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ABSTRACT
Stellar population synthesis techniques for predicting the observable light emitted by a stellar
population have extensive applications in numerous areas of astronomy. However, accurate
predictions for small populations of young stars, such as those found in individual star clusters,
star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population
be treated stochastically. Conversely, accurate deductions of the properties of such objects also
require consideration of stochasticity. Here we describe a comprehensive suite of modular,
open-source software tools for tackling these related problems. These include the following:
a greatly-enhanced version of the SLUG code introduced by da Silva et al., which computes
spectra and photometry for stochastically or deterministically sampled stellar populations
with nearly arbitrary star formation histories, clustering properties, and initial mass functions;
CLOUDY_SLUG, a tool that automatically couples SLUG-computed spectra with the CLOUDY radia-
tive transfer code in order to predict stochastic nebular emission; BAYESPHOT, a general-purpose
tool for performing Bayesian inference on the physical properties of stellar systems based on
unresolved photometry; and CLUSTER_SLUG and SFR_SLUG, a pair of tools that use BAYESPHOT on a
library of SLUG models to compute the mass, age, and extinction of mono-age star clusters, and
the star formation rate of galaxies, respectively. The latter two tools make use of an extensive
library of pre-computed stellar population models, which are included in the software. The
complete package is available at http://www.slugsps.com.

Key words: methods: numerical – methods: statistical – techniques: photometric – stars:
formation – galaxies: star clusters: general – galaxies: stellar content.

1 IN T RO D U C T I O N

Stellar population synthesis (SPS) is a critical tool that allows us
to link the observed light we receive from unresolved stellar pop-
ulations to the physical properties (e.g. mass, age) of the emitting
stars. Reflecting this importance, over the years numerous research
groups have written and distributed SPS codes such as STARBURST99
(Leitherer et al. 1999; Vázquez & Leitherer 2005), FSPS (Conroy,
Gunn & White 2009; Conroy & Gunn 2010), PEGASE (Fioc & Rocca-
Volmerange 1997), and GALAXEV (Bruzual & Charlot 2003). All
these codes perform essentially the same computation. One adopts
a star formation history (SFH) and an initial mass function (IMF)

� E-mail: mkrumhol@ucsc.edu (MRK); fumagalli.astro@gmail.com (MF)

to determine the present-day distribution of stellar masses and ages.
Next, using a set of stellar evolutionary tracks and atmospheres that
give the luminosity (either frequency-dependent or integrated over
some filter) for a star of a particular mass and age, one integrates the
stellar luminosity weighted by the age and mass distributions. These
codes differ in the range of functional forms they allow for the IMF
and SFH, and the evolutionary tracks and model atmospheres they
use, but the underlying computation is much the same in all of them.
While this approach is adequate for many applications, it fails for
systems with low masses and star formation rates (SFRs) because
it implicitly assumes that the stellar mass and age distributions are
well sampled. This is a very poor assumption both in star-forming
dwarf galaxies and in resolved segments of larger galaxies.

Significantly less work has been done in extending SPS methods
to the regime where the IMF and SFH are not well sampled. There
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are a number of codes available for simulating a simple stellar
population (SSP; i.e. one where all the stars are the same age,
so the SFH is described by a δ distribution) where the IMF is
not well sampled (Maı́z Apellániz 2009; Popescu & Hanson 2009,
2010b,a; Fouesneau & Lançon 2010; Fouesneau et al. 2012, 2014;
Anders et al. 2013; de Meulenaer et al. 2013, 2014, 2015), and a
great deal of analytic work has also been performed on this topic
(Cerviño & Valls-Gabaud 2003; Cerviño & Luridiana 2004, 2006) –
see Cerviño (2013) for a recent review. However, these codes only
address the problem of stochastic sampling of the IMF; for non-
SSPs, stochastic sampling of the SFH proves to be a more important
effect (Fumagalli, da Silva & Krumholz 2011; da Silva, Fumagalli
& Krumholz 2014).

To handle this problem, we introduced the stochastic SPS code
SLUG (da Silva, Fumagalli & Krumholz 2012), which includes full
stochasticity in both the IMF and the SFH. Crucially, SLUG prop-
erly handles the clustered nature of star formation (e.g. Lada &
Lada 2003; Krumholz 2014). This has two effects. First, clustering
itself can interact with IMF sampling so that the total mass distri-
bution produced by a clustered population is not identical to that of
a non-clustered population drawn from the same underlying IMF.
Secondly and perhaps more importantly, clustering causes large
short-time-scale fluctuations in the SFR even in galaxies whose
mean SFR averaged over longer time-scales is constant. Since its
introduction, this code has been used in a number of applications,
including explaining the observed deficit of H α emission relative to
far-ultraviolet (FUV) emission in dwarf galaxies (Fumagalli et al.
2011; Andrews et al. 2013, 2014), quantifying the stochastic un-
certainties in SFR indicators (da Silva et al. 2014), analysing the
properties of star clusters in dwarf galaxies in the ANGST survey
(Cook et al. 2012), and analysing Lyman continuum radiation from
high-redshift dwarf galaxies (Forero-Romero & Dijkstra 2013). The
need for a code with stochastic capabilities is likely to increase in
the future, as studies of local galaxies such as PHAT (Dalcanton
et al. 2012), HERACLES (Leroy et al. 2013), and LEGUS (Calzetti
et al. 2015), and even studies in the high-redshift Universe (e.g.
Jones et al. 2013a,b) increasingly push to smaller spatial scales
and lower rates of star formation, where stochastic effects become
increasingly important.

In this paper we describe a major upgrade and expansion of SLUG,
intended to make it a general-purpose solution for the analysis of
stochastic stellar populations. This new version of SLUG allows es-
sentially arbitrary functional forms for both the IMF and the SFH,
allows a wide range of stellar evolutionary tracks and atmosphere
models, and can output both spectroscopy and photometry in a list
of >100 filters. It can also include the effects of reprocessing of
the light by interstellar gas and by stochastically-varying amounts
of dust, and can interface with the CLOUDY photoionization code
(Ferland et al. 2013) to produce predictions for stochastically-
varying nebular emission. Finally, we have coupled SLUG to a new
set of tools for solving the ‘inverse problem’ in stochastic SPS:
given a set of observed photometric properties, infer the poste-
rior probability distribution for the properties of the underlying
stellar population, in the case where the mapping between such
properties and the photometry is stochastic and therefore non-
deterministic (e.g. da Silva et al. 2014). The full software suite
is released under the GNU Public License, and is freely available
from http://www.slugsps.com.1

1 As of this writing http://www.slugsps.com is hosted on Google Sites, and
thus is inaccessible from mainland China. Chinese users can access the

In the remainder of this paper, we describe SLUG and its companion
software tools in detail (Section 2), and then provide a series of
demonstrations of the capabilities of the upgraded version of the
code (Section 3). We end with a summary and discussion of future
prospects for this work (Section 4).

2 TH E SLUG SOFTWARE SUI TE

The SLUG software suite is a collection of tools designed to solve
two related problems. The first is to determine the probability dis-
tribution function (PDF) of observable quantities (spectra, photom-
etry, etc.) that are produced by a stellar population characterized
by a specified set of physical parameters (IMF, SFH, cluster mass
function, and an array of additional ancillary inputs). This prob-
lem is addressed by the core SLUG code (Section 2.1) and its adjunct
CLOUDY_SLUG (Section 2.2), which perform Monte Carlo simulations
to calculate the distribution of observables. The second problem is
to use those PDFs to solve the inverse problem: given a set of
observed properties, what should we infer about the physical prop-
erties of the stellar population producing those observables? The
BAYESPHOT package provides a general solution to this problem (Sec-
tion 2.3), and the SFR_SLUG and CLUSTER_SLUG packages specialize
this general solution to the problem of inferring SFRs for continu-
ously star-forming galaxies, and masses, ages, and extinctions from
SSPs, respectively (Section 2.4). The entire software suite is avail-
able from http://www.slugsps.com, and extensive documentation is
available at http://slug2.readthedocs.org/en/latest/.

2.1 SLUG: a highly flexible tool for stochastic SPS

The core of the software suite is the stochastic SPS code SLUG. The
original SLUG code is described in da Silva et al. (2012), but the
code described here is a complete re-implementation with greatly
expanded capabilities. The code operates in two main steps; first it
generates the spectra from the stellar population (Section 2.1.1) and
then it post-processes the spectra to include the effects of nebular
emission and dust absorption, and to produce photometric predic-
tions as well as spectra (Section 2.1.2). In this section we limit
ourselves to a top-level description of the physical model, and pro-
vide some more details on the numerical implementation in Appen-
dices A, B, and C.

2.1.1 Generating the stellar population

SLUG can simulate both SSPs (i.e. ones where all the stars are coeval)
and composite ones. We begin by describing the SSP model, since
composite stellar populations in SLUG are built from collections of
SSPs. For an SSP, the stellar population is described by an age,
a total mass, and an IMF. SLUG allows nearly-arbitrary functional
forms for the IMF, and is not restricted to a set of predetermined
choices; see Appendix A1 for details.

In non-stochastic SPS codes, once an age, mass, and IMF are
chosen, the standard procedure is to use a set of stellar tracks and
atmospheres to predict the luminosity (either frequency dependent,
or integrated over a specified filter) as a function of stellar mass
and age, and to integrate the mass-dependent luminosity multiplied
by the stellar mass distribution to compute the output spectrum at
a specified age. SLUG adds an extra step: instead of evaluating an

source code from https://bitbucket.org/krumholz/slug2, and should contact
the authors by email for the ancillary data products.
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integral, it directly draws stars from the IMF until the desired total
mass has been reached. As emphasized by a number of previous au-
thors (e.g. Weidner & Kroupa 2006; Haas & Anders 2010; Cerviño
2013; Popescu & Hanson 2014), when drawing a target mass Mtarget

rather than a specified number of objects from a PDF, one must
also choose a sampling method to handle the fact that, in general, it
will not be possible to hit the target mass exactly. Many sampling
procedures have been explored in the literature, and SLUG provides
a large number of options, as described in Appendix A1.

Once a set of stars is chosen, SLUG proceeds much like a conven-
tional SPS code. It uses a chosen set of tracks and atmospheres to
determine the luminosity of each star, either wavelength dependent
or integrated over one or more photometric filters, at the specified
age. It then sums over all stars to determine the integrated light
output. Details of the available sets of tracks and atmospheres, and
SLUG’s method for interpolating them, are provided in Appendix A2.

Composite stellar populations in SLUG consist of a collection of
‘star clusters’, each consisting of an SSP, plus a collection of ‘field
stars’ whose ages are distributed continuously. In practice, this pop-
ulation is described by four parameters beyond those that describe
SSPs: the fraction of stars formed in clusters as opposed to the
field fc, the cluster mass function (CMF), cluster lifetime function
(CLF), and SFH. As with the IMF, the latter three are distributions,
which can be specified using nearly arbitrary functional forms and
a wide range of sampling methods as described in Appendix A1.
For a simulation with a composite stellar population, SLUG performs
a series of steps: (1) at each user-requested output time,2 SLUG uses
the SFH and the cluster fraction fc to compute the additional stellar
mass expected to have formed in clusters and out of clusters (in ‘the
field’) since the previous output; (2) for the non-clustered portion
of the star formation, SLUG draws the appropriate mass in individual
stars from the IMF, while for the clustered portion it draws a cluster
mass from the CMF, and then it fills each cluster with stars drawn
from the IMF; (3) each star and star cluster formed is assigned an
age between the current output and the previous one, selected to
produce a realization of the input SFH;3 (4) each cluster that is
formed is assigned a lifetime drawn from the CLF, which is the
time at which the cluster is considered dispersed.

The end result of this procedure is that, at each output time,
SLUG has constructed a ‘galaxy’ consisting of a set of star clusters
and field stars, each with a known age. Once the stellar population
has been assembled, the procedure for determining spectra and
photometry is simply a sum over the various individual simple
populations. In addition to computing the integrated spectrum of
the entire population, SLUG can also report individual spectra for
each cluster that has not disrupted (i.e. where the cluster age is

2 SLUG can either output results at specified times, or the user can specify a
distribution from which the output time is to be drawn. The latter capability
is useful when we wish to sample a distribution of times continuously so
that the resulting data set can be used to infer ages from observations – see
Section 2.4.
3 One subtlety to note here is that the choice of output grid can produce
non-trivial modifications of the statistical properties of the output in cases
where the expected mass of stars formed is much smaller than the maximum
possible cluster mass. For example, consider a simulation with a constant
SFR and an output grid chosen such that the expected mass of stars formed
per output time is 104 M�. If the sampling method chosen isSTOP_NEAREST
(see Appendix A1), the number of 106 M� clusters formed will typically
be smaller than if the same SFH were used but the outputs were spaced
100 times further apart, giving an expected mass of 106 M� between
outputs.

less than the value drawn from the CLF for that cluster). Thus the
primary output consists of an integrated monochromatic luminosity
Lλ for the entire stellar population, and a value Lλ, i for the ith
remaining cluster, at each output time.

Finally, we note that SLUG is also capable of skipping the sampling
procedure and evaluating the light output of stellar populations by
integrating over the IMF and SFH, exactly as in a conventional,
non-stochastic SPS code. In this case, SLUG essentially emulates
STARBURST99 (Leitherer et al. 1999; Vázquez & Leitherer 2005),
except for subtle differences in the interpolation and numerical in-
tegration schemes used (see Appendix A2). SLUG can also behave
‘semi-stochastically’, evaluating stars’ contribution to the light out-
put using integrals to handle the IMF up to some mass, and using
stochastic sampling at higher masses.

2.1.2 Post-processing the spectra

Once SLUG has computed a spectrum for a simple or composite stellar
population, it can perform three additional post-processing steps.
First, it can provide an approximate spectrum after the starlight
has been processed by the surrounding H II region. In this case, the
nebular spectrum is computed for an isothermal, constant-density
H II region, within which it is assumed that He is all singly ionized.
Under these circumstances, the photoionized volume V, electron
density ne, and hydrogen density nH obey the relation

φQ(H0) = α(B)(T )nenHV , (1)

where

Q(H0) =
∫ ∞

hν=I (H0)

Lν

hν
dν (2)

is the hydrogen-ionizing luminosity, Lν = λ2Lλ/c is the luminosity
per unit frequency, I(H0) = 13.6 eV is the ionization potential
of neutral hydrogen, ne = (1 + xHe)nH, xHe is the He abundance
relative to hydrogen (assumed to be 0.1), φ is the fraction of H-
ionizing photons that are absorbed by hydrogen atoms within the H II

region rather than escaping or being absorbed by dust, and α(B)(T)
is the temperature-dependent case B recombination coefficient. The
nebular luminosity can then be written as

Lλ,neb = γnebnenHV = γnebφ
Q(H0)

α(B)(T )
, (3)

where γ neb is the wavelength-dependent nebular emission coeffi-
cient. Our calculation of this quantity includes the following pro-
cesses: free–free and bound–free emission arising from electrons
interacting with H+ and He+, two-photon emission from neutral
hydrogen in the 2s state, H recombination lines, and non-H lines
computed approximately from tabulated values. Full details on the
method by which we perform this calculation are given in Ap-
pendix B. The composite spectrum after nebular processing is zero
at wavelength shorter than 912 Å (corresponding to the ionization
potential of hydrogen), and the sum of intrinsic stellar spectrum Lλ

and the nebular spectrum Lλ,neb at longer wavelengths. SLUG reports
this quantity both cluster-by-cluster and for the galaxy as a whole.

Note that the treatment of nebular emission included in SLUG is
optimized for speed rather than accuracy, and will produce signif-
icantly less accurate results than CLOUDY_SLUG (see Section 2.2).
The major limitations of the built-in approach are as follows: (1)
because SLUG’s built-in calculation relies on pre-tabulated values for
the metal line emission and assumes either a constant or a similarly
pre-tabulated temperature (which significantly affects the contin-
uum emission), it misses the variation in emission caused by the
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fact that H II regions exist at a range of densities and ionization
parameters, which in turn induces substantial variations in their
nebular emission (e.g. Verdolini et al. 2013; Yeh et al. 2013); (2)
SLUG’s built-in calculation assumes a uniform density H II region,
an assumption that will fail at high ionizing luminosities and den-
sities due to the effects of radiation pressure (Dopita et al. 2002;
Krumholz, McKee & Tumlinson 2009; Draine 2011; Yeh & Matzner
2012; Yeh et al. 2013); (3) SLUG’s calculation correctly captures the
effects of stochastic variation in the total ionizing luminosity, but it
does not capture the effects of variation in the spectral shape of the
ionizing continuum, which preliminary testing suggests can cause
variations in line luminosities at the few tenths of a dex level even
for fixed total ionizing flux. The reason for accepting these limita-
tions is that the assumptions that cause them also make it possible
to express the nebular emission in terms of a few simple parameter
that can be pre-tabulated, reducing the computational cost of eval-
uating the nebular emission by orders of magnitude compared to a
fully accurate calculation with CLOUDY_SLUG.

The second post-processing step available is that SLUG can apply
extinction in order to report an extincted spectrum, both for the pure
stellar spectrum and for the nebula-processed spectrum. Extinction
can be either fixed to a constant value for an entire simulation, or it
can be drawn from a specified PDF. In the latter case, for simulations
of composite stellar populations, every cluster will have a different
extinction. More details are given in Appendix B.

As a third and final post-processing step, SLUG can convolve all
the spectra it computes with one or more filter response functions
in order to predict photometry. SLUG includes the large list of filter
response functions maintained as part of FSPS (Conroy & Gunn 2010;
Conroy, White & Gunn 2010), as well as a number of Hubble Space
Telescope (HST) filters4 not included in FSPS; at present, more than
130 filters are available. As part of this calculation, SLUG can also
output the bolometric luminosity, and the photon luminosity in the
H0, He0, and He+ ionizing continua.

2.2 CLOUDY_SLUG: stochastic nebular line emission

In broad outlines, the CLOUDY_SLUG package is a software interface
that automatically takes spectra generated by SLUG and uses them
as inputs to the CLOUDY radiative transfer code (Ferland et al. 2013).
CLOUDY_SLUG then extracts the continuous spectra and lines returned
by CLOUDY, convolves them with the same set of filters as in the
original SLUG calculation in order to predict photometry. The user
can optionally also examine all of CLOUDY’s detailed outputs. As
with the core SLUG code, details on the software implementation are
given in Appendix C.

When dealing with composite stellar populations, calculating the
nebular emission produced by a stellar population requires making
some physical assumptions about how the stars are arranged, and
CLOUDY_SLUG allows two extreme choices that should bracket reality.
One extreme is to assume that all stars are concentrated in a single
point of ionizing radiation at the centre of a single H II region.
We refer to this as integrated mode, and in this mode the only free
parameters to be specified by a user are the chemical composition of
the gas into which the radiation propagates and its starting density.

The opposite assumption, which we refer to as cluster mode, is
that every star cluster is surrounded by its own H II region, and that

4 These filters were downloaded from http://www.stsci.edu/∼WFC3/
UVIS/SystemThroughput/ and http://www.stsci.edu/hst/acs/analysis/
throughputs for the UVIS and ACS instruments, respectively.

the properties of these regions are to be computed individually using
the stellar spectrum of each driving cluster and only then summed
to produce a composite output spectrum. At present cluster mode
does not consider contributions to the nebular emission from field
stars, and so should not be used when the cluster fraction fc < 1. In
the cluster case, the H II regions need not all have the same density
or radius; indeed, one would expect a range of both properties to
be present, since not all star clusters have the same age or ionizing
luminosity. We handle this case using a simplified version of the
H II population synthesis model introduced by Verdolini et al. (2013)
and Yeh et al. (2013). The free parameters to be specified in this
model are the chemical composition and the density in the ambient
neutral ISM around each cluster. For an initially neutral region of
uniform hydrogen number density nH, the radius of the H II at a time
t after it begins expanding is well approximated by (Krumholz &
Matzner 2009)

rII = rch

(
x

7/2
rad + x7/2

gas

)2/7
(4)

xrad = (
2τ 2

)1/4
(5)

xgas =
(

49

36
τ 2

)2/7

(6)

τ = t

tch
(7)

rch = α
(B)
4

12πφdust

(
ε0

2.2kBTII

)2

f 2
trap

ψ2Q(H0)

c2
(8)

tch =
(

4πμmHnHcr4
ch

3ftrapQ(H0)ψI (H0)

)1/2

, (9)

where α
(B)
4 = 2.59 × 10−13 cm3 s−1 is the case B recombination

coefficient at 104 K, TII = 104 is the typical H II region temperature,
ftrap = 2 is a trapping factor that accounts for stellar wind and trapped
infrared radiation pressure, ψ = 3.2 is the mean photon energy in
Rydberg for a fully sampled IMF at zero age,5 and μ = 1.33 is
the mean mass per hydrogen nucleus for gas with the usual helium
abundance xHe = 0.1. The solution includes the effects of both
radiation and gas pressure in driving the expansion. Once the radius
is known, the density near the H II region centre (the parameter
required by CLOUDY) can be computed from the usual ionization
balance argument,

nII =
(

3Q(H0)

4.4πα
(B)
4 r3

II

)1/2

. (10)

Note that the factor of 4.4 in the denominator accounts for the extra
free electrons provided by helium, assuming it is singly ionized.
Also note that this will not give the correct density during the brief
radiation pressure-dominated phase early on in the evolution, but
that this period is very brief (though the effects of the extra boost
provided by radiation pressure can last much longer), and no simple

5 This value of ψ is taken from Murray & Rahman (2010), and is based on
a Chabrier (2005) IMF and a compilation of empirically measured ionizing
luminosities for young stars. However, alternative IMFs and methods of
computing the ionizing luminosity give results that agree to tens of percent.
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analytic approximation for this density is available (Krumholz &
Matzner 2009). Also note that, although CLOUDY_SLUG presently
only supports this parametrization of H II region radius and density
versus time, the code is simply a PYTHON script. It would therefore
be extremely straightforward for a user who prefers a different
parametrization to alter the script to supply it.

In cluster mode, CLOUDY_SLUG uses the approximation described
above to compute the density of the ionized gas in the vicinity
of each star cluster, which is then passed as an input to CLOUDY

along with the star cluster’s spectrum. Note that computations in
cluster mode are much more expensive than those in integrated
mode, since the latter requires only a single call to CLOUDY per
timestep, while the former requires one per cluster. To ease the
computational requirements slightly, in cluster mode one can set
a threshold ionizing luminosity below which the contribution to
the total nebular spectrum is assumed to be negligible, and is not
computed.

2.3 BAYESPHOT: Bayesian inference from stellar photometry

2.3.1 Description of the method

Simulating stochastic stellar populations is useful, but to fully ex-
ploit this capability we must tackle the inverse problem: given an
observed set of stellar photometry, what should we infer about the
physical properties of the underlying stellar population in the regime
where the mapping between physical and photometric properties is
non-deterministic? A number of authors have presented numerical
methods to tackle problems of this sort, mostly in the context of de-
termining the properties of star clusters with stochastically sampled
IMFs (Popescu & Hanson 2009, 2010a,b; Fouesneau & Lançon
2010; Asa’d & Hanson 2012; Fouesneau et al. 2012; Popescu,
Hanson & Elmegreen 2012; Anders et al. 2013; de Meulenaer et al.
2013, 2014, 2015), and in some cases in the context of determining
SFRs from photometry (da Silva et al. 2014). Our method here is a
generalization of that developed in da Silva et al. (2014), and has
a number of advantages as compared to earlier methods, both in
terms of its computational practicality and its generality.

Consider stellar systems characterized by a set of N physical pa-
rameters x = (x1, x2, . . . , xN ); in the example of star clusters below
we will have N = 3, with x1, x2, and x3 representing the logarithm
of the mass, the logarithm of the age, and the extinction, while for
galaxies forming stars at a continuous rate we will have N = 1, with
x1 representing the logarithm of the SFR. The light output of these
systems is known in M photometric bands; let y = (y1, y2, . . . , yM )
be a set of photometric values, for example magnitudes in some
set of filters. Suppose that we observe a stellar population in these
bands and measure a set of photometric values yobs, with some er-
rors σ y = (σy1 , σy2 , . . . , σyM

), which for simplicity we will assume
are Gaussian. We wish to infer the posterior probability distribu-
tion for the physical parameters given the observed photometry and
photometric errors, p(x | yobs; σ y).

Following da Silva et al. (2014), we compute the posterior prob-
ability via implied conditional regression coupled to kernel density
estimation. Let the joint PDF of physical and photometric values
for the population of all the stellar populations under consideration
be p(x, y). We can write the posterior probability distribution we
seek as

p(x | y) ∝ p(x, y)

p( y)
, (11)

where p( y) is the distribution of the photometric variables alone,
i.e.

p( y) ∝
∫

p(x, y) dx. (12)

If we have an exact set of photometric measurements yobs, with no
errors, then the denominator in equation (11) is simply a constant
that will normalize out, and the posterior probability distribution
we seek is distributed simply as

p(x | yobs) ∝ p(x, yobs). (13)

In this case, the problem of computing p(x | yobs) reduces to that
of computing the joint physical–photometric PDF p(x, y) at any
given set of observed photometric values yobs.

For the more general case where we do have errors, we first note
that the posterior probability distribution for the true photometric
value y is given by the prior probability distribution for photometric
values multiplied by the likelihood function associated with our
measurements. The prior PDF of photometric values is simply p( y)
as given by equation (12), and for a central observed value of yobs

with errors σ y , the likelihood function is simply a Gaussian. Thus
the PDF of y given our observations is

p( y | yobs) ∝ p( y)G( y − yobs, σ y), (14)

where

G( y, σ y) ∝ exp

[
−

(
y2

1

2σ 2
y1

+ y2
2

2σ 2
y2

+ · · · + y2
M

2σ 2
yM

)]
(15)

is the usual multidimensional Gaussian function. The posterior
probability for the physical parameters is then simply the convolu-
tion of equations (11) and (14), i.e.

p(x | yobs) ∝
∫

p(x | y) p( y | yobs) d y

∝
∫

p(x, y) G( y − yobs, σ y) d y. (16)

Note that we recover the case without errors, equation (13), in
the limit where σ y → 0, because in that case the Gaussian G( y −
yobs, σ y) → δ( y − yobs).

We have therefore reduced the problem of computing p(x | yobs)
to that of computing p(x, y), the joint PDF of physical and pho-
tometric parameters, for our set of stellar populations. To perform
this calculation, we use SLUG to create a large library of models
for the type of stellar population in question. We draw the physi-
cal properties of the stellar populations (e.g. star cluster mass, age,
and extinction) in our library from a distribution plib(x), and for
each stellar population in the library we have a set of physical and
photometric parameters xi and yi . We estimate p(x, y) using a ker-
nel density estimation technique. Specifically, we approximate this
PDF as

p(x, y) ∝
∑

i

wiK(x − xi , y − yi ; h), (17)

where wi is the weight we assign to sample i, K(x; h) is our
kernel function, h = (hx1 , hx2 , . . . , hxN

, hy1 , hy2 , . . . , hyM
) is our

bandwidth parameter (see below), and the sum runs over every sim-
ulation in our library. We assign weights to ensure that the distri-
bution of physical parameters x matches whatever prior probability
distributions we wish to assign for them. If we let pprior(x) represent
our priors, then this is

wi = pprior(xi)

plib(xi)
. (18)
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1452 M. R. Krumholz et al.

Note that, although we are free to choose plib(x) = pprior(x) and thus
weight all samples equally, it is often advantageous for numerical
or astrophysical reasons not to do so, because then we can distribute
our sample points in a way that is chosen to maximize our knowledge
of the shape of p(x, y) with the fewest possible realizations. As a
practical example, we know that photometric outputs will fluctuate
more for galaxies with low SFRs than for high ones, so the library we
use for SFR_SLUG (see below) is weighted to contain more realizations
at low than high SFR.

We choose to use a Gaussian kernel function, K(x; h) = G(x, h),
because this presents significant computational advantages. Specif-
ically, with this choice, equation (16) becomes

p(x | yobs)

∝
∑

i

wiG(x − xi , hx)

∫
G( y − yobs, σ y) G( y − yi , hy) d y (19)

∝
∑

i

wiG
(

x − xi , hx

)

G( yobs − yi ,

√
σ 2

y + h2
y) (20)

≡
∑

i

wiG((x − xi , yobs − yi), h′), (21)

where hx = (hx1 , hx2 , . . . , hxN
) is the bandwidth in the physical

dimensions, hy = (hy1 , hy2 , . . . , hyM
) is the bandwidth in the pho-

tometric dimensions, and the quadrature sum
√

h2
y + σ 2

y is under-

stood to be computed independently over every index in σ y and hy .
The new quantity we have introduced,

h′ =
(

hx,

√
h2

y + σ 2
y

)
, (22)

is simply a modified bandwidth in which the bandwidth in the pho-
tometric dimensions has been broadened by adding the photometric
errors in quadrature sum with the bandwidths in the corresponding
dimensions. Note that, in going from equation (19) to (20) we have
invoked the result that the convolution of two Gaussians is another
Gaussian, whose width is the quadrature sum of the widths of the
two input Gaussians, and whose centre is located at the difference
between the two input centres.

As an adjunct to this result, we can also immediately write down
the marginal probabilities for each of the physical parameters in
precisely the same form. The marginal posterior probability distri-
bution for x1 is simply

p(x1 | yobs) ∝
∫

p(x | yobs) dx2 dx3 . . . dxN (23)

∝
∑

i

wiG(x1 − x1,i , h1)

G
(

yobs − yi ,

√
σ 2

y + h2
y

)
, (24)

and similarly for all other physical variables. This expression also
immediately generalizes to the case of joint marginal probabilities
of the physical variables. We have therefore succeeded in writ-
ing down the posterior probability distribution for all the physical
properties, and the marginal posterior distributions of any of them
individually or in combination, via a kernel density estimation iden-
tical to that given by equation (17). One advantage of equations (21)

and (24) is that they are easy to evaluate quickly using standard nu-
merical methods. Details on our software implementation are given
in Appendix C.

2.3.2 Error estimation and properties of the library

An important question for BAYESPHOT, or any similar method, is how
large a library must be in order to yield reliable results. Of course
this depends on what quantity is being estimated and on the shape
of the underlying distribution. Full, rigorous, error analysis is best
accomplished by bootstrap resampling. However, we can, without
resorting to such a computationally intensive procedure, provide a
useful rule of thumb for how large a library must be so that the
measurements rather than the library are the dominant source of
uncertainty in the resulting derived properties.

Consider a library of n simulations, from which we wish to mea-
sure the value Xq that delineates a certain quantile (i.e. the percentile
p = 100q) of the underlying distribution from which the samples
are drawn. Let xi for i = 1, . . . , n be the samples in our library,
ordered from smallest to largest. Our central estimate for the value
of Xq that delineates quintile q, will naturally be xqn. (Throughout
this argument we will assume that n is large enough that we need
not worry about the fact that ranks in the list, such as qn, will not
exactly be integers. Extending this argument to include the neces-
sary continuity correction adds mathematical complication but does
not change the basic result.) For example, we may have a library
of 106 simulations of galaxies at a particular SFR (or in a particu-
lar interval of SFRs), and wish to know what ionizing luminosity
corresponds to the 95th percentile at that SFR. Our estimate for
the 95th percentile ionizing luminosity will simply be the ionizing
luminosity of the 950 000th simulation in the library.

To place confidence intervals around this estimate, note that the
probability that a randomly chosen member of the population will
have a value x < xq is q, and conversely the probability that x > xq

is 1 − q. Thus in our library of n simulations, the probability that
we have exactly k samples for which x < xq is given by the binomial
distribution,

Pr(k) = n!

(n − k)!
qk(1 − q)n−k. (25)

When n 
 1, k 
 1, and n − k 
 1, the binomial distribution
approaches a Gaussian distribution of central value qn and standard
deviation

√
q(1 − q)n:

Pr(k) ≈ 1√
2πq(1 − q)n

exp

[
− (k − qn)2

2q(1 − q)n

]
. (26)

That is, the position n in our library of simulations such that xi < xq

for all i < n, and xi > xq for all i > n, is distributed approximately as
a Gaussian, centred at qn, with dispersion

√
q(1 − q)n. This makes

it easy to compute confidence intervals on xq, because it reduces
the problem that of computing confidence intervals on a Gaussian.
Specifically, if we wish to compute the central value and confidence
interval c (e.g. c = 0.68 is the 68 per cent confidence interval) for
the rank r corresponding to percentile q, this is

r ≈ qn ±
√

2q(1 − q)n erf−1(c). (27)

The corresponding central value for Xq (as opposed to its rank in
the list) is xqn, and the confidence interval is(
xqn−√

2q(1−q)n erf−1(c), xqn+√
2q(1−q)n erf−1(c)

)
. (28)

In our example of determining the 95th percentile from a library of
106 simulations, our central estimate of this value is the x950 000, the
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950 000th simulation in the library, and the 90 per cent confidence
interval is 359 ranks on either side of this. That is, our 90 per cent
confidence interval extends from x949 641 to x950 359.

This method may be used to define confidence intervals on any
quantile derived from a library of SLUG simulations. Of course this
does not specifically give confidence intervals on the results derived
when such a library is used as the basis of a Bayesian inference
from BAYESPHOT. However, this analysis can still provide a useful
constraint: the error on the values derived from BAYESPHOT cannot
be less than the errors on the underlying photometric distribution
we have derived from the library. Thus if we have a photometric
measurement that lies at the qth quantile of the library we are using
for kernel density estimation in BAYESPHOT, the effective uncertainty
our kernel density estimation procedure provides is at a minimum
given by the uncertainty in the quantile value xq calculated via the
procedure above. If this uncertainty is larger than the photometric
uncertainties in the measurement, then the resolution of the library
rather than the accuracy of the measurement will be the dominant
source of error.

2.4 SFR_SLUG and CLUSTER_SLUG: Bayesian SFRs and star
cluster properties

The SLUG package ships with two Bayesian inference modules based
on BAYESPHOT. SFR_SLUG, first described in da Silva et al. (2014) and
modified slightly to use the improved computational technique de-
scribed in the previous section, is a module that infers the posterior
probability distribution of the SFR given an observed flux in H α,
GALEX FUV, or bolometric luminosity, or any combination of the
three. The library of models on which it operates (which is in-
cluded in the SLUG package) consists of approximately 1.8 × 106

galaxies with constant SFRs sampling a range from 10−8–100.5

M� yr−1, with no extinction; the default bandwidth is 0.1 dex. We
refer readers for da Silva et al. (2014) for a further description of
the model library. SFR_SLUG can download the default library auto-
matically, and it is also available as a stand-alone download from
http://www.slugsps.com/data.

The CLUSTER_SLUG package performs a similar task for inferring
the mass, age, and extinction of star clusters. The SLUG models that
CLUSTER_SLUG uses consist of libraries of 107 SSPs with masses
in the range log (M/M�) = 2–8, ages log (T/yr) = 5 − log Tmax,
and extinctions AV = 0–3 mag. The maximum age Tmax is either
1 or 15 Gyr, depending on the choice of tracks (see below). The
data are sampled uniformly in AV. In mass the library sampling is
dN/dM ∝ M−1 for masses up to 104 M�, and as dN/dM ∝ M−2 at
higher masses; similarly, the library age sampling is dN/dT ∝ T−1

for T < 108 yr, and as dN/dT ∝ T−2 at older ages. The motiva-
tion for this sampling is that it puts more computational effort at
younger ages and low masses, where stochastic variation is great-
est. The libraries all use a Chabrier (2005) IMF, and include nebular
emission computed using φ = 0.73 and an ionization parameter
log U = −3 (see Appendix B). Libraries are available using either
Padova or Geneva tracks, with the former having a maximum age
of 15 Gyr and the latter a maximum age of 1 Gyr. The Geneva
tracks are available using either Milky Way or ‘starburst’ extinction
curves (see Appendix B). The default bandwidth is 0.1 dex in mass
and age, 0.1 mag in extinction, and 0.25 mag (corresponding to
0.1 dex in luminosity) in photometry. For each model, photometry
is computed for a large range of filters, listed in Table 1. As with
SFR_SLUG, CLUSTER_SLUG can automatically download the default li-
brary, and the data are also available as a stand-alone download
from http://www.slugsps.com/data. Full spectra for the library, al-

lowing the addition of further filters as needed, are also available
upon request; they are not provided for web download due to the
large file sizes involved.

3 SAMPLE A PPLI CATI ONS

In this section, we present a suite of test problems with the goal of
illustrating the different capabilities of SLUG, highlighting the effects
of key parameters on SLUG’s simulations, and validating the code.
Unless otherwise stated, all computations use the Geneva (2013)
non-rotating stellar tracks and stellar atmospheres following the
STARBURST99 implementation.

3.1 Sampling techniques

As discussed above and in the literature (e.g. Weidner & Kroupa
2006; Haas & Anders 2010; da Silva et al. 2012; Cerviño et al.
2013; Popescu & Hanson 2014), the choice of sampling technique
used to generate stellar masses can have significant effects on the
distribution of stellar masses and the final light output, even when
the underlying distribution being sampled is held fixed. This can
have profound astrophysical implications. Variations in sampling
technique even for a fixed IMF can produce systematic variations
in galaxy colours (e.g. Haas & Anders 2010), nucleosynthetic ele-
ment yields (e.g. Köppen, Weidner & Kroupa 2007; Haas & Anders
2010), and observational tracers of the SFR (e.g. Weidner, Kroupa
& Larsen 2004; Pflamm-Altenburg, Weidner & Kroupa 2007). It is
therefore of interest to explore how sampling techniques influence
various aspects of stellar populations. We do so as a first demon-
stration of SLUG’s capabilities. Here we consider the problem of
populating clusters with stars from an IMF, but our discussion also
applies to the case of ‘galaxy’ simulations. Specifically, we run four
sets of 104 ‘cluster’ simulations with a target mass of 50 M� by sam-
pling a Kroupa (2002) IMF with the STOP_NEAREST, STOP_AFTER,
STOP_BEFORE, SORTED_SAMPLING conditions (see Appendix A1).
In the following, we analyse a single timestep at 106 yr.

By default, SLUG adopts the STOP_NEAREST condition, according
to which the final draw from the IMF is added to the cluster only if
the inclusion of this last star minimizes the absolute error between
the target and the achieved cluster mass. In this case, the cluster mass
sometimes exceeds and sometimes falls short of the desired mass.
The STOP_AFTER condition, instead, always includes the final draw
from the IMF. Thus, with this choice, SLUG simulations produce
clusters with masses that are always in excess of the target mass.
The opposite behaviour is obviously recovered by theSTOP_BEFORE
condition, in which the final draw is always rejected. Finally, for
SORTED_SAMPLING condition, the final cluster mass depends on the
details of the chosen IMF.

Besides this manifest effect of the sampling techniques on the
achieved cluster masses, the choice of sampling produces a drastic
effect on the distribution of stellar masses, even for a fixed IMF. This
is shown in the top panel of Fig. 1, where we display histograms for
the mass of the most massive stars within these simulated clusters.
One can see that, compared to the default STOP_NEAREST condition,
the STOP_AFTER condition results in more massive stars being in-
cluded in the simulated clusters. Conversely, the STOP_BEFORE and
the SORTED_SAMPLING undersample the massive end of the IMF.
Such a different stellar mass distribution has direct implications for
the photometric properties of the simulated stellar populations, es-
pecially for wavelengths that are sensitive to the presence of most
massive stars. Similar results have previously been obtained by
other authors, including Haas & Anders (2010) and Cerviño et al.
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Table 1. Filters in the CLUSTER_SLUG library.

Type Filter name

HST WFC3 UVIS wide F225W, F275W, F336W, F360W, F438W, F475W, F555W, F606W, F775W, F814W
HST WFC3 UVIS medium/narrow F547M, F657N, F658N
HST WFC3 IR F098M, F105W, F110W, F125W, F140W, F160W
HST ACS wide F435W, F475W, F555W, F606W, F625W, F775W, F814W
HST ACS medium/narrow F550M, F658N, F660N
HST ACS HRC F330W
HST ACS SBC F125LP, F140LP, F150LP F165LP
Spitzer IRAC 3.6, 4.5, 5.8, 8.0
GALEX FUV, NUV
Johnson–Cousins U, B, V, R, I
SDSS u, g, r, i, z

2MASS J, H, Ks

Figure 1. Histograms of the mass of the most massive stars in sets of 104

‘cluster’ simulations, which were performed with different sampling tech-
niques (top panel) and different target cluster masses (bottom panel). In the
top panel, four different stop criteria are adopted to sample a Kroupa (2002)
IMF for clusters of 50 M�. In the bottom panel, the default STOP_NEAREST
condition is chosen to sample from a Kroupa (2002) IMF in clusters of three
different masses.

(2013), but prior to SLUG no publicly available code has been able
to tackle this problem.

The observed behaviour on the stellar mass distribution for a par-
ticular choice of sampling stems from a generic mass constraint:
clusters cannot be filled with stars that are more massive than the
target cluster itself. SLUG does not enforce this condition strictly,
allowing for realizations in which stars more massive than the tar-
get cluster mass are included. However, different choices of the
sampling technique result in a different degree with which SLUG en-
forces this mass constraint. To further illustrate the relevance of this
effect, we run three additional ‘cluster’ simulations assuming again
a Kroupa (2002) IMF and the default STOP_NEAREST condition.
Each simulation is composed by 104 trials, but with a target cluster
mass of Mcl, t = 50, 500, and 104 M�. The bottom panel of Fig. 1
shows again the mass distribution of the most massive star in each
cluster. As expected, while massive stars cannot be found in low-

mass clusters, the probability of finding at least a star as massive as
the IMF upper limit increases with the cluster mass. At the limit of
very large masses, a nearly fully sampled IMF is recovered as the
mass constraint becomes almost irrelevant. Again, similar results
have previously been obtained by Cerviño (2013).

3.2 Stochastic spectra and photometry for varying IMFs

Together with the adopted sampling technique, the choice of the IMF
is an important parameter that shapes SLUG simulations. We therefore
continue the demonstration of SLUG’s capabilities by computing
spectra and photometry for SSPs with total masses of 500 M� for
three different IMFs. We create 1000 realizations each of such a
population at times from 1–10 Myr in intervals of 1 Myr, using the
IMFs of Chabrier (2005), Kroupa (2002), and Weidner & Kroupa
(2006). The former two IMFs use STOP_NEAREST sampling, while
the latter uses SORTED_SAMPLING, and is otherwise identical to the
Kroupa (2002) IMF.

Figs 2–4 show the distributions of spectra and photometry that
result from these simulations. Stochastic variations in photometry
have been studied previously by a number of authors, going back
to Chiosi, Bertelli & Bressan (1988), but to our knowledge no pre-
vious authors have investigated similar variations in spectra. The
plots also demonstrate SLUG’s ability to evaluate the full probability
distribution for both spectra and photometric filters, and reveal inter-
esting phenomena that would not be accessible to a non-stochastic
SPS code. In particular, Fig. 2 shows that the mean specific lu-
minosity can be orders of magnitude larger than the mode. The
divergence is greatest at wavelengths of a few hundred Å at ages
∼2–4 Myr, and wavelengths longer than ∼5000 Å at 10 Myr. In-
deed, at 4 Myr, it is noteworthy that the mean spectrum is actually
outside the 10th–90th percentile range. In this particular example,
the range of wavelengths at 4 Myr where the mean spectrum is out-
side the 10th–90th percentile corresponds to energies of ∼3 Ryd.
For a stellar population 4 Myr old, these photons are produced only
by Wolf–Rayet (WR) stars, and most prolifically by extremely hot
WC stars. It turns out that a WC star is present ∼5 per cent of the
time, but these cases are so much more luminous than when a WC
star is not present that they are sufficient to drag the mean upwards
above the highest luminosities that occur in the ∼95 per cent of
cases when no WC star is present.

A similar phenomenon is visible in the photometry shown by
Fig. 3. In most of the filters the 10th–90th percentile range is an
order of magnitude wide, and for the ionizing luminosity and the
HST UVIS F814W at 10 Myr the spread is more than two orders
of magnitude, with significant offsets between mean and median

MNRAS 452, 1447–1467 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/452/2/1447/1062858 by D
urham

 U
niversity user on 30 M

arch 2020



SLUG III 1455

Figure 2. Spectra of SSPs at ages of 1, 2, 4, and 10 Myr (top to bottom rows) for the IMFs of Chabrier (2005, left-hand column), Kroupa (2002, middle column),
and Weidner & Kroupa (2006, right-hand column). In each panel, thick black lines indicate the mean, and points show the locations of individual simulations
(10 per cent of the simulations, selected at random), with the colour of the point indicating the probability density for the monochromatic luminosity at each
wavelength (see colour bar) Probability densities are evaluated independently at each monochromatic luminosity, and are normalized to have a maximum of
unity at each wavelength.

indicating a highly asymmetric distribution. Fig. 4, which shows
the full distributions for several of the filters, confirms this im-
pression: at early times the cumulative distribution functions are
extremely broad, and the ionizing luminosity in particular shows a
broad distribution at low Q(H0) and then a small number of simula-
tions with large Q(H0). Note that the percentile values are generally
very well determined by our set of 1000 simulations. Using the
method described in Section 2.3.2 to compute the errors on the
percentiles, we find that the 68 per cent confidence interval on the
10th, 50th, and 90th percentile values is less than 0.1 dex wide at
almost all times, filters, and IMFs. The only exception is at 1 Myr,
where the 68 per cent confidence interval on the 10th percentile of
ionizing luminosity is ∼0.2–0.3 dex wide.

The figures also illustrate SLUG’s ability to capture the ‘IGIMF ef-
fect’ (Weidner & Kroupa 2006) whereby sorted sampling produces
a systematic bias towards lower luminosities at short wavelengths
and early times. Both the spectra and photometric values for the
Weidner & Kroupa (2006) IMF are systematically suppressed rel-
ative to the IMFs that use a sampling method that is less biased
against high-mass stars (cf. Fig. 1).

3.3 Cluster fraction and CMF

The first two examples have focused on SSPs, namely collections
of stars that are formed at coeval times to compose a ‘cluster’
simulation. Our third example highlights SLUG’s ability to simulate
composite stellar populations. Due to SLUG’s treatment of stellar
clustering and stochasticity, simulations of such populations in SLUG

differ substantially from those in non-stochastic SPS codes. Unlike
in a conventional SPS code, the outcome of a SLUG simulation is
sensitive to both the CMF and the fraction fc of stars formed in
clusters. SLUG can therefore be applied to a wide variety of problems

in which the fraction of stars formed within clusters or in the field
becomes a critical parameter (e.g. Fumagalli et al. 2011).

The relevance of clusters in SLUG simulations arises from two
channels. First, because stars form in clusters of finite size, and the
interval between cluster formation events is not necessarily large
compared to the lifetimes of individual massive stars, clustered star
formation produces significantly more variability in the number of
massive stars present at any given time than non-clustered star for-
mation. We defer a discussion of this effect to the following section.
Here, we instead focus on a second channel by which the CMF and
fc influence the photometric output, which arises due to the method
by which SLUG implements mass constraints. As discussed above, a
realization of the IMF in a given cluster simulation is the result of
the mass constraint imposed by the mass of the cluster, drawn from
a CMF, and by the sampling technique chosen to approximate the
target mass. Within ‘galaxy’ simulations, a second mass constraint
is imposed on the simulations as the SFH provides an implicit target
mass for the galaxy, which in practice constrains each realization
of the CMF. As a consequence, all the previous discussion on how
the choice of stopping criterion affect the SLUG outputs in cluster
simulations applies also to the way with which SLUG approximates
the galaxy mass by drawing from the CMF. Through the fc parame-
ter, the user has control on which level of this hierarchy contributes
to the final simulation. In the limit of fc = 0, SLUG removes the in-
termediate cluster container from the simulations: a galaxy mass is
approximated by stars drawn from the IMF, without the constraints
imposed by the CMF. Conversely, in the limit of fc = 1, the input
SFH constrains the shape of each realization of the CMF, which in
turn shapes the mass spectrum of stars within the final outputs. As
already noted in Fumagalli et al. (2011), this combined effect re-
sembles in spirit the concept behind the IGIMF theory. However, the
SLUG implementation is fundamentally different from the IGIMF, as
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1456 M. R. Krumholz et al.

Figure 3. Photometry of SSPs at the same times as shown in Fig. 2. In
each panel, the thin lines show the same mean spectra plotted in Fig. 2.
Circles with error bars show the specific luminosity Lλ measured in each of
the indicated filters: GALEX FUV, and HST UVIS F225W, F336W, F555W,
and F814W. The abscissae of the green points are placed at the effective
wavelength of each filter, with the red and blue offset to either side for clarity.
The labelled black curves in the top panel show the filter response functions
for each filter. For these points, filled circles indicate the mean value, open
circles indicate the median value, and error bars indicate the range from the
10th–90th percentile. The leftmost, square points with error bars show the
comparable mean, median, and range for the ionizing luminosity (scale on
the right axis).

our code does not require any a priori modification of the functional
form of the input IMF and CMF, and each realization of these PDFs
is only a result of random sampling of invariant PDFs.

To offer an example that better illustrates these concepts, we per-
form four ‘galaxy’ simulations with 5000 realizations. This number
ensures that ∼10 simulations are present in each mass bin consid-
ered in our analysis, thus providing a well-converged distribution.
Each simulation follows a single timestep of 2 × 106 yr and assumes
a Chabrier (2005) IMF, the default STOP_NEAREST condition, and
an input SFR of 0.001 M� yr−1. Three of the four simulations
further assume a default CMF of the form dN/dM ∝ M−2 between
20–107 M�, but three different choices of CMF (fc = 1.0, 0.5, and
0.0). The fourth simulation still assumes fc = 1 and a dN/dM ∝ M−2

CMF, but within the mass interval 20–100 M� (hereafter the trun-
cated CMF). Results from these simulations are shown in Fig. 5.

By imposing an input SFR of 0.001 M� yr−1 for a time 2 × 106 yr,
we are in essence requesting that SLUG populates galaxies with
2000 M� worth of stars. However, similarly to the case of cluster
simulations, SLUG does not recover the input galaxy mass exactly,
but it finds the best approximation based on the chosen stop criteria,
the input CMF, and the choice of fc. This can be seen in the top panel
of Fig. 5, where we show the histograms of actual masses from the
four simulations under consideration. For fc = 0, SLUG is approx-
imating the target galaxy mass simply by drawing stars from the

Figure 4. Cumulative distribution functions for ionizing luminosity (top
panel) and in the GALEX FUV and HST UVIS F225W and F336W filters
(bottom three panels). In each panel, the x-axis shows either the ionizing
luminosity (for the top panel) or the absolute AB magnitude (bottom three
panels) of a 500 M� SSP drawn from a Chabrier (2005, green), Kroupa
(2002, blue), or Weidner & Kroupa (2006, red) IMF at ages of 1 Myr (solid),
4 Myr (dashed), and 10 Myr (dot–dashed).

IMF. As the typical stellar mass is much less than the desired galaxy
mass, the mass constraint is not particularly relevant in these sim-
ulations and SLUG reproduces the target galaxy mass quite well, as
one can see from the narrow distribution centred around 2000 M�.
When fc > 0, however, SLUG tries to approximate the target mass by
means of much bigger building blocks, the clusters, thus increasing
the spread of the actual mass distributions as seen for instance in
the fc = 0.5 case. For fc > 0, clusters as massive as 107 M� are
potentially accessible during draws and, as a consequence of the
STOP_NEAREST condition, one can notice a wide mass distribution
together with a non-negligible tail at very low (including zero) ac-
tual galaxy masses. Including a 107 M� cluster to approximate a
2000 M� galaxy would in fact constitute a larger error than leaving
the galaxy empty! The importance of this effect obviously depends
on how massive is the galaxy compared to the upper limit of the
CMF. In our example, the choice of an unphysically small ‘galaxy’
with 2000 M� is indeed meant to exacerbate the relevance of this
mass constraint. By inspecting Fig. 5, it is also evident that the
resulting galaxy mass distributions are asymmetric, with a longer
tail to lower masses. This is due to the fact that SLUG favours small
building blocks over massive ones when drawing from a power-law
CMF. This means that a draw of a cluster with mass comparable
to the galaxy mass will likely occur after a few lower mass clus-
ters have been included in the stellar population. Therefore, massive
clusters are more likely to be excluded than retained in a simulation.
For this reason, the galaxy target mass represents a limit inferior for
the mean actual mass in each distribution.

The middle panel of Fig. 5 shows the total amount of mass formed
in clusters after one timestep. As expected, the fraction of mass in
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Figure 5. Histograms of the actual galaxy mass (top), total stellar mass
in clusters (middle), and mass of the most massive star formed in clusters
(bottom) for four different SLUG simulations with 5000 realizations each.
The three simulations labelled as fc consist of the default SLUG CMF and
different choices of the fraction of stars formed within clusters. The bottom
panel compares instead two simulations with fc = 1, but for two different
choices of CMF (SLUG’s default and a CMF truncated at 100 M�).

clusters versus field stars scales proportionally to fc, retaining the
similar degree of dispersion noted for the total galaxy mass. Finally,
by comparing the results of the fc = 1 simulations with the default
CMF and the truncated CMF in all the three panels of Fig. 5, one can
appreciate the subtle difference that the choice of fc and CMF have
on the output. Even in the case of fc = 1, the truncated CMF still
recovers the desired galaxy mass with high precision. Obviously,
this is an effect of the extreme choice made for the cluster mass
interval, here between 20–100 M�. In this case, for the purpose of
constrained sampling, the CMF becomes indistinguishable from the
IMF, and the simulations of truncated CMF and fc = 0 both recover
the target galaxy mass with high accuracy. However, the simulations
with truncated CMF still impose a constraint on the IMF, as shown
in the bottom panel. In the case of truncated CMF, only clusters
up to 100 M� stars are formed, thus reducing the probability of
drawing stars as massive as 120 M� from the IMF.

This example highlights how the fc parameter and the CMF need
to be chosen with care based on the problem that one wishes to
simulate, as they regulate in a non-trivial way the scatter and the
shape of the photometry distributions recovered by SLUG. In passing,
we also note that SLUG’s ability to handle very general forms for the
CMF and IMF makes our code suitable to explore a wide range of
models in which the galaxy SFR, CMF, and IMF depend on each

Figure 6. Realizations of the SFH in 5000 SLUG simulations with fc = 1.
The input SFH is shown in blue, while the dashed black line and shaded
regions show the median, and the first and third quartiles of the distribution.

other (e.g. as in the IGIMF; Weidner & Kroupa 2006; Weidner,
Kroupa & Bonnell 2010).

3.4 Realizations of a given SFH

The study of SFHs in stochastic regimes is receiving much attention
in the recent literature, both in the nearby and high-redshift universe
(e.g. Boquien, Buat & Perret 2014; Domı́nguez Sánchez et al. 2014;
Kelson 2014). As it can handle arbitrary SFH in input, SLUG is
suitable for the analysis of stochastic effects on galaxy SFR.

In previous papers, and particularly in da Silva et al. (2012) and
da Silva et al. (2014), we have highlighted the conceptual difference
between the input SFH and the outputs that are recovered from SLUG

simulations. The reason for such a difference should now be clear
from the above discussion: SLUG approximates an input SFH by
means of discrete units, either in the form of clusters (for fc = 1),
stars (for fc = 0), or a combination of both (for 0 < fc < 1). Thus,
any smooth input function for the SFH (including a constant SFR)
is approximated by SLUG as a series of bursts, that can described
conceptually as the individual draws from the IMF or CMF. The
effective SFH that SLUG creates in output is therefore an irregular
function, which is the result of a superimposition of these multiple
bursts. A critical ingredient are the typical time delays with which
these bursts are combined, a quantity that is implicitly set by the
SFH evaluated in each timestep and by the typical mass of the
building blocks used to assemble the simulated galaxies.

A simple example, which also highlights SLUG’s flexibility in
handling arbitrary SFHs in input, is presented in Fig. 6. For this
calculation, we run 5000 SLUG models with default parameters and
fc = 1. The input SFH is defined by three segments of constant SFR
across three time intervals of 1 Myr each, plus a fourth segment of
exponentially decaying SFR with time-scale 0.5 Myr. Fig. 6 shows
how the desired SFH is recovered by SLUG on average, but individual
models show a substantial scatter about the mean, especially at
low SFRs. An extensive discussion of this result is provided in
section 3.2 of da Silva et al. (2012).

Briefly, at the limit of many bursts and small time delays (i.e.
for high SFRs and/or when SLUG populates galaxies mostly with
stars for fc ∼ 0), the output SFHs are reasonable approximations
of the input SFH. Conversely, for small sets of bursts and for long
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1458 M. R. Krumholz et al.

Figure 7. Whisker plots of the recovered SFH from two ‘galaxy’ simulations of 5000 trials each and input constant SFR of 10−4 M� yr−1. The cluster
fraction was set to fc = 1.0 (left-hand panel) and fc = 0.0 (right-hand panel). At each timestep, the first and third quartiles are shown by the box plots, with the
median marked by the red lines. The 5- and 95-percentiles are also shown by the whiskers.

time delays (i.e. for low SFRs and/or when SLUG populates galaxies
mostly with massive clusters for fc ∼ 1), the output SFHs are only
a coarse representation of the desired input SFH. This behaviour
is further illustrated by Fig. 7, in which we show the statistics
of the SFHs of 5000 galaxy simulations. These simulations are
performed assuming a constant SFR and two choices of fraction of
stars formed in clusters, fc = 1 and 0. One can notice that, in both
cases, a ‘flickering’ SFH is recovered, but that a much greater scatter
is evident for the fc ∼ 1 case when clusters are used to assemble the
simulated galaxies.

From this discussion, it clearly emerges that each SLUG simulation
will have an intrinsically bursty SFH, regardless to the user-set
input, as already pointed out in Fumagalli et al. (2011) and da Silva
et al. (2012). It is noteworthy that this fundamental characteristic
associated with the discreteness with which star formation occurs in
galaxies has also been highlighted by recent analytic and simulation
work (e.g. Boquien et al. 2014; Domı́nguez Sánchez et al. 2014;
Kelson 2014; Rodrı́guez Espinosa et al. 2014). This effect, and the
consequences it has on many aspects of galaxy studies including the
completeness of surveys or the use of SFR indicators, is receiving
great attention particularly in the context of studies at high redshift.
SLUG thus provides a valuable tool for further investigation into this
problem, particularly because our code naturally recovers a level of
burstiness imposed by random sampling, which does not need to be
specified a priori as in some of the previous studies.

3.5 Cluster disruption

When performing galaxy simulations, cluster disruption can be en-
abled in SLUG. In this new release of the code, SLUG handles cluster
disruption quite flexibly, as the user can now specify the CLF, which
is a PDF from which the lifetime of each cluster is drawn. This im-
plementation generalizes the original cluster disruption method de-
scribed in da Silva et al. (2012) to handle the wide range of lifetimes
observed in nearby galaxies (Adamo et al. 2015). We note however

that the SLUG default CLF still follows a power law of index −1.9
between 1 Myr and 1 Gyr as in Fall, Chandar & Whitmore (2009).

To demonstrate the cluster disruption mechanism, we run three
simulations of 1000 trials each. These simulations follow the evolu-
tion of a burst of 1000 M� between 0 and 1 Myr with a timestep of
5 × 105 yr up to a maximum time of 10 Myr. All stars are formed in
clusters. The three simulations differ only for the choice of cluster
disruption: one calculation does not implement any disruption law,
while the other two assume a CLF in the form of a power law with
indices −1.9 and −1 between 1 and 1000 Myr. Results from these
calculations are shown in Fig. 8.

The total mass in clusters, as expected, rises till a maximum of
1000 M� at 1 Myr, at which point it remains constant for the non-
disruption case, while it declines according to the input power law in
the other two simulations. When examining the galaxy bolometric
luminosity, one can see that the cluster disruption has no effect
on the galaxy photometry. In this example, all stars are formed in
clusters and thus all the previous discussion on the mass constraint
also applies here. However, after formation, clusters and galaxies are
passively evolved in SLUG by computing the photometric properties
as a function of time. When a cluster is disrupted, SLUG stops tagging
it as a ‘cluster’ object, but it still follows the contribution that
these stars make to the integrated ‘galaxy’ properties. Clearly, more
complex examples in which star formation proceeds both in the field
and in clusters following an input SFH while cluster disruption is
enabled would exhibit photometric properties that are set by the
passive evolution of previously formed stars and by the zero-age
main sequence properties of the newly formed stellar populations,
each with its own mass constraint.

3.6 Dust extinction and nebular emission

In this section we offer an example of simulations which imple-
ment dust extinction and nebular emission in post-processing, two
new features offered starting from this release of the code (see
Section 2.1.2). Fig. 9 shows the stellar spectra of three SLUG

MNRAS 452, 1447–1467 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/452/2/1447/1062858 by D
urham

 U
niversity user on 30 M

arch 2020



SLUG III 1459

Figure 8. Total mass inside clusters (top) and the galaxy bolometric lu-
minosity (bottom) as a function of time for three SLUG simulations of 1000
trials each. In all cases, 1000 M� of stars are formed in a single burst within
1 Myr from the beginning of the calculation. Simulations without cluster
disruption are shown in red, while simulations with cluster disruption en-
abled according to a power-law CLF of index −1.9 and −1 are shown in
blue and green. The black and coloured thick lines show the median, first,
and third quartiles of the distributions.

Figure 9. Spectra of four ‘galaxy’ simulations with SFR of 0.001 M� yr−1

evaluated at time of 2 × 106 yr. Each simulation differs for the adopted
extinction law or the inclusion of nebular emission. In red (solid line), the
intrinsic stellar spectrum is shown, while models with deterministic and
probabilistic extinction laws are shown, respectively, in blue (dashed line)
and green (dotted line). The solid lines show the first, second, and third
quartiles of 5000 realizations. In brown, the range of luminosities (first and
third quartiles) with the inclusion of nebular emission is shown.

simulations (in green, blue, and red, respectively) of a galaxy that
is forming stars with a SFR of 0.001 M� yr−1. During these simu-
lations, each of 5000 trials, the cluster fraction is set to fc = 1 and
photometry is evaluated at 2 × 106 yr. Three choices of extinction
law are adopted: the first simulation has no extinction, while the
second and third calculations implement the Calzetti et al. (2000)
extinction law. In one case, a deterministic uniform screen with
AV = 1 mag is applied to the emergent spectrum, while in the other
case the value of AV is drawn for each model from a lognormal
distribution with mean 1.0 mag and dispersion of ∼0.3 dex (the
SLUG default choice).

As expected, the simulations with a deterministic uniform dust
screen closely match the results of the non-dusty case, with a simple
wavelength-dependent shift in logarithmic space. For the probabilis-
tic dust model, on the other hand, the simulation results are qual-
itatively similar to the non-dusty case, but display a much greater
scatter due to the varying degree of extinction that is applied in
each trial. This probabilistic dust implementation allows one to
more closely mimic the case of non-uniform dust extinction, in
which different line of sights may be subject to a different degree
of obscuration. One can also see how spectra with dust extinction
are computed only for λ > 912 Å. This is not a physical effect,
but it is a mere consequence of the wavelength range for which the
extinction curves have been specified.

Finally, we also show in Fig. 9 a fourth simulation (brown colour),
which is computed including nebular emission with SLUG’s default
parameters: φ = 0.73 and log U = −3 (see Appendix B). In this
case, the cut-off visible at the ionization edge is physical, as SLUG re-
processes the ionizing radiation into lower frequency nebular emis-
sion according to the prescriptions described in Section 2.1.2. One
can in fact notice, besides the evident contribution from recom-
bination lines, an increased luminosity at λ � 2500 Å that is a
consequence of free–free, bound–free, and two-photon continuum
emission.

3.7 Coupling CLOUDY to SLUG simulations

In this section, we demonstrate the capability of the CLOUDY_SLUG

package that inputs the results of SLUG simulations into the CLOUDY

radiative transfer code. For this, we run 100 realizations of a ‘galaxy’
simulation following a single timestep of 2 × 106 yr. The input pa-
rameters for the simulation are identical to those in Section 3.3. The
galaxy is forming stars at a rate of 0.001 M� yr−1 with fc = 1. We
then pipe the SLUG output into CLOUDY to simulate H II regions in inte-
grated mode, following the method discussed in Section 2.2. In these
calculations, we assume the default parameters in CLOUDY_SLUG, and
in particular a density in the surroundings of the H II regions of
103 cm−3.

Results are shown in Fig. 10. In the top panel, the median of
the 100 SLUG spectral energy distributions (SEDs) is compared to
the median of the 100 SEDs returned by CLOUDY, which adds the
contribution of both the transmitted and the diffuse radiation. As ex-
pected, the processed CLOUDY SEDs resemble the input SLUG spectra.
Photons at short wavelengths are absorbed inside the H II regions
and are converted into UV, optical, and IR photons, which are then
re-emitted within emission lines or in the continuum.6 The nebula-
processed spectrum also shows the effects of dust absorption within
the H II region and its surrounding shell, which explains why the

6 We do not show the region below 912 Å in Fig. 10 so that we can zoom-in
on the features in the optical region.
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1460 M. R. Krumholz et al.

Figure 10. Results of 100 SLUG and CLOUDY simulations for a galaxy with continuous SFR of 0.001 M� yr−1 and fc = 1. Top panel: the median SED derived
from the 100 SLUG calculations is shown in red, while the median of the CLOUDY SEDs computed in integrated mode is shown in blue. Bottom panels: histograms
of the line luminosity for three selected transitions computed by CLOUDY in integrated mode for each input SLUG SED.

nebular spectrum is suppressed below the intrinsic stellar one at
short wavelengths.

The bottom panel shows the full distribution of the line fluxes in
three selected transitions: H α, [O III] λ5007 and [N II] λ6584. These
distributions highlight how the wavelength-dependent scatter in the
input SLUG SEDs is inherited by the reprocessed emission lines,
which exhibit a varying degree of stochasticity. The long tail of
the distribution at low H α luminosity is not well-characterized by
the number of simulations we have run, but this could be improved
simply by running a larger set of simulations. We are in the process
of completing a much more detailed study of stochasticity in line
emission (Rendahl, Krumholz & Fumagalli, in preparation).

3.8 Bayesian inference of SFRs

To demonstrate the capabilities of SFR_SLUG, we consider the sim-
ple example of using a measured ionizing photon flux to infer the
true SFR. We use the library described above and in da Silva
et al. (2014), and consider ionizing fluxes which correspond to
SFRQ(H0) = 10−5, 10−3, and 10−1 M� yr−1 using an estimate that
neglects stochasticity and simply adopts the ionizing luminosity
to SFR conversion appropriate for an infinitely sampled IMF and
SFH. We then use SFR_SLUG to compute the true posterior probabil-
ity distribution on the SFR using these measurements; we do so on
a grid of 128 points, using photometric errors of 0 and 0.5 dex, and
using two different prior probability distributions: one that is flat
in log SFR (i.e. dp/d log SFR ∼ constant), and one following the
Schechter function distribution of SFRs reported by Bothwell et al.
(2011), dp/d log SFR ∝ SFRαexp (−SFR/SFR�), where α = −0.51
and SFR� = 9.2 M� yr−1.

Fig. 11 shows the posterior PDFs we obtain, which we normal-
ized to have unit integral. Consistent with the results reported by da
Silva et al. (2014), at SFRs of ∼10−1 M� yr−1, the main effect of
stochasticity is to introduce a few tenths of a dex uncertainty into
the SFR determination, while leaving the peak of the probability
distribution centred close to the value predicted by the point mass
estimate. For SFRs of 10−3 or 10−5 M� yr−1, the true posterior PDF
is very broad, so that even with a 0.5 dex uncertainty on the pho-
tometry, the uncertainty on the true SFR is dominated by stochastic
effects. Moreover, the peak of the PDF differs from the value given
by the point mass estimate by more than a dex, indicating a sys-
tematic bias. These conclusions are not new, but we note that the
improved computational method described in Section 2.3 results in
a significant code speed-up compared to the method presented in da
Silva et al. (2014). The time required for SFR_SLUG to compute the
full posterior PDF for each combination of SFRQ(H0), photometric
error, and prior probability distribution is ∼0.2 s on a single core of
a laptop (excluding the start-up time to read the library). Thus this
method can easily be used to generate posterior probability distri-
butions for large numbers of measurement in times short enough
for interactive use.

3.9 Bayesian inference of star cluster properties

To demonstrate the capabilities of CLUSTER_SLUG, we reanalyse the
catalogue of star clusters in the central regions of M83 described
by Chandar et al. (2010). These authors observed M83 with Wide
Field Camera 3 aboard the HST, and obtained measurements for
∼650 star clusters in the filters F336W, F438W, F555W, F814W,
and F657N (H α). They used these measurements to assign each
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Figure 11. Posterior probability distributions for the logarithmic SFR based
on measurements of the ionizing flux, computed with SFR_SLUG. The quantity
plotted on the x-axis is the offset between the true log SFR and the value that
would be predicted by the ‘point mass’ estimate where one ignores stochas-
tic effects and simply uses the naive conversion factor between ionizing
luminosity and SFR. Thus a value centred around zero indicates that the
point mass estimate returns a reasonable prediction for the most likely SFR,
while a value offset from zero indicates a systematic error in the point mass
estimate. In the top panel, solid curves show the posterior PDF for a flat prior
probability distribution and no photometric errors (σ = 0), with the three
colours corresponding to point mass estimates of log SFRQ(H0) = −5, −3,
and −1 based on the ionizing flux. The dashed lines show the same central
values, but with assumed errors of σ = 0.5 dex in the measured ionizing
flux. In the bottom panel, we show the same quantities, but computed using
a Schechter function prior distribution rather than a flat one (see main text
for details).

cluster a mass and age by comparing the observed photometry to
SSP models using Bruzual & Charlot (2003) models for a twice-
solar metallicity population, coupled with a Milky Way extinction
law; see Chandar et al. (2010) for a full description of their method.
This catalogue has also been reanalysed by Fouesneau et al. (2012)
using their stochastic version of PEGAGSE. Their method, which is
based on χ2 minimization over a large library of simulated clusters,
is somewhat different than our kernel density-based one, but should
share a number of similarities – see Fouesneau & Lançon (2010) for
more details on their method. We can therefore compare our results
to theirs as well.

We downloaded the Chandar et al. (2010) ‘automatic’ catalogue
from MAST7 and used CLUSTER_SLUG to compute posterior proba-
bility distributions for the mass and age of every cluster for which
photometric values were available in all five filters. We used the
photometric errors included in the catalogue in this analysis, cou-
pled to the default choice of bandwidth in CLUSTER_SLUG, and a
prior probability distribution that is flat in the logarithm of the age
and AV, while varying with mass as p(log M) ∝ 1/M. We used our

7 https://archive.stsci.edu/

Figure 12. Posterior probability distributions for cluster mass (left) and age
(right) for four sample clusters taken from the catalogue of Chandar et al.
(2010), as computed by CLUSTER_SLUG. In each panel, the heavy blue line
is the CLUSTER_SLUG result, and the thin vertical dashed line is the best fit
obtained by Chandar et al. (2010). The ID number printed in each pair of
panels is the ID number assigned in the Chandar et al. (2010) catalogue.

library computed for the Padova tracks and a Milky Way extinc-
tion curve, including nebular emission. The total time required for
CLUSTER_SLUG to compute the marginal probability distributions of
mass and age on grids of 128 logarithmically spaced points each was
∼4 s per marginal PDF (∼6000 s for two PDFs each on the entire
catalogue of 656 clusters), using a single CPU. The computation
can be parallelized trivially simply by running multiple instances of
CLUSTER_SLUG on different parts of the input catalogue.

In Fig. 12 we show example posterior probabilities distributions
for cluster mass and age as returned by CLUSTER_SLUG, and in Fig. 13
we show the median and interquartile ranges for cluster mass and
age computed from CLUSTER_SLUG compared to those determined
by Chandar et al. (2010).8 The points in Fig. 13 are colour-coded
by the ‘photometric distance’ between the observed photometric
values and the 5th closest matching model in the CLUSTER_SLUG

library, where the photometric distance is defined as

d =
√√√√ 1

Nfilter

Nfilter∑
i=1

(Mi,obs − Mi,lib)2, (29)

8 The mass and age estimates plotted are from the most up-to-date catalogue
maintained by Chandar (private communication).
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1462 M. R. Krumholz et al.

Figure 13. Comparison of cluster masses (left) and ages (right) for clusters in the Chandar et al. (2010) catalogue computed using two different methods.
For each cluster, the value shown on the x axis is the best-fitting value reported by Chandar et al. (2010) using their non-stochastic model grids. The values
shown on the y-axis are the median masses and ages computed by CLUSTER_SLUG; for every 20th cluster we also show error bars, which indicate the 10th–90th
percentile range computed from the CLUSTER_SLUG posterior PDF. The dashed black lines indicate the 1–1 line, i.e. perfect agreement. Points are coloured by the
photometric distance (see main text for definition) between the observed photometry for that cluster and the 5th closest match in the CLUSTER_SLUG simulation
library.

where Mi, obs and Mi, lib are the observed magnitude and the magni-
tude of the CLUSTER_SLUG simulation in filter i, and the sum is over
all five filters used in the analysis.

We can draw a few conclusions from these plots. Examining
Fig. 12, we see that CLUSTER_SLUG in some cases identifies a single
most likely mass or age with a fairly sharp peak, but in other cases
identifies multiple distinct possible fits, so that the posterior PDF is
bimodal. In these cases the best fit identified by Chandar et al. (2010)
usually matches one of the peaks found by CLUSTER_SLUG. The ability
to recover bimodal posterior PDFs represents a distinct advantage
of CLUSTER_SLUG’s method, since it directly indicates cases where
there is a degeneracy in possible models.

From Fig. 13, we see that, with the exception of a few catastrophic
outliers, the median masses returned by CLUSTER_SLUG are compara-
ble to those found by Chandar et al. (2010). The ages show general
agreement, but less so than the masses. For the ages, disagree-
ments come in two forms. First, there is a systematic difference that
CLUSTER_SLUG tends to assign younger ages for any cluster for which
Chandar et al. (2010) have assigned an age >108 yr. For many of
these clusters the 1–1 line is still within the 10th–90th percentile
range, but the 50th percentile is well below the 1–1 line. The second
type of disagreement is more catastrophic. We find that there are a
fair number of clusters for which Chandar et al. (2010) assign ages
of ∼5 Myr, while CLUSTER_SLUG produces ages 1–2 dex larger. Con-
versely, for the oldest clusters in the Chandar et al. (2010) catalogue,
CLUSTER_SLUG tends to assign significantly younger ages.

The differences in ages probably have a number of causes. The
fact that our 50th percentile ages tend to be lower than those derived
by Chandar et al. (2010) even when the disagreement is not catas-
trophic is likely a result of the broadness of the posterior PDFs,
and the fact that we are exploring the full posterior PDF rather
than selecting a single best fit. For example, in the middle two
panels of Fig. 12, the peak of the posterior PDF is indeed close to
the value assigned by Chandar et al. (2010) However, the PDF is
also very broad, so that the 50th percentile can be displaced very
significantly from the peak. We note that this also likely explains
why our Fig. 13 appears to indicate greater disagreement between

stochastic and non-stochastic models than do figs 18 and 20 of
Fouesneau et al. (2012), which ostensibly make the same com-
parison. Fouesneau et al. (2012) identify the peak in the posterior
PDF, but do not explore its full shape. When the PDF is broad or
double-peaked, this can be misleading.

The catastrophic outliers are different in nature, and can be bro-
ken into two categories. The disagreement at the very oldest ages
assigned by Chandar et al. (2010) is easy to understand: the very
oldest clusters in M83 are globular clusters with substantially sub-
solar metallicities, while our library is for solar metallicity. Thus
our library simply does not contain good matches to the colours of
these clusters, as is apparent from their large photometric distances
(see more below). The population of clusters for which Chandar
et al. (2010) assign ∼5 Myr ages, while the stochastic models as-
sign much older ages, is more interesting. Fouesneau et al. (2012)
found a similar effect in their analysis, and their explanation of
the phenomenon holds for our models as well. These clusters have
relatively red colours and lack strong H α emission, properties that
can be matched almost equally well either by a model at an age of
∼5 Myr (old enough for ionization to have disappeared) with rela-
tively low mass and high extinction, or by a model at a substantially
older age with lower extinction and higher total mass. This is a true
degeneracy, and the stochastic and non-stochastic models tend to
break the degeneracy in different directions. The ages assigned to
these clusters also tend to be quite dependent on the choice of priors
(Krumholz et al., in preparation).

We can also see from Fig. 13 that, for the most part and without
any fine tuning, the default CLUSTER_SLUG library does a very good
job of matching the observations. As indicated by the colour-coding,
for most of the observed clusters, the CLUSTER_SLUG library contains
at least five simulations that match the observations to a photometric
distance of a few tenths of a magnitude. Quantitatively, 90 per cent
of the observed clusters have a match in the library that is within
0.15 mag, and 95 per cent have a match within 0.20 mag; for 5th
nearest neighbours, these figures rise to 0.18 and 0.22 mag. There
are, however, some exceptions, and these are clusters for which
the CLUSTER_SLUG fit differs most dramatically from the Chandar
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et al. (2010) one. The worst agreement is found for the clusters for
which Chandar et al. (2010) assigns the oldest ages, and, as noted
above, this is almost certainly a metallicity effect. However, even
eliminating these cases there are ∼10 clusters for which the clos-
est match in the CLUSTER_SLUG library is at a photometric distance
of 0.3–0.6 mag. It is possible that these clusters have extinctions
AV > 3 and thus outside the range covered by the library, that
these are clusters where our failure to make the appropriate aper-
ture corrections makes a large difference, or that the disagreement
has some other cause. These few exceptions notwithstanding, this
experiment makes it clear that, for the vast majority of real star clus-
ter observations, CLUSTER_SLUG can return a full posterior PDF that
properly accounts for stochasticity and other sources of error such
as age–mass degeneracies, and can do so at an extremely modest
computational cost.

4 SUMMARY AND PROSPECTS

As telescopes gains in power, observations are able to push to ever
smaller spatial and mass scales. Such small scales are often the
most interesting, since they allow us to observe fine details of the
process by which gas in galaxies is transformed into stars. However,
taking advantage of these observational gains will require the devel-
opment of a new generation of analysis tools that dispense with the
simplifying assumptions that were acceptable for processing lower
resolution data. The goal of this paper is to provide such a next-
generation analysis tool that will allow us to extend SPS methods
beyond the regime where stellar IMFs and SFHs are well sam-
pled. The SLUG code we describe here makes it possible to perform
full SPS calculations with nearly arbitrary IMFs and SFHs in the
realm where neither distribution is well sampled; the accompany-
ing suite of software tools makes it possible to use libraries of SLUG

simulations to solve the inverse problem of converting observed
photometry to physical properties of stellar populations outside the
well-sampled regime. In addition to providing a general software
framework for this task, BAYESPHOT, we provide software to solve
the particular problems of inferring the posterior probability distri-
bution for galaxy SFRs (SFR_SLUG) and star cluster masses, ages,
and extinctions (CLUSTER_SLUG) from unresolved photometry.

In upcoming work, we will use SLUG and its capability to couple to
CLOUDY (Ferland et al. 2013) to evaluate the effects of stochasticity
on emission line diagnostics such as the BPT diagram (Baldwin,
Phillips & Terlevich 1981), and to analyse the properties of star
clusters in the new Legacy Extragalactic UV Survey (Calzetti et al.
2015). However, we emphasize that SLUG, its companion tools, and
the pre-computed libraries of simulations we have created are open
source software, and are available for community use on these and
other problems.
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APPENDIX A : IMPLEMENTATION DETA IL S
A N D C A PA B I L I T I E S

Here we describe some details of SLUG’s current implementation.
These capabilities may be expanded in future versions, but we in-
clude this description here both to demonstrate the code’s flexibility,

and to discuss some subtleties that may be of use to those interested
in implementing similar codes.

A1 Probability distribution functions

SLUG uses a large number of PDFs. In particular, the IMF, the CMF,
and the SFH are all required to be PDFs, and the extinction, output
time, and (for simulations of SSPs) can optionally be described by
PDFs as well. In SLUG, PDFs can be specified as a sum of an arbitrary
number of piecewise continuous segments,

dp

dx
= n1f1(x; x1,a, x1,b) + n2f2(x; x2,a, x2,b) + · · · , (A1)

where the normalizations ni for each segment are free parameters, as
are the parameters xi, a and xi, b that denote the lower and upper limits
for each segment (i.e. the function fi(x) is non-zero only in the range
x ∈ [xi, a, xi, b]). The functions fi(x) can take any of the functional
forms listed in Table A1, and the software is modular so that addi-
tional functional forms can be added very easily. In the most com-
mon cases, the segment limits and normalizations will be chosen so
that the segments are contiguous with one another and the overall
PDF continuous, i.e. xi, a = xi, b and nifi(xi, b) = ni + 1fi + 1(xi + 1, a).
However, this is not a required condition, and the limits, normaliza-
tions, and number of segments can be varied arbitrarily. In particular,
segments are allowed to overlap or to be discontinuous (as they must
in the case of δ function segments); thus for example one could treat
the SFH of a galaxy as a sum of two components, one describing
the bulge and one describing the disc. SLUG ships with the following
IMFs pre-defined for user convenience: Salpeter (1955), Kroupa
(2002), Chabrier (2003), and Chabrier (2005).

When drawing a finite total mass, in addition to the mass dis-
tribution, one must also specify a sampling method to handle the
fact that one will not be able to hit the target mass perfectly when
drawing discrete objects. SLUG allows users to choose a wide range
of methods for this purpose, which we describe briefly here follow-
ing the naming convention used in the code. The majority of these
methods are described in Haas & Anders (2010).

(i) STOP_NEAREST: draw from the IMF until the total mass of
the population exceeds Mtarget. Either keep or exclude the final star
drawn depending on which choice brings the total mass closer to
the target value. Unless a different scheme is deemed necessary,
this is the preferred and default choice of SLUG, as this sampling
technique ensures that the stochastic solution converges towards
the deterministic one at the limit of sufficiently large Mtarget.

(ii) STOP_BEFORE: same as STOP_NEAREST, but the final star
drawn is always excluded.

(iii) STOP_AFTER: same as STOP_NEAREST, but the final star
drawn is always kept.

Table A1. Functional forms for PDF segments in SLUG.

Name Functional form, f(x) Parametersa

delta δ(x − x0) x0
b

exponential e−x/x∗ x∗
lognormal x−1exp [−(ln x/x0)2/(2s2)] x0, s
normal exp [−(x − x0)2/(2s2)] x0, s
powerlaw xp p
schechter xpe−x/x∗ p, x∗
aIn addition to the segment-specific parameters listed, all seg-
ments also allow the upper and lower cut-offs xa and xb

as free parameters. bFor delta segments, we require that
xa = xb = x0.
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(iv) STOP_50: same as STOP_NEAREST, but keep or exclude the
final star with 50 per cent probability regardless of which choice
gets closer to the target.

(v) NUMBER: draw exactly N = Mtarget/〈M〉 objects, where 〈M〉 is
the expectation value for the mass of an object produced by a single
draw, and the value of N is rounded to the nearest integer. Note
that this method can be used to handle the case of characterizing a
population as containing a particular number of objects as opposed
to a particular total mass, simply by choosing Mtarget = N〈M〉.

(vi) POISSON: draw exactly N objects, where the value of N
is chosen from a Poisson distribution with expectation value
〈N〉 = Mtarget/〈M〉

(vii) SORTED_SAMPLING:9 this method was introduced by Weid-
ner & Kroupa (2006). In it, one first draws exactly N = Mtarget/〈M〉
objects as in the NUMBER method. If the resulting total mass Mpop

is less than Mtarget, the procedure is repeated recursively using a
target mass Mtarget − Mpop until Mpop > Mtarget. Finally, one sorts the
resulting list of objects from least to most massive, and then keeps
or removes the final, most massive using a STOP_NEAREST policy.

Finally, we note two limitations in our treatment of the IMF. First,
while SLUG allows a great deal of flexibility in its treatment of PDFs,
it requires that the various PDFs that appear in the problem (IMF,
CMF, etc.) be separable, in the sense that the one cannot depend
on the other. Thus for example it is not presently possible to have
an IMF that varies systematically over the SFH of a simulation.
Secondly, while the IMF can extend to whatever mass is desired,
the ability of the code to calculate the light output depends on the
availability of stellar evolution tracks extending up to the requisite
mass. The set of tracks available in the current version of SLUG

(Appendix A2) does not extend above 120 M�.

A2 Tracks and atmospheres

The evolutionary tracks used by SLUG consist of a rectangular grid of
models for stars’ present day-mass, luminosity, effective tempera-
ture, and surface abundances at a series of times for a range of initial
masses; the times at which the data are stored are chosen to represent
equivalent evolutionary stages for stars of different starting masses,
and thus the times are not identical from one track to the next. SLUG

uses the same options for evolutionary tracks as STARBURST99 (Lei-
therer et al. 1999, 2010, 2014; Vázquez & Leitherer 2005), and in
general its treatment of tracks and atmospheres clones that of STAR-
BURST99 except for minor differences in the numerical schemes used
for interpolation and numerical integration (see below). In particu-
lar, SLUG implements the latest Geneva models for non-rotating and
rotating stars (Ekström et al. 2012; Georgy et al. 2013), as well as
earlier models from the Geneva and Padova groups (Schaller et al.
1992; Meynet et al. 1994; Girardi et al. 2000); the latter can also in-
clude a treatment of thermally pulsing AGB stars from (Vassiliadis

9 This method replaces the IGIMFmethod implemented in the earlier version
of SLUG (da Silva et al. 2012), which was based on the Weidner et al. (2010)
version of the integrated galactic IMF (IGIMF) model. In the Weidner et al.
(2010) formulation, the upper cut-off of the IMF in a star cluster depends
explicitly (rather than simply due to size-of-sample effects) on the total
mass of the cluster. This model has been fairly comprehensively excluded
by observations since the original SLUG code was developed (Fumagalli
et al. 2011; Andrews et al. 2013, 2014), and Weidner, Kroupa & Pflamm-
Altenburg (2014) advocated dropping that formulation of the IGIMF in
favour of the earlier Weidner & Kroupa (2006) one. See Krumholz (2014)
for a recent review discussing the issue.

& Wood 1993). The Geneva models are optimized for young stellar
populations and likely provide the best-available implementation
for them, but they have a minimum mass of 0.8 M�, and do not
include thermally pulsing - asymptotic giant branch stars, so they
become increasingly inaccurate at ages above ∼108 yr. The Padova
tracks should be valid up to the ∼15 Gyr age of the Universe, but are
less accurate than the Geneva ones at the earliest ages. See Vázquez
& Leitherer (2005) for more discussion. Models are available at a
range of metallicities; at present the latest Geneva tracks are avail-
able at Z = 0.014 and 0.002, the older Geneva tracks are available at
Z = 0.001, 0.004, 0.008, 0.020, and 0.040, while the Padova tracks
are available at Z = 0.0004, 0.004, 0.008, 0.020, and 0.050.

SLUG interpolates on the evolutionary tracks using a somewhat
higher order version of the isochrone synthesis technique (Charlot
& Bruzual 1991) adopted in most other SPS codes. The interpolation
procedure is as follows: first, SLUG performs Akima (1970) interpo-
lation in both the mass and time directions for all variables stored on
the tracks; interpolations are done in log–log space. Akima interpo-
lation is a cubic spline method with an added limiter that prevents
ringing in the presence of outliers; it requires five points in 1D. For
tracks where fewer than five points are available, SLUG reverts to
linear interpolation. To generate an isochrone, the code interpolates
every mass and time track to the desired time, and then uses the re-
sulting points to generate a new Akima interpolation at the desired
time.

Note that the choice of interpolation method does not affect most
quantities predicted by SPS methods, but it does affect those that are
particularly sensitive to discontinuities in the stellar evolution se-
quence. For example, the production rate of He+-ionizing photons
is particularly sensitive to the presence of WR stars, and thus to the
interpolation method used to determine the boundary in mass and
time of the WR region. We have conducted tests comparing SLUG run
with stochasticity turned off to STARBURST99, which uses quadratic
interpolation, and find that the spectra produced are identical to a
few percent at all wavelengths, with the exception of wavelengths
corresponding to photon energies above a few Rydberg at ages of
∼4 Myr. Those differences trace back to differences in determining
which stars are WR stars, with SLUG’s Akima spline giving a slightly
different result that STARBURST99’s quadratic one. For a more exten-
sive discussion of interpolation uncertainties in SPS models, see
Cervino & Luridiana (2005).

Stellar atmospheres are also treated in the same manner as is in
STARBURST99 (Smith, Norris & Crowther 2002). By default, stars
classified as WR stars based on their masses, effective tempera-
tures, and surface abundances are handled using CMFGEN models
(Hillier & Miller 1998), those classified as O and B stars are handled
using WM-Basic models (Pauldrach, Hoffmann & Lennon 2001),
and the balance are treated using Kurucz atmospheres as catalogued
by Lejeune, Cuisinier & Buser (1997, referred to as the BaSeL li-
braries). Different combinations of the BaSeL, Hillier & Miller
(1998), and Pauldrach et al. (2001) atmospheres are also possible.

A P P E N D I X B : MO D E L I N G N E BU L A R
E M I S S I O N A N D E X T I N C T I O N

Here we describe SLUG’s model for computing nebular emission and
dust extinction.

B1 Nebular continuum and hydrogen lines

As described in the main text, the nebular emission rate can be writ-
ten as Lλ, neb = γ nebφQ(H0)/α(B)(T). SLUG computes α(B)(T) using
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the analytic fit provided by Draine (2011, his equation 14.6), and
adopts a fiducial value of φ following McKee & Williams (1997).
However, the user is free to alter φ. Similarly, the temperature T can
either be user-specified as a fixed value, or can be set automatically
from the tabulated CLOUDY data (see Appendix B2).

SLUG computes the nebular emission coefficient as

γλ,neb = γ
(H)
ff + γ

(H)
bf + γ

(H)
2p +

∑
n<n′

α
eff,(B),(H)
nn′ E

(H)
nn′

+ xHeγ
(He)
ff + xHeγ

(He)
bf +

∑
i

γ
(M)
i,line. (B1)

The terms appearing in this equation are the helium abundance rela-
tive to hydrogen xHe, the H+ and He+ free–free emission coefficients
γ

(H)
ff and γ

(He)
ff , the H and He bound–free emission coefficients γ

(H)
bf

and γ
(He)
bf , the H two-photon emission coefficient γ

(H)
2p , the effective

emission rates for H recombination lines α
eff,(B),(H)
nn′ corresponding

to transitions between principal quantum numbers n and n′, the en-
ergy differences Enn′ between these two states, and the emission
coefficient for various metal lines (including He lines) γ

(M)
i,line.

We compute each of these quantities as follows. For the H and
He free–free emission coefficients, γ

(H)
ff and γ

(He)
ff , we use the ana-

lytic approximation to the free–free Gaunt factor given by Draine
(2011, his equation 10.8). We obtain the corresponding bound–free
emission coefficients, γ

(H)
bf and γ

(He)
bf , by interpolating on the tables

provided by Ercolano & Storey (2006). We obtain the effective case
B recombination rate coefficients, α

eff,(B),(H)
nn′ , by interpolating on

the tables provided by Storey & Hummer (1995). In practice, the
sum includes all transitions for which the upper principal quantum
number n′ ≤ 25. We compute hydrogen two-photon emission via

γ
(H)
2p = hc

λ3
I (H0)αeff,(B),(H)

2s

1

1 + nH/n2s,crit
Pν, (B2)

where α
eff,(B),(H)
2s is the effective recombination rate to the 2s state of

hydrogen in case B, interpolated from the tables of Storey & Hum-
mer (1995), n2s, crit is the critical density for the 2s–1s transition,
and Pν is the hydrogen two-photon frequency distribution, com-
puted using the analytic approximation of Nussbaumer & Schmutz
(1984). The critical density in turn is computed as

n2s,crit = A2s−1s

q2s−2p,p + (1 + xHe)q2s−2p,e
, (B3)

where A2s–1s = 8.23 s−1 is the effective Einstein coefficient A for
the 2s–1s transition (Draine 2011, section 14.2.4), and q2s–2p, p and
q2s–2p, e are the rate coefficients for hydrogen 2s–2p transitions in-
duced by collisions with free protons and free electrons, respec-
tively. We take these values from Osterbrock (1989, table 4.10).

B2 Non-hydrogen lines

Metal line emission is somewhat trickier to include. The emission
coefficients for metal lines can vary over multiple orders of mag-
nitude depending on H II region properties such as the metallicity,
density, and ionization parameter, as well as the shape of the ion-
izing spectrum. Fully capturing this variation in a tabulated form
suitable for fast computation is not feasible, so we make a num-
ber of assumptions to reduce the dimensionality of the problem.
We consider only uniform-density H II regions with an inner wind
bubble of negligible size – in the terminology of Yeh & Matzner
(2012), these are classical Strömgren spheres as opposed to wind-
or radiation-confined shells. To limit the number of possible spectra
we consider, we also consider only spectral shapes corresponding to

populations that fully sample the IMF. Thus while our fast estimate
still captures changes in the strength of line emission induced by
stochastic fluctuations in the overall ionizing luminosity, it does not
capture the additional fluctuations that should result from the shape
of the ionizing spectrum. A paper studying the importance of these
secondary fluctuations is in preparation.

With these choices, the properties of the H II region are to good
approximation fully characterized by three parameters: stellar pop-
ulation age, metallicity, and ionization parameter. To sample this
parameter space, we use CLOUDY (Ferland et al. 2013) to compute
the properties of H II regions on a grid specified as follows.

(i) We consider input spectra produced by using SLUG to calculate
the spectrum of a 103 M� mono-age stellar population with a
Chabrier (2005) IMF and each of our available sets of tracks (see
Appendix A2), at ages from 0–10 Myr at intervals of 0.2 Myr. We
also consider the spectrum produced by continuous star formation
at Ṁ∗ = 10−3 M� yr−1 over a 10 Myr interval. Note that the mass
and SFR affect only the normalization of the spectrum, not its shape.

(ii) For each set of tracks, we set the H II region metallicity relative
to solar equal to that of the tracks. Formally, we adopt CLOUDY’s ‘H II

region’ abundances case to set the abundance pattern, and then scale
the abundances of all gas and grain components by the metallicity
of the tracks relative to solar.

(iii) The ionization parameter, which gives the photon to baryon
ratio in the H II region, implicitly specifies the density. To complete
this specification, we must choose where to measure the ioniza-
tion parameter, since it will be high near the stars, and will fall
off towards the H II region outer edge. To this end, we define our
ionization parameter to be the volume-averaged value, which we
compute in the approximation whereby the ionizing photon lumi-
nosity passing through the shell at radius r is (Draine 2011, section
15.3)

Q(H0, r) = Q(H0)

[
1 −

(
r

rs

)3
]

. (B4)

Here Q(H0) is the ionizing luminosity of stars at r = 0 and

rs =
(

3Q(H0)

4πα(B)n2
H

)1/3

(B5)

is the classical Strömgren radius, which we compute using α(B)

evaluated at a temperature of 104 K. With these approximations, the
volume-averaged ionization parameter is

〈U〉 = 3

4πr3
s

∫ rs

0
4πr2

(
Q(H0)

4πr2cnH

) [
1 −

(
r

rs

)3
]

dr

=
[

81
(
α(B)

)2
nHQ(H0)

288πc3

]1/3

. (B6)

Thus a choice of 〈U〉, together with the total ionizing luminosity
determined from the SLUG calculation, implicitly sets the density
nH that we use in the CLOUDY calculation. Note that, as long as nH

is much smaller than the critical density of any of the important
collisionally excited lines, the exact value of Q(H0) and thus nH

changes only the absolute luminosities of the lines. The ratios of line
luminosity to Q(H0), and thus the emission coefficients γ (M), depend
only 〈U〉. Our grid of CLOUDY calculations uses log 〈U〉 = −3, −2.5,
and −2, which spans the plausible observed range.

After using CLOUDY to compute the properties of H II re-
gions for each track set, age, and ionization parameter in
our grid, we record the emission-weighted mean temperature
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〈T 〉 = ∫
n2

HT dV /
∫

n2
H dV , and the ratio Lline/Q(H0) for all non-

hydrogen lines for which the ratio exceeds 10−20 erg photon−1 at
any age; for comparison, this ratio is ≈10−12 erg photon−1 for bright
lines such as H α. This cut typically leaves ∼80 significant lines.
These data are stored in a tabular form. When a SLUG simulation
is run, the user specifies an ionization parameter 〈U〉. To compute
nebular line emission, SLUG loads the tabulated data for the speci-
fied evolutionary tracks and 〈U〉, and for each cluster or field star of
known age interpolates on the grid of ages to determine Lline/Q(H0)
and thus γ (M); field stars that are not being treated stochastically are
handled using the values of Lline/Q(H0) tabulated for continuous
star formation. At the user’s option, this procedure can also be used
to obtain a temperature 〈T〉, which in turn can be used in all the cal-
culations of H and He continuum emission, and H recombination
line emission.

There is a final technical subtlety in SLUG’s treatment of nebular
emission. The wavelength grid found in most broad-band stellar
atmosphere libraries, including those used by SLUG, is too coarse to
represent a nebular emission line. This leads to potential problems
with the representation of such lines, and the calculation of pho-
tometry in narrow-band filters targeting them (e.g. H α filters). To
handle this issue, SLUG computes nebular spectra on a non-uniform
grid in which extra wavelength resolution is added around the centre
of each line. The extra grid points make it possible to resolve the
shape of the line (which we compute by adopting a Gaussian line
shape with a fiducial width of 20 km s−1), at least marginally. The
grid resolution is high enough so that it is possible to compute nu-
merical integrals on the spectrum and recover the correct bolometric
luminosity of each line to high accuracy, so that photometric outputs
including the nebular contribution can be computed correctly.

B3 Dust extinction

SLUG parametrizes dust extinction via the V-band extinction, AV. As
noted in the main text, AV can either be a constant value, or can be
specified as a PDF as described in Appendix A1. In the latter case,
every star cluster has its own extinction, so a range of extinctions
are present. Once a value of AV is specified, SLUG computes the
wavelength-dependent extinction from a user-specified extinction
law. The extinction curves that ship with the current version of the
code are as follows:

(i) a Milky Way extinction curve, consisting of optical and UV
extinctions taken from Fitzpatrick (1999), and IR extinctions taken
from Landini et al. (1984), with the two parts combined by Calzetti
(private communication);

(ii) a Large Magellanic Cloud extinction curve, taken from the
same source as the Milky Way curve;

(iii) a Small Magellanic Cloud extinction curve, taken from
Bouchet et al. (1985);

(iv) a ‘starburst’ extinction curve, taken from Calzetti et al.
(2000).

A P P E N D I X C : SO F T WA R E N OT E S

Full details regarding the code implementation are included in the
SLUG documentation, but we include in this appendix some de-
tails that are of general interest. First, SLUG, CLOUDY_SLUG, and
various related software packages are fully parallelized for mul-
ticore environments. Secondly, the SLUG package includes a PYTHON

helper library, SLUGPY, that is capable of reading and manipulating
SLUG outputs, and which integrates with CLOUDY_SLUG, SFR_SLUG, and
CLUSTER_SLUG. In addition to more mundane data processing tasks,
the library supports ancillary computations such as convolving spec-
tra with additional filters and converting data between photometric
systems. The SLUGPY library is also fully integrated with all the tools
described below. FITS file handling capabilities in SLUGPY are pro-
vided through ASTROPY (Astropy Collaboration et al. 2013). Thirdly,
the code is highly modular so that it is easy to add additional op-
tions. Extinction curves and photometric filters are specified using
extremely simple text file formats, so adding additional filters or
extinction curves is simply a matter of placing additional text files
in the relevant directories. Similarly, probability distributions de-
scribing IMFs, CMFs, SFHs, etc., are also specified via simple text
files, so that additional choices can be added without needing to
touch the source code in any way.

The numerical implementation used in BAYESPHOT requires par-
ticular attention, since having a fast implementation is critical for
the code’s utility. Since we have written the joint and marginal pos-
terior probability distributions of the physical variables in terms
of kernel density estimates (equations 21 and 24), we can perform
numerical evaluation using standard fast methods. In BAYESPHOT,
numerical evaluation proceeds in a number of steps. After reading
in the library of simulations, we first compute the weights from the
user-specified prior probability distributions and sampling densities
(equation 18). We then store the sample points and weights in a
k-dimensional (KD) tree structure. The bandwidth we choose for
the kernel density estimation must be chosen appropriately for the
input library of models, and for the underlying distribution they
are modelling. There is no completely general procedure for mak-
ing a ‘good’ choice for the bandwidth, so bandwidth selection is
generally best done by hand.

Once the bandwidth has been chosen, we can evaluate the joint
and marginal posterior PDFs to any desired level of accuracy by us-
ing the KD tree structure to avoid examining parts of the simulation
library that are not relevant for any particular set of observations.
As a result, once the tree has been constructed, the formal order of
the algorithm for evaluating either the joint or marginal PDF using
a library of Nlib simulations is only log Nlib, and in practice evalu-
ations of the marginal PDF over relatively fine grids of points can
be accomplished in well under a second on a single CPU, even for
5-band photometry and libraries of many millions of simulations.
In addition to evaluating the joint or marginal PDF directly on a
grid of sample points, if we are interested in the joint PDF of a
relatively large number of physical variables, it may be desirable
to use a Markov Chain Monte Carlo (MCMC) method to explore
the shape of the posterior PDF. BAYESPHOT includes an interface to
the MCMC code EMCEE (Foreman-Mackey et al. 2013), allowing
transparent use of an MCMC technique as well as direct evaluation
on a grid. However, if we are interested in the marginal PDFs only
of one or two variables at time (for example the marginal PDF of
star cluster mass or star cluster age, or their joint distribution), it is
almost always faster to use equation (24) to evaluate this directly
than to resort to MCMC. The ability to generate marginal poste-
rior PDFs directly represents a significant advantage to our method,
since this is often the quantity of greatest interest.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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