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Abstract

A general Liouville-type result and a corresponding vanishing theorem are proved under
minimal regularity assumptions. The latter is then applied to conformal deformations of stable
minimal hypersurfaces, to the L2 cohomology of complete manifolds, to harmonic maps under
various geometric assumptions, and to the topology of submanifolds of Cartan–Hadamard spaces
with controlled extrinsic geometry.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

The aim of this paper is to present a unified approach to treat different geometri-
cal questions such as the study of the constancy of harmonic maps, the topology of
submanifolds, and the L2-cohomology.

The common feature of the problems we treat lies in the fact that one identifies
a suitable function � whose vanishing or, more generally, constancy, is the analytic
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counterpart of the desired geometric conclusion, and, using the peculiarities of the
geometric data, one shows that the function � satisfies a differential inequality of the
form

��� + a(x)�2 + A|∇�|2 �0 (0.1)

weakly on M, as well as some suitable non-integrability condition.
This is reminiscent of Bochner’s original method: in the compact case, and under

appropriate assumptions on the sign of the function � and of the coefficient a(x), one
concludes with the aid of the standard maximum principle.

In the non-compact case, one could conclude using a form of the maximum principle
at infinity; see for instance [CY] and the very recent [PRS1], where, in some cases,
one can also relax the boundedness conditions on �.

In the general case, however, where no sign condition is imposed on a(x) and/or
the function � is not bounded, this method is not feasible.

The novelty of our approach is that the compactness of the ambient manifold is
now replaced by the assumption that there exists a positive solution � of a differential
inequality suitably related to (0.1)

�� + Ha(x)��0 (0.2)

Combining the two inequalities enables us to rephrase the vanishing of � into an
appropriate Liouville-type result.

We note that the existence of a positive solution to (0.2) is equivalent to the non-
negativity of the bottom of the spectrum of the Schrödinger operator −� − Ha(x),
and one could interpret the condition on its spectrum as a sign condition on a(x) in a
suitably integrated sense. We also remark that a somewhat related approach has been
used by other authors, see e.g. Berard [B1]. However, he uses the condition on the
spectral radius directly, and is therefore forced to restrict the consideration to the L2

case.
To exemplify our approach we consider the case of harmonic maps, where the setting

is particularly transparent.
We recall that a harmonic map f between two Riemannian manifolds M and N is a

stationary point of the (local) energy integral, and it is characterized by the vanishing
of the tension field �(f ) = trace Ddf . Combining the Weitzenböck–Bochner formula
for harmonic maps, with a refined Kato inequality in the spirit of Schoen and Yau
[SY1], one shows that if N has a non-positive sectional curvature, then the (square root
of the) energy density |df | satisfies the inequality

|df | �(|df |) + a(x)|df |2 � 1

n(m − 1)
|∇(|df |)|2,

where m and n are the dimensions of M and N, respectively, and −a(x) is a lower
bound for the Ricci curvature of M (see Section 2).



426 S. Pigola et al. / Journal of Functional Analysis 229 (2005) 424–461

Thus, if a(x) is non-positive, |df | is subharmonic, and if M is compact, |df | is
constant and in fact f is constant if a(x) is somewhere strictly negative.

In the non-compact case, Schoen and Yau prove that if the Ricci curvature of M
is non-negative, i.e., a(x) vanishes identically, |df | is again constant. Thus, since the
volume of M is infinite by the assumption on the Ricci curvature, if f has finite energy,
it is necessarily constant. The same conclusion is obtained in the case where M is
a minimal stable immersion of a hypersurface in N. In this situation, by the Gauss
equations, a(x) is equal to the square of the length of the second fundamental tensor
|II|2 of the immersion. Thus, stability is equivalent to the non-negativity of the spectral
radius of the operator L = −� − a(x).

In Section 2, we show that if the operator LH = −� − Ha(x) has non-negative
spectral radius for some H �1, then any harmonic map f is constant provided |df |2
is in L� for some 1���H. It is immediate to see that this contains both Schoen and
Yau’s results. Moreover, our approach allows not only to relax the condition on a(x)

but establishes a link between the integrability condition imposed on the energy density
and the coefficient H in LH . In particular, the topological consequences deduced in
Schoen and Yau hold in this more general context.

The main analytical tool used in proving our geometric results is a Liouville-type
theorem for locally Lipschitz solutions of differential inequalities of the type

u div (�u)�0,

on M satisfying suitable non-integrability conditions (see Theorem 1.4 below).
Applying this result to a function u constructed in terms of � and � yields the

vanishing result for solutions of (0.1) alluded to above. The example just described
shows that the fairly weak regularity assumptions imposed on u are indeed necessary
in order to treat the geometrical problems at hand.

The paper is organized as follows: Section 1 deals with the analytic results. The
main result of this section is the Liouville-type theorem mentioned above, which is then
used to prove the vanishing result (see Theorem 1.4) used in the geometric applications
presented in Section 2. In Section 2, we first extend a result of D. Fisher-Colbrie and
Schoen on the non-existence of complete metrics conformally related to the hyperbolic
metric on the disk to the case of stable hypersurfaces of Euclidean space (see Theorem
2.1 and Corollary 2.2). We then consider the case of harmonic maps with finite energy.
We continue with the study of the topology at infinity of submanifolds of Cartan–
Hadamard spaces. In the last subsection we extend a result of Bourguignon [Bo] on
the triviality of the cohomology in the middle dimension, valid in the compact case,
to the case of the L2 reduced cohomology of a complete manifold.

In what follows we let (M, 〈, 〉) be a connected Riemannian manifold of dimension
m. We fix an origin o, and denote by r(x) the distance function from o, and by Br and
�Br the geodesic ball and sphere of radius r centered at o, and by vol Br and vol (�Br)

the respective Riemannian measures. Finally, we denote by C a positive constant that
may vary from line to line.
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1. Analytic results

In this section we develop the analytic techniques on which all our geometric appli-
cations rest. Our first result is a generalization of a Liouville-type result originally due
to by Beresticki et al. [BCN], in Euclidean setting. See also Proposition 2.1 in [AC].

Theorem 1.1. Let (M, 〈 , 〉) be a complete manifold. Assume that 0 < � ∈ L2
loc(M)

and u ∈ Liploc(M) satisfy

u div (�∇u) �0, weakly on M. (1.1)

If, for some p > 1,

(∫
�Br

|u|p �

)−1

�∈ L1(+∞) (1.2)

then u is constant.

Proof. We begin observing that assumption (1.1) means that, for every 0�� ∈ C∞
c (M),

or equivalently, for every 0�� ∈ Lip(M) compactly supported in M, we have

0� −
∫

〈∇(�u), �∇u〉 = −
∫ {〈∇�, �u∇u〉 + ��|∇u|2}, (1.3)

and it is therefore equivalent to the validity of the differential inequality

div (�u∇u)��|∇u|2 (1.4)

in the weak sense on M.
Next, let a(t) ∈ C1(R) and b(t) ∈ C0(R) satisfy

(i)a(u)�0, (ii)a(u) + ua′(u)�b(u) > 0 (1.5)

on M, and, for fixed �, t > 0, let �� be the Lipschitz function defined by

��(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if r(x)� t,

t + � − r(x)

�
if t < r(x) < t + �,

0 if r(x)� t + �.



428 S. Pigola et al. / Journal of Functional Analysis 229 (2005) 424–461

The idea of the proof is to apply the divergence theorem to the vector field a(u)u�∇u.
We use an integrated form of this idea in order to deal with the weak regularity of the
functions involved.

For every non-negative compactly supported Lipschitz function �, we compute

−
∫

〈��a(u)∇�, �u∇u〉

= −
∫

〈∇(���a(u)) − ���a
′(u)∇u − �a(u)∇��, �u∇u〉

�
∫

����|∇u|2[a(u) + a′(u)u] + �a(u)〈∇��, �u∇u〉

�
∫

����b(u)|∇u|2 − 1

�

∫
Bt+�\Bt

�a(u)�|u||∇u|,

where the first inequality follows from (1.4) using ���a(u) as a test function which is
non-negative Lipschitz and compactly supported because of the assumptions imposed
on a, u, �, �� and � (here we need u ∈ Liploc), while the second inequality is a
consequence of (1.5) (ii), and of the Cauchy–Schwarz inequality.

Choosing � in such a way that � ≡ 1 on Bt+� the integral on the leftmost side
vanishes, and, applying the Cauchy–Schwarz inequality to the second integral on the
rightmost side and rearranging, we deduce that∫

Bt

�b(u)|∇u|2

�
(

1

�

∫
Bt+�\Bt

a(u)2

b(u)
�u2

)1/2 (
1

�

∫
Bt+�\Bt

b(u)�|∇u|2
)1/2

. (1.6)

Setting

H(t) =
∫

Bt

�b(u)|∇u|2,

it follows by the co-area formula (see [F, Theorem 3.2.12]) that

H ′(t) = lim
�→0+

1

�

∫
Bt+�\Bt

b(u)�|∇u|2 =
∫
�Bt

b(u)�|∇u|2Hm−1 for a.e. t.

Here Hm−1 denotes the (m−1)-dimensional Hausdorff measure on �Bt , which coincides
with the Riemannian measure induced on the regular part of �Bt (the intersection of
�Bt with the complement of the cut locus of o; see [F], 3.2.46, or [Ch], Proposition
3.4).
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Since the same conclusion holds for the first integral on the right-hand side of (1.6),
letting � → 0+ in (1.6) and squaring, we conclude that

H(t)2 �
(∫

�Bt

a(u)2

b(u)
�u2

)
H ′(t) for a.e. t. (1.7)

At this point the proof follows the lines of that of Lemma 1.1 in [RS2]: assume by
contradiction that u is non-constant, so that there exists R0 > 0 such that |∇u| does not
vanish a.e. in BRo . Then for each t > R0, H(t) > 0, and therefore the RHS of (1.7)
is also positive. Integrating the inequality between R and r (R0 �R < r) we obtain

H(R)−1 �H (R)−1 − H(r)−1 �
∫ r

R

(∫
�Bt

�
a(u)2

b(u)
u2

)−1

. (1.8)

Now, we consider the sequence of functions defined by

an (t) =
(

t2 + 1

n

) p−2
2

, bn(t) = min{p − 1, 1} an(t), ∀n ∈ N.

Since condition (1.5) holds for every n, so does (1.8), whence, letting n → +∞ and
using the Lebesgue-dominated convergence theorem and Fatou’s lemma we deduce that
there exists C > 0 which depends only on p such that

(∫
BR

�|u|p−2|∇u|2
)−1

�C

∫ r

R

(∫
�Bt

�|u|p
)−1

dt.

The required contradiction is now attained by letting r → +∞ and using assumption
(1.2). �

As the above proof shows, the conclusion of the Theorem holds if one assumes that
� ∈ L∞

loc(M) and u ∈ H 1
loc(M).

We observe that condition (1.2) is implied by u�1/p ∈ Lp(M). Indeed, if this is the
case and we set f = ∫

�Br
|u|p�, then the assumption and the co-area formula show

that f ∈ L1(+∞), and by Hölder inequality

∫ r

r0

f −1 �(r − r0)
2
(∫ r

r0

f

)−1

→ +∞ as r → +∞.

We also note that the conclusion of Theorem 1.1 fails if we assume that p = 1
in (1.2). Indeed, taking � ≡ 1, (1.1) reduces to u�u�0, and Li and Schoen have
constructed in [LS] an example of a non-constant, L1, harmonic, function on a complete
manifold.
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Finally, we remark that Theorem 1.1 generalizes [BCN] (see the proof of
Proposition 2.1 therein) in two directions, even in the case where M = Rm. Firstly, in
their case p = 2; secondly they replace (1.2) by the more stringent condition∫

Br

u2��Cr2

for some constant C > 0. To see that the latter implies (1.2) simply note that its
validity forces

r∫
Br

u2�
�∈ L1 (+∞)

which in turn implies (1.2) (see, e.g., [RS2, Proposition 1.3]). Furthermore, although
the approach used in [BCN] is also applicable in the case of Riemannian manifolds,
in this general context, it does not yield a sharp result.

For some of our applications of Theorem 1.1 we shall need the following lemma,
which is a slightly improved version of a result of Moss and Pieprbrink, [MP], and
Fisher-Colbrie and Schoen [FCS].

Lemma 1.2. Let (M, 〈 , 〉) be a Riemannian manifold, and � ⊂ M be a domain in M
and let a(x) ∈ L∞

loc(�). The following facts are equivalent:

(i) There exists w ∈ C1(�), w > 0, a weak solution of

�w + a(x)w = 0 on �;

(ii) There exists � ∈ H 1
loc(�), � > 0, a weak solution of

�� + a(x)��0 on �; and

(iii) If �L
1 (�) denotes the bottom of the spectrum of the Schrödinger operator L =

−� − a(x) with Dirichlet boundary conditions, then

�L
1 (�) := inf

0 �≡v∈C∞
c (�)

∫ |∇v|2 − a(x)v2∫
v2

�0.

Proof. We sketch the proof, which is a modification of the original proof in [FCS].
It is trivial that (i) implies (ii). To prove that (ii) implies (iii), observe that, by

assumptions, � satisfies∫
〈∇�, ∇�〉 − a(x)���0, ∀0�� ∈ H 1

c (�). (1.9)
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For every � > 0, set �� = log(� + �) ∈ H 1
loc. Then, given f ∈ C∞

c (�) we compute∫
〈∇��, ∇(f 2)〉 =

∫ 〈 ∇�

� + �
, ∇(f 2)

〉

=
∫ 〈

∇�, ∇
(

f 2

� + �

)
+ f 2

(� + �)2 ∇�

〉

�
∫

a�
f 2

� + �
+

∫ |∇�|2
(� + �)2 f 2 =

∫
a

�

� + �
f 2 +

∫
|∇��|2f 2,

where we have used inequality (1.9) applied to the non-negative compactly supported
H 1 function f 2/(� + �). We use the inequality

〈∇��, ∇(f 2)〉�2|f ||∇f ||∇��|�f 2|∇��|2 + |∇f |2

to estimate the left-hand side, and simplify to obtain

∫
|∇f |2 �

∫
�

� + �
af 2,

and since a ∈ L∞
loc, f 2 ∈ C∞

c and |�/(� + �)|�1, we may let � → 0+ and apply the
dominated convergence theorem to conclude that

∫
|∇f |2 �

∫
af 2,

as required.
We now come to the implication (iii)⇒ (i). Let {Dn} be an exhaustion of � by

an increasing sequence of relatively compact domains with smooth boundary. Since
a(x) ∈ L∞

loc(�), and �L
1 (Dn) > 0, by domain monotonicity, the Dirichlet problem

{ Lv = 0 in Dn,

v = 1 on �Dn,
(1.10)

has a solution vn which belongs to C0,�(Dn) ∩ H 2(Dn) for some 0 < � < 1 (see,
e.g. [GT, Theorems 8.6, 8.12 and 8.29]). Moreover, it follows from Theorem 1.1 in

[T] (see also [G, Chapter VII, Theorem 1.2]) that vn ∈ C
1,	
loc (Dn) for some 0 < 	 < 1

independent of n.
We claim that vn > 0 in Dn. By the maximum principle (see [GT, p. 35], and note

that the result extends to functions in C1 using a comparison argument modelled, e.g.,
on [PRS1, Proposition 6.1]) it suffices to show that vn �0. Assume by contradiction that
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Bn = {x ∈ Dn : vn(x) < 0} �= ∅. Then, by the boundary condition, Bn�Dn and v−
n =

min{vn, 0} ∈ H 1
c (Dn) is a weak solution of the differential inequality (−� − a)v−

n �0.
Using the non-zero function −v−

n as a test function, we obtain

∫
|∇v−

n |2 − a(x)(v−
n )2 �0,

contradicting the positivity of �L(Dn).
Now fix xo ∈ D0, and let

wn(x) = vn(x)

vn(xo)
,

so that wn ∈ C0,�(Dn) ∩ C
1,	
loc (Dn). Furthermore, according to Theorem 8.20 in [GT]

and Theorem 1.1 in [T], for every n there exists a constant Cn such that for every
k > n,

C−1
n �wk(x)�Cn

|∇wn|�Cn

|∇wk(x) − ∇wk(y)|�Cnd(x, y)	

for every x, y ∈ Dn.
The Ascoli–Arzelá theorem and a diagonal argument yield a subsequence {wnj

}
which converges in C1

loc(�) to a C1 function w which is a weak solution of Lw = 0.

Since wn(xo) = 1 for every n, w(xo) = 1, and, again by the maximum principle,
w > 0 on �. �

Remark 1.3. As the proof shows, the function w belongs in fact to the space C
1,	
loc (�)

for some 0�	 < 1. Further, if we assume that a(x) ∈ C
0,�
loc (�) for some 0 < � < 1,

then w ∈ C
2,�
loc (�) (see, e.g., [Au, Theorem 3.55]) and it is therefore a classical solution

of �w+a(x)w = 0 on �. Finally, it is easy to see that the equivalences (i)–(iii) extend
to the case where � is replaced by the exterior M \ K of a compact set K, thus
extending Proposition 1 in [FC].

We are now ready for the following consequence of Theorem 1.1, which will be the
main component in the geometric applications of Section 2.

Theorem 1.4. Let (M, 〈 , 〉) be a complete manifold, a(x) ∈ L∞
loc(M) and let � ∈

Liploc(M) be a positive solution of

�� + Ha(x)��0 weakly on M, (1.11)
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for some H �1 + max{A, 0}. Let � ∈ Liploc(M) satisfy the differential inequality

��� + a(x)�2 + A|∇�|2 �0 weakly on M. (1.12)

If

(∫
�Br

|�|2(	+1)

)−1

�∈ L1(+∞) (1.13)

for some 	 such that max{A, 0}�	�H − 1, then there exists a constant C ∈ R such
that

C� = |�|H sgn �. (1.14)

Further,

(i) If H − 1 > A, then � is constant on M, and if in addition, a(x) does not vanish
identically, then � is identically zero;

(ii) If H − 1 = A, and � does not vanish identically, then � and therefore |�|H
satisfy (1.11) with equality sign.

Proof. Set, for ease of notation, � = 	+1
H

, and let u be the locally Lipschitz function
defined by

u = �−�|�|	�,

so that the first assertion in the statement is that u is constant on M.

Noting that ∫
�2�|u|2 =

∫
|�|2(	+1),

so that (1.13) implies that (1.2) holds with �2� in place of �, and p = 2, the constancy
of u follows from Theorem 1.1 once we show that the differential inequality

u div
(
�2�∇u

)
�0 (1.15)

holds weakly on M, i.e. (see the beginning of the proof of Theorem 1.1), that for
every non-negative, compactly supported Lipschitz function � on M, we have

I =
∫ [〈�2�u∇u, ∇�〉 + �2�|∇u|2�]

�0.
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From the definition of u we compute

∇u = −��−�−1|�|	�∇� + (	 + 1)�−�|�|	∇�

whence

I = (	 + 1)

∫
〈∇�, �|�|2	∇�〉 − �

∫
�−1|�|2	+2〈∇�, ∇�〉

+
∫ [

(	 + 1)2|�|2	|∇�|2� + �2|�|2	+2 |∇�|2
�2 �

]
−2�(	 + 1)

∫
|�|2	�

〈∇�

�
, ∇�

〉
. (1.16)

We first consider the first integral on the right-hand side∫
|�|2	�〈∇�, ∇�〉 = lim

�→0+

∫
(�2 + �)	�〈∇�, ∇�〉

= lim
�→0+

{∫
〈∇�, ∇[

�(�2 + �)	�
]〉

−(�2 + �)	
(2	 + 1)�2 + �

�2 + �
|∇�|2�

}
. (1.17)

According to (1.12), for every non-negative, compactly supported Lipschitz function 
,

∫
〈∇�, ∇(
�)〉�

∫ (
a(x)�2 + A|∇�|2)
.

Applying the above inequality with 
 = �(�2 + �)	, and applying the dominated
convergence theorem, we deduce that

lim
�→0+

∫
(�2 + �)	

(2	 + 1)�2 + �

�2 + �
|∇�|2� = (2	 + 1)

∫
|�|2	|∇�|2�,

and

lim
�→0+

∫
〈∇�, ∇[

�(�2 + �)	�
]〉 � lim

�→0+

∫ [
a(x)�2 + A|∇�|2](�2 + �)	�

=
∫ [

a(x)|�|2	+2 + A|�|2	|∇�|2]�.
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Inserting into (1.17) we conclude that∫
|�|2	�〈∇�, ∇�〉�

∫ [
a(x)|�|2	+2 + (A − 2	 − 1)|�|2	|∇�|2]�. (1.18)

In a similar, but easier way, using (1.11) one verifies that

−
∫

�−1|�|2	+2〈∇�, ∇�〉 �
∫ [

−Ha(x)|�|2	+2 − |�|2	+2 |∇�|2
�2

+2(	 + 1)|�|2	�

〈∇�

�
, ∇�

〉]
�. (1.19)

Substituting (1.18) and (1.19) into (1.16), recalling the value of �, and the condition
satisfied by 	, we conclude that

I �(	 + 1)

∫ [
(A − 	)|�|2	|∇�|2� + 	 + 1 − H

H 2 |�|2	+2 |∇�|2
�2 �

]
�0,

as required to show that (1.15) holds.
In particular, � has a constant sign, and if we assume that � �≡ 0, multiplying � by

a suitable constant we may assume that � is strictly positive, and

� = �H .

Inserting this equality into (1.11) we have

H�H−2[��� + (H − 1)|∇�|2 + a(x)�2]�0, (1.20)

whence, multiplying (1.12) by H�H−2, and subtracting the resulting inequality from
(1.20) we obtain

H
[
(H − 1) − A

]
�H−2|∇�|2 �0. (1.21)

Thus, if H − 1 > A, |∇�|2 ≡ 0, and � and therefore � are constant. It follows from
(1.11) that

�� + Ha(x)� = Ha(x)��0 so that a(x)�0,

while (1.12) implies that

��� + a(x)�2 + A|∇�|2 = a(x)�2 �0 so that a(x)�0,
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and we conclude that a(x) ≡ 0. In particular, if a(x) �≡ 0, then � must vanish
identically.

Finally, assume that A = H − 1, and that � does not vanish identically, so that, as
noted above, we may assume that � is strictly positive, and that � = �H . On the other
hand, it follows from (1.11) and Lemma 1.2 that there exists a positive C1 function v
satisfying

�v + Ha(x)v = 0 weakly on M. (1.22)

Repeating the argument with v in place of �, we deduce that there exists c̃ �= 0, such
that

c̃v = �H = �.

Thus � is a positive multiple of v and we conclude that it also satisfies (1.22). �

We remark that Theorem 1.4 fails if the exponent 2(	 + 1) in the integrability
condition (1.14) is replaced by p(	+1) for some p > 2. Indeed, it was shown in [BR]
that if a(x) and b(x) are non-negative continuous functions on Rm satisfying

a(x)� (m − 2)2

4
|x|−2, a(x) = (m − 2)2

4
|x|−2 if |x| � 1

and

b(x) = |x|(m−2)(
−1)/2

(log |x|)
+1(log log |x|)(log log log |x|)2 if |x| � 1

for some 
 > 1, then the equation

�u + a(x)u − b(x)u
 = 0 (1.23)

has a family of positive solutions u� (� > 0) satisfying

u�(0) = � and u�(x) ∼ |x|−(m−2)/2 log |x| as |x| → +∞.

In particular, u� is a solution of (1.12) with A = 0, and

∫
�Br

|u�|q � r1+(m−2)(2−q)/2(log r)q,
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so that (∫
�Br

|u�|q
)−1 �∈ L1(+∞)

for every q > 2.
On the other hand, it is well known that in this case �−�−a(x)

1 (Rm) = 0, so there
exists a positive solution � of

�� + a(x)� = 0 on Rm (1.24)

(see, e.g., [BRS1, Lemma 3 and subsequent Remark 4]).
Since in this case H = 1, applying Theorem 1.4 we would conclude that

c� = u�

for some constant c which is necessarily positive, since both u, � > 0. But then u�
would be a solution of (1.24) and this is impossible since it satisfies (1.23) and b is
non-zero.

As an immediate corollary of Theorem 1.4 we have

Corollary 1.5. Let a(x) ∈ L∞
loc(M) and H �1+max{A, 0}, and set L = −�−Ha(x).

Assume that � ∈ Liploc(M) is a changing sign solution of (1.12) satisfying (1.13) for
some 	 such that max{A, 0}�	�H − 1. Then �L

1 (M) < 0.

Proof. Assume by contradiction that �L
1 (M)�0. By Lemma 1.2 there exists 0 < � ∈

C1(M) satisfying �� + Ha(x)� = 0 on M. By Theorem 1.4, there exists a constant c
such that c�|�|H−1�, and since � changes sign, while � is strictly positive, this yields
the required contradiction. �

In the case of Euclidean space, the integrability condition (1.13) follows assuming a
suitable upper estimate for �, and yields the following (slight) improvement of [BCN]
Theorem 1.7:

Corollary 1.6. Let a(x) ∈ L∞
loc(R

m), and let � ∈ Liploc(R
m) be a changing sign

solution of

��� + a(x)�2 �0 on Rm,

such that, for some H �1,

|�(x)| = O
(
r(x)−(m−2)/2H (log r(x))1/2H

)
as r(x) → +∞.

Then �−�−Ha(x)
1 (Rm) < 0.
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Similar results can be obtained on Riemannian manifolds where vol �Br satisfies a
suitable upper bound. This in turn follows, by the volume comparison theorem, from
appropriate lower bounds on the Ricci curvature (see, e.g.,[BRS2, Appendix]). We leave
the details to the interested reader.

Theorem 1.4 also yields the following generalization of Theorem 2 (and
Corollary 2) in [FCS].

Corollary 1.7. Let (M, 〈 , 〉) be a complete manifold, and let a(x) ∈ L∞
loc(M) and

A < 0. Suppose that � ∈ Liploc is a non-constant weak solution of the differential
inequality

��� + a(x)�2 + A|∇�|2 �0,

satisfying

(∫
�Br

�2
)−1 �∈ L1(+∞). (1.25)

Then, there exists H0 ∈ [0, 1) such that, for every H > H0, the differential inequality

�� + Ha(x)��0 (1.26)

has no positive, locally Lipschitz weak solution on M, while if 0�H �H0, such a
solution of (1.26) exists.

Proof. Recall that, according to Lemma 1.2, the existence of a positive, locally Lips-
chitz weak solution of (1.26) is equivalent to

�−�−Ha(x)
1 �0. (1.27)

Observe next that if 0 < H1 �H2, then, by the variational characterization of
�−�−Ha(x)

1 , we have

�−�−H1a(x)
1 � H1

H2
�−�−H2a(x)

1 . (1.28)

(see the argument in the proof of Theorem 2 in [FCS]). Thus, if we denote by S the
set of H �0 such that (1.26) holds, S is not empty, since �−�

1 �0, and if H2 is in S
then so is H1.

An application of Theorem 1.4 with A < max{A, 0} = 0 = 	 = H − 1 implies that
if H = 1, then (1.26) has no positive locally Lipschitz solution, for otherwise � would
necessarily be constant, against the assumption. Thus 1 �∈ S, and H0 = sup S�1
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Now one concludes as in Corollary 2 in [FCS] showing, by an approximation argu-
ment, that S is closed, so that 1 > H0 ∈ S. �

To see that Corollary 1.7 implies Theorem 2 and Corollary 2 in [FCS], it suffices to
observe that if ds2 = �(z)|dz|2 is a complete metric on the unit disk D, with Gaussian
curvature K, then � = �−1/2 is a non-constant solution of

��� − K�2 = |∇�|2

and ∫
�2dVds2 =

∫
�−1� dx dy = vol Eucl(D) < +∞.

According to the remark after the proof of Theorem 1.1, condition (1.25) holds, and
Corollary 1.7 implies that there exists H0 ∈ [0, 1) such that equation

�� − HK(x)� = 0

has no positive solution if H > H0 and has a positive solution if 0�H �H0.

2. Geometric consequences

2.1. Conformal metrics on stable minimal hypersurfaces

Our main analytic result, Theorem 1.4 above, generalizes Theorem 2 of Fischer-
Colbrie and Schoen [FCS]. Following their line of investigation, we are naturally led
to the following result, which extends some known facts in minimal surfaces theory
to (higher dimensional) minimal hypersurfaces of Euclidean space; see Corollary 2.2
below.

We recall that a minimal hypersurface f : (Mm, 〈 , 〉) → Rm+1 is stable if it (locally)
minimizes area up to second order or, equivalently, if the spectral radius �L

1 (M) of the
operator L = −� − |II|2 is non-negative. Here |II| denotes the length of the second
fundamental tensor of the immersion.

We also recall that a Riemannian metric 〈̃ , 〉 on a (generic) manifold M is said
to be a pointwise conformal deformation of a metric 〈 , 〉 if there exists a positive
function � ∈ C∞ (M) such that 〈̃ , 〉x (v, w) = �2 (x) 〈 , 〉x (v, w), for every x ∈ M and
v, w ∈ TxM .

Theorem 2.1. Let f : (Mm, 〈 , 〉) → Rm+1 be a complete, stable, minimal hypersur-
face of dimension m�2. Then 〈 , 〉 cannot be pointwise conformally deformed to any
Riemannian metric 〈̃ , 〉 of scalar curvature S̃(x)�0 and finite volume ṽol (M) < +∞.
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Proof. We first consider the case m�3. By contradiction, we assume that there exists
a conformal metric 〈̃ , 〉 on M with scalar curvature S̃(x)�0 and finite volume ṽol

(M) < +∞. Denoting by S(x) the scalar curvature of the original metric, minimality
and the Gauss equations imply

S(x) = − |II (x)|2 . (2.1)

The stability of f is then equivalent to the existence of a positive solution � ∈ C∞ (M)

of

�� − S(x)� = 0 on M. (2.2)

Setting

H = 4 (m − 1)

m − 2
> 1; a(x) = − 1

H
S(x),

we can rewrite (2.2) in the form

�� + Ha(x)� = 0 on M.

Now, let

〈̃ , 〉 = �
4

m−2 〈 , 〉. (2.3)

By the scalar curvature equation and the assumption that S̃ (x) �0, the smooth positive
function � satisfies

�� + a(x)� = − 1

H
S̃(x)�

m+2
m−2 �0, on M. (2.4)

Since ∫
M

�
2m

m−2 dvol = ṽol(M) < +∞

we have

1∫
�Br(o)

�2(	+1)
�∈ L1(+∞),
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where

	 = 2

m − 2

satisfies

0 < 	 < H − 1.

Applying Theorem 1.4, case 1, with A = 0 we therefore conclude that �, and therefore
�, is a positive constant and S (x) ≡ 0. According to (2.1) and (2.3) we deduce that
f (M) is an affine plane and hence

(
M, 〈̃ , 〉) is homothetic to

(
Rm, can

)
. But this

clearly contradicts the assumption ṽol (M) < +∞.
The case m = 2 is completely similar. This time, we replace (2.3) with

〈̃ , 〉 = �2〈 , 〉

and, instead of (2.4), we use the corresponding Yamabe equation

��� − S (x)�2 = −S̃ (x)�4 + |∇�|2 .

Thus, � satisfies

��� − S (x) �2 � |∇�|2 .

Since ∫
M

�2dvol = ṽol (M) < +∞

we have

1∫
�Br(o)

�2 �∈ L1 (+∞) .

On the other hand, the stability assumption implies the existence of a positive, smooth
solution � of (2.2). Therefore we can apply Theorem 1.4, case 1, with the choices
	 = 0, a(x) = −S(x), H = 1, A = −1. Reasoning as above, we reach the desired
contradiction. �

Using a classical universal covering argument, together with the Riemann–Köbe uni-
formization theorem, we easily recover Corollary 4 in [FCS]:
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Corollary 2.2. A two-dimensional, complete, stable, minimal surface f : (M, 〈 , 〉) →
R3 is parabolic, and hence it is an affine plane.

Indeed let � : (
M̄, ¯〈 , 〉) → (M, 〈 , 〉) be the Riemannian universal covering of M.

Then, f̄ = f ◦ � : (
M̄, ¯〈 , 〉) → R3 defines a complete, minimal surface. Moreover,

f̄ is stable because any positive solution � of (2.2) on M lifts to a positive solution
�̄ = � ◦ � of �̄�̄ − S̄(y)�̄ = 0 on M̄. Here the bar-quantities refer to the covering
metric ¯〈 , 〉. Since there are no compact minimal surfaces in the Euclidean space, the
uniformization theorem implies that

(
M̄, ¯〈 , 〉) is conformally diffeomorphic to either R2

or the open unit disk D1 ⊂ R2. In view of Theorem 2.1 the second possibility cannot
occur so that M must be parabolic. To conclude that f is totally geodesic, simply note
that, by (2.2), � is a positive superharmonic function. Therefore � must be constant
and S(x) = − |II|2 ≡ 0.

2.2. Harmonic maps of finite energy

In this section, we prove a Liouville-type theorem for harmonic maps that generalizes,
in some respects, classical work by Schoen and Yau, [SY1]. Compared with [SY1],
one realizes that our result, emphasizing the role of a suitable Schrodinger operator
related to the Ricci curvature of the domain manifold, unifies in a single statement the
situations considered in the paper by Schoen and Yau; see Remark 2.4.

Later, we shall employ our version of this Liouville theorem to study the topology
at infinity of submanifolds of a Cartan–Hadamard space; see Theorem 2.10 below.

Recall that a smooth map f : (Mm, 〈 , 〉) → (Nn, ( , )) is said to be harmonic if it
is a critical point of the energy functional

E� (f ) =
∫
�

|df |2 (2.5)

for every domain � ⊂⊂ M . Here |df |2 , called the energy density of f, denotes the
square of the Hilbert–Schmidt norm of the differential map dxf ∈ T ∗

x M ⊗ Tf (x)N .
If we consider df as a section of the bundle T ∗M ⊗ f −1T N , f −1T N denoting the
(Riemannian) pull-back bundle, then the Euler–Lagrange equations corresponding to
(2.5) are

trace〈 , 〉Ddf = 0, (2.6)

where the symbol D stands for the covariant derivative of the f −1T N -valued 1-form
df.

Now, fix local o.n. frames {ei}mi=1 of M and {EA}nA=1 of N, denote by
{
i

}
i

and
{
�A

}
A

the corresponding o.n. co-frames and let
{
i
j

}
i,j

and
{
�A

B

}
A,B

be the
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associated connection forms. Then, up to pull-backs,

{
df = f A

i i ⊗ EA,

Ddf = f A
ij i ⊗ j ⊗ EA,

(2.7)

where {
f A

ij = f A
ji ,

f A
ij j = df A

i − f A
h h

i + f B
i �A

B.
(2.8)

According to (2.6), f is a harmonic map if and only if

∑
i

f A
ii = 0, A = 1, . . . , n. (2.9)

Theorem 2.3. Let (M, 〈 , 〉) be a complete, m-dimensional manifold whose Ricci tensor
satisfies

MRicci� − a (x) , on M (2.10)

for some continuous function a (x). Having fixed H �1 consider the Schrödinger
operator

LH = −� − Ha (x)

and assume that

�LH

1 (M) �0. (2.11)

Let (N, ( , )) be an n-dimensional manifold of non-positive sectional curvature

NSec�0. (2.12)

Then, any harmonic map f : M → N whose energy density |df |2 ∈ L� (M) for some
1���H , is constant.

Remark 2.4. If (M, 〈 , 〉) has a non-negative Ricci curvature, we can obviously choose
a (x) ≡ 0 in (2.10) so that condition (2.11) is automatically satisfied.

Similarly, suppose that (Mm, 〈 , 〉) is isometrically immersed in the Euclidean space
Rm+1 as a complete, stable, minimal hypersurface. Then, according to the Gauss equa-
tions, MRicci� −|II|2, where |II| denotes the length of the second fundamental tensor
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of the immersion. Moreover, the stability assumption implies that the differential oper-
ator L = −� − |II|2 satisfies (2.11).

These are the geometric situations considered in [SY1].

Proceeding as in [SY1] (see in particular the Corollary to Theorem 1), one deduces
the following topological obstruction for a manifold to have a metric with a suitable
control on the Ricci curvature.

Corollary 2.5. Let (M, 〈 , 〉) be a complete, m-dimensional manifold whose Ricci tensor
satisfies

MRicci� − a (x) , on M

and assume that

�−�−a(x)
1 (M) �0.

If D is any compact domain in M with a smooth, simply connected boundary, then there
is no non-trivial homomorphism of �1(D) into the fundamental group of a compact
manifold with a non-positive sectional curvature.

Before proving Theorem 2.3, we also point out the following consequence that should
be compared with Proposition 0.1 in [RS1].

Corollary 2.6. Let (M, 〈 , 〉) be a complete, simply connected Riemannian manifold of
dimension m�3. Assume that the sectional and Ricci curvatures of M satisfy

(i) MSec� − A2,

(ii) MRicci� − (m − 1) B2 (2.13)

for some constants A, B such that

0 < A2 �B2 � (m − 1)

4
A2. (2.14)

Then there are no, non-constant, harmonic maps with finite energy from M into any
Riemannian manifold of non-positive sectional curvature.

Proof. Set a (x) = (m − 1) B2, define L = −� − a (x) and note that

�L
1 (M) = �−�

1 (M) − (m − 1) B2. (2.15)
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Using a comparison estimate for the first Dirichlet eigenvalue due to McKean, see
[McK], we see that

�−�
1 (M) ��−�

1

(
Hm

−A2

)
= A2 (m − 1)2

4
, (2.16)

where Hm
−A2 denotes the m-dimensional space form of constant sectional curvature

−A2. Inserting (2.16) into (2.15) and recalling (2.14) we conclude that �L
1 (M) �0.

The result now follows from Theorem 2.3. �

Proof of Theorem 2.3. Assume that f is a non-constant harmonic map. The
Weitzenbock–Bochner formula for harmonic maps (see e.g. [EL,W]), (2.10) and (2.12)
implies that

� |df |2 �2 |Ddf |2 − 2a (x) |df |2 .

Therefore, the non-negative function � = |df | ∈ Liploc (M) satisfies

��� + a (x) �2 � |Ddf |2 − |∇�|2 (2.17)

pointwise on � = {x ∈ M : � (x) �= 0} and weakly on all of M. We claim that

|Ddf |2 − |∇�|2 � 1

(m − 1)
|∇�|2 . (2.18)

Assume for the moment the validity of (2.18). Then, from (2.17) we deduce that

��� + a (x) �2 � 1

(m − 1)
|∇�|2 .

Moreover, the condition � ∈ L2� (M) implies

1∫
�Br

�2� �∈ L1 (+∞) .

On the other hand, since �LH

1 (M) �0 there exists a positive function � ∈ C1 (M)

satisfying

�� + Ha (x) � = 0.

Applying Theorem 1.4, case (i), with the choices A = −1/ (m − 1) , 0�	�� − 1 we
conclude that � is a non-negative constant and a (x) ≡ 0. This clearly means that M
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has non-negative Ricci curvature so that, in particular, volM = +∞. The integrability
condition of the constant � then forces � to be identically zero. Therefore, f is constant.

It remains to prove (the Kato-type) inequality (2.18). A version of such an inequality,
with a slightly worse constant, is proved in [SY1]. We present a proof of the improved
version for completeness and for the convenience of the reader. To this end, it suffices

to consider the pointwise inequality on �. Let
{
f A

i

}
,
{
f A

ij

}
be as in (2.7) and (2.8),

i.e. the coefficients of the (local expressions of the) differential and of the Hessian of

f. Then � =
√∑

A,i

(
f A

i

)2
so that

∇� =

∑
i

{∑
A,j

f A
ij f A

j

}
ei√∑

A,i

(
f A

i

)2

and we have

|Ddf |2 − |∇�|2 =
∑
A,i,j

(
f A

ij

)2 −

∑
i

{∑
A,j

f A
ij f A

j

}2

∑
A,i

(
f A

i

)2 . (2.19)

For A = 1, . . . , n, define

MA =
(
f A

ij

)
∈ Mm (R) , yA =

(
f A

i

)t ∈ Rm.

Then (2.19) reads

|Ddf |2 − |∇�|2 =
∑
A

∥∥∥MA
∥∥∥2 −

∣∣∣∣∑
A

MAyA

∣∣∣∣2

∑
A

∣∣yA
∣∣2 ,

where ‖M‖2 = trace
(
MMt

)
and |y| denotes the Rm-norm of y. We have to show that

∑
A

∥∥∥MA
∥∥∥2 −

∣∣∣∣∑
A

MAyA

∣∣∣∣2

∑
A

∣∣yA
∣∣2 � 1

(m − 1)

∣∣∣∣∑
A

MAyA

∣∣∣∣2

∑
A

∣∣yA
∣∣2 .
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Since, by (2.8) and (2.9), each matrix MA is traceless and symmetric this inequality
is an immediate consequence of the next simple algebraic lemma. �

Lemma 2.7. For A = 1, . . . , n, let MA ∈ Mm (R) be a symmetric matrix satisfying

trace
(
MA

) = 0. Then, for every y1, . . . , yn ∈ Rm with
∑
A

∣∣yA
∣∣2 �= 0,

∑
A

∥∥∥MA
∥∥∥2 −

∣∣∣∣∑
A

MAyA

∣∣∣∣2

∑
A

∣∣yA
∣∣2 � 1

(m − 1) n

∣∣∣∣∑
A

MAyA

∣∣∣∣2

∑
A

∣∣yA
∣∣2 . (2.20)

Proof. First, we consider the case A = 1. Let �1 � · · · ��s �0��s+1 � · · · ��m be
the eigenvalues of M. Without loss of generality we may assume that �m � |�1|. We
are thus reduced to proving that

m∑
i=1

�2
i �

(
1 + 1

m − 1

)
�2
m.

To this end we note that, since M is traceless,

−
m−1∑
j=1

�j = �m

and therefore, from Schwarz inequality,

�2
m � (m − 1)

m−1∑
j=1

�2
j .

This implies

m∑
i=1

�2
i = �2

m +
m−1∑
j=1

�2
j �

(
1 + 1

m − 1

)
�2
m,

as desired.
Now we let A be any positive integer. We note that

∑
A

∥∥∥MA
∥∥∥2 −

∣∣∣∣∑
A

MAyA

∣∣∣∣2

∑
A

∣∣yA
∣∣2 �

∑
A

∥∥∥MA
∥∥∥2 −

(∑
A

∣∣MAyA
∣∣)2

∑
A

∣∣yA
∣∣2 .
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Applying the first part of the proof we obtain, for every A = 1, . . . , n,

∣∣∣MAyA
∣∣∣ �

√
m − 1

m

∥∥∥MA
∥∥∥ ∣∣∣yA

∣∣∣
which in turn, used in the above, yields

∑
A

∥∥∥MA
∥∥∥2 −

∣∣∣∣∑
A

MAyA

∣∣∣∣2

∑
A

∣∣yA
∣∣2

�
∑
A

∥∥∥MA
∥∥∥2 −

(∑
A

√
m−1
m

∥∥MA
∥∥ ∣∣yA

∣∣)2

∑
A

∣∣yA
∣∣2

�
∑
A

∥∥∥MA
∥∥∥2 − m − 1

m

∑
A

∥∥MA
∥∥2 ∑

A

∣∣yA
∣∣2

∑
A

∣∣yA
∣∣2

= 1

m

∑
A

∥∥∥MA
∥∥∥2

,

whence, rearranging and simplifying we obtain (2.20). �

We end this section with the following straightforward application of Theorem 1.1 to
the problem of uniqueness of harmonic maps. To this aim, we recall that a ball BR(q)

in a Riemannian manifold (N, ( , )) is said to be regular if it does not intersect the cut
locus of q, and, having denoted by B �0 an upper bound for the sectional curvature
of N on BR(q), one has

√
BR < �/2. Define the function

qB(t) =

⎧⎪⎨⎪⎩
1
2 t2 if B = 0,

1

B
(1 − cos

√
Bt) if B > 0.

Assume that f, g : M → BR(q) ⊂ N are harmonic maps taking values in the regular
ball BR(q) and define functions �, �, �, u : M → R by setting

�(x) = − log(cos(
√

BdistN(q, f (x))(cos(
√

BdistN(q, g(x)))

�(x) = e−�(x) and u = �(x)−1qB(distN(f (x), g(x))).
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Clearly, u�0 and, since f and g take values in the regular ball BR(q), there exists a
constant C�1 such that

C−1 ���1 and C−1distN(f (x), g(x))2 �u(x)�CdistN(f (x), g(x))2 (2.21)

on M. Further, a result of Jäger and Kaul [JK] shows that

div
(
�∇u

)
�0 on M,

and therefore (1.1) is “a fortiori” satisfied. With this preparation we have:

Theorem 2.8. Maintaining the notation introduced above, let f, g : M → N be har-
monic maps adopting values in the regular ball BR(q) ⊂ N , and assume that, for some
p > 1

distN (f, g)2p ∈ L1(M). (2.22)

If vol (M) = +∞, then f ≡ g.

Proof. As noted above, the functions � and u satisfy (1.1), and, according to (2.21),
the integrability condition (2.22) implies that �up = �1−pqB

(
distN(f (x), g(x))

)p ∈
L1(M), and therefore (1.2) holds. According to Theorem 1.1, it follows that u is
constant, and there exists a constant C1 �0, such that

qB

(
distN(f (x), g(x))

) = C1�(x).

Since vol M = +∞ and � is bounded away from zero, the integrability condition
forces C1 = 0 and therefore distN(f (x), g(x)) ≡ 0, as required. �

2.3. Topology at infinity of submanifolds of C–H spaces

In order to put the next geometric result into the appropriate perspective, we recall
that the topology at infinity of a submanifold Mm of Rn is influenced and, in some
cases determined, by the size of its second fundamental tensor II.

Given a compact set K ⊂ M , an end E of M corresponding to K is an unbounded,
connected component of the set M\K . Clearly, if we take two compact sets K1 ⊂⊂ K2,

then the number of ends corresponding to K1 is less than or equal to the number of
ends corresponding to K2. Hence, we say that M has finitely many ends if there exists
a positive integer b such that, for any compact set K ⊂ M , the number of ends
corresponding to K is bounded by b. In this case we can obviously find an integer
b0 �b and a compact set K0 in such a way that M has precisely b0 ends for every
compact set containing K0. We say that b0 is the number of ends of M.

In the setting of complete, minimal hypersurfaces of the Euclidean space, Tysk [Ty]
has shown that the Lm-integrability of |II| forces the submanifold to possess only
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a finite number of ends (see the more recent [N] for a different proof and related
results). If we also add the stability assumption, by a result of Shen and Zhu, [SZ],
the immersion is totally geodesic. On the other hand, Cao et al. have shown in [CSZ]
that stability alone implies that the hypersurface has a simple topology at infinity, i.e.,
it has only one end.

We note that a suitable control of the Lm size of |II| implies stability; see [S] and
Lemma 2.12 below. According to an isolation phenomenon pointed out by Anderson,
[A] and quantified by Berard [B2] if we allow the codimension of the minimal im-
mersion to be greater than 1 and the Lm size of |II| is sufficiently small, then the
submanifold is again an affine space; see also Theorem 2.14 below.

Finally, we know from a work of Ni [N] that if we relax the bound on |II| the
minimal submanifold still has only one end.

Our main purpose is to extend both the results in [CSZ] and in [N] by showing
that small perturbations of the minimal immersion (so that minimality is lost) do not
modify the topology at infinity of the submanifold. In fact, we are able to quantify
the amount of such perturbation and to replace the Euclidean ambient space with a
Cartan–Hadamard manifold, i.e., a complete, simply connected Riemannian manifold of
non-positive sectional curvature; see Theorems 2.10 and 2.13 below. We should remark
that G. Carron has a similar result obtained in [C1], with a different method and a less
precise condition on the second fundamental form of the immersion.

We recall that, according to Hoffman and Spruck [HS] if f : (M, 〈 , 〉) → (N, ( , ))

is an isometric immersion of a complete manifold M of dimension m�2 into a Cartan–
Hadamard manifold N, denoted by H the mean curvature vector field of f, then the
following L1-Sobolev inequality holds:

S1 (m)−1
(∫

M

|u| m
m−1

)m−1
m

�
∫

M

(|∇u| + |H | |u|) , ∀u ∈ W
1,1
0 (M) (2.23)

with

S1 (m) = �2m−1

�
1
m
m

(m + 1)1+ 1
m

m − 1
(2.24)

�m being the volume of the unit ball of Rm. In particular, if we assume that H ∈
Lm(M), so that, for a suitable compact K,

‖H‖Lm(M\K) < S1 (m)−1 ,

then, applying Holder inequality, the term involving the mean curvature can be absorbed
in the left-hand side, showing that the standard L1 Sobolev inequality

C

(∫
|u| m

m−1

)m−1
m

�
∫

|∇u| (2.25)



S. Pigola et al. / Journal of Functional Analysis 229 (2005) 424–461 451

holds for every u ∈ W
1,1
0 (M) supported in M \ K . This in turn implies that for every

geodesic ball Br (p) of M \ K

C (vol Br (p))
m−1
m �vol�Br (p) ,

for some constant C > 0 independent of p, whence, integrating,

volBr (p) �Crm. (2.26)

On the other hand, if m�3, applying (2.25) to u = |v| 2(m−1)
m−2 with v ∈ C∞

c (M \ K),
one deduces, after some manipulations, that the L2 Sobolev inequality

C

(∫
|v| 2m

m−2

)m−2
m

�
(∫

|∇v|2
) 1

2

(2.27)

holds in M \ K . By Proposition 2.5 in [C2], (2.27) holds on the whole of M (with a
different, and non-explicitly computable constant C).

According to a nice argument of Cao, Shen and Zhu, see Lemma 2 in [CSZ],
the validity of (2.27) together with a “uniform’’ volume growth condition (like that
expressed in (2.26)) can be used to relate the number of ends of M to the presence of
non-constant, bounded harmonic functions with finite energy.

Lemma 2.9. Let f : (M, 〈 , 〉) → (N, ( , )) be an isometric immersion of a complete
manifold M of dimension m�3 into a Cartan–Hadamard manifold N. Denote by H the
mean curvature vector field of f and assume that H ∈ Lm(M). Then, each end of M
has infinite volume. Moreover, in case there are at least two ends, then M supports a
non-constant, bounded, harmonic function with finite energy.

We are now in a position to prove our first result on the topology at infinity of
immersed submanifold of a Cartan–Hadamard space with controlled extrinsic geometry,
which generalizes [CSZ], Theorem 1. We note that assumption (2.30) below is the
counterpart of the stability condition assumed there.

Theorem 2.10. Let f : (M, 〈 , 〉) → (N, ( , )) be an isometric immersion of a complete
manifold M of dimension m�3 into a Cartan–Hadamard manifold N whose sectional
curvature (along f) satisfies

(0�) NSecf (x) � − NR (x) (2.28)

for some non-negative function NR ∈ C0 (M). Denote by H and II the mean curvature
vector field and the second fundamental tensor of f, respectively, and let a(x) ∈ C0(M)
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be the function defined by

a (x) = (m − 1) NR (x) + |II| (|II| + m |H |) (x) . (2.29)

If H ∈ Lm(M) and

�−�−a(x)
1 (M)�0, (2.30)

then either f is totally geodesic or M has only one end.

Proof. Assume that f is not totally geodesic. Then a(x) does not vanish identically.
According to Lemma 2.9 we have to show that M does not support any non-constant,

bounded, harmonic function with a finite Dirichlet integral. But this follows immediately
from Theorem 2.3 above. Indeed, the Gauss equations imply that the Ricci tensor of
M satisfies

MRicci (x) � − a (x) . �

Our next task is to quantify the heuristic idea according to which the bottom of
the spectrum of −� − a(x) is non-negative provided the norm of the function a(x) in
(2.29) is small.

It is well known that if an L2 Sobolev inequality holds on M, then �−�−a(x)
1 (M)�0

provided a suitable Lp-norm of a is strictly less than the Sobolev constant (see, e.g.,
[S]).

In the next lemma, we obtain the same conclusion in terms of an L2-Sobolev in-
equality with a potential like (2.31) below.

Lemma 2.11. Suppose that the following Sobolev-type inequality:

S(�)−1
(∫

M

v
2

1−�

)1−�

�
∫

M

(
|∇v|2 + h(x)v2

)
, ∀v ∈ C∞

c (M) (2.31)

holds on M, where 0 < � < 1, S (�) > 0 is a constant, and h (x) ∈ C0 (M) is a
non-negative function. Consider the Schrodinger operator

L = −� − a(x)

with a(x) ∈ C0 (M). Set a+ (x) = max{a(x), 0} and assume that

‖h (x) + a+ (x)‖
L

1
� (M)

�S (�)−1 . (2.32)
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Then

�L
1 (M) �0.

Proof. We let L̃ = � + a+ (x) and we note that, for any domain � ⊂⊂ M , �L
1 (�) �

�L̃
1 (�). Therefore we can limit ourselves to proving that

�L̃
1 (�) �0, ∀� ⊂⊂ M.

By contradiction, suppose that, for some � ⊂⊂ M ,

�L̃
1 (�) < 0.

Then we can find v ∈ C∞
c (�) \ {0} such that∫

M

(
|∇v|2 − a+ (x) v2

)
< 0.

Using (2.31) in this latter and applying Hölder inequality, we obtain

S(�)−1
(∫

M

v
2

1−�

)1−�

<

(∫
M

(a+ (x) + h (x))
1
�

)� (∫
M

v
2

1−�

)1−�

.

This contradicts (2.32). �

There are a number of geometric situations where the Sobolev inequality (2.31) is
satisfied for some choices of �, S (�) , h(x). The interested reader can consult e.g. [He].

Assume now that (M, g) is a submanifold of a Cartan–Hadamard manifold, so that
the L1-type Sobolev inequality (2.23) holds. As above, we apply this inequality to the

function u = |v| 2(m−1)
m−2 with v ∈ C∞

c (M) to obtain

S1(m)−2
(∫

M

|v| 2(m−)
m−2

)m−2
m

�
{

2(m − 1)

m − 2

(∫
M

|∇v|2
) 1

2 +
(∫

M

|H |2 |v|2
) 1

2
}2

. (2.33)

Expanding the square on the right-hand side and applying the inequality 2ab�ε2a2 +
ε−2b2 with ε > 0, we finally obtain the L2-Sobolev inequality

S2 (m, ε)−1
(∫

M

|v| 2m
m−2

)m−2
m

�
∫

M

|∇v|2 + ε2
∫

M

|H |2 v2, (2.34)
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where

S2 (m, ε) =
(

2
√

1 + ε−2 (m − 1)

(m − 2)

)2

S1 (m)2 . (2.35)

We observe that in case f is a minimal immersion, the best L2-Sobolev constant in
(2.35) is achieved by choosing ε = +∞. In this situation, we set

S2 (m) = S2 (m, +∞) .

In particular, from Lemma 2.11 we immediately conclude

Lemma 2.12. Let f : (M, 〈 , 〉) → (N, ( , )) be an isometric immersion of a complete
manifold M of dimension m�3 into a Cartan–Hadamard manifold N. Denote by H the
mean curvature vector field of f. Consider the Schrodinger operator

L = −� − a (x) (2.36)

with a ∈ C0 (M). If, for some ε > 0,

∥∥∥ε2 |H |2 + a (x)

∥∥∥
L

m
2

�S2 (m, ε)−1 (2.37)

then

�L
1 (M) �0.

Lemma 2.12 allows to obtain a version of Theorem 2.10 above, where the assumption
on the bottom of the spectrum of −� − a(x) is replaced by a suitable control on the
second fundamental tensor of the immersion. We note that our result extends the above-
mentioned result of Ni [N] valid for minimal submanifold of Rn, and yields a qualitative
improvement on the result of Carron [C1].

We also note that since S2(m, ε) > ε2S1(m), assumption (2.38) below implies that
‖H‖Lm < S1(m)−1. Thus in this case, the standard L1-Sobolev inequality (2.25) holds
on M and we may conclude that L2-Sobolev inequality (2.27) is valid on M, without
having to appeal to Proposition 2.5 in [C2].

Theorem 2.13. Maintaining the notation of Theorem 2.10, assume that the sectional
curvature (along f) of N satisfies (2.28) and that

∥∥∥ε2 |H |2 + (m − 1) NR (x) + |II| (|II| + m |H |) (x)

∥∥∥
L

m
2

�S2 (m, ε)−1 (2.38)
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for some ε > 0, where S2 (m, ε) is the L2-Sobolev constant defined in (2.35). Then
either f is totally geodesic or M has only one end.

Finally, combining Lemma 2.12 with some careful computations of Berard [B2] we
obtain the following isolation phenomena for minimal submanifolds of the Euclidean
space. Note that our constant improves on that of Proposition II.1 in [B2].

Theorem 2.14. Let f : (M, 〈 , 〉) → Rn be a complete, minimal, immersed submanifold
of dimension m�3 whose second fundamental tensor II satisfies

(∫
M

|II|m
) 2

m

� 2

m
(

2 − 1
n−m

)S2 (m)−1 . (2.39)

Then f is totally geodesic.

Proof. From Proposition I.2 of [B2] we know that the function � = |II| is a (weak)
solution of

��� +
(

2 − 1

n − m

)
|II|2 �2 � 2

(m + 2) (n − m) − 2
|∇�|2 .

Moreover, by (2.39), � ∈ Lm (M) so that

1∫
�Br

�m �∈ L1 (+∞) .

We define the differential operator

L = −� − m

2

(
2 − 1

n − m

)
|II|2 .

and we note that, according to (2.39), we can apply Lemma 2.12 to obtain �L
1 (M) �0.

This means that there exists a positive solution � ∈ C∞ (M) of the equation

�� + m

2

(
2 − 1

n − m

)
|II|2 � = 0.

Applying Theorem 1.4, case 1, with the choices a (x) =
(

2 − 1
n−m

)
|II|2, H = m

2 , 	 =
m
2 − 1, A = − 2

(m+2)(n−m)−2 we therefore conclude that � is constant and a (x) ≡ 0,

i.e., |II| ≡ 0. �
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2.4. Topology of locally conformally flat manifolds

Our last geometric result relies on the topology of compact, locally conformally flat
manifolds; see Corollary 2.20 below.

We recall that a Riemannian manifold (M, 〈 , 〉) is said to be locally conformally flat
if M is covered by a family {(U�, ��)} of smooth charts with the property that, on each

coordinate domain U�, the metric
(
�−1
�

)∗ 〈 , 〉 is a pointwise conformal deformation of

the canonical metric of Rm. When the dimension m�4 this is equivalent to the fact
that the Weyl tensor of (M, g) vanishes identically.

We also need to recall the concept of L2-Betti numbers. Let LpHq (M) denote
the space of p-integrable, harmonic q-forms on M. By the Hodge–de Rham–Kodaira
representation theorem, L2Hq (M) is isomorphic to the qth group of reduced L2-
cohomology of M. In the case where � : M → N = M/� is the Riemannian universal
covering of a compact manifold N with deck transformation group � then L2Hq (M)

becomes a �-module. Its Von Neumann dimension L2bq (N) = dim� L2Hq (M) is
finite for every q and is called the qth L2 Betti number of the base manifold N. It
is known from the fundamental work of Dodziuk [D] that L2bq (N) is a homotopy
invariant of N.

We begin generalizing to the non-compact case a well-known Theorem of Bour-
guignon [Bo]. For a generalization in a different direction we refer the reader to [PRS2].

Theorem 2.15. Let (M, 〈 , 〉) be a complete, non-compact, locally conformally flat Rie-
mannian manifold of dimension m = 2k�4 with scalar curvature S (x). Given H �1,
assume that the differential operator

LH = −� + H
k!k

2 (2k − 1)
S(x)

satisfies

�LH

1 (M) �0.

If LpHk (M) �= {0} for some 2�p�2H , then
(a) S (x) ≡ 0
(b) volM < +∞

so that, in particular,
(c) M cannot be conformally immersed into the standard sphere Sm.

Proof. Fix any 0 �≡ � ∈ LpHk (M) �= {0}. Since M is locally conformally flat, the
Weyl tensor vanishes and the Weitzenbock formula reads

� |�|2 − k!k
(2k − 1)

S(x) |�|2 = 2 |D�|2 pointwise on M. (2.40)
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We recall that from the first Kato inequality,

|D�|2 − |∇ |�||2 �0 (2.41)

pointwise on the open set � = {x ∈ M : � (x) �= 0} and weakly on all of M. Moreover,
the equality sign holds if and only if

(i) � = |�| �1 on � where (ii) D�1 = 0, (2.42)

and, by the unique continuation property of harmonic forms,

�̄ = M.

From (2.40) and (2.41) we deduce that � = |�| satisfies

��� − k!k
2(2k − 1)

S(x)�2 �0 (2.43)

pointwise on � and weakly on M. Since �LH

1 (M) �0 and � ∈ Lp (M), we can apply
Theorem 1.4, with A = 0, and 	 = p/2 − 1, to conclude that if H > 1, then, by
case (i), � is a non-zero constant, and therefore S(x) ≡ 0, and since � is in Lp,
vol M < +∞.

On the other hand, if H = 1, then, by case (ii) in Theorem 1.4, the equality sign
holds in (2.43), and therefore also in (2.41). Thus (2.42) is satisfied, and inserting the
parallel form �1 into (2.40) we again conclude that S (x) = 0 on � and by continuity,
S (x) ≡ 0 on M. Further, again by (2.40),

� |�|2 = 2 |D�|2 . (2.44)

Since |�| ∈ L2(M), by a standard cut-off argument, we can integrate (2.44) to obtain∫
M

|D�|2 = 0

which in turn forces � to be a parallel form on M. Using again the integrability
condition we therefore conclude that volM < +∞.

That M cannot be conformally immersed into Sm now follows readily. Indeed let

Q (M) = inf

⎧⎪⎪⎨⎪⎪⎩
∫
M

|∇v|2 + (m − 2)

4 (m − 1)
S(x)v2

(∫
M

v
2m

m−2

)m−2
m

: v ∈ C∞
0 (M) \ {0}

⎫⎪⎪⎬⎪⎪⎭
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be the Yamabe invariant of M. It is known (see, e.g., [SY2, Theorem 2.2, Chapter VI])
that Q (M) = Q

(
Sm

)
> 0 provided M has a conformal immersion into the standard

sphere. However, since S (x) ≡ 0 and (M, 〈 , 〉) is a complete, non-compact manifold
of finite volume the latter vanishes. To see this, choose a family {vR}R>0 of smooth,
cut-off functions satisfying vR ≡ 1 on BR , vR ≡ 0 on M\B2R and |∇vR| �4/R. Then,
for each R > 0,

Q (M) �
∫
M

|∇vR|2(∫
M

v
2m

m−2
R

)m−2
m

� 16volM

R2 (volBR)
m−2

2

. �

Remark 2.16. The result is still true when (M, 〈 , 〉) is compact and without boundary.
Obviously, in this case, L2Hk (M) is the whole space of harmonic k-forms which, in
turn, is isomorphic to the ordinary k-co-homology group of M.

Remark 2.17. The sign of the first eigenvalue of the differential operator LH is not a
conformal invariant. Note that we cannot replace LH with the conformal Laplacian as
the case of standard Hyperbolic space shows.

Remark 2.18. During the proof of Theorem 2.15 we observed that an m-dimensional
manifold (M, 〈 , 〉) is conformally immersed into the standard sphere, then Q (M) =
Q

(
Sm

)
> 0. In particular, if we assume that the scalar curvature S (x) of M is

non-positive, we have the validity of the L2-Sobolev inequality

Q
(
Sm

) (∫
M

v
2m

m−2

)m−2
m

�
∫

M

|∇v|2 ∀v ∈ C∞
c (M) \ {0} .

Combining this fact with Lemma 2.11 and Theorem 2.15 we therefore conclude that, for

such a manifold with m = 2k, L2Hk (M) = 0 provided
∥∥∥ k!k

(2k−1)
S (x)

∥∥∥
Lk(M)

�Q
(
Sm

)
.

Since we know from a theorem of N. Kuiper (see e.g. [SY2, Theorem 1.2, Chapter
VI]) that every simply connected, locally conformally flat manifold can be immersed
into the standard sphere we have proved the following vanishing result:

Proposition 2.19. Let (M, 〈 , 〉) be a complete, simply connected, locally conformally
flat manifold of dimension m = 2k�4. Assume that the scalar curvature S (x) of M
satisfies

(i) S (x) �0; (ii) ‖S (x)‖Lk(M) � (2k − 1)

k!k Q
(
Sm

)
.

Then L2Hk (M) = 0.
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We are now in a position to prove our topological result that should be considered
as a new version of the theorem by Bourguignon alluded to above.

Corollary 2.20. Let (M, 〈 , 〉) be a compact, locally conformally flat Riemannian man-
ifold of dimension m = 2k and scalar curvature S (x). Assume that the differential
operator

L = −� + k!k
2 (2k − 1)

S(x) (2.45)

satisfies

�L
1 (M) �0. (2.46)

Then L2bk (M) = 0.

Proof. Consider the Riemannian universal covering � : (M̃, 〈̃ , 〉) → (M, 〈 , 〉), and
denote with a tilde the geometric objects defined on M̃ . Then (M̃, 〈̃ , 〉) is a complete,
simply connected, locally conformally flat manifold of scalar curvature S̃ (y) = S◦� (y).
By the above-mentioned theorem of Kuiper, M̃ admits a conformal immersion into
the standard sphere Sm, and, as noted after Corollary 2.2, the operator L̃ = −�̃ +

k!k
2(2k−1)

S̃(x), satisfies �L̃
1 (M̃)�0. Indeed, any positive solution � of L��0 on M lifts

to a positive solution �̃ = �◦� of L̃�̃�0 on M̃ . Applying Theorem 2.15 we conclude
that L2Hk(M̃) = 0 whence L2bk (M) = 0. �

Remark 2.21. It should be pointed out that condition (2.46) does not imply any vanish-
ing result for the ordinary Betti numbers of M. Consider for instance the 2k-dimensional,
flat torus.
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