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Abstract In this paper we analyze the effects of restricted participation in a two-period1

general equilibrium model with incomplete financial markets and two key elements:2

the competitive trading of real assets, i.e., assets having payouts in terms of vectors 13

of commodities, and household-specific inequality constraints that restrict participa-4

tion in the financial markets. Similar to certain arrangements in the market for bank5

loans, household borrowing is restricted by a household-specific wealth dependent6

upper bound on credit lines in all states of uncertainty in the second period. We first7

establish that, generically in the set of the economies, equilibria exist and are finite8

and regular. We then show that equilibria are generically suboptimal. Finally, we pro-9

vide a robust example demonstrating that the equilibrium allocations can be Pareto10

improved through a tightening of the participation constraints. This suggests, contrary11

to what is often cited as economic wisdom in the popular press, that in a setting with12

frictions resulting in an inefficient allocation the regulation of markets may have a13

Pareto-improving effect on the economy.14
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1 Introduction18

In this paper we analyze a two-period general equilibrium model with incom-19

plete financial markets and two key elements: (1) the competitive trading of real20

assets, where real assets have payouts in terms of vectors of commodities, and (2)21

household-specific inequality constraints that restrict participation in the financial22

markets.23

A formal introduction of time and uncertainty in a general equilibrium model dates24

back to Chapter 7 of ” Theory of Value” by Debreu (1959). There, it is observed25

that enlarging the concept of commodity in order to include not only its physical and26

chemical characteristics, but also its location in space, time and state of the world, it27

is possible to show that existence and Pareto optimality of equilibria still hold true. In28

other words, those standard general equilibrium results can be obtained assuming the29

presence of markets in which all commodities, in the loose sense defined by Debreu,30

can be exchanged.31

Arrow (1964)’s contribution is to observe that, while it is hard to believe that32

assumption is satisfied, it can probably be assumed that there exist sufficiently diversi-33

fied and numerous available assets which are able to behave as well as those plethora34

of markets: indeed, equilibrium allocations in a market a la Debreu are the same as35

equilibria with commodity markets opening only inside each state of the world and36

enough available assets. On the other hand, it can also be claimed that in a quite uncer-37

tain world, available assets are not enough to insure against each possible future event:38

financial markets and, therefore, commodity a la Debreu markets, may be incomplete.39

That observation led to an important literature which focuses on the validity, in that2 40

more general and realistic environment, of the three main results in general equilib-41

rium theory: existence, Pareto optimality and generic regularity of equilibria. While42

the first result is a sort of consistency check of the model and the second one is one43

of the main goal of economic analysis, the importance of the third, apparently only44

technical, result lies in the fact that it is the preliminary, indispensable tool for the45

analysis of existence of second best equilibria and of the chance of success of eco-46

nomic policies—see for example Chapter 15 in Villanacci et al. (2002). Indeed, the47

validity of the three above results was analyzed in the incomplete market framework48

with respect to some abstract types of assets, usually denoted in the literature as nom-49

inal, numeraire and real assets. Nominal assets promise to deliver units of account;50

real assets a bundle of goods; and numeraire assets just some amount of a given good,51

the so called numeraire good.52

Each of the three main results of the general equilibrium model fails to hold true in53

one or more of the above defined types of incomplete market frameworks, as roughly54

summarized in the following table55

123

Journal: 712 Article No.: 0438 TYPESET DISK LE CP Disp.:2015/2/25 Pages: 36 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Incomplete financial markets

Existence Generic local uniqueness Pareto optimality

Numeraire assets Yes Yes* No*

Nominal assets Yes No* No*

Real assets Yes* Yes* No*

56

(1)57

where “Yes” means “it is always insured”, “Yes*” means “it is generically,1 but not58

always insured” , and “No*” means “it is generically not insured”.259

Two important constructive criticisms to the model of incomplete markets, con-60

cerning the absence of restricted participation and of default possibilities, led to more61

general and realistic models [see for instance Seghir and Torres-Martinez (2011) and62

Geanakoplos and Zame (2014)].63

“While there might be some disagreement over whether, in a modern developed64

economy, financial markets are actually incomplete, there can hardly be any disagree-65

ment over whether at least some economic agents are variously constrained in transact-66

ing on those financial markets” (Cass 1992). In other words, financial markets may be67

complete, but households surely face a personalized and restricted access to financial68

markets.69

The literature on possibility of default removes the assumption that agents always70

honor their financial obligations. This literature has a basic link with the literature71

on restricted participation. It is indeed usually assumed that some commodity and/or72

financial collateral is required to partially counteract the damages of default. The corre-73

sponding conditions to be added to the standard model with incomplete markets make74

the model of default (and collateral) as a particular model of restricted participation75

with real assets. While existence and (lack of) Pareto optimality have been proved in76

such contexts, the existing literature has little to say about generic regularity in those77

models. The general goal of our paper is to study that problem.78

Indeed, apart from the seminal paper by Radner (1972), “ universal” 3 existence79

proofs can be found in Geanakoplos and Zame (2014) in the case of collateral con-80

straints, as well as in Seghir and Torres-Martinez (2011) and in Gori et al. (2013) in the81

case of financial constraints depending on some endogenous variables. The main lim-82

itation of those results is that the analytical methods used there seem unable to verify83

other equilibrium properties. By contrast, the technique we use to guarantee generic84

regularity also verifies the generic existence4 of an equilibrium, the generic (Pareto)85

suboptimality of the equilibrium allocations, and ensures that numerical methods [see86

Kubler (2007), for example] can be used to compute equilibria.87

To the best of our knowledge, the only model of restricted participation with real88

assets in which generic regularity is proven is the one by Polemarchakis and Siconolfi89

1 “Generically” means in an open and full measure subset of the finite dimensional economy space.

2 Table 1 and the comments above are taken from Villanacci et al. (2002), the reader is referred to for

further discussion.

3 By universal existence of equilibria, we mean existence for any element in the economy space. As already

recalled, existence or regularity is generic if it holds in a large (to be appropriately defined) subset of that

space.

4 Consistently with the above quoted papers, we do conjecture that equilibria exist for every economy.
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(1997). Yet, in that paper, the restriction sets for the asset choices are difficult to90

interpret. Specifically, each household is exogenously associated with a linear subspace91

of the possible wealth transfers. Its restriction set is then described by the orthogonal92

projection of that subspace on the (price dependent) image of the return matrix. We are93

unable to provide an economic interpretation of that modeling choice and the authors94

themselves provide no explanation at all.95

What we offer is an analysis of economically meaningful constraints on house-96

holds’ participation in financial markets and a general approach to determine which97

constraints can be analyzed in a real asset setting.98

The participation constraints described in our model, consistent with what occurs in99

the market for bank loans, impose an upper bound, called credit limit, on a household’s100

future debt in all states of uncertainty in the final period. A credit limit is the maximum101

amount that a household is allowed to borrow.5 It is an assessment of a prospective102

borrower to determine the likelihood that she will default on debts. For example, it is103

the most that a credit card company will allow a card holder to take out on a credit104

card in a given period of time. This limit is based on the household’s credit risk, which105

depends on a range of factors, such as her employment stability, level of income, level106

of debt, credit history. Households with a higher expected wealth will generally be107

loaned more money, that is, have a higher credit limit. In other words, there are two108

components to credit worthiness. One is a borrower’s current and projected ability to109

repay a loan or offer of credit. This can be determined by looking at things like income,110

other debts the borrower is carrying, expenses, and future employment opportunities.111

Another issue is the borrower’s inclination to repay debts, a surely more complicated112

matter. Some negative signals on that inclination are repeated delinquencies on other113

debts, sluggish repayment of loans, and other entries in a borrower’s credit history.114

One tool lenders can use to quickly assess credit worthiness is to consult a credit rating115

agency. These agencies monitor consumers and keep track of their financial activities116

to generate a credit score. Such rating is often used as a device to set credit limits.117

Credit limits provide some important advantages. For example, they serve to protect the118

borrower from borrowing too much money, and they also protect the lender from being119

over exposed to borrower’s getting too far into debt. Credit limits may however cause120

some disadvantages. For example, they may severely restrict the borrowing capacity121

of the borrower, reducing the value of items that they can purchase. As a result, credit122

limits can also reduce the potential income received by the lender because borrowers123

are limited in what they can borrow.124

Our goal is to model the above economic observations in a general equilibrium125

model with two periods of time and absence of default. To formalize both components126

describing how credit limits are determined (credit risk and inclination to repay) we127

proceed as follows. The amount each household can borrow must be such that the128

household can repay what is due in all states in the final period. Additionally, each129

5 Explanations on how credit limits work may be found even on web-pages for non-specialists on finan-

cial markets, such as http://www.wisegeek.com/what-is-a-credit-limit.htm, http://www.wisegeek.com/

what-is-credit-worthiness.htm, http://en.wikipedia.org/wiki/Credit_limit or http://www.creditorweb.com/

definition/credit-limit.html. We believe this can be taken as a signal of their wide diffusion in real world

markets for loans, and thus we think that their effects on the households’ wealth are worth studying.
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Incomplete financial markets

household is assumed not being able or willing to consume less than a given proportion130

of her wealth in each state in the second period. Those requirements lead to a household131

specific wealth-dependent credit limit, formalized in the borrowing constraint in (7).6132

For our model, we show generic existence of equilibria and generic regularity,133

the latter being an indispensable tool to both describe equilibria and to prove several134

important normative properties of equilibria.135

The first property we prove is that the equilibra are generically suboptimal. Addi-136

tionally, we conjecture that a form of generic constrained suboptimality holds. We137

are verifying this conjecture in a companion paper, in which we restrict attention138

to the significant set of economies in which a sufficiently high number of participa-139

tion constraints are binding. Generically in that set of economies, these equilibria are140

Pareto improvable through a local change of the participation constraints. The general141

strategy that is used in that framework is described in Carosi et al. (2009).142

In the current paper, we describe a more direct approach to constrained suboptimal-143

ity for a specific economy. Our contribution is in line with a general viewpoint dating144

back to what is usually mentioned as Lipsey–Lancaster theory of second best—see145

Lipsey and Lancaster (1956), according to which an increase in the level of a mar-146

ket imperfection may lead to a Pareto improvement. In the framework of incomplete147

markets, Hart (1975) showed that decreasing the number of available assets, and thus148

increasing the incompleteness of the markets, may increase efficiency. We rephrase and149

show the Lipsey-Lancaster claim in our model of restricted participation on financial150

markets. Indeed, we present a robust example in the economy space whose associ-151

ated equilibria are such that using a more restrictive credit policy results in a Pareto152

improvement.153

Without exaggerating the importance of a robust example, we do believe that the154

presented one supports two simple ideas. First of all, it shows the importance of155

general equilibrium analysis, i.e., the fact that price effects are able to more than156

welfare compensate a reduction of available choices. Moreover, it suggests, contrary157

to what is often cited as economic wisdom in the popular press, that in a setting with158

frictions resulting in an inefficient allocation, the regulation of markets may have a159

Pareto-improving effect on the economy.160

We think our analysis contains both technically and economically significant fea-161

tures. We first discuss our technical contributions to the analysis of the problem of162

generic existence and generic regularity of equilibria.163

The seminal contribution for generic existence in a model with real assets is the164

paper by Duffie and Shafer (1985). To prove generic existence, they first set the dimen-165

sion of the return space equal to the number of available assets, define the resulting166

equilibrium a “pseudo equilibrium”, and show the existence of such an equilibrium.167

Finally, they prove that these pseudo equilibria are true equilibria for a generic subset168

6 We stress that there is no history explicitly modeled in our two-period framework. Indeed, in our model the

parameters describing the the borrower’s inclination to repay debts are exogenously determined, implicitly

assuming that an unmodeled device like a rating agency has been able to determine the household specific

credit limits, taking into account their credit history. Moreover our model analyzes neither default nor

physical, financial collateral requirements even though we consider our paper as a first step in that direction.

Finally, we observe that our framework does not apply to other institutional environments, like secondary

security markets.
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M. Hoelle et al.

of household endowments and asset payouts. With the inequality constraints that we169

use to model households’ restricted participation, the household demand functions are170

in general not C1, and therefore the equilibrium manifold is not C1 either. This fact171

prevents us from using the smooth analysis arguments in Duffie and Shafer (1985).172

Rather, we employ a fixed point argument based on the approach by Dierker (1974)173

for the Walrasian model and later generalized and formalized by Husseini et al. (1990)174

for the incomplete markets model with real assets. To the best of our knowledge, we175

provide the first application of the methodology in Husseini et al. (1990).176

Duffie and Shafer (1985) use a “fixed dimension return space” approach7 with177

results in terms of the kernel of a well chosen linear function. In our model, character-178

izing equilibria using that approach would allow us to verify the existence of appro-179

priately defined pseudo equilibria, but we are then unable to show that the pseudo180

equilibria are generically true equilibria.8 To circumvent this problem, we take a dif-181

ferent approach by presenting a natural characterization of equilibria in terms of the182

image of an appropriately chosen linear function.183

For those interested in the technical aspects of our proof,9 we preview the strategy184

used to obtain the generic existence result. As previously discussed, once the definition185

of equilibrium is introduced, we define a type of equilibrium in which we fix the186

dimension of the return space. Then, as done in the approach followed by Duffie and187

Shafer (1985), we use a Mr. 1 trick,10 i.e., we get rid of the explicit presence of the188

financial side of the economy using the introduction of a specific household, Mr. 1,189

who behaves as a Walrasian consumer. After showing that the latter two concepts190

are equivalent, we prove that they are a “true” equilibrium if a (standard) full rank191

condition of the return matrix holds true—see Proposition 9.192

The technical reason to introduce two different types of auxiliary equilibria is193

described by the following logic. Using the approach by Dierker (1974) in the form194

of the theorem proved by Husseini et al. (1990), we are able to show the existence of195

a Mr. 1 equilibrium. Yet, as mentioned above, we are then unable to complete the next196

step as we are unable to verify that the projection function from the equilibrium set to197

the economy space is proper. This is a required step for the genericity argument. We198

can verify properness by using the equivalent concept of (normalized price) symmetric199

equilibrium in Definition 6.200

We now discuss the economically significant features of both our model and our201

proof methodology. In terms of the type of participation constraints we employ, we202

believe they are realistic and economically meaningful. They are meant to represent203

the market for bank loans. Consider that legal requirements (or uncontractable social204

norms) are present that guarantee households a base level of consumption expenditure.205

7 This terminology is borrowed from Bich and Cornet (1997).

8 Specifically, it is not clear how to show properness of the projection from the equilibrium set to the

economy space, since it is not possible to uncouple two multipliers and prove that they converge separately.

9 In order not to overburden the present paper, we chose to report only the proofs of Theorems 13 and 14,

the two majors results of our paper. The interested reader may find the proofs of all results in the working

paper version (Hoelle et al. 2012).

10 The terminology “Mr. 1 equilibrium” was introduced in the seminal existence paper by David Cass—see

Cass (1984)—and commonly used since then.
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Incomplete financial markets

Thus, for all states of uncertainty, a household is only able to repay previous debts206

if this leaves the household with at least this base level of consumption expenditure.207

Knowing this, the financial markets only permit borrowing up the point where the208

household is able to repay the loan and not be reduced to consumption expenditure209

below the base level.210

To show the economic relevance of the constraints, we consider a simple example of211

our model. For the particular economy chosen, the equilibrium allocation can be Pareto212

improved by tightening the participation constraints in some states, without loosening213

the participation constraints in any other states, for all households. This result may seem214

counter-intuitive, but demonstrates the importance of general equilibrium price effects215

in financial markets. Thus, restricting credit access may in fact make all households216

better off.217

More generally, the analysis presented in the paper provides what we believe218

are crucial conditions on the type of constraints for which generic regularity219

can be verified, at least following what currently seems to be the only suc-220

cessful approach: the fixed dimension return space approach. As will be dis-221

cussed further in Sect. 2,11 both the kernel approach [that is used in Duffie and222

Shafer (1985)] and the image approach (that we use here) require that the con-223

straints on the financial side of the economy are rewritten in terms of constraints224

on the real side, specifically in terms of the values of the excess demands in225

each state. In the former approach, the financial side simply disappears from226

the household maximization problems. In the latter one, we must introduce ficti-227

tious asset demands and we recognize that constraints imposed on the fictitious228

asset demands may not be equivalent to constraints imposed on the true asset229

demands.230

Future research is required to confirm this conjecture about the type of con-231

straints that can be employed in models with real assets. Given this negative result,232

any attempts to obtain regularity for interesting models of collateral and default233

may be in vain. The reason is that any known approaches to modeling collateral234

and default involve restrictions that differ from the types of restrictions that we235

described above as being successful. Again, future research is required in this direc-236

tion.237

The rest of the paper is organized as follows. In Sect. 2, we present the set up238

of the model. In Sect. 3, we introduce some equivalent definitions of equilibria with239

fixed dimension of the return space. In Sect. 4, we state the results of existence of240

these equilibria, together with the generic existence, generic regularity and generic241

suboptimality of true equilibria. Section 5 contains the numerical example and the242

Appendix collects the proofs of Theorems 13 and 14.243

2 Set up of the model244

Our model builds on the standard two-period, general equilibrium model of pure245

exchange with uncertainty. In the commodity markets, C ≥ 2 different physical246

11 See especially the part immediately after condition (13).
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M. Hoelle et al.

commodities are traded, denoted by c ∈ C = {1, 2, . . . , C}. In the final period,247

only one among S ≥ 1 possible states of the world, denoted by s ∈ {1, 2, . . . , S},248

will occur. The initial period is denoted s = 0 and we define the set of all states249

S = {0, 1, . . . , S} and the set of uncertain states S ′ = {1, . . . , S}. In the initial250

period, asset markets open and A ≥ 1 assets are traded, denoted by a ∈ A =251

{1, 2, . . . , A}.252

We assume A ≤ S. Finally, there are H ≥ 2 households, denoted by h ∈ H =253

{1, 2, . . . , H}. The time structure of the model is as follows: in the initial period,254

households exchange commodities and assets, and consumption takes place. In the255

final period, uncertainty is resolved, households honor their financial obligations,256

exchange commodities, and then consume commodities.257

We denote xc
h(s) ∈ R++ and ec

h(s) ∈ R++ as the consumption and the endow-258

ment of commodity c in state s by household h, respectively.12 We define xh(s) =259

(xc
h(s))c∈C ∈ R

C
++, xh = (xh(s))s∈S ∈ R

G
++, x = (xh)h∈H ∈ R

G H
++ and similarly260

eh(s) ∈ R
C
++, eh ∈ R

G
++, e ∈ R

G H
++ , where G = C(S + 1).261

Household h’s preferences are represented by a utility function uh : R
G
++ → R.262

As in most of the literature on smooth economies we assume that, for every h ∈ H ,263

uh ∈ C2(RG
++); (2)264

for every xh ∈ R
G
++, Duh(xh) ≫ 0; (3)265

for every v ∈ R
G \ {0} and xh ∈ R

G
++, v D2uh(xh) v < 0 ; (4)266

for every xh ∈ R
G
++,

{
xh ∈ R

G
++ : uh(xh) ≥ uh(xh)

}
is closed in the Euclidean267

topology of R
G . (5)268

269

Let us denote by U the set of vectors u = (uh)h∈H of utility functions satisfying270

assumptions (2), (3), (4), and (5). We denote by pc(s) ∈ R++ the price of commodity271

c in state s, by qa ∈ R the price of asset a and by ba
h ∈ R the quantity of asset a held272

by household h. Moreover we define p(s) = (pc(s))c∈C ∈ R
C
++, p = (p(s))s∈S ∈273

R
G
++, q = (qa)a∈A ∈ R

A, bh = (ba
h)a∈A ∈ R

A, b = (bh)h∈H ∈ R
AH .274

We denote by ya,c(s) ∈ R the units of commodity c delivered by one unit of asset a275

in state s and we define ya(s) = (ya,c(s))c∈C ∈ R
C , y(s) = (ya(s))a∈A ∈ R

C A, y =276

(y(s))s∈S ′ ∈ R
C AS .13 Note in particular that, in state s, asset a promises to deliver a277

vector ya(s) of commodities.278

For any m, n ∈ N\{0}, let M (m, n) be the set of real m×n matrices and M
f (m, n)279

be the set of real m × n matrices with full rank. Define the return matrix function as280

follows281

R : R
G
++ × R

C AS → M(S, A),282

12 Given v, w ∈ R
N , we denote by v ≫ w, v ≥ w and v > w the standard binary relations between

vectors. Also the definitions of the sets R
N
+ and R

N
++ are the common ones.

13 We consider possibly negative yields. Notice however that all the results we obtain are still valid in the

case of positive yields.
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Incomplete financial markets

283

(p, y) �→

⎡
⎢⎢⎢⎢⎢⎢⎣

p(1)y1(1) . . . p(1)ya(1) . . . p(1)yA(1)
...

. . .
...

. . .
...

p(s)y1(s) . . . p(s)ya(s) . . . p(s)yA(s)
...

. . .
...

. . .
...

p(S)y1(S) . . . p(S)ya(S) . . . p(S)yA(S)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r1(p, y)
...

rs(p, y)
...

rS(p, y)

⎤
⎥⎥⎥⎥⎥⎥⎦

.284

For future use we also define, for every p ∈ R
G
++,285

Φ (p) =

⎡
⎢⎢⎢⎣

p (0)

p (1)

. . .

p (S)

⎤
⎥⎥⎥⎦ ∈ M(S + 1, G).286

Mimicking what happens in the market for bank loans, the constraints that we287

impose are credit limits which bound the amount of future debt of the borrower,288

proportionally to his/her credit worthiness. In fact, we say that the amount household289

h can borrow, i.e., q (−bh), must be such that the household can repay what is due in290

all states in the final period. That amount due is291

rs (p, y) (−bh) , ∀s ∈ S
′. (6)292

Additionally, we assume that each household will not be able (due to legal restric-293

tions) or will not be willing to consume less than a given proportion γh (s) of its294

wealth in state s ∈ S ′. In other words, there is a base level of consumption expendi-295

ture required for all households:296

γh (s) p (s) eh (s) .297

Then we require that the amount due in (6) has to be smaller than the difference298

between a household’s endowment level and the base level of consumption expendi-299

ture:300

(1 − γh (s)) p (s) eh (s) .301

Therefore, defining αh (s) = 1−γh (s), the borrowing constraints we impose are14:302

∀h ∈ H , ∀s ∈ S
′, −rs (p, y) bh ≤ αh (s) p (s) eh (s) , (7)303

where αh (s) ∈ (0, 1) ,∀h ∈ H and ∀s ∈ S ′.304

14 Notice that our model can easily incorporate the case in which in some states some households may

not be compelled to satisfy any borrowing constraint. This can be obtained just enlarging the set of the

admissible parameters αh (s) from (0, 1) to any open set containing [0, 1] . Indeed, the case αh (s) ≥ 1

corresponds to the situation in which for household h is state s no financial constraint is imposed. That

extension is possible because we do not use the restriction 0 < αh (s) < 1 in any step of our proofs. Observe

also that the case αh (s) ≤ 0 corresponds instead to the situation in which household h is not trusted to

repay any debt in state s: we can deal with that framework, as well.
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M. Hoelle et al.

Including the participation constraint parameters along with the parameters gov-305

erning the asset structure and the household endowments and preferences, we define306

the set of economies as307

E = R
G H
++ × U × R

C AS × (0, 1)SH ,308

with generic element (e, u, y,α) , where α = (αh)h∈H = (αh(s))h∈H ,s∈S ′ .309

Definition 1 A vector (x∗, p∗, b∗, q∗) ∈ R
G H
++ ×R

G
++×R

AH ×R
A is an equilibrium310

for the economy (e, u, y,α) ∈ E if311

1. ∀h ∈ H ,
(
x∗

h, b∗
h

)
solves the following problem: given (p∗, q∗, e, u, y,α)312

max
(xh ,bh)∈R

G
++×RA

uh (xh)313

s.t.p∗ (0) (xh (0) − eh (0)) + q∗bh ≤ 0 (8a)314

p∗ (s) (xh (s) − eh (s)) −
(
p∗ (s) ya (s)

)A

a=1
bh ≤ 0, ∀s ∈ S

′ (8b)315

−
(
p∗ (s) ya (s)

)A

a=1
bh ≤ αh (s) p∗ (s) eh (s) , ∀s ∈ S

′ (8c)316

2. (x∗, b∗) satisfies the market clearing conditions317

H∑

h=1

(
x∗

h − eh

)
= 0 (9)318

and319

H∑

h=1

b∗
h = 0. (10)320

Define321

p\ (s) =
(

pc (s)
)

c �=1
∈ R

C−1
++ , for any s ∈ S , and p\ =

(
p\ (s)

)
s∈S

∈ R
G−(S+1)
++ ,322

and similarly, for any h ∈ H , x
\
h(s), x

\
h, e

\
h(s) and e

\
h .323

Remark 2 Observe that the number of admissible price normalizations for the equi-324

librium concept presented above is S + 1 (one for each spot) and there are S + 1325

Walras’ laws. Therefore, the number of significant equations [i.e., conditions (9) and326

(10) “without S +1 Walras’ laws”] is equal to the number of significant variables (i.e.,327

spot by spot normalized good prices p\ and asset prices q).328

The above observations are formalized in the following definition.329

Definition 3 A vector
(
x∗, p\∗, b∗, q∗

)
∈ R

G H
++ × R

G−(S+1)
++ × R

AH × R
A is a nor-330

malized equilibrium for the economy (e, u, y,α) ∈ E if331
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Incomplete financial markets

1. ∀h ∈ H ,
(
x∗

h, b∗
h

)
solves Problem (8) given (p∗, q∗, (e, u, y,α)) , where p∗ =332 (

1, p\∗ (s)
)S

s=0
;333

2. b∗ satisfies market clearing conditions (10) and334

H∑

h=1

(
x

∗\
h − e

\
h

)
= 0.335

Remark 4 We do distinguish between different normalizations because showing our336

results requires to carefully keep track of different normalizations for some of the337

introduced definitions of equilibria. Observe however that, similarly to what done338

below in the case of equilibria with fixed dimension of the return space in Proposition339

8, it is easy to prove that an equilibrium according to Definition 1 and its normalized340

version in Definition 3 are allocation equivalent.341

Let’s further consider the restrictions we chose to analyze and the technical reasons342

why these constraints can be analyzed using our proof methodology. From Duffie and343

Shafer (1985), the standard way to tackle the problem of generic existence of equilibria344

in the real asset model is to fix the dimension of the return space so that the return345

matrix does not suffer a drop in rank. We briefly describe this process. Define346

Φ1 (p) =

⎡
⎢⎣

p (1)

. . .

p (S)

⎤
⎥⎦ and z1

h = x1
h − e1

h,347

with x1
h = (xh(s))s∈S ′ ∈ R

C S
++ and e1

h = (eh(s))s∈S ′ ∈ R
C S
++ .348

In this fixed dimension return space approach, the budget constraints in the final349

period (8.2) can be equivalently expressed as:350

Φ1 (p) z1
h ∈ L , (11)351

where L is an A dimensional subspace of R
S . Condition (11) is equivalent to any of352

the following conditions:353

1.

∃M (L) ∈ M
f (S − A, S) such that M (L) · Φ1 (p) z1

h = 0, (12)354

where M(L) is such that ker M (L) = L;355

2.

∃N (L) ∈ M
f (S, A) and ∃bh ∈ R

Asuch that Φ1 (p) z1
h = N (L) · bh, (13)356

where N(L) is such that Im N (L) = L .357
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M. Hoelle et al.

Duffie and Shafer (1985) use condition 12). Here, we use condition (13) as well.358

With either condition, it is not clear how to impose constraints directly on bh . In359

the first condition, bh does not appear. In regard to the second condition, we show360

that for a “fictitious” (regular) equilibrium, up to permutations of states, there exists361

E ∈ M (S − A, A) such that362

[
I

E

]
bh = R(p, y)b′

h =

[
R∗ (p, y)

R̂ (p, y)

]
b′

h,363

where R∗ (p, y) has full rank, bh is the asset demand in a fictitious equilibrium, and364

b′
h is the asset demand in the true equilibrium. Therefore, again up to permutations,365

we get that15
366

b′
h =

[
R∗ (p, y)

]−1
bh .15

367

The above condition indicates that imposing restrictions on the fictitious equilib-368

rium asset demand bh does not imply that the same restrictions will hold for the369

true asset demand b′
h . For example, the restriction bh ≥ 0 does not imply that370

b′
h =

[
R∗ (p, y)

]−1
bh ≥ 0. That explains why the fixed dimension return space371

approach is likely not applicable for restrictions written directly in terms of bh .372

On the other hand, constraints on the physical quantity ba
h have little meaning as the373

future yields depend upon future commodity prices. So constraints could be written374

for each asset on the value qaba
h , but this presupposes that either lenders are not able375

to gain information about the other assets in a household’s portfolio or do not care376

about this information.377

The latter assumption is absurd as future repayment likelihoods depend upon all378

asset positions of a household, while the former assumption imposes an unrealistic379

information gap in this market for bank loans. Thus, it appears more economically380

meaningful to consider constraints imposed upon the payouts of all assets of a house-381

hold in the final period.16
382

Finally, our methods allow us to conjecture that [similarly to Polemarchakis and383

Siconolfi (1997)] restricting excess demand in all states to a linear subspace of the384

column span of the returns matrix also suffices to guarantee generic existence and385

regularity. The restriction that we have in mind is:386

Φ1 (p) z1
h ∈ Lh (p) , (14)387

where Lh (p) is a household-specific price-dependent return space, which is a linear388

subspace of L . The constraints of this form (14) fit with the fixed dimension return389

15 The asset demand in the fictitious equilibrium is equal to the asset demand in the true equilibrium, up

to a change of basis. The elements of the basis are the columns of R∗ (p, y) , which is an invertible matrix

with A states following the permutation of states.

16 Observe that the methods of this paper would be equally effective in obtaining generic existence and

regularity, if we were to consider participation constraints as inequalities on initial period portfolio value

qbh = −p (0) (xh (0) − eh (0)) .
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Incomplete financial markets

space approach, as we can simply replace L in the previous analysis with Lh (p) . In390

fact, similar restrictions have been considered by Balasko et al. (1990), in the case of391

nominal assets. We do not consider constraints (14) any further in the present paper,392

but we are working with them in a companion paper.393

3 Equilibria with fixed dimension of the return space394

As explained in the previous sections, we present some definitions of equilibria in395

which the dimension of the feasible wealth transfer space L is fixed and equal to the396

number of available assets, A.397

The main difference between the concept of pseudo equilibrium in Duffie and Shafer398

(1985) and the one proposed below in Definitions 5 and 6 is that in the former the399

space L appearing in the household maximization problem is written as the kernel of400

a linear function, while in our household maximization problem [see (16)] the space401

L is the image of a linear function.402

Below, after introducing some preliminary definitions and facts, we present three403

equivalent definitions of equilibria that are useful for our analysis. Indeed, as explained404

in Sect. 1, the different steps in the proofs of Theorems 13 and 14 require a different405

definition of equilibrium.406

We denote by GA,S the set of A dimensional vector subspaces of R
S . It can be shown407

that GA,S is a Hausdorff, compact, and second countable (and therefore sequentially408

compact) metric space and also a C∞abstract manifold of dimension A (S − A).17
409

Denoting by � the set of permutations of {1, . . . , S} , with generic element σ ∈ �,410

by Pσ the corresponding permutation matrix and by IM the M-dimensional identity411

matrix, then for every L ∈ GA,S, there exists σ−1 ∈ �, a neighborhood Vσ−1 of L ,412

and a diffeomorphism18
413

ψσ−1 : Vσ−1 → M (S − A, A) (15)414

such that L = Im Pσ

[
−ψσ−1 (L)

IA

]
= ker

[
IS−A | ψσ−1 (L)

]
· Pσ−1 .415

Define416

Ah =

⎡
⎢⎣

αh (1)

. . .

αh (S)

⎤
⎥⎦ .417

Definition 5 A vector (x∗, p∗, b∗, q∗, L∗) ∈ R
G H
++ × R

G
++ × R

AH × R
A × GA,S is a418

symmetric equilibrium for the economy (e, u, y,α) ∈ E if419

1. ∀h ∈ H ,
(
x∗

h, b∗
h

)
solves the following problem:420

given (p∗, q∗, L∗, e, u, y,α)421

17 See Kato (1995), page 198.

18 From now on, for ease of notation, we will simply write ψ in place of ψσ−1 . Notice that we chose to

start with σ−1 instead of σ because in this way the definitions of equilibria below get simplified.
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M. Hoelle et al.

max
(xh ,bh)∈R

G
++×RA

uh (xh)422

s.t. − p∗ (0) (xh (0) − eh (0)) − q∗bh = 0 (16a)423

−Φ1
(
p∗
) (

x1
h − e1

h

)
+ Pσ

[
−ψ (L∗)

IA

]
bh = 0 (16b)424

Pσ

[
−ψ (L∗)

IA

]
bh + Ah · Φ1

(
p∗
)

e1
h ≥ 0 (16c)425

2. (x∗, b∗) satisfies market clearing conditions (9) and (10);426

3. ImR (p∗, y) ⊆ L∗, i.e.,427

vec
[
IS−A | ψ

(
L∗
)]

· Pσ−1 · R
(
p∗, y

)
= 0. (17)428

Define ∆G−1
++ =

{
p ∈ R

G
++ :

∑S
s=0

∑C
c=1 pc (s) = 1

}
and, for any h ∈429

H , e⋄
h =

(
e1

h (s)
)

s∈S
∈ R

S+1
++ , e

\(01)

h =
(
ec

h (s)
)
(s,c) �=(0,1)

∈ R
G−1
++ , x

\(01)

h =430

(
xc

h (s)
)
(s,c) �=(0,1)

∈ R
G−1
++ . Moreover, 1N denotes an N dimensional vector whose431

components are all equal to 1; if no confusion arises, we will write 1 in the place of432

1N .433

As in the case of equilibria presented in Definition 1, we formalize the possibility434

of normalizing prices and the validity of Walras’ laws in Definition 6 below.435

Definition 6 A vector
(
x∗, p\∗, b∗, q∗, L∗

)
∈ R

G H
++ ×R

G−(S+1)
++ ×R

AH ×R
A ×GA,S436

is a normalized symmetric equilibrium for the economy (e, u, y,α) ∈ E if437

1. ∀h ∈ H ,
(
x∗

h, b∗
h

)
solves Problem (16) given (p∗, q∗, L∗, (e, u, y,α)) , where438

p∗ =
(
1, p\∗ (s)

)S

s=0
;439

2. b∗ satisfies market clearing conditions (10) and440

H∑

h=1

(
x

∗\
h − e

\
h

)
= 0;441

3. Condition (17) holds true.442

We now introduce the needed definition of Mr. 1 equilibrium.443

Definition 7 A vector (x∗, p∗, L∗) ∈ R
G H
++ ×∆G−1

++ ×GA,S is a Mr. 1 equilibrium19
444

for the economy (e, u, y,α) ∈ E if445

1a. ∀h ∈ H \ {1} , x∗
h solves the following problem:446

given (p∗, L∗, e, u, y,α) ,447

max
xh∈B

\b
h (p∗,L∗)

uh (xh) (18)448

19 Among the various kinds of equilibria with fixed dimension of the return space we introduce, the one that

bears the most resemblance to the original concept in Duffie and Shafer (1985) is Definition 7. However, we

have elected to call it “Mr. 1 equilibrium” instead of “pseudo equilibrium” to highlight the main difference

between this notion and the notion of symmetric equilibrium in Definition 5.
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Incomplete financial markets

where B
\b
h (p∗, L∗) =449

{
xh ∈ R

G
++ : ∃bh ∈ R

A such that450

−p∗ (0) (xh (0) − eh (0)) − 1 · Pσ

[
−ψ (L∗)

IA

]
bh = 0 (19a)451

−Φ1
(
p∗
) (

x1
h − e1

h

)
+ Pσ

[
−ψ (L∗)

IA

]
bh = 0 (19b)452

Pσ

[
−ψ (L∗)

IA

]
bh + AhΦ1

(
p∗
)

e1
h ≥ 0

}
(19c)453

1b. x∗
1 solves the following problem:454

given (p∗, L∗, e, u, y,α) ,455

max
x1∈R

G
++

u1 (x1)456

s.t. − p∗ (0) (x1 (0) − e1 (0)) − 1 · Φ1
(
p∗
) (

x1
1 − e1

1

)
= 0 (20a)457

Φ1
(
p∗
) (

x1
1 − e1

1

)
+ A1Φ

1
(
p∗
)

e1
1 ≥ 0 (20b)458

2. x∗ satisfies market clearing conditions459

H∑

h=1

(
x

∗\(01)

h − e
\(01)

h

)
= 0; (21)460

3. Condition (17) holds true.461

Definitions 5, 6, and 7 are in fact “allocation equivalent”, as stated below.20
462

Proposition 8 For a given economy (e, u, y,α) ∈ E , the following statements are463

equivalent:464

1. x is a symmetric equilibrium allocation;465

2. x is a normalized symmetric equilibrium allocation;466

3. x is a Mr. 1 equilibrium allocation.467

Proposition 9 describes the relationship between equilibria with fixed dimension468

of the return space and “true” equilibria.469

Proposition 9 If
(
x∗, p\∗, b∗, q∗, L∗

)
∈ R

G H
++ × R

G−(S+1)
++ × R

AH × R
A × GA,S is470

a normalized symmetric equilibrium for the economy (e, u, y,α) ∈ E and471

rankR
(
p∗, y

)
= A, (22)472

20 This result is formally proven in Hoelle et al. (2012).
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M. Hoelle et al.

where p∗ =
(
1, p\∗ (s)

)S

s=0
, then there exist b∗∗ and q∗∗ such that

(
x∗, p\∗, b∗∗, q∗∗

)
473

is a normalized equilibrium for E .474

Proof See Hoelle et al. (2012).475

4 Generic existence, regularity, and suboptimality476

In this section, we first show existence of an Mr. 1 equilibrium—see Theorem 13.477

Then, we can obtain the generic existence of a true equilibrium, after showing the478

generic regularity and generic full rank condition of the return matrix for normalized479

symmetric equilibria—see Theorem 14.480

As a preliminary step towards the application of a Brouwer like fixed point theorem481

to prove Theorem 13—see Appendix A.1—we show some basic properties of the482

demand function associated with Definition 7.483

Omitting for simplicity the dependence on utility functions, define484

β1 : ∆G−1
++ × R

G
++ × (0, 1)S

⇒ R
G
++,485

β1 (p, e1,α1) =

{
x1 ∈ R

G
++ : −p (x1 − e1) ≥ 0486

Φ1 (p)

(
x1

1 − e1
1

)
+ A1Φ

1 (p) e1
1 ≥ 0487

u1 (x1) − u1

(
1

2
e1

)
≥ 0

}
,488

and for every h ∈ H \ {1}489

βh : ∆G−1
++ × R

G
++ × (0, 1)S × GA,S ⇒ R

G
++ × R

A,490

491

βh (p, eh,αh, L) =

{
(xh, bh) ∈ R

G
++ × R

A :492

−p (0) (xh (0) − eh (0)) − 1 · Pσ

[
−ψ (L)

IA

]
bh ≥ 0493

−Φ1 (p)

(
x1

h − e1
h

)
+ Pσ

[
−ψ (L)

IA

]
bh ≥ 0494

Pσ

[
−ψ (L)

IA

]
bh + AhΦ1 (p) e1

h ≥ 0495

uh (xh) − uh

(
1

2
eh

)
≥ 0

}
.496

Remark 10 It is obvious that if (xh, bh) is a solution to497

max
(xh ,bh)∈R

G
++×RA

uh (xh) s.t. (xh, bh) ∈ βh (p, eh,αh, L) , (23)498
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Incomplete financial markets

for some h ∈ H \ {1}, then xh is a solution to (18); and conversely if xh is a solution499

to (18), then there exists bh such that (xh, bh) is a solution to (23).500

Lemma 11 For any h ∈ H , βh is nonempty valued, convex valued, compact valued,501

closed and lower hemi continuous.502

Proof See Hoelle et al. (2012).503

Proposition 12 The demand correspondences associated with Problems (18) and (20)504

are continuous functions.505

Proof It follows from Remark 10, Lemma 11, the Maximum Theorem, and assumption506

(4).507

Theorem 13 For every economy, a Mr. 1 equilibrium exists.508

Proof The proof is presented in Appendix A.1.509

Consider the Hausdorff topological vector space510

V = R
G H
++ ×

[
C2(RG

++)
]H

× R
C AS × (0, 1)SH , (24)511

endowed with the product topology of the natural topologies on each of the spaces512

in the Cartesian product. In particular, on the C2 function space, we consider the C2
513

compact-open topology. Assume that E ⊆ V is endowed with the topology induced514

by V .515

Theorem 14 There exists an open dense set D ⊆ E such that, for any (e, u, y,α) ∈516

D , there is a (positive) finite number of associated normalized equilibria which locally517

smoothly depend on the elements of D .518

Proof First of all, observe that from Proposition 8 and Theorem 13, a normalized519

symmetric equilibrium exists. Moreover, from Proposition 9, it is enough to show that520

generically rank condition (22) does hold true. The strategy of the proof is then to521

consider normalized symmetric equilibria and proceed through the following steps:522

1. The associated extended equilibrium system21 is such that border line cases are523

rare;524

2. The return matrix has generic full rank;525

3. The associated projection from the equilibrium set to the economy space is proper;526

4. Apply a simplified version of the implicit function theorem given in Theorem 2.3527

of Glöckner (2006).528

Each of the above steps is formalized and proven in Appendix A.2.529

The theorem below states the typical inefficiency of equilibria.530

21 By extended system associated with a given definition of equilibrium, we mean the related system of

Lagrange conditions of households’ maximization problems and market clearing conditions.
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M. Hoelle et al.

Theorem 15 If A < S, then there exists an open and dense set D̃ ⊆ E such that,531

for every (e, u, y,α) ∈ D̃ , every corresponding equilibrium allocation is not Pareto532

optimal.533

The proof of the above theorem follows a standard argument and therefore it is534

omitted.535

Observe that in the statement of the above theorem, the qualification A < S is indeed536

a necessary condition. If it were the case A = S, starting from a regular economy in537

the complete market model with an associated Pareto optimal equilibrium, and then538

adding “insignificant” constraints, it would be immediate to construct an open set of539

economies in the restricted participation model with the property that at least one540

associated equilibrium is still Pareto optimal.541

5 A numerical example542

Given the proof of generic regularity of equilibria in Theorem 14, we can now compute543

an equilibrium of our model using algorithms that utilize the theory of differential544

topology. Specifically, the two equilibria computed in this section are numerically545

determined using homotopy methods, i.e., the HOMPACK suite of subroutines for546

Fortran 90, and Kubler (2007). These methods require generic regularity to work547

successfully.548

With these two equilibria, a comparative statics analysis yields interesting con-549

clusions. In particular, the example shows that by tightening credit constraints,550

an anonymous planner intervention can actually effect a Pareto improvement. The551

planner intervention works through adjustments in the parameters governing the552

participation restriction (7): (αh (s))h∈H ,s∈S ′ ∈ (0, 1)SH . For this example, these553

parameters are household independent, so they are simply (α (s))s∈S ′ ∈ (0, 1)S .554

The planner intervention is also household independent and its tools are given by555

τ(s) ∈
(
−1,−1 + 1

α(s)

)
, s ∈ S ′, so that the new parameters in (7) are defined as556

α̂ (s) = (1 + τ (s)) · α (s) ∈ (0, 1), ∀s ∈ S
′.557

Obviously, an intervention with τ = (τ (s))s∈S ′ = 0, where 0 = (0, . . . , 0) ∈ R
S,558

implies no change in either the parameters or the resulting equilibrium. Define the559

equilibrium obtained following planner intervention as
(

x̂, p̂, b̂, q̂
)

, in contrast to the560

original equilibrium (x, p, b, q) prior to planner intervention.561

The example in this section demonstrates the following fact. For some values562

τ(s) ≤ 0, s ∈ S ′, the resulting equilibrium allocation x̂ Pareto dominates the original563

equilibrium allocation x.564

That is, for this particular economy, more regulation on the credit markets is565

employed in order to make all households better off. Notice that, due to the generic566

regularity result and the way the algorithm works, the example is robust to perturbation.567

The economy is defined by:568

– H = 3 households;569

– C = 2 commodities traded in each state;570
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Incomplete financial markets

– S = 4 possible states of uncertainty tomorrow;571

– A = 2 real assets.572

The household endowments are given by:573

e1
h(0) e2

h(0) e1
h(1) e2

h(1) e1
h(2) e2

h(2) e1
h(3) e2

h(3) e1
h(4) e2

h(4)

h = 1 1 7 1 0.5 7 1 7.5 6 1 7

h = 2 2 4 7 6.5 1 7 2 0.5 8 2

h = 3 9 1 4 5 4 4 2.5 5.5 3 3

Sum 12 12 12 12 12 12 12 12 12 12

574

The household utility functions are given by:575

uh (xh) = γh(0) · log
(

x1
h(0)

)
+ (1 − γh(0)) · log

(
x2

h(0)
)

576

+
1

4

∑

s∈S ′

[
γh(s) · log

(
x1

h(s)
)

+ (1 − γh(s)) · log
(

x2
h(s)

)]
,577

where578

γh(0) γh(1) γh(2) γh(3) γh(4)

h = 1 2/3 1/2 1/4 3/4 1/2

h = 2 1/3 1/4 3/4 1/2 1/4

h = 3 2/3 3/4 1/2 1/4 3/4

579

The assets are real assets, so each asset has payouts in terms of a vector of commodities580

in each state s ∈ S ′. These vector of payouts are given by:581

States\Assets a = 1 a = 2

s = 1 (4, 0.5) (0.5, 3.6)

s = 2 (3.9, 0.5) (3.7, 0.5)

s = 3 (0.5, 3.8) (0.5, 3.8)

s = 4 (0.5, 3.7) (3.9, 0.5)

582

Finally, the parameters (identical for all households) governing the participation583

restriction (7) are given by:584

α(1) = 0.033585

α(2) = 0.020586

α(3) = 0.029587

α(4) = 0.033.588

For this economy, the equilibrium22 is given by:589

22 A unique equilibrium is guaranteed by our use of the Cobb–Douglas utility functions.
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M. Hoelle et al.

– Consumption590

x1
h (0) x2

h (0) x1
h (1) x2

h (1) x1
h (2) x2

h (2) x1
h (3) x2

h (3) x1
h (4) x2

h (4)

h = 1 2.966 3.680 0.881 0.871 4.951 3.240 8.275 5.441 2.017 5.422

h = 2 1.615 4.778 6.266 7.305 3.133 4.811 1.338 0.988 6.107 4.084

h = 3 7.426 3.546 4.851 3.822 3.913 3.946 2.383 5.569 3.873 2.487

591

– Assets592

b1
h b2

h

h = 1 0.334 −0.314

h = 2 0.225 −0.240

h = 3 −0.556 0.550

593

– Prices594

p1(0) = 1 p2(0) = 0.622

p1(1) = 1 p2(1) = 0.973

p1(2) = 1 p2(2) = 0.982

p1(3) = 1 p2(3) = 1.205

p1(4) = 1 p2(4) = 0.781

q1 = 5.886 q2 = 5.941

595

– Utility values596

u1 (x1) = 2.2473597

u2 (x2) = 2.4142598

u3 (x3) = 3.1676. (25)599

Above is the original equilibrium. Following planner intervention, we will obtain600

a new equilibrium. The planner intervenes according to:601

τ(1) = 0602

τ(2) = −0.22603

τ(3) = 0604

τ(4) = −0.17.605

This means that the parameters α̂(1) and α̂(3) remain unchanged compared to α(1)606

and α(3), but α̂(2) is 22 % lower compared to α(2) and α̂(4) is 17 % lower compared607

to α(4):608

α̂(1) = 0.033609

α̂(2) = 0.016610

α̂(3) = 0.029611

α̂(4) = 0.028 .612

The credit constraints have just been tightened.613
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Incomplete financial markets

The equilibrium following planner intervention (again, unique23) is:614

• Consumption615

x̂1
h
(0) x̂2

h
(0) x̂1

h
(1) x̂2

h
(1) x̂1

h
(2) x̂2

h
(2) x̂1

h
(3) x̂2

h
(3) x̂1

h
(4) x̂2

h
(4)

h = 1 3.029 3.624 0.866 0.859 4.841 3.328 8.302 5.395 2.096 5.392

h = 2 1.619 4.784 6.215 7.363 3.233 4.717 1.327 1.007 6.005 4.174

h = 3 7.358 3.595 4.917 3.776 3.923 3.952 2.366 5.596 3.897 2.428

616

• Assets617

b̂1
h b̂2

h

h = 1 0.301 −0.284

h = 2 0.237 −0.251

h = 3 −0.537 0.533

618

• Prices619

p̂1(0) = 1 p̂2(0) = 0.627

p̂1(1) = 1 p̂2(1) = 0.973

p̂1(2) = 1 p̂2(2) = 0.985

p̂1(3) = 1 p̂2(3) = 1.180

p̂1(4) = 1 p̂2(4) = 0.795

q̂1 = 6.233 q̂2 = 6.305

620

• Utility values621

u1

(
x̂1

)
= 2.2603622

u2

(
x̂2

)
= 2.4259623

u3

(
x̂3

)
= 3.1686. (26)624

Comparing the utility values in (25) and (26), a Pareto improvement has been625

achieved. The utility increases are 0.58 % for household h = 1, 0.48 % for household626

h = 2, and 0.03 % for household h = 3.627

We now explain the intuition behind this Pareto improvement. Taken in isolation,628

a binding constraint of the form (7) for a single household h and for a particular state629

s ∈ S ′ has well-established properties. A reduction in the parameter αh(s) restricts630

the budget set for household h, because the constraint has become tighter. This results631

in lower utility for household h.632

However, consider what happens, as in the above example, when a reduction in the633

parameter αh(s) results in constraints binding in some states in which they previously634

did not bind. Specifically, the following table illustrates this endogenous effect for the635

above example:636

23 Again, a unique equilibrium is guaranteed by our use of the Cobb–Douglas utility functions.
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M. Hoelle et al.

Constraint (7) is binding in states

Before intervention After intervention

h = 1 s = 4 s = 4

h = 2 s = 3 s = 3 and s = 4

h = 3 s = 1 s = 2

637

As can be seen from the table, for households h = 2 and h = 3, different con-638

straints are binding after the intervention compared to before the intervention. When639

the states of binding constraints “ switch” following an intervention, the property640

described above for isolated constraints is no longer valid. In particular, two effects641

now play a leading role in determining the equilibrium. First, portfolio effects are642

present as households adjust their portfolios across the states of uncertainty where643

now the constraints may bind for different states. Second, general equilibrium effects644

are present, whereby one household’s adjustments to the newly binding constraints645

must affect the other households, through the relative commodity prices and asset646

prices, in order for the market clearing conditions to be satisfied.647

Appendix A648

A.1: Proof of Theorem 13649

The proof of Theorem 13 requires some preliminary results before proceeding.650

Define ∆G−1
+ =

{
p ∈ R

G
+:
∑S

s=0

∑C
c=1 pc(s) = 1

}
and �G−1 =

{
p ∈651

R
G :
∑S

s=0

∑C
c=1 pc(s) = 1

}
.652

In what follows, we take for given an economy (e, u, y, α).653

From Proposition 12, we can define the following continuous functions.654

xh : ∆G−1
++ × GA,S → R

G , for h ∈ H ,655

x1 (p, L) = arg max(20),656

xh (p, L) = arg max(18), for h ∈ H \ {1},657

and658

z : ∆G−1
++ × GA,S → R

G , (p, L) �→
∑

h∈H

(xh(p, L) − eh) . (27)659

Define also660

ψ : ∆G−1
+ × GA,S → R

S A, (p, L) �→ R(p, y). (28)661

We say that a vector (p∗, L∗) is a reduced Mr. 1 equilibrium for the economy662 (
e, u, y, α

)
∈ E , if there exists x∗ such that (x∗, p∗, L∗) is a Mr. 1 equilibrium for that663

economy.664
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Incomplete financial markets

Proposition 16 A vector (p∗, L∗) is a reduced Mr. 1 equilibrium for the economy665 (
e, u, y, α

)
∈ E if666

1. z (p∗, L∗) = 0 and667

2. 〈ψ (p∗, L∗)〉 ⊆ L∗.668

In the next result we list some properties of the function z in (27) we will need in669

the proof of Lemma 19.670

Lemma 17 1. z is continuous;671

2. z satisfies Walras’ law;672

3. z is bounded from below;673

4. z satisfies the boundary condition, i.e., if (p[n], L [n]) → (p̄, L̄) with p̄ ∈ ∂∆G−1
+ ,674

then ‖z(p[n], L [n])‖ → ∞.675

Proof 1. It follows from Proposition 12.676

2. It follows from household budget constraints.677

3. From market clearing, for every s, c, z c (s) is bounded below by −
∑

h∈H ec
h(s).678

4. It follows from the budget constraint and the strict monotonicity of uh.679

In the proof of Theorem 13 we are going to use the following result in Husseini680

et al. (1990).681

Theorem 18 (A Grassmannian Brouwer-like fixed point theorem) Let H N be an N-682

dimensional affine subspace, C ⊂ H N a compact convex subset with nonempty relative683

interior and let684

Φ : C × GA,S → H N , Ψ : C × GA,S → R
AS

685

be continuous functions such that Φ(∂C, L) ⊆ C,∀L ∈ GA,S . Then there exists (p̄, L̄)686

such that687

Φ(p̄, L̄) = p̄, 〈Ψ (p̄, L̄)〉 ⊆ L̄.688

A crucial role in the application of the above theorem is played by the following689

lemma. We present the proof of the lemma in the case, analyzed in the present paper,690

in which the return space is described as a Grassmannian manifold. In fact, Husseini691

et al. (1990) presented instead the proof in the case of Stiefel manifolds.692

Lemma 19 There exists a continuous function ϕ : ∆G−1
+ × GA,S → [0, 1] such that693

the function694

φ : ∆G−1
+ × GA,S → �G−1 defined by695

φ(p, L) = ϕ(p, L)(pc (s) + pc (s) zc (s) (p, L))s,c + (1 − ϕ(p, L))u, (29)696

where u = ( 1
G

, . . . , 1
G

) ∈ R
G , satisfies697
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M. Hoelle et al.

1. φ(∂∆G−1
+ , L) ⊆ ∆G−1

+ , ∀L ∈ GA,S;698

2. φ(p, L) = p ⇔ z(p, L) = 0.24
699

Proof Define700

V j =

{
(p, L) ∈ ∆G−1

++ × GA,S : z j (p, L) > 0, p j <
1

G

}
, j ∈ {1, . . . , G}701

and K =
(
∆G−1

++ × GA,S

)
\
(⋃G

j=1 V j

)
. We are going to prove that K is closed in702

∆G−1
+ × GA,S . Since GA,S is a metric space, also ∆G−1

+ × GA,S is a metric space.703

Thus it is enough to prove that K is sequentially closed, i.e., that the limit point of any704

convergent sequence of elements of K belongs to K .705

Rewriting K as follows706

K =

{
(p, L) ∈ ∆G−1

++ × GA,S : ∀ j ∈ {1, . . . , G}, z j (p, L) ≤ 0 or p j ≥
1

G

}
707

and recalling that GA,S is compact, and thus closed, it is clear that the only way708

in which the limit point (p̄, L̄) of a sequence (p[n], L [n]) of elements of K does709

not belong to K is that p̄ ∈ ∂∆G−1
+ . However this is prevented by the boundary710

condition and the continuity of z on K . Indeed, if p̄ ∈ ∂∆G−1
+ , then there exists711

j ∈ {1, . . . , G} such that p̄ j = 0. Hence there exists n̄ ∈ N such that, for every712

n ≥ n̄, p
[n]
j < 1

G
. By definition of K and recalling that z is bounded from below,713

we then have −
∑

h∈H eh( j) ≤ z j (p
[n], L [n]) ≤ 0 and thus, by the continuity of z,714

it holds that −
∑

h∈H eh( j) ≤ z j (p̄, L̄) ≤ 0. On the other hand, by the boundary715

condition, z j (p
[n], L [n]) → +∞. The contradiction is found.716

Notice that K ∩
(
∂∆G−1

+ × GA,S

)
= ∅ and that ∂∆G−1

+ × GA,S is closed in717

∆G−1
+ × GA,S . Recalling that any metric space is normal25 and that on normal spaces718

the Urysohn Lemma26 applies, there exists a continuous function ϕ : ∆G−1
+ ×GA,S →719

[0, 1] such that ϕ(K ) = 1 and ϕ(∂∆G−1
+ × GA,S) = 0. Let us then check that the720

function φ in (29) has �G−1 as codomain and satisfies 1. and 2.721

As regards the codomain of φ, fix (p, L) ∈ ∆G−1
+ ×GA,S . Then

∑G
j=1 p j = 1 and722

recalling that z obeys Walras’ law, it holds that723

24 Notice that, although z in (27) is defined only on ∆G−1
++ ×GA,S , the function φ is defined on ∆G−1

+ ×GA,S

because, by construction, ϕ
(
∂∆G−1

+ × GA,S

)
= 0 and thus φ

(
∂∆G−1

+ × GA,S

)
= u.

25 A topological space X is called normal if for any pair of closed disjoint subsets C1 and C2 of X there

exists a pair of open disjoint subsets O1 and O2 of X, with O1 ⊃ C1 and O2 ⊃ C2.

26 We recall that the Urysohn lemma says that given two disjoint closed subsets C1 and C2 of a normal

space X, there exists a continuous function f : X → [0, 1] such that f (C1) = 0 and f (C2) = 1.
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Incomplete financial markets

G∑

j=1

φ j (p, L) =

G∑

j=1

(
ϕ(p, L)(p j + p j z j (p, L)) + (1 − ϕ(p, L))

1

G

)
724

= ϕ(p, L)

G∑

j=1

(
p j + p j z j (p, L)

)
+ (1 − ϕ(p, L))

G∑

j=1

1

G
725

= ϕ(p, L)

G∑

j=1

p j z j (p, L) + 1 = 1,726

i.e., φ(∆G−1
+ × GA,S) ⊆ �G−1, as desired.727

In regard to 1., as we already know that φ(∂∆G−1
+ × GA,S) ⊆ �G−1, in order to728

show that φ(∂∆G−1
+ × GA,S) ⊆ ∆G−1

+ , it is enough to check that φ j (p, L) ≥ 0, for729

every (p, L) ∈ ∂∆G−1
+ × GA,S and j ∈ {1, . . . , G}. Since ϕ(∂∆G−1

+ × GA,S) = 0, it730

holds that, for (p, L) ∈ ∂∆G−1
+ × GA,S, φ j (p, L) = 1

G
≥ 0.731

Let us finally prove 2. Assume that z(p, L) = 0 and show that φ(p, L) = p. If732

z(p, L) = 0 then z j (p, L) ≤ 0 for every j and so (p, L) ∈ K . Hence, ϕ(p, L) = 1733

and thus φ j (p, L) = p j + p j z j (p, L) = p j , for every j, as desired.734

Assume now that φ(p, L) = p and show that z(p, L) = 0. Notice that735

∆G−1
+ × GA,S =

(
∂∆G−1

+ × GA,S

)
∪ K ∪

⎛
⎝

G⋃

j=1

V j

⎞
⎠

736

and that ∂∆G−1
+ × GA,S, K and

⋃G
j=1 V j are pairwise disjoint. If (p, L) ∈ ∆G−1

+ ×737

GA,S, then there are three cases to consider, i.e., (p, L) ∈ ∂∆G−1
+ ×GA,S, (p, L) ∈ K738

and (p, L) ∈ V j∗ , for some j∗ ∈ {1, . . . , G}. We claim that only in the second case739

it may happen that φ(p, L) = p. Indeed, in the first case φ(p, L) =
(

1
G

, . . . , 1
G

)
/∈740

∂∆G−1
+ . In the third case, by definition of V j∗ , we would have741

p j∗ = φ j∗(p, L) = ϕ(p, L)(p j∗ + p j∗ z( j∗)(p, L)) + (1 − ϕ(p, L))
1

G
742

> ϕ(p, L)(p j∗ + p j∗ z( j∗)(p, L)) + (1 − ϕ(p, L))p j∗743

= p j∗ + ϕ(p, L)p j∗ z( j∗)(p, L) ≥ p j∗ ,744

a contradiction. Thus φ(p, L) = p only if (p, L) ∈ K and in this case, as ϕ(p, L) = 1,745

it follows that, for every j ∈ {1, . . . , G}, p j = φ j (p, L) = p j + p j z j (p, L), from746

which, since p j > 0, we have z j (p, L) = 0, as desired.747
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M. Hoelle et al.

Proof of Theorem 13 We want to apply Theorem 18, identifying Φ and Ψ with φ in748

(29) and ψ in (28), respectively. �G−1 is an affine subspace of R
G and ∆G−1

+ ⊂ �G−1
749

is clearly a compact, convex subset with nonempty relative interior. φ is a continuous750

function from Lemma 17 and from the fact that ϕ is a continuous function from Lemma751

19. Again from the latter lemma, we have that φ(∂∆G−1
+ , L) ⊆ ∆G−1

+ , ∀L ∈ GA,S .752

Finally, from Theorem 18 and Proposition 16, the desired result follows. ⊓⊔753

A.2: Proof of Theorem 14754

Let V be a topological Hausdorff vector space, V ⊆ V be an open set and f : V → R
n

755

be a function. We say that f ∈ C0(V, R
n) if f is continuous, while f ∈ C1(V, R

n)756

if it is continuous, there exists the limit757

d f (v, w) = lim
ε→0

f (v + εw) − f (v)

ε
, ∀v ∈ V, w ∈ V ,758

and the function d f : V × V → R
n is continuous.759

Given any (not necessarily open) set X ⊆ V and f : X → R
n , we say f ∈760

C0(X, R
n) if f is continuous with respect to the topology induced by V on X , while,761

as in the finite dimensional setting, f ∈ C1(X, R
n) if for every v0 ∈ X there exists an762

open neighborhood of v0 in V , say V (v0), and a function f : V (v0) → R
n such that763

f ∈ C1(V (v0), R
n) and, for every x ∈ V (v0) ∩ X, f (x) = f (x).764

Those definitions allow to state the following implicit function theorem which is a765

simplified version of Theorem 2.3 in Glöckner (2006).27
766

Theorem 20 Let us consider f :O × V → R
n , where O is an open subset of R

n
767

and V is an open subset of a topological Hausdorff vector space V . Assume f ∈768

C1(O × V, R
n) and let (x0, v0) ∈ O × V such that f (x0, v0) = 0 and Dxf(x0, v0) is769

invertible.28 Then there exist O(x0) ⊆ O open neighborhood of x0, V (v0) ⊆ V open770

neighborhood of v0 and g:V (v0) → O(x0) such that771

1. g ∈ C1(V (v0), O(x0)),772

2. g(v0) = x0,773

3. {(x, v) ∈ O(x0)× V (v0) : f (x, v) = 0} = {(x, v) ∈ O(x0)× V (v0) : x = g(v)}.774

27 We stress that we need such more sophisticated result, rather than the classical implicit function

theorem—see for instance Lang (1983), page 131—because one of the factors of the Cartesian product

in the domain of the “ equilibrium function” we deal with in Theorem 14 is given by the set of twice

continuously differentiable utility functions. The topology that set is commonly endowed with is the C2

compact-open topology—see for example Hirsch (1976), pages 34–35. Unfortunately, that topology is not

generated by a norm [see again Hirsch (1976), page 35] and thus the standard implicit function theorem

cannot be applied in our framework. On the other hand, the space of our utility functions with the C2

compact-open topology is a topological Hausdorff vector space and therefore the theorem by Glöckner can

be used instead.

28 Note that if f ∈ C1(O × V, R
n) then, for every v ∈ V , f (·, v) : O → R

n , x �→ f (x, v), belongs to

C1(O, R
n) and thus, for every (x, v) ∈ O × V, Dxf(x, v) is well defined.
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Incomplete financial markets

Proof of Theorem 14 Step 1.775

Define, for each σ ∈ �,776

Ξσ = R
G H
++ × R

(S+1)H × R
AH × R

SH × R
G
++ × R

A × Vσ−1 , (30)777

with generic element778

ξ =
(
(xh, λh, bh, μh)h∈H , p, q, L

)
= (x, λ, b, μ, p, q, L) ,779

and the function780

Fσ : Ξσ × E → R
dim(Ξσ ),781

Fσ (ξ, e, u, y, α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dxh(s)uh(xh) − λh(s)p(s)

−Φ (p) (xh − eh) +

⎡
⎣

−q

Pσ

[
−ψ(L)

IA

]
⎤
⎦ bh

λh

⎡
⎣

−q

Pσ

[
−ψ(L)

IA

]
⎤
⎦+ μhPσ

[
−ψ(L)

IA

]

min

{
μh, Pσ

[
−ψ(L)

IA

]
bh + AhΦ1 (p) e1

h

}

H∑
h=1

(
x

\
h − e

\
h

)

H∑
h=1

bh

p1(s) − 1

vec
[
IS−A | ψ (L)

]
· Pσ−1 · R (p, y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)782

where ψ : Vσ−1 → M(S − A, A) is the diffeomorphism in (15), with Vσ−1 ⊆ GA,S783

open.784

For simplicity and without loss of generality, from now on we consider the case785

Pσ = I, so that Fσ becomes F : Ξ × E → R
dim(Ξ).786

We now show that border line cases are rare. For every h ∈ H , we define S 1
h ,S 2

h787

and Ŝ 1
h so that {1, . . . , S} = S 1

h ∪S 2
h , with

(
S 1

h \ Ŝ 1
h

)
∩S 2

h = ∅ and Ŝ 1
h ⊆ S 1

h ,788

in order to have789
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s ∈ S 1
h \Ŝ 1

h ⇒ m (s) · bh + αh (s) · p (s) eh (s) = 0

s ∈ Ŝ 1
h ⇒ m (s) · bh + αh (s) · p (s) eh (s) = 0 and μh (s) = 0

s ∈ S 2
h ⇒ μh (s) = 0,

790

where we have denoted by m(s) the s-th row of

[
−ψ(L)

IA

]
.791

Define ŷ = (ya,1(s))a∈A , s∈{1,...,S−A} and the full rank matrix792

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1)

. . .

p1(1)

. . .

p1(S − A)

. . .

p1(S − A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.793

The computation of the desired (partial) Jacobian matrix is presented in the table794

below, where the following conventions are adopted.795

(a) The symbol ⊚ denotes a matrix which is insignificant for our argument, while no796

symbol means 0. For size convenience, just in the table below, we set797

R (q) =

⎡
⎣
−q

−ψ(L)

I

⎤
⎦ and R =

[
−ψ(L)

I

]
.798

(b) The ∗ next to a matrix indicates that it is a full row rank matrix.799

(c) The desired full rank result is obtained as follows. In each super-row, use the starred800

matrix to clean up that super-row, being sure that in that super-column there are801

only zero matrices. An order in which the appropriate elementary (super) column802

operations have to be performed is the one indicated in the last column of the table.803
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804

805
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M. Hoelle et al.

where, for h ∈ H , we have set Z1
h equal to the square diagonal matrix with elements806

p(s)eh(s), for s ∈ S 1
h , on the diagonal. Moreover807

Φ
(
p1
)

=

⎡
⎢⎢⎢⎣

p1 (0)

p1 (1)

. . .

p1 (S)

⎤
⎥⎥⎥⎦ .808

Step 2.809

After having shown that border line cases are rare, we are going to prove that in a810

full measure subset of R
G H
++ ×R

C AS, the return matrix R(p, y) has full rank. Actually,811

we are going to show that its square A-dimensional submatrix R̂(p, y) has full rank,812

where813

R̂(p, y)814

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p(S − A + 1)y1(S − A + 1) · · · p(S − A + 1)ya(S − A + 1) · · · p(S − A + 1)yA(S − A + 1)

.

.

.
.
.
.

.

.

.

p(S − A + a)y1(S − A + a) . . . p(S − A + a)ya(S − A + a) . . . p(S − A + a)yA(S − A + a)

.

.

.
.
.
.

.

.

.

p(S)y1(S) . . . p(S)ya(S) . . . p(S)yA(S)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,815

by showing that 0 is a regular value for (F, G) : Ξ × E × R
A → R

dim(Ξ)+(A+1),816

where817

G : Ξ × E × R
A → R

A+1, (ξ, e, u, y, α, d) �→ (d · R̂(p, y), dd − 1).818

Calling T the Jacobian matrix in the previous page, we then have to show that the819

following matrix820

⎡
⎣

T ⋆ 0

0 N R̂(p, y)

0 0 2dT

⎤
⎦

821

has full rank, where the last two columns are the derivatives with respect tô̂y and d,822

respectively, witĥ̂y defined hereinafter.823

As d = (d(S − A + a))a∈A is such that dd = 1, then there exists ā ∈ A such that824

d(S − A + ā) �= 0. Then we set̂̂y =
(
ya,1(S − A + ā)

)
a∈A

∈ R
A. Notice that825

d · R̂(p, y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑A
j=1 d(S − A + j)p(S − A + j)y1(S − A + j)

...∑A
j=1 d(S − A + j)p(S − A + j)ya(S − A + j)

...∑A
j=1 d(S − A + j)p(S − A + j)yA(S − A + j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

826
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Incomplete financial markets

and thus827

N828

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d(S − A + ā)p1(S − A + ā)

. . .

d(S − A + ā)p1(S − A + ā)

. . .

d(S − A + ā)p1(S − A + ā)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

829

which has clearly full rank. This concludes the proof of the step.830

Step 3.831

The proof is given in Proposition 21 below.832

Step 4.833

Apply Theorem 20. ⊓⊔834

Recalling the definition of Ξσ in (30), we rewrite the function Fσ : Ξσ × E →835

R
dim(Ξσ ) in (31) as836

Fσ (ξ, e, u, y, α)837

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dxh(s)uh(xh) − λh(s)p(s)

−p(0)(xh(0) − eh(0)) − qbh

−p(s)(xh(s) − eh(s)) −
A∑

a=1

mσ−1(s)aba
h , σ−1(s) ∈ {1, . . . , S − A}

−p(s)(xh(s) − eh(s)) + b
σ−1(s)−(S−A)
h , σ−1(s) ∈ {S − A + 1, . . . , S}

−λh(0)qσ−1(s)−(S−A) −
S−A∑

σ−1(s)=1

(λh(s) + μh(s))mσ−1(s)(σ−1(s)−(S−A))+

+λh(s) + μh(s), σ−1(s) ∈ {S − A + 1, . . . , S}

min

{
μh, Pσ

[
−ψ(L)

IA

]
bh + AhΦ1 (p) e1

h

}

H∑
h=1

(
x

\
h − e

\
h

)

H∑
h=1

bh

p1(s) − 1

vec
[
IS−A | ψ (L)

]
· Pσ−1 · R (p, y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

838

where L ∈ Vσ−1 and ψ(L) = (msa)s∈{1,...,S−A}, a∈A ∈ M(S − A, A).839

We also recall that a function f : A → B, with A and B topological spaces, is840

proper if, for every K ⊆ B compact set, f −1(K ) ⊆ A is compact as well. We also841

recall that any proper and continuous function is closed, i.e., it maps closed sets onto842

closed sets.843

Proposition 21 Fσ is continuous on Ξσ × E and844

π :
⋃

σ∈�

F
−1
σ (0) → E , (ξ, e, u, y, α) �→ π (ξ, e, u, y, α) = (e, u, y, α)845
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is proper.846

Proof The continuity of Fσ is immediate. In order to show that π is proper, we847

have to prove that each sequence (ξ [n], e[n], u[n], y[n], α[n])n∈N in
⋃

σ∈� F−1
σ (0),848

such that (e[n], u[n],y[n],α[n]) converges in E , admits a converging subsequence in849 ⋃
σ∈� F−1

σ (0). Since GA,S is sequentially compact, let us assume that850

(e[n], u[n], y[n], α[n], L [n]) → (e, u, y, α, L) ∈ E × GA,S .851

Therefore there exists σ ∈ � such that L ∈ Vσ−1 and for sufficiently large n, L [n] ∈852

Vσ−1 , too. Without loss of generality we can assume that Pσ = I, so that Fσ simply853

becomes854

F (ξ, e, u, y, α)855

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(32a) Dxh(s)uh(xh) − λh(s)p(s)

(32b)

−p(0)(xh(0) − eh(0)) − qbh

−p(s)(xh(s) − eh(s)) −
A∑

a=1

msaba
h , s ∈ {1, . . . , S − A}

−p(s)(xh(s) − eh(s)) + b
s−(S−A)
h , s ∈ {S − A + 1, . . . , S}

(32c) −λh(0)qa −
S−A∑
s=1

(λh(s) + μh(s))msa + λh(S − A + a) + μh(S − A + a)

(32d) min

{
μh,

[
−ψ(L)

IA

]
bh + AhΦ1 (p) e1

h

}

(32e)
H∑

h=1

(
x

\
h − e

\
h

)

(32f)
H∑

h=1

bh

(32g) p1(s) − 1

(32h) vec
[
IS−A | ψ (L)

]
· R (p, y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

856

(32)857

Then it suffices to show that, up to a subsequence, (ξ [n])n∈N converges to a certain858

ξ ∈ Ξ : indeed the condition F (ξ , e, u, y, α) = 0 follows by the continuity of F . As859

we are going to use a diagonal argument, every time we say that a sequence converges860

we mean it has a converging subsequence. Let us start with the convergence of x[n].861

For a fixed h ∈ H , we know that, for every n ∈ N,
(
x

[n]
h , b

[n]
h

)
is solution to the862

problem863

max
(xh ,bh)

u
[n]
h (xh)864

s.t. − p[n] (0)

(
xh (0) − e

[n]
h (0)

)
− q[n]bh = 0 (33)865

−Φ1
(
p[n]
) (

x1
h − e

[n]1
h

)
+

[
−ψ(L [n])

IA

]
bh = 0 (34)866

[
−ψ(L [n])

IA

]
bh + A

[n]
h Φ1

(
p[n]
)
e
[n]1
h ≥ 0 (35)867
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Incomplete financial markets

and then, since (e
[n]
h , 0) belongs to the constraint set, it has to be u

[n]
h (x

[n]
h ) ≥ u

[n]
h (e

[n]
h ).868

Since (e
[n]
h )n∈N converges to eh ∈ R

G
++, it holds that the compact set Eh =

{
e
[n]
h

}
n∈N

∪869

{eh} is a subset of R
G
++ and we have870

u
[n]
h (x

[n]
h ) ≥ u

[n]
h (e

[n]
h ) ≥ min

xh∈Eh

u
[n]
h (xh) ≥ min

xh∈Eh

uh(xh) − ε[n],871

for a suitable sequence (ε[n])n∈N in R++ such that ε[n] → 0 if n → ∞, by the872

definition of the topology on C2(RG
++). Indeed we can define, for every n ∈ N,873

ε[n] = max
w∈Eh

∣∣u[n]
h (w) − uh (w)

∣∣.874

Let x∗
h ∈ Eh be such that minxh∈Eh

uh(xh) = uh(x∗
h), and let 1 = (1, . . . , 1) ∈ R

G
875

and δ > 0 be small enough such that x∗
h − 2δ1 ∈ R

G
++. Obviously, since by (3),876

uh(x∗
h) > uh(x∗

h − δ1), there exists n1 such that n ≥ n1 implies uh(x∗
h) − ε[n] ≥877

uh(x∗
h − δ1) and thus, for every n ≥ n1,878

u
[n]
h (x

[n]
h ) ≥ uh(x∗

h − δ1). (36)879

Of course, because of the validity of S + 1 Walras’ laws in our model, we can also880

assume that, for every n ≥ n1,881

0 ≪ x
[n]
h ≤

H∑

h=1

e
[n]
h ≤

H∑

h=1

eh + 1.882

Our purpose now is to prove that for infinite values of n it is uh(x
[n]
h ) ≥ uh(x∗

h −2δ1).883

Let x̂h ∈
[
0,
∑H

h=1 eh + 1
]

be a cluster point of (x
[n]
h )n≥n1 . Then we can assume884

x
[n]
h → x̂h . Consider any x̃h ∈ R

G
++ such that uh (̃xh) = uh(x∗

h − 2δ1). If we take n885

large enough, by (36), it is u
[n]
h (x

[n]
h ) − u

[n]
h (̃xh) ≥ 0. Then, for n sufficiently large,886

0 ≤ u
[n]
h (x

[n]
h ) − u

[n]
h (̃xh) ≤ Dxh

u
[n]
h (̃xh)(x

[n]
h − x̃h) =887

=
(
Dxh

u
[n]
h (̃xh) − Dxh

uh (̃xh)
)
(x

[n]
h − x̃h) + Dxh

uh (̃xh)(x
[n]
h − x̃h).888

Taking the limit as n → ∞ in the previous inequality, we get889

Dxh
uh (̃xh)(̂xh − x̃h) ≥ 0.890

Then891

x̂h ∈
⋂

x̃h∈{y∈R
G
++: uh(y)=uh(x∗

h−2δ1)}

{
y ∈ R

G : Dxh
uh (̃xh)(y − x̃h) ≥ 0

}
. (37)892
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Since the right hand side of (37) is exactly {y ∈ R
G : uh(y) ≥ uh(x∗

h − 2δ1)}, which893

is a subset of R
G
++ by (5), then x̂h ∈ R

G
++ and the proof is complete. As regards the894

convergence of λ[n], from (32a), (32g) and (35) we find that, for every h ∈ H and895

s ∈ S ,896

λ
[n]
h (s) = Dx1

h
(s)u

[n]
h (x

[n]
h ) → Dx1

h
(s)uh(xh) = λh(s) ∈ R++,897

since Dx1
h
(s)u

[n]
h →Dx1

h
(s)uh uniformly on compact subsets of R

G
++. Then, from (32a)898

and (3), it follows that, for every s ∈ S ,899

p[n](s) =
Dxh(s)u

[n]
h (x

[n]
h )

λ
[n]
h (s)

→
Dxh(s)uh(xh)

λh(s)
= p(s) ∈ R

C
++900

and thus (p[n])n∈N converges to an element p ∈ R
G
++.901

By (32b) we then immediately get the convergence of b
[n]
h to an element bh ∈ R

A.902

Let us now check the convergence of μ
[n]
h . Let us set S ′

h = {s ∈ S ′ : μ
[n]
h (s) → 0}903

and S ′′
h = S ′ \ S ′

h . We have only to show that μ
[n]
h (s) is convergent for s ∈ S ′′

h .904

From (32c) it follows that905

λ
[n]
h (0)q[n]b

[n]
h = −

S−A∑

s=1

A∑

a=1

(λ
[n]
h (s) + μ

[n]
h (s))m[n]

sa b
[n]a
h906

+

A∑

a=1

(
λ

[n]
h (S − A + a) + μ

[n]
h (S − A + a)

)
b

[n]a
h = −

S−A∑

s=1

A∑

a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h907

+

A∑

a=1

λ
[n]
h (S − A + a)b

[n]a
h −

∑

s∈{1,...,S−A}∩S ′
h

A∑

a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h908

+
∑

s∈{S−A+1,...,S}∩S ′
h

μ
[n]
h (s)b

[n](s−(S−A))
h −

∑

s∈{1,...,S−A}∩S ′′
h

A∑

a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h909

+
∑

s∈{S−A+1,...,S}∩S ′′
h

μ
[n]
h (s)b

[n](s−(S−A))
h .910

If for s ∈ S ′′
h , μ

[n]
h is bounded above, then it admits a convergent subsequence and911

we are done. Suppose otherwise. Then, μ
[n]
h is not bounded above and there exists a912

subsequence converging to +∞. Notice that if s ∈ S ′′
h there exists n(s) ∈ N such913

that μ
[n]
h > 0, for all n ≥ n(s) and thus

∑
a m

[n]
sa b

[n]a
h = α

[n]
h (s)p[n](s)e

[n]
h (s), if s ∈914

{1, . . . , S − A} and b
[n](s−(S−A))
h = −α

[n]
h (s)p[n](s)e

[n]
h (s), if s ∈ {S − A+1, . . . , S}.915

Set then n∗ = max{n(s) : s ∈ S ′′
h } and for n ≥ n∗ the above expression becomes916
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Incomplete financial markets

−

S−A∑

s=1

A∑

a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h +

A∑

a=1

λ
[n]
h (S − A + a)b

[n]a
h917

−
∑

s∈{1,...,S−A}∩S ′
h

A∑

a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h +

∑

s∈{S−A+1,...,S}∩S ′
h

μ
[n]
h (s)b

[n](s−(S−A))
h918

−
∑

s∈{1,...,S−A}∩S ′′
h

μ
[n]
h (s)α

[n]
h (s)p[n](s)e

[n]
h (s)919

+
∑

s∈{S−A+1,...,S}∩S ′′
h

μ
[n]
h (s)(−α

[n]
h (s)p[n](s)e

[n]
h (s)) = −

S−A∑

s=1

A∑

a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h920

+

A∑

a=1

λ
[n]
h (S − A + a)b

[n]a
h −

∑

s∈{1,...,S−A}∩S ′
h

A∑

a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h921

+
∑

s∈{S−A+1,...,S}∩S ′
h

μ
[n]
h (s)b

[n](s−(S−A))
h −

∑

s∈S ′′
h

μ
[n]
h (s)α

[n]
h (s)p[n](s)e

[n]
h (s)922

and thus from (32b) we obtain923

−λ
[n]
h (0)p[n](0)(x

[n]
h (0) − e

[n]
h (0)) = λ

[n]
h (0)q[n]b

[n]
h = −

S−A∑

s=1

A∑

a=1

λ
[n]
h (s)m[n]

sa b
[n]a
h924

+

A∑

a=1

λh(S − A + a)b
[n]a
h −

∑

s∈{1,...,S−A}∩S ′
h

A∑

a=1

μ
[n]
h (s)m[n]

sa b
[n]a
h925

+
∑

s∈{S−A+1,...,S}∩S ′
h

μ
[n]
h (s)b

[n](s−(S−A))
h −

∑

s∈S ′′
h

μ
[n]
h (s)α

[n]
h (s)p[n](s)e

[n]
h (s).926

Letting n → ∞ we find927

S−A∑

s=1

A∑

a=1

λh(s)msab
a

h −

A∑

a=1

λh(S − A + a)b
a

h − λh(0)p(0)(xh(0) − eh(0))928

= −
∑

s∈S ′′
h

μh(s)αh(s)p(s)eh(s)929

and thus, if μh(s) = +∞ for some s, we would find that the left hand side should be930

−∞, which is impossible, as all its terms are finite. Thus μh(s) ∈ R, for every s, as931

desired.932

Finally, from (32c) we easily get that also qa is convergent, for every a ∈ A . The933

proof is complete.934
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