in contrast with the typical of GVS.

• The typical version and augmented version of SSVS are exposed always to larger
sampling errors in contrast with their respective versions of GVS.

• The typical version and augmented version of GVS are more accurate and
trustworthy with respect to sampling errors.

In addition, results based on the frequency of identifying the true data-generating
model through the maximum aposteriori model for the typical and augmented logistic
regression over 100 repeated simulations of each scenario and correlation design are
also provided in Table (C.5) for sample size equal to n = 500. The compared results
show the following situations

i) In general, the Bayesian variable selection methods with mixtures of g-priors
perform successfully as in 8 out of the 8 scenarios, the best method of identifying
the true generating mechanism of the data still remains one of the methods with
mixtures of g-priors

ii) In the null scenario, apart from (ssvs.hyp.typ) methods of mixtures g-priors trace
correctly the true generating mechanism in the independent covariates design
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and in the correlated covariates. For all Bayesian variable selection methods, an
improved rate of true model identifiability is observed.

iii) In the medium and sparse scenario, all computational techniques of Bayesian
variable selection under the different prior choices, are showing an increased true
model identification in both the independent and correlated design.

iv) In the full scenario, all Bayesian variable selection methods surpass the previous
3% of true model rate in the independent covariates design with a very high
magnitude, whereas in the correlated design their performance is also improved
with a moderate model identification rate.

v) As it was expected, each Bayesian variable selection method among typical and
augmented logistic regression converge in the between posterior metrics as the
sample size increases. Even minor differences are vanished due to the impact of
large sample size n = 500.

Similar thoughts, come in agreement also with Figures (C.5) and (C.6) which describe
the marginal posterior inclusion probabilities over the 100 simulated repeated exper-
iments under the different Bayesian variable selection algorithms. It is evident that
due to the impact of large sample size, there is little uncertainty accumulated in the
non-important covariates resulting narrower in the respective boxplots. Finally, the
prior choice of mixtures of g-priors affects the specific preference of model resulting
with medium or larger complexity.
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(a) Posterior inclusion probabilities for 100 repetitions of null scenario.

(b) Posterior inclusion probabilities for 100 repetitions of sparse scenario.

(c) Posterior inclusion probabilities for 100 repetitions of medium scenario.

(d) Posterior inclusion probabilities for 100 repetitions of full scenario.

Fig. C.1 Posterior inclusion probabilities under the various methods from 100 repetitions
of independent (r = 0) covariates for different scenarios.
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(a) Posterior inclusion probabilities for 100 repetitions of null scenario.

(b) Posterior inclusion probabilities for 100 repetitions of sparse scenario.

(c) Posterior inclusion probabilities for 100 repetitions of medium scenario.

(d) Posterior inclusion probabilities for 100 repetitions of full scenario.

Fig. C.2 Posterior inclusion probabilities under the various methods from 100 repetitions
of correlated (r = 0.75) covariates for different scenarios.
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Ess, Null scenario, r = 0.00
Method γ1 γ2 γ3 γ4 γ5

ssvs.hyp.typ 789 1053 1044 994 922
ssvs.hyp.aug 1768 1873 2425 1873 2300
gvs.hyp.typ 3570 7515 9712 5518 8754
gvs.hyp.aug 12589 15810 17102 13553 15747
ssvs.ZS.typ 1150 2036 3417 1658 2269
ssvs.ZS.aug 3485 7395 8001 5011 7197
gvs.ZS.typ 26736 35758 37278 30838 32289
gvs.ZS.aug 29319 33519 40231 34595 36447
ssvs.g.typ 911 2237 3795 1712 2025
ssvs.g.aug 4901 9791 10281 6808 9560
gvs.g.typ 28393 45091 40724 28984 40413
gvs.g.aug 45964 41355 42311 35604 43571

Table C.6 Effective sample size comparison (in bold lowest value).

MCe, Null scenario, r = 0.00
Method γ1 γ2 γ3 γ4 γ5

ssvs.hyp.typ 0.017 0.015 0.015 0.015 0.016
ssvs.hyp.aug 0.011 0.011 0.010 0.011 0.010
gvs.hyp.typ 0.008 0.005 0.004 0.006 0.005
gvs.hyp.aug 0.004 0.004 0.003 0.004 0.004
ssvs.ZS.typ 0.012 0.007 0.005 0.008 0.006
ssvs.ZS.aug 0.007 0.003 0.003 0.005 0.003
gvs.ZS.typ 0.002 0.001 0.001 0.001 0.001
gvs.ZS.aug 0.002 0.001 0.001 0.001 0.001
ssvs.g.typ 0.013 0.006 0.004 0.008 0.007
ssvs.g.aug 0.005 0.003 0.003 0.004 0.003
gvs.g.typ 0.002 0.001 0.001 0.002 0.001
gvs.g.aug 0.001 0.001 0.001 0.001 0.001

Table C.7 Monte Carlo error comparison (in bold lowest value).
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Ess, Null scenario, r = 0.75
Method γ1 γ2 γ3 γ4 γ5

ssvs.hyp.typ 801 648 567 608 746
ssvs.hyp.aug 1443 1249 1390 1081 1544
gvs.hyp.typ 8463 3742 4299 5423 9598
gvs.hyp.aug 14226 10035 8830 10708 13255
ssvs.ZS.typ 2556 815 776 742 1657
ssvs.ZS.aug 5740 2941 2374 3022 5055
gvs.ZS.typ 25502 9588 11190 16834 17952
gvs.ZS.aug 28172 19567 18879 20463 30373
ssvs.g.typ 3650 1395 968 733 1717
ssvs.g.aug 8338 5414 3278 3468 6557
gvs.g.typ 26066 12560 12688 16651 13749
gvs.g.aug 27302 24939 26158 29872 27801

Table C.8 Effective sample size comparison (in bold lowest value).

MCe, Null scenario, r = 0.75
Method γ1 γ2 γ3 γ4 γ5

ssvs.hyp.typ 0.017 0.019 0.020 0.020 0.017
ssvs.hyp.aug 0.012 0.014 0.013 0.015 0.012
gvs.hyp.typ 0.005 0.008 0.007 0.006 0.005
gvs.hyp.aug 0.004 0.004 0.005 0.004 0.004
ssvs.ZS.typ 0.005 0.011 0.013 0.015 0.007
ssvs.ZS.aug 0.003 0.005 0.007 0.007 0.004
gvs.ZS.typ 0.002 0.003 0.003 0.003 0.002
gvs.ZS.aug 0.001 0.002 0.002 0.003 0.002
ssvs.g.typ 0.004 0.007 0.011 0.014 0.007
ssvs.g.aug 0.003 0.003 0.006 0.006 0.003
gvs.g.typ 0.001 0.002 0.003 0.003 0.002
gvs.g.aug 0.001 0.002 0.002 0.002 0.002

Table C.9 Monte Carlo error comparison (in bold lowest value).
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Ess, Sparse scenario, r = 0.00
Method γ2 γ3 γ4 γ5

ssvs.hyp.typ 978 881 1145 1155
ssvs.hyp.aug 1836 2426 2265 1968
gvs.hyp.typ 13548 13451 13511 16099
gvs.hyp.aug 23634 22254 17206 20729
ssvs.ZS.typ 1493 1496 2518 1643
ssvs.ZS.aug 4952 4752 7114 5519
gvs.ZS.typ 32597 31223 33537 34404
gvs.ZS.aug 30775 35159 35743 36800
ssvs.g.typ 1103 1652 2709 1685
ssvs.g.aug 7305 6714 8493 7575
gvs.g.typ 38390 31729 33630 29118
gvs.g.aug 35017 33216 35315 34858

Table C.10 Effective sample size comparison (in bold lowest value).

MCe, Sparse scenario, r = 0.00
Method γ2 γ3 γ4 γ5

ssvs.hyp.typ 0.015 0.015 0.013 0.014
ssvs.hyp.aug 0.011 0.009 0.009 0.010
gvs.hyp.typ 0.004 0.004 0.004 0.003
gvs.hyp.aug 0.003 0.003 0.003 0.003
ssvs.ZS.typ 0.010 0.009 0.006 0.009
ssvs.ZS.aug 0.005 0.005 0.004 0.004
gvs.ZS.typ 0.002 0.002 0.001 0.001
gvs.ZS.aug 0.002 0.002 0.001 0.002
ssvs.g.typ 0.011 0.008 0.005 0.008
ssvs.g.aug 0.004 0.004 0.003 0.004
gvs.g.typ 0.001 0.002 0.001 0.002
gvs.g.aug 0.001 0.002 0.001 0.001

Table C.11 Monte Carlo error comparison (in bold lowest value).
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Ess, Sparse scenario, r = 0.75
Method γ2 γ3 γ4 γ5

ssvs.hyp.typ 577 669 720 855
ssvs.hyp.aug 1204 1210 1394 1524
gvs.hyp.typ 3096 3517 6643 10321
gvs.hyp.aug 12066 9101 12174 19034
ssvs.ZS.typ 1225 995 1849 2197
ssvs.ZS.aug 4350 3423 4280 5521
gvs.ZS.typ 6375 8248 16521 25019
gvs.ZS.aug 17666 16975 27469 26365
ssvs.g.typ 4454 1011 2049 2175
ssvs.g.aug 4672 3307 7155 6484
gvs.g.typ 7460 9865 19790 24134
gvs.g.aug 16259 18289 28040 32510

Table C.12 Effective sample size comparison (in bold lowest value).

MCe, Sparse scenario, r = 0.75
Method γ2 γ3 γ4 γ5

ssvs.hyp.typ 0.019 0.019 0.018 0.016
ssvs.hyp.aug 0.013 0.014 0.012 0.012
gvs.hyp.typ 0.008 0.008 0.005 0.004
gvs.hyp.aug 0.004 0.005 0.004 0.003
ssvs.ZS.typ 0.010 0.011 0.006 0.006
ssvs.ZS.aug 0.005 0.005 0.004 0.004
gvs.ZS.typ 0.004 0.004 0.002 0.002
gvs.ZS.aug 0.002 0.002 0.002 0.002
ssvs.g.typ 0.008 0.010 0.006 0.006
ssvs.g.aug 0.005 0.005 0.003 0.003
gvs.g.typ 0.004 0.003 0.002 0.002
gvs.g.aug 0.002 0.002 0.001 0.001

Table C.13 Monte Carlo error comparison (in bold lowest value).
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Ess, Medium scenario, r = 0.00
Method γ4 γ5

ssvs.hyp.typ 1083 1135
ssvs.hyp.aug 3154 3044
gvs.hyp.typ 25306 20654
gvs.hyp.aug 25538 24708
ssvs.ZS.typ 1231 1481
ssvs.ZS.aug 4105 4294
gvs.ZS.typ 32679 28052
gvs.ZS.aug 33326 30629
ssvs.g.typ 1766 1474
ssvs.g.aug 6332 7312
gvs.g.typ 34154 31301
gvs.g.aug 21537 22334

Table C.14 Effective sample size comparison (in bold lowest value).

MCe, Medium scenario, r = 0.00
Method γ4 γ5

ssvs.hyp.typ 0.013 0.013
ssvs.hyp.aug 0.007 0.008
gvs.hyp.typ 0.002 0.003
gvs.hyp.aug 0.002 0.002
ssvs.ZS.typ 0.011 0.010
ssvs.ZS.aug 0.006 0.005
gvs.ZS.typ 0.002 0.002
gvs.ZS.aug 0.002 0.002
ssvs.g.typ 0.007 0.009
ssvs.g.aug 0.004 0.004
gvs.g.typ 0.001 0.002
gvs.g.aug 0.003 0.003

Table C.15 Monte Carlo error comparison (in bold lowest value).
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(a) Posterior regression coefficients for 100 repetitions of null scenario.

(b) Posterior regression coefficients for 100 repetitions of sparse scenario.

(c) Posterior regression coefficients for 100 repetitions of medium scenario.

(d) Posterior regression coefficients for 100 repetitions of full scenario.

Fig. C.3 Posterior regression coefficients under the various methods from 100 repetitions
of independent (r = 0) covariates for different scenarios.
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(a) Posterior regression coefficients for 100 repetitions of null scenario.

(b) Posterior regression coefficients for 100 repetitions of sparse scenario.

(c) Posterior regression coefficients for 100 repetitions of medium scenario.

(d) Posterior regression coefficients for 100 repetitions of full scenario.

Fig. C.4 Posterior regression coefficients under the various methods from 100 repetitions
of correlated (r = 0.75) covariates for different scenarios.

228



C.4 Simulated Experiments

(a) Posterior inclusion probabilities for 100 repetitions of null scenario.

(b) Posterior inclusion probabilities for 100 repetitions of sparse scenario.

(c) Posterior inclusion probabilities for 100 repetitions of medium scenario.

(d) Posterior inclusion probabilities for 100 repetitions of full scenario.

Fig. C.5 Posterior inclusion probabilities under the various methods from 100 repetitions
of independent (r = 0) covariates for different scenarios (n = 500).
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(a) Posterior inclusion probabilities for 100 repetitions of null scenario.

(b) Posterior inclusion probabilities for 100 repetitions of sparse scenario.

(c) Posterior inclusion probabilities for 100 repetitions of medium scenario.

(d) Posterior inclusion probabilities for 100 repetitions of full scenario.

Fig. C.6 Posterior inclusion probabilities under the various methods from 100 repetitions
of correlated (r = 0.75) covariates for different scenarios (n = 500).
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C.5 Real Dataset

Finally, we illustrate an application of Bayesian variable selection in logistic regression
with mixtures of g-priors for the Pima Indians dataset of diabetes Ripley (1996). This
dataset consists of n = 532 measurements of women patients with diabetes and p = 8
covariates that describe their profile which was also analysed by Holmes and Held (2006),
Bové and Held (2011) and by Fouskakis et al. (2018) where they applied the power
expected posterior prior methodology. The response variable Y is binary indicating the
presence or not of diabetes and the covariates are the number of pregnancies (X1), the
plasma glucose concentration (X2), the diastolic blood pressure (X3), the triceps skin
fold thickness (X4), the body mass index (X5), the diabetes pedigree function (X6)
and age (X7). Furthermore, with regard to the Bayesian variable selection analysis, a
maximum likelihood perspective was also applied to the full model obtaining estimates
β̂, where only (X1), (X2), (X5), (X6) were found as statistically significant at 5%,
whereas (X7) was at the border of insignificance with p-value = 0.059. The main task
of this application is to assess again the performance of Bayesian variable selection
methods of typical and augmented logistic regression based on mixtures of g-priors
both in-sample and out-of-sample values across the three different prior set-ups for the
computational methods of SSVS and GVS. It should be stated that we change the
acronyms for the methods based on Table (C.16) with an added R as superscript to
denote the methods implemented in the R programming language in order to compare
them and differentiate from GVS for typical logistic regression method implemented in
WINBUGS, with acronyms gvsW.hyp.typ, gvsW.ZS.typ, gvsW.g.typ under the three
different prior set-ups respectively. For the out-of-sample analysis, we will split the
data at half randomly and then compare the performance of MCMC by calculating at
each iteration of each method the false negative (F̂N), the false positive (F̂P ), the
accuracy (ÂCC) and the missclassification error (ÊRR). In other words„ we begin
with a preliminary analysis of Bayesian variable selection procedures using MCMC in
order to identify important covariates through the median posterior model probability.
Then, we proceed with an additional analysis to evaluate the predictive ability of each
MCMC method based on the maximum a posteriori model MAP and the median
probability model MPM.
Among all methods with Hyper-g we considered again the value of α = 3 proposed by
Liang et al., (2008) and a Metropolis-Hastings random walk was added with tuning
variance ug = 1 in order to obtain convergence in both GVS and SSVS. Regarding the
scaling of proposals of a, β for both SSVS and GVS, we used t = 0.8 suggested by
Roberts and Rosenthal (2001) and ua = σ̂2

a respectively to ensure the good mixing of
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the chains with high respective acceptance rates, where σ̂2
a = 0.015 and σ̂2

a = 0.030 is
the variance of the intercept under the full logistic regression model in the first and
second analysis respectively.

Acronym Computational Method Prior Model
1 ssvsR.hyp.typ Stochastic Search Variable Selection Hyper-g Typical

for α = 3, τ = 0.02, c = 50,
ug = 1, ua = 0.015, t = 0.8

2 ssvsR.hyp.aug Stochastic Search Variable Selection Hyper-g Augmented
for α = 3, τ = 0.02, c = 50, ug = 1

3 gvsR.hyp.typ Gibbs Variable Selection Hyper-g Typical
for α = 3, ug = 1, ua = 0.015, t = 0.8

4 gvsR.hyp.aug Gibbs Variable Selection Hyper-g Augmented
for α = 3, ug = 1, ua = 0.015, t = 0.8

5 gvsW.hyp.typ Gibbs Variable Selection Hyper-g Typical
for α = 3

6 ssvsR.ZS.typ Stochastic Search Variable Selection Zellner-Siow Typical
for τ = 0.02, c = 50,ua = 0.015, t = 0.8

7 ssvsR.ZS.aug Stochastic Search Variable Selection Zellner-Siow Augmented
for τ = 0.02, c = 50

8 gvsR.ZS.typ Gibbs Variable Selection Zellner-Siow Typical
for ua = 0.015, t = 0.8

9 gvsR.ZS.aug Gibbs Variable Selection Zellner-Siow Augmented
for ua = 0.015, t = 0.8

10 gvsW.ZS.typ Gibbs Variable Selection Zellner-Siow Typical
11 ssvsR.g.typ Stochastic Search Variable Selection g-prior Typical

for τ = 0.02, c = 50, ua = 0.015, t = 0.8, g = n

12 ssvsR.g.aug Stochastic Search Variable Selection g-prior Augmented
for τ = 0.02, c = 50, g = n

13 gvsR.g.typ Gibbs Variable Selection g-prior Typical
for g = n

14 gvsR.g.aug Gibbs Variable Selection g-prior Augmented
for g = n

15 gvsW.g.typ Gibbs Variable Selection g-prior Typical
for g = n

Table C.16 Acronyms of Bayesian variable selection methods with MCMC for logistic
regression.

With respect to MCMC methods, prior inputs τj = 0.02 and cj = 50 for j = 1, . . . , p
were set on practical significance for SSVS to achieve similar results with the objective
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Bayesian methods and µ̄, s̄2 were computed from pilot runs under the full model for
GVS of each simulated dataset repetition. The option of prior input τj and cj are as
indicated in Table (C.16). A detailed description of all Bayesian variable selection
methods which are used as references in Figures and in Tables, are found in Table
(C.16). The prior inputs of Table (C.16) were considered the same (apart for g-prior
where g=532) only for the first analysis, whereas in the second we used g = 266. The
prior inputs for GVS were set as the following µ̄, s̄2 for the first analysis adn second
analysis respectively.

Median Probability Model
Independent Variables

Method X1 X2 X3 X4 X5 X6 X7

ssvsR.hyp.typ 0.980 1.000 0.347 0.352 0.997 0.997 0.680
ssvsR.hyp.aug 0.977 1.000 0.353 0.339 0.998 0.996 0.669
gvsR.hyp.typ 0.969 1.000 0.381 0.372 0.997 0.996 0.654
gvsR.hyp.aug 0.970 0.999 0.384 0.376 0.997 0.996 0.657
gvsw.hyp.typ 0.970 1.000 0.383 0.376 0.998 0.995 0.655
ssvsR.ZS.typ 0.891 0.936 0.250 0.270 0.917 0.908 0.543
ssvsR.ZS.aug 0.887 0.932 0.241 0.252 0.917 0.910 0.555
gvsR.ZS.typ 0.954 1.000 0.248 0.253 0.998 0.994 0.526
gvsR.ZS.aug 0.962 0.999 0.248 0.243 0.998 0.994 0.526
gvsW.ZS.typ 0.961 1.000 0.258 0.251 0.998 0.994 0.535
ssvsR.g.typ 0.942 1.000 0.160 0.179 0.992 0.989 0.465
ssvsR.g.aug 0.954 1.000 0.152 0.184 0.995 0.985 0.459
gvsR.g.typ 0.950 1.000 0.135 0.136 0.997 0.991 0.391
gvsR.g.aug 0.951 0.999 0.133 0.136 0.998 0.990 0.385
gvsW.g.typ 0.951 0.999 0.133 0.136 0.998 0.990 0.385

Table C.17 Marginal posterior inclusion probabilities for each independent variable Xj

regarding each Bayesian variable selection method for 40000 MCMC iterations.

When information is not available with respect to the subset of variables, it is
preferable to adopt an objective prior elicitation for the model parameters and the
model itself. Again, we considered (4.12), (4.19 ) of Bové and Held (2011) adopted
in the style of logistic regression in SSVS and GVS to account for the joint prior
dependences among parameters a, β, g, γ.
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Prior Inputs-Initial Values of 1st Analysis
Parameter Value
β̂ (0.405, 1.094,−0.094, 0.071, 0.568, 0.450, 0.283)T

â -0.990
τ 0.02
c 50
µ̄ β̂

s̄2 (0.020, 0.017, 0.016, 0.024, 0.025, 0.015, 0.022)T

γ(0) (1, 1, 1, 1, 1, 1, 1)T

β(0) β̂

a(0) â

g(0) 532
ω0 (1, . . . , 1)

Table C.18 Prior-inputs and initial values of 1st Analysis

Prior Inputs-Initial Values of 2nd Analysis
Parameter Value
β̂ (0.483, 1.145,−0.040,−0.143, 0.544, 0.600, 0.418)T

â -0.944
τ 0.02
c 50
µ̄ β̂

s̄2 (0.044, 0.034, 0.028, 0.040, 0.044, 0.034, 0.051)T

γ(0) (1, 1, 1, 1, 1, 1, 1)T

β(0) β̂

a(0) â

g(0) nte

ω0 (1, . . . , 1)

Table C.19 Prior-inputs and initial values of 2nd Analysis

All the compared approaches under Zellner-Siow prior used (2.10), whereas for
hyper-g-prior was used (2.12). Regarding the prior of model space, we assigned a
beta-binomial with both hyper-parameters equal to one to preserve sparsity based on
Scott and Berger (2010).
Implementing Bayesian variable selection MCMC methods to these real data, model
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fitting was applied through a Gibbs algorithm with successive Metropolis-Hastings
steps as implemented in the R programming language simulating Markov chains of
40000 valid values to achieve convergence for both typical and augmented logistic
regression Bayesian variable selection methods. The same was implemented for the
GVS method in WINBUGS under the three different prior set-ups but only with regard
to the first analysis. More precisely, in the first analysis for all methods we used the
maximum likelihood estimators for parameters β and intercept a as initial values for
each MCMC method
β(0), a(0), for the vector of model indicators γ we have used as initial values γ(0), for g
we used g(0) and for the methods with the latent data we used ω(0), whereas for the
second analysis we have used the maximum likelihood estimates
β(0), a(0) and γ(0), g(0),ω(0) are set the same as in the first analysis; please refer to
Tables (C.18) and (C.19) respectively. Table (C.17) shows the marginal posterior
inclusion probabilities of each covariate under the various Bayesian variable selection
methods for the three different prior set-ups according to the MPM. In particular,
we observe that the independent variables X1, X2, X5, X6 are relevant since their
marginal posterior inclusion probabilities are larger than 0.5 showing no important
differences among all the Bayesian variable selection methods. On the contrary, the
marginal posterior inclusion probabilities for the non important covariates X3, X4, X7,
change substantially under the three different prior set-ups. More precisely, we observe
that for the methods with mixtures of g-priors their marginal posterior inclusion
probabilities of these covariates are higher in comparison with fixed g methods, a
deduction which comes in agreement with the behaviour of mixtures of g-priors. For
instance, the posterior marginal inclusion probabilities are inflated towards 0.5 for
Bayesian variable selection methods with hyper-g priors, whereas for Zellner-Siow prior
methods they are slightly lower than the hyper-g. This behaviour is related to the
additional variability of the random g overburdening the uncertainty of including X3,
X4 and more especially of X7 where only under the mixtures of g-priors becomes
significant in contradiction with the fixed g-prior approaches. This is justified due
to the stronger shrinkage under the fixed methods g-prior where the value g = 532
tends to conserve sparser models due to the activation of Jeffreys-Lindleys paradox.
Regarding the shrinkage of g-priors mixtures, additional analysis was provided based
on the computational methods of SSVS and GVS for typical and augmented logistic
regression respectively as seen in Figures (C.7), (C.8), (C.9) and (C.10) where the
posterior distribution is indicative of its behaviour. From these Figures it is evident
that the posterior distribution of the shrinkage factor g

g+1 for the Bayesian variable
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selection methods with Zellner-Siow priors is concentrated close to one, resulting in a
stronger shrinkage than those with hyper-g priors. Moreover, in the same Figures the
posterior densities, the ergodic means, the autocorrelations and the traceplots are also
depicted.

Acceptance Rate
Method a β g

ssvsR.hyp.typ 0.687 0.268 0.511
ssvsR.hyp.aug - - 0.511
gvsR.hyp.typ 0.689 0.273 0.545
gvsR.hyp.aug - - 0.552
ssvsR.ZS.typ 0.692 0.275 -
ssvsR.ZS.aug - - -
gvsR.ZS.typ 0.698 0.274 -
gvsR.ZS.aug - - -
ssvsR.g.typ 0.686 0.279 -
ssvsR.g.aug - - -
gvsR.g.typ 0.689 0.275 -
gvsR.g.aug - - -

Table C.20 Results of acceptance rates for parameters a, β and g of each Bayesian
variable selection methods for typical and augmented logistic regression model with
mixtures of g-priors.

They show convergence through the MCMC iterations among all Bayesian variable
selection methods with mixtures of g-priors. Additional information is found on Table
(C.20) for the acceptance rates of parameters a, β, g which shows that all Bayesian
variable selection methods perform efficiently with high acceptance rates. Regarding
the comparison of all typical and augmented logistic regression Bayesian variable
selection methods for each different prior set-ups, we observe similar results in terms
of marginal posterior inclusion probabilities. Generally, regarding the comparison of
GVS and SSVS based on the above results, it seems that for the Bayesian variable
selection methods with GVS under the Zellner-Siow and fixed g the marginal posterior
inclusion probabilities are more shrunk for the non important covariates X3, X4, X7

in comparison with the analogues of SSVS, whereas for the Bayesian variable selection
methods with SSVS under hyper-g are more shrunk with respect to GVS. Furthermore,
SSVS under Zellner-Siow priors both for typical and augmented logistic regression model
exhibit strong shrinkage even for the important covariates X1, X2 in contrast to the
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covariate X7. Finally, our analysis seems effective as it is verified based on the results
obtained across all GVS methods under the three different prior set-ups implemented in
the R programming language compared with those obtained in WINBUGS leading to
the same results both for typical and augmented logistic regression. Similar conclusions,
based in terms of posterior marginal inclusion probabilities regarding the importance
of covariates are found in the works of Holmes and Held (2006) and Fouskakis et al.
(2018).
We end the first part of this application with real data by examining the out-of-
sample predictive accuracy of the above Bayesian variable selection methods for the
typical and augmented logistic regression model. The predictive ability of all Bayesian
variable selection methods is assessed by the predictive distribution of independent
and identically distributed random variables Y ∗ = (Y ∗

1, . . . ,Y
∗
nte

)T which generate
observed values y∗(s) = (y∗(s)

1 , . . . , y∗(s)
nte

)T as the following

Y ∗
i |a(s),β(s) ∼ Bern(1, p∗(s)

i ),

π
∗(s)
i ≈ exp (a(s) + xte

i β
(s))

1 + exp (a(s) + xte
i β

(s))
,

where p∗(s)
i = P (y∗

i = 1|a(s),β(s)), a(s) and β(s) are the posterior samples of the intercept
a and the regression coefficients β of MAP and MPM obtained from the training set
based on the s-th iteration of the MCMC respective procedure and xte

(.) are the row-
wise of the test design matrix X te. Then, based on the posterior samples from the
predictive distribution of s-th MCMC iteration, we construct the confusion matrix of
the predictive response set y∗(s) versus the respective response test set yte

yte

Negative Positive

y∗(s) Negative TN (s) FN (s)

Positive FP (s) TP (s)

Table C.21 Confusion matrix at s-th MCMC iteration of the predictive response set
y∗(s) versus the respective response test set yte.

where we denote as FN (s) = P(Negative|Positive), FP (s) = P(Positive|Negative)
and calculate the accuracy ACC(s) ≈ T N(s)+T P (s)

T N(s)+T P (s)+F N(s)+F P (s) and the missclassification
error ERR(s) ≈ F N(s)+F P (s)

T N(s)+T P (s)+F N(s)+F P (s) . In this way, we compute the averages of the
posterior distribution for these quantities based on the respective MCMC iteration for
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the MAP and MPM under each Bayesian variable selection method as the following

F̂N ≈
S∑

s=1

FN (s)

S

F̂P ≈
S∑

s=1

FP (s)

S

ÂCC ≈
S∑

s=1

ACC(s)

S

ÊRR ≈
S∑

s=1

ERR(s)

S

where from the above indices we would expect that the values y∗(s) should match
as much possible with yte in order to obtain good predictive performance rates; the
results are presented in Tables (C.22) and (C.23). Overall, we cannot say that a
method prevails to others in terms of predictive performance as the predictions are
more or less the same across the three different prior set-ups of typical and augmented
logistic regression models with higher accuracy and lower false negative detections in
comparison with those of false positive. In particular, regarding the comparisons under
the MAP, the highest predictive performance across the pairwise comparisons of typical
and augmented logistic regression is observed in the augmented logistic regression
models (notice the numbers in bold in column-wise) for GVS under hyper-g, Zellner-
Siow, g-prior and only for SSVS under Zellner-Siow, g-prior, whereas for the MPM for
GVS under hyper-g, Zellner-Siow and for SSVS under Zellner-Siow, g-prior. Based on
this finding, it seems that Bayesian variable selection methods with data augmentation
under mixtures of g-priors work well in practice in predicting the women’s outcome of
being diabetic or not. However, it is not of surprise that the worse Bayesian variable
selection methods both for MAP and MPM in terms of predictive performance are
observed for those with hyper-g priors due to the complexity of the models. Based on
this finding, the MAP under SSVS method with hyper-g priors is sparser with higher
predictive ability than GVS due to the additional shrinkage imposed by the shrinkage
parameters, whereas for the MPM both methods are sparser with the latter being
lower in predictive performance. On the other hand, the MAP and MPM for Bayesian
variable selection methods with SSVS under Zellner-Siow, g-prior approaches coincide,
whereas for GVS they coincide only for Zellner-Siow. In case of g-prior approach for
GVS, the MPM differs from the MAP only by the variable X7 which causes lower
predictive accuracy since this covariate is uncertain. Generally, the latter behaviour
is expected since SSVS and GVS tend to prefer sparser models under Zellner-Siow
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and fixed g-prior approach in contradiction with Bayesian variable selection methods
with hyper-g priors. Even in that case, SSVS for the three different prior set-ups
both for typical and augmented logistic regression show larger predictive performance
with respect to GVS prior set-up analogues. Generally, all Bayesian variable selection
methods prefer in majority different models of complexity according to each prior
set-up for MAP, whereas in the case of MPM all methods trace the same model but
with different predictive performance. To conclude, the best predictive performance
for the MAP and MPM is observed for ssvsR.g.aug which compromises a technique
with data augmentation, but we should be aware that the SSVS in contrast with GVS
is more sensitive to large sample error deviating.
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(a) ssvsR.hyp.typ. (b) ssvsR.hyp.aug.

Fig. C.7 Posterior density plots, ergodic mean plots, autocorrelation plots and traceplots
of the shrinkage factor g

g+1 for typical and augmented logistic regression methods
ssvsR.hyp.typ and ssvsR.hyp.aug with hyper-g prior.

(a) gvsR.hyp.typ. (b) gvsR.hyp.aug.

Fig. C.8 Posterior density plots, ergodic mean plots, autocorrelation plots and traceplots
of the shrinkage factor g

g+1 for typical and augmented logistic regression methods
gvsR.hyp.typ and gvsR.hyp.aug with hyper-g prior.
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(a) ssvsR.ZS.typ. (b) ssvsR.ZS.aug.

Fig. C.9 Posterior density plots, ergodic mean plots, autocorrelation plots and traceplots
of the shrinkage factor g

g+1 for typical and augmented logistic regression methods
ssvsR.ZS.typ and ssvsR.ZS.aug with Zellner-Siow prior.

(a) gvsR.ZS.typ. (b) gvsR.ZS.aug.

Fig. C.10 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of the shrinkage factor g

g+1 for typical and augmented logistic regression methods
gvsR.ZS.typ and gvsR.ZS.aug with Zellner-Siow prior.
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M∗ : X1 +X2 +X5 +X6

Method MAP F̂N F̂P ÂCC ÊRR

ssvsR.hyp.typ M∗+X7 34.465 39.385 72.236 27.763
ssvsR.hyp.aug M∗+X7 34.454 39.631 72.148 27.851
gvsR.hyp.typ M∗ +X3 +X4 +X7 34.994 40.093 71.771 28.228
gvsR.hyp.aug M∗ +X3 +X4 +X7 34.839 40.036 71.851 28.148
ssvsR.ZS.typ M∗ +X7 33.972 38.895 72.606 27.393
ssvsR.ZS.aug M∗ +X7 33.891 38.799 72.672 27.327
gvsR.ZS.typ M∗ +X7 34.963 39.712 71.926 28.073
gvsR.ZS.aug M∗ +X7 34.966 39.550 71.986 28.013
ssvsR.g.typ M∗ +X7 33.634 38.546 72.864 27.135
ssvsR.g.aug M∗ +X7 33.642 38.502 72.877 27.122
gvsR.g.typ M∗ 33.459 39.566 72.546 27.453
gvsR.g.aug M∗ 33.417 39.566 72.562 27.437

Table C.22 Results of false negative F̂N , false positive F̂P , accuracy ÂCC and
missclassification error ÊRR among all Bayesian variable selection methods under the
MAP (column-wise largest value in bold).

M∗ : X1 +X2 +X5 +X6

Method MPM F̂N F̂P ÂCC ÊRR

ssvsR.hyp.typ M∗+X7 34.465 39.385 72.236 27.763
ssvsR.hyp.aug M∗+X7 34.454 39.631 72.148 27.851
gvsR.hyp.typ M∗ +X7 35.500 40.339 71.488 28.511
gvsR.hyp.aug M∗ +X7 35.373 40.337 71.537 28.462
ssvsR.ZS.typ M∗ +X7 33.972 38.895 72.606 27.393
ssvsR.ZS.aug M∗ +X7 33.891 38.799 72.672 27.327
gvsR.ZS.typ M∗ +X7 34.963 39.712 71.926 28.073
gvsR.ZS.aug M∗ +X7 34.966 39.550 71.986 28.013
ssvsR.g.typ M∗ +X7 33.634 38.546 72.864 27.135
ssvsR.g.aug M∗ +X7 33.642 38.502 72.877 27.122
gvsR.g.typ M∗ +X7 34.584 39.018 72.329 27.670
gvsR.g.aug M∗ +X7 34.597 39.263 72.232 27.767

Table C.23 Results of false negative F̂N , false positive F̂P , accuracy ÂCC and
missclassification error ÊRR among all Bayesian variable selection methods under the
MPM (column-wise largest value in bold).
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(a) ssvsR.hyp.typ.

(b) ssvsR.hyp.aug.

Fig. C.11 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of false negative F̂N , false positive F̂P , accuracy ÂCC and missclassification
error ÊRR for typical and augmented logistic regression methods ssvsR.hyp.typ and
ssvsR.hyp.aug with hyper-g priors under the MAP and MPM.
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(a) gvsR.hyp.typ.

(b) gvsR.hyp.aug.

Fig. C.12 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of false negative F̂N , false positive F̂P , accuracy ÂCC and missclassification
error ÊRR for typical and augmented logistic regression methods gvsR.hyp.typ and
gvsR.hyp.aug with hyper-g priors under the MAP.
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(a) gvsR.hyp.typ.

(b) gvsR.hyp.aug.

Fig. C.13 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of false negative F̂N , false positive F̂P , accuracy ÂCC and missclassification
error ÊRR for typical and augmented logistic regression methods gvsR.hyp.typ and
gvsR.hyp.aug with hyper-g priors under the MPM.
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(a) ssvsR.ZS.typ.

(b) ssvsR.ZS.aug.

Fig. C.14 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of false negative F̂N , false positive F̂P , accuracy ÂCC and missclassification
error ÊRR for typical and augmented logistic regression methods ssvsR.ZS.typ and
ssvsR.ZS.aug with Zellner-Siow priors under the MAP and MPM.
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(a) gvsR.ZS.typ.

(b) gvsR.ZS.aug.

Fig. C.15 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of false negative F̂N , false positive F̂P , accuracy ÂCC and missclassification
error ÊRR for typical and augmented logistic regression methods gvsR.ZS.typ and
gvsR.ZS.aug with Zellner-Siow priors under the MAP and MPM.
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(a) ssvsR.g.typ.

(b) ssvsR.g.aug.

Fig. C.16 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of false negative F̂N , false positive F̂P , accuracy ÂCC and missclassification
error ÊRR for typical and augmented logistic regression methods gvsR.ZS.typ and
gvsR.ZS.aug with Zellner-Siow priors under the MAP and MPM.
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(a) gvsR.g.typ.

(b) gvsR.g.aug.

Fig. C.17 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of false negative F̂N , false positive F̂P , accuracy ÂCC and missclassification
error ÊRR for typical and augmented logistic regression methods gvsR.g.typ and
gvsR.g.aug with g-priors under the MAP.
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(a) gvsR.g.typ.

(b) gvsR.g.aug.

Fig. C.18 Posterior density plots, ergodic mean plots, autocorrelation plots and trace-
plots of false negative F̂N , false positive F̂P , accuracy ÂCC and missclassification
error ÊRR for typical and augmented logistic regression methods gvsR.g.typ and
gvsR.g.aug with g-priors under the MPM.
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