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a b s t r a c t

In this article we present the NeuTomPy Toolbox, a new Python package for tomographic data processing
and reconstruction. The toolbox includes pre-processing algorithms, artifacts removal and a wide range
of iterative reconstruction methods as well as the Filtered Back Projection algorithm. The NeuTomPy
toolbox was conceived primarily for neutron tomography datasets and developed to support the need of
users and researchers to compare state-of-the-art reconstruction methods and choose the optimal data
processing workflow for their data. In fact, in several cases sparse-view datasets are acquired to reduce
scan time during a neutron tomography experiment. Hence, there is great interest in improving quality of
the reconstructed images bymeans of iterative methods and advanced image-processing algorithms. The
toolbox has a modular design, multi-threading capabilities and it supports Windows, Linux and Mac OS
operating systems. The NeuTomPy toolbox is open source and it is released under the GNU General Public
License v3, encouraging researchers and developers to contribute. In this paper we present an overview
of the main toolbox functionalities and finally we show a typical usage example.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Neutron Tomography (NT) has become a routine method at
many neutron sources to non-destructively investigate the inner
structure of a wide range of objects. The commercial software Oc-
topus [1] by InsideMatters is awell established tool for reconstruc-
tion of tomographic data at neutron imaging beamlines. However,
this software requires a significant investment and generally users
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can perform a preliminary data processing with Octopus only at
the imaging facility. Data analysis is a crucial step for the output
of an experiment, so users usually spend time to optimize the data
processingmainly at home. This poses a strongdemandof freeware
and powerful tools to perform data processing of neutron data.

Image acquisition in NT is very time-consuming with respect
to X-ray Computed Tomography (CT) and, in several cases, under-
sampled datasets are acquired to reduce the scan time and op-
timize beamtime usage during an experiment. The widely used
Filtered Back Projection (FBP) algorithm generates reconstructed
images affected by aliasing artifacts when the number of projec-
tions does not satisfy the Nyquist–Shannon condition [2]. Iterative
reconstruction methods generally outperform analytical methods,
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such as FBP, to handle under-sampled datasets [3]. Octopus soft-
ware provides only two reconstruction methods: the FBP and the
Simultaneous Algebraic Reconstruction Technique (SART). Mod-
ern reconstruction methods are not implemented. On the other
hand, several open source tools for tomographic reconstruction
are available nowadays but they are mainly developed for X-ray
CT and they are not ready to handle neutron data. Some image
pre-processing algorithms are mandatory in NT to obtain accurate
reconstruction, i.e. the estimation of the rotation axis tilt and the
related registration of the projections, the suppression of gamma-
spots and the data normalization with respect to the radiation
dose. Reconstruction tools for X-ray CT generally include some,
but not all of such correction algorithms. For example, the ASTRA
toolbox [4] is a Matlab and Python package that provides highly
efficient implementation of iterative methods for CPUs and GPUs.
ASTRA toolbox is only focused on the reconstruction step and it
does not include any pre-processing, post-processing algorithms
or functions to read and write data. On the other hand, the Python
package TomoPy [5] includes several pre-processing and post-
processing algorithms and provides implementation for CPUs of a
wide range of iterative reconstructionmethods. Moreover TomoPy
is not ready to handle neutron data, since it does not include func-
tions to estimate the rotation axis tilt and to compute the related
correction on projection data. Furthermore, TomoPy is available
only for Linux and Mac OS operating systems. MuhRec [6] is the
only free software that was conceived for NT. It includes several
filters and pre-processing algorithms and it is currently the main
free alternative to Octopus for data processing of neutron data.
However, at time ofwriting,MuhRec does not provide any iterative
reconstruction method support.

In this paper we present the NeuTomPy Toolbox, a new Python
package for tomographic data processing, that is specifically de-
signed to compensate the shortcomings of the aforementioned
software tools. TheNeuTomPy toolboxwas conceived primarily for
NT and developed to support the need of users and researchers
to compare state-of-the-art reconstruction methods and choose
the optimal data processing workflow for their data. The toolbox
has a modular design, multi-threading capabilities and it supports
Windows, Linux and Mac OS operating systems. The NeuTomPy
toolbox is open source and it is released under the GNU General
Public License v3, allowing users to freely use it and encouraging
researchers and developers to contribute. Previously, this pack-
age has been used for comparative studies [3,7] of reconstruction
methods inNT andnow is freely distributed to the neutron imaging
community.

2. Software description

Here we describe the architecture of NeuTomPy Toolbox and
present its main functionalities.

2.1. Software architecture

The NeuTomPy toolbox is written in Python. We chose this
programming language because it is open-source, cross-platform,
human-readable and allows researchers to use and contribute to
it easily. The toolbox is divided into several sub-modules, each of
these represents a particular phase of a typical CT reconstruction
pipeline. The entire chain is represented in Fig. 1. The NeuTomPy
toolbox exploits several Python libraries for scientific computing
and image processing, i.e. NumPy [8], NumExpr [9], SciPy [10],
scikit-image [11], OpenCV [12] and SimpleITK [13]. In particular,
the CT reconstruction step is powered by the ASTRA Toolbox.
NeuTomPy combined with ITK-SNAP [14] or 3D Slicer [15] turns
out to be a complete open-source software suite for CT.

2.2. Software functionalities and sample code snippets

The NeuTomPy toolbox allows to perform the steps of a typical
CT reconstructionworkflow (Fig. 1). The first task is represented by
the reading of a raw dataset. The implemented reader handles TIFF
and FITS files and converts a stack of images into a numpy array.
A dataset containing raw projections, dark-field, flat-field images
and the projection at 180◦ can be read by:

import neutompy as ntp
proj,dark,flat,proj_180 = ntp.read_dataset(proj_180=

True)

hence the user can select the data to read from a dialog box.
Subsequently, the projection datamust be normalizedwith respect
to dark-field and flat-field images to compute the transmission
images. If the source intensity is not stable the images can be
normalized with respect to the radiation dose [3]. In this case, the
user must specify a region of interest (ROI) which corresponds to a
background area not covered by the specimen in all the projections
(we called it the dose ROI). It can be specified in three different
ways: drawing interactively a rectangular selection, specifying the
ROI’ s coordinates or reading an ImageJ .roi file. For example, to
normalize data and select interactively the dose ROI, the Python
instruction is:

norm, norm_180 = ntp.normalize_proj(proj,dark,flat,
proj_180=proj_180 ,
dose_draw=True)

where the function normalize_proj returns a 3D array contain-
ing the stack of normalized projections (norm) and a 2D array
representing the normalized radiograph at 180◦ (norm_180).

A common experimental issue in NT is the misalignment of
the rotation axis with respect to the vertical axis of the detector.
The function correction_COR evaluates the horizontal offset
and the tilt angle by minimizing the squared error between two
opposite radiographs computed at different vertical positions, as
described in [6], and finally it registers all the projections. The
Python instruction for this task is:

norm = ntp.correction_COR(norm, proj_0, proj_180)

where proj_0 and proj_180 are the projections (raw or normal-
ized) at 0◦ and 180◦, respectively. The user selects interactively
different ROIswhere the sample is visible. Subsequently the results
and some information about the evaluation of the rotation axis
are shown. We report in Fig. 2 an example for the rotation axis
correction: the difference of the projections at 0◦ (P0) and the
mirrored projection at 180◦ (P flipped

π ) before and after the correction
are shown in the left and right side, respectively.

The NeuTomPy toolbox includes an outlier removal which re-
places a pixel value by the median of the neighborhood pixels if
it deviates from the median by more than a certain value. This
threshold value can be specified by the user as a global value or
proportional to the local standard deviation. It is provided also a
destriping filter, based on combined wavelet and Fourier analysis,
to suppress the ring artifacts [16].

The reconstruction module includes all CPU- and GPU-based
algorithms for 2D parallel beam geometry implemented in the
ASTRA toolbox and some additional reconstruction methods dis-
tributed as ASTRA plugins. The available algorithms are summa-
rized in Table 1. The instruction to perform a CT reconstruction is
the following:

rec = ntp.reconstruct(norm,angles,method,parameters)

where rec is the reconstructed volume, angles is one-
dimensional array containing the view angles in radians, method
is a string which indicates the algorithm to use and parame-
ters is a Python dictionary that contains specific settings of the
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Fig. 1. Diagram representing the typical CT data processing steps that can be performed by NeuTomPy toolbox. The package has a modular structure that follows the data
processing chain.

Fig. 2. Results of the rotation axis correction: the difference P0 −P flipped
π before (left) and after (right) the correction. The rotation axis is determined correctly if the difference

image P0 − P flipped
π after correction does not contain sample features.

reconstruction algorithm. The allowed values for method and
parameters follow the convention of theASTRA toolbox, reported
in the documentation [17]. For example, the following instruction
is used to computewith GPU support a FBP reconstructionwith the
Hamming filter:

rec = ntp.reconstruct(norm,angles,method= " FBP_CUDA " ,
parameters={ " FilterType " : " hamming " })

while a SIRT reconstruction with 100 iterations and pixel values
limited in the range [0, 2] can be performed by:

rec = ntp.reconstruct(norm,angles,method= " SIRT_CUDA " ,
parameters={ " iterations " :100, " MinConstraint " :0.0,
" MaxConstraint " =2.0}).

The NeuTomPy toolbox allows to compare and evaluate the per-
formance of different reconstruction algorithms in terms of several
image quality indexes. The metrics implemented are the Contrast-
to-Noise-Ratio (CNR) [3], the Normalized Root Mean Square Error
(NRMSE) [3], an edge quality metric [3] and the Structural Similar-
ity Index (SSIM) [18].

3. Illustrative examples

Here we demonstrate the possibility to perform several recon-
struction algorithms and compare them quantitatively using the
NeuTomPy toolbox.We used neutron images of a phantom sample

Table 1
List of the CT reconstruction methods included in Neu-
TomPy Toolbox for two-dimensional parallel-beam ge-
ometries.
Method CPU GPU

BP [2] x x
FBP [2] x x
ART [2] x
SART [2] x x
CGLS [19] x x
SIRT [20] x x
NN-FBP [21] x x
MR-FBP [22] x x

acquired at the IMAT beamline [23,24], ISIS neutron spallation
source, UK. The phantom, already analyzed in a previous work [3],
is an aluminium cylinder containing four holes of different diam-
eters and filled with iron powder. We used for CT reconstruction
an under-sampled dataset with 1/3 of the number of projections
required by the Nyquist–Shannon condition. We performed FBP,
SIRT and CGLS reconstructions and we compare them in terms of
the image quality indexes NRMSE, SSIM and CNR. We consider the
SIRT reconstruction (200 iterations) of a full-view dataset, which is
sampled to fulfill the Nyquist–Shannon condition, as the reference
image for the computation of the NRMSE and SSIM. The CNR was
computed considering aROI that includes one iron rod andwith the
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Fig. 3. A comparison of reconstructed images of a phantom sample, obtained using FBP, SIRT (200 iterations) and CGLS (10 iterations). Below each image the histogram of
the attenuation coefficient values within the sample is represented in the range [0, 0.7] cm−1 .

second ROI outside the sample. The results are shown in Fig. 3. It is
clear that the two iterative algorithms outperform the FBPmethod.
In fact, the CGLS and the SIRT reconstructions have higher CNR
and SSIM, and lower NRMSE than the FBP, which indicate better
image quality. In general, the under-sampling and the noise in the
projection data cause in the reconstructed images a broadening
of the attenuation coefficients distribution. However, unlike FBP
reconstruction, the CGLS and the SIRT images are characterized
by a bimodal distribution of the gray values, which reflects the
composition of the sample.

The source code of this analysis is omitted here for brevity.
However, the source code for this and other examples can be found
in the GitHub repository.

4. Impact

Data processing is the last step of a NT experiment but it is cru-
cial for the interpretation of the results. Advanced image process-
ing algorithms can extract hidden information from data and re-
duce the tomographic scan time. Hence new software tools, specif-
ically designed for neutron data, are required to compare state-of-
the-art image processing algorithms. Working on robust methods
and tools to improve image quality means get better output from
NT experiments. However, state-of-the-art iterative reconstruc-
tionmethods are not implemented in Octopus andMuhRec, which
are the leading software for NT reconstruction. The NeuTomPy
toolbox solves this shortcoming because it is ready to work with
neutron data and allows to perform and compare several iterative
reconstruction methods. Researches can define the optimal data
processing workflow for their specific problem using the Neu-
TomPy toolbox. The code is open-source, hence developers and
researchers are invited to contribute.

5. Conclusions

In this paper we presented the NeuTomPy Toolbox, a new
Python package for tomographic data processing. We demon-
strated that the toolbox is ready to work with neutron data and
allows researchers to state the optimal data processing work-
flow for their specific investigation. The first release includes pre-
processing algorithms, artifacts removal and a wide range of clas-
sical and state-of-the-art reconstruction methods. The NeuTomPy

toolbox supports Windows, Linux and Mac OS operating systems
and it is released as open source. Researchers can freely use it and
contribute to the project.

The future development will involve improvement of pre-
processing algorithms (e.g. scattering correction), addition of new
reconstructionmethods and finally the implementation of aGraph-
ical User Interface (GUI).
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