
Sharp Convergence Rate of Eigenvalues in a Domain with a

Shrinking Tube

Veronica Felli∗ Roberto Ognibene†

September 9, 2018

Abstract

In this paper we consider a class of singularly perturbed domains, obtained by attaching
a cylindrical tube to a fixed bounded region and letting its section shrink to zero. We use
an Almgren-type monotonicity formula to evaluate the sharp convergence rate of perturbed
simple eigenvalues, via Courant-Fischer Min-Max characterization and blow-up analysis for
scaled eigenfunctions.
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1 Introduction and Main Results

The purpose of this work is to investigate the behaviour of the eigenvalues of the Dirichlet-Laplacian
in a class of singularly perturbed domains: in particular we are interested in the sharp convergence
rate of the eigenvalue variation, i.e. in the evaluation of the leading term in its asymptotic expan-
sion. The perturbation consists in attaching a cylindrical tube to a fixed domain and letting the
section of the tube shrink.

Let N ≥ 2 and Ω ⊆ RN be open, bounded and connected. Suppose that 0 ∈ ∂Ω and that ∂Ω
is flat in a neighbourhood of the origin, namely

∃Rmax > 1 such that M := {(x1, . . . , xN ) ∈ RN : x1 = 0, |x| ≤ Rmax} ⊆ ∂Ω. (1)

Using the following notation for the positive half-space, half-balls and half-spheres

RN+ := {(x1, . . . , xN ) ∈ RN : x1 > 0},
B+
r := {x ∈ RN+ : |x| < r}, S+

r := {x ∈ RN+ : |x| = r},

we can suppose, without losing generality, that

B+
Rmax

⊆ Ω ⊆ RN+ .

Let Σ ⊂⊂ M be open, connected and containing the origin 0. For simplicity of exposition we
assume that ∂Σ is of class C2; although this regularity assumption can be relaxed, see Remark
3.7. Moreover we assume, for sake of simplicity, that the radius of Σ in RN−1 is 1, i.e.

max
x∈∂Σ

|x| = 1.
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Finally we assume that Σ is starshaped with respect to 0, i.e.

x · ν ≥ 0 for all x ∈ ∂Σ, (2)

where ν denotes the exterior unit normal vector to ∂Σ. Let ε ∈ R, with 0 < ε ≤ 1, and let
Tε := (−1, 0]× εΣ be a cylindrical tube with section εΣ = {εx : x ∈ Σ}. Let us denote by

Ωε = Ω ∪ Tε (3)

the perturbed domain (see Figure 1).
Let p ∈ L∞(RN ) be a weight function such that p ≥ 0 a.e. and p 6≡ 0 in Ω. For any open,

bounded set ω ⊆ RN , we consider the weighted Dirichlet eigenvalue problem for the Laplacian
on ω {

−∆ϕ = λpϕ, in ω,

ϕ = 0, on ∂ω.
(Eω)

By classical spectral theory we have that, if p 6≡ 0 in ω, there exists a sequence of positive eigen-
values of (Eω)

0 < λ1(ω) < λ2(ω) ≤ λ3(ω) ≤ . . .

repeated according to their multiplicity. We denote by (λn)n := (λn(Ω))n the sequence of eigenval-
ues of the unperturbed problem (EΩ), and by (ϕn)n a corresponding sequence of eigenfunctions such

that
∫

Ω
p|ϕn|2 dx = 1 and

∫
Ω
pϕnϕm dx = 0 if n 6= m. Similarly, we denote by (λεn)n := (λn(Ωε))n

and (ϕεn)n the sequences of eigenvalues and eigenfunctions of the perturbed problem (EΩε), such
that

∫
Ω
p|ϕεn|2 dx = 1 and

∫
Ω
pϕεnϕ

ε
m dx = 0 if n 6= m.

Let j ∈ N be such that
λj is simple. (4)

Assumption (4) is not so restrictive: indeed, the simplicity of all eigenvalues is a generic property
with respect to perturbations of the domain , see [33, 37].

Classical results (see for instance [13, 19]) ensure the continuity with respect to our domain
perturbation, i.e. λεj is simple for ε small and

λεj −→ λj , as ε→ 0. (5)

Furthermore, for every ε we can choose the eigenfunction ϕεj in such a way that

ϕεj −→ ϕj , in H1
0 (Ω1), as ε→ 0, (6)

where the functions are trivially extended in Ω1 outside their domains.
The main goal of this paper is to find the exact asymptotics of the difference λj − λεj as ε→ 0.
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The problem of convergence of eigenvalues and eigenfunctions of the Dirichlet-Laplacian with
respect to perturbations of the domain has been widely studied in the past. For instance, for
general perturbations that cover the shrinking tube, in [9] the authors investigated the stability
of the spectrum with respect to general scalar products, while [12] dealt with the convergence of
solutions of a nonlinear eigenvalue problem (see also [17, 18]). Within an extensive literature, we
mention [26], [27] and [15] as detailed surveys. In [20, 14] bounds for the rate of convergence have
been found; furthermore, in [36] the framework is pretty similar to ours and the author proved
an estimate of the type λj − λεj = O(εa), where a depends only on the distance between λj and
its neighbours. We mention also that asymptotic expansions of the eigenvalues of the Dirichlet
Laplacian in domains with a thin shrinking cylindrical protrusion of finite length were obtained
in [23], see also [6] for a related problem in a two-dimensional domain with thin shoots; we notice
that Theorem 4.1 in [23] provides the exact vanishing rate of the eigenvalue variation λj − λεj only
when ∇ϕj(0) 6= 0, but it does not say what is the leading term in the expansion when ∇ϕj(0) = 0.
For what concerns Neumann boundary conditions, among many others, we cite [7, 8, 28, 29, 35],
which take into account singular perturbations like the shrinking tube.

A motivation for the interest in studying the spectral behaviour of the Laplacian on thin
branching domains comes from physics: for instance, it occurs in the theory of quantum graphs,
which models the propagation of waves in quasi one-dimensional structures, like quantum wires,
narrow waveguides, photonic crystals, blood vessels, etc. (see e.g. [11, 31] and reference therein).
Moreover, this topic is also related with engineering problems, such as elasticity and multi-structure
problems, as well explained in surveys [16, 34].

The starting points of this work are [23] and [2, 3, 22]. On the one hand, the present paper
aims at providing a criterion for selecting the leading term in the asymptotic expansion given in
[23], based on the vanishing order of the limit eigenfunction at the junction; on the other hand, it
improves and generalizes some results of [2]. We note that [2] (as well as many of the aforementioned
articles) deals with dumbbell domains in which the tubular handle is vanishing. However, from
the point of view of both the expected results and the technical approach, our method does not
require substantial adaptions to treat also the dumbbell case; hence for the sake of simplicity of
exposition, in the present paper we consider only perturbations of type (3).

In order to state our main results, we first need to recall some known facts. Let us consider the
eigenvalue problem for the standard Laplacian on the (N − 1)-dimensional unit sphere

−∆SN−1ψ = µψ in SN−1. (7)

It is well known that the eigenvalues of (7) are µk = k(k +N − 2), for k = 0, 1, . . . and that their
multiplicities are (see [10])

mk =

(
k +N − 2

k

)
+

(
k +N − 3

k − 1

)
.

If Ek denotes the eigenspace of the eigenvalue µk, then
⊕

k≥0Ek = L2(SN−1). Furthermore it
is known that the elements of Ek are spherical harmonics, i.e. homogeneous polynomials (of N
variables) of degree k. We are interested in eigenfunctions of (7) that vanish on {x1 = 0}, so let
us call

E0
k := {ψ ∈ Ek : ψ(0, θ2, . . . , θN ) = 0} .

It is well known (see e.g. [21, Th. 1.3]) that the local behaviour at 0 ∈ ∂Ω of eigenfunctions of
(EΩ) can be described in term of spherical harmonics vanishing on {x1 = 0}. In particular there
exist k ∈ N, k ≥ 1, and Ψ ∈ E0

k, Ψ 6= 0, such that

r−kϕj(rθ)→ Ψ in C1,τ (S+
1 ), as r → 0+, (8)

r1−k∇ϕj(rθ)→ ∇Ψ in C0,τ (S+
1 ,R

N ), as r → 0+, (9)

for all τ ∈ (0, 1). Furthermore the asymptotic homogeneity order k can be characterized as the
limit of an Almgren frequency function (see [5]), i.e.

lim
r→0+

r
∫
B+
r

(
|∇ϕj |2 − λj |ϕj |2

)
dx∫

S+
r
|ϕj |2 dS

= k.
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Hereafter we will denote
ψk(rθ) := rkΨ(θ), r ≥ 0, θ ∈ S+

1 . (10)

The exact asymptotic estimate of the eigenvalue variation we are going to prove involves a nonzero
constant mk(Σ) which admits the following variational characterization. Let us consider the func-
tional

J : D1,2(Π) −→ R,

J(u) :=
1

2

∫
Π

|∇u|2 dx−
∫

Σ

u
∂ψk
∂x1

dS,

where
T−1 := (−∞, 0]× Σ, Π := T−1 ∪ RN+ ,

and, for any open set ω ⊆ RN , D1,2(ω) denotes the completion of the space C∞c (ω) with respect
to the L2 norm of the gradient (see Section 2 for further details). In dimension 2, we will always
deal with spaces D1,2(ω) with ω such that RN \ ω contains a half-line; in this case D1,2(ω) can be
characterized as a concrete functional space thanks to the validity of a Hardy inequality also in
dimension 2, see Theorem 9.1.

By standard minimization methods, one can prove that J is bounded from below and that the
infimum

mk(Σ) := inf
u∈D1,2(Π)

J(u) (11)

is attained by some wk. Moreover

mk(Σ) = −1

2

∫
Π

|∇wk|2 dx = −1

2

∫
Σ

∂ψk
∂ν

wk dS < 0, (12)

see [22]. With this framework in mind we are able to state our first (and main) result.

Theorem 1.1. Under assumptions (1), (2) and (4), let k denote the vanishing order of the un-
perturbed eigenfunction ϕj as in (8)–(9). Then

lim
ε→0

λj − λεj
εN+2k−2

= Ck(Σ),

where
Ck(Σ) = −2mk(Σ) > 0 (13)

and mk(Σ) is defined in (11).

We recall that, for N ≥ 3, an asymptotic expansion for the eigenvalue variation is constructed
using the concordance method in [23, Theorem 4.1], but explicit formulas are given only for the
first perturbed coefficient, which turns out to be a multiple of |∇ϕj(0)|2; in dimension N = 2,
[23, Theorem 10.1] performs a more detailed asymptotic analysis with the computation of all the
coefficients. Hence, for N ≥ 3, [23] finds outs what is the leading term in the asymptotic expansion
only when ∇ϕj(0) 6= 0. We emphasize that, differently from [23], Theorem 1.1 detects the exact
vanishing rate of λj − λεj also when ∇ϕj(0) = 0 and N ≥ 3; more precisely it establishes a direct
correspondence between the order of the infinitesimal λj−λεj and the number k, which is the order
of vanishing of ϕj at the junction point 0.

The proof of Theorem 1.1 is based on lower and upper bounds for the difference λj−λεj carried
out using the Min-Max Courant-Fischer characterization of the eigenvalues, see Section 6. To
obtain the exact asymptotics for the eigenvalue variation it is crucial to sharply control the energy
of perturbed eigenfunctions in neighbourhoods of the junction with radius of order ε. The sharpness
of our energy estimates is related to the identification of a nontrivial limit profile for blow-up of
scaled eigenfunctions, as stated in the following theorem.

Theorem 1.2. Under the same assumptions of Theorem 1.1, let ϕεj be chosen as in (6). Then

ε−kϕεj(εx)→ Φ(x) as ε→ 0,

in H1(T−1 ∪B
+
R) for all R > 1, where Φ := wk + ψk, being wk the minimizer for (11) and ψk the

homogeneous function defined in (10).
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As mentioned before, Theorem 1.1 generalizes and improves [2, Th. 1.1]: indeed, in [2] the
weight p was assumed to vanish in a neighbourhood of the junction Σ and only the case of vanishing
order k = 1 for the unperturbed eigenfunction ϕj was considered. Furthermore the dimension
N = 2 was not included in [2]. As in [2], a fundamental tool for the proof of the energy estimates
needed to study the local behaviour of eigenfunctions is an Almgren-type monotonicity formula,
which was first introduced by Almgren [5] and then used by Garofalo and Lin [24] to study unique
continuation properties for elliptic partial differential equations.

In the particular case treated in [2, 22], precise pointwise estimates from above and from
below for the perturbed eigenfunction and its gradient were directly obtained via comparison and
maximum principles: indeed, if the limit eigenfunction has minimal vanishing order at the origin
and the weight vanishes around the junction, then such eigenfunction has a fixed sign and is
harmonic in a neighbourhood of 0. These estimates were used in [22] to get rid of a remainder
term in the derivative of the Almgren quotient for the perturbed problem, however they are not
available in the more general framework of the present paper. Nevertheless, under the geometric
assumption (2) on the tube section we succeed in proving that the remainder term has a positive
sign, thus obtaining the monotonicity formula, see Proposition 5.9. We also point out that the
2-dimensional case requires the proof of an ad hoc Hardy type inequality for functions vanishing
on a fixed half-line, see (117).

We observe that in [2, 22] the limit of the blow-up family ε−kϕεj(εx) was recognized by its
frequency at infinity, which must be necessarily equal to the minimal one, i.e. 1, in the particular
case k = 1. In the general case k ≥ 1, the monotonicity argument implies that the frequency
of the limit profile is less than or equal to k, and this seems to be not enough for a univocal
identification. To overcome this difficulty, we use here an argument inspired by [1] and based on a
local inversion result giving an energy control for the difference between the blow-up eigenfunction
and a k-homogeneous profile, see Corollary 7.4.

The paper is organized as follows. After some preliminary results in Section 2, in Section 3
we prove a Pohozaev-type identity, which is combined with the Poincaré inequalities of Section 4
to develop a monotonicity argument in Section 5. From the monotonicity formula established in
Corollary 5.10, we derive some local energy estimates which allow us to deduce sharp upper and
lower bounds for the eigenvalue variation in Section 6. In Section 7 we perform a blow-up analysis
for scaled eigenfunctions from which we deduce first Theorem 1.2 and then, in Section 8, our main
result Theorem 1.1. Finally, in the appendix we recall an Hardy type inequality in dimension 2 for
functions vanishing on half-lines and an abstract lemma on maxima of quadratic forms.

2 Preliminaries and Notation

In this section we introduce some basic definitions and notation which will be useful in the rest of
the paper. We start fixing some notation:

Ωεr := Tε ∪B+
r , ε ∈ (0, 1), r ∈ (ε, Rmax),

Cr := ∂B+
r \ S+

r , r ∈ (0, Rmax),

Πr := T−1 ∪B+
r , r > 1.

For any measurable set ω ⊆ RN , we denote as |ω| its N -dimensional Lebesgue measure.
For any R ≥ 2, we will denote as ηR a cut-off function satisfying

ηR ∈ C∞(Π), ηR(x) =

{
1, for x ∈ Π \ΠR,

0, for x ∈ ΠR/2,

|ηR(x)| ≤ 1, |∇ηR(x)| ≤ 4/R for all x ∈ Π.

(14)

We now recall a well known quantitative result about the first eigenvalue of the Dirichlet-
Laplacian on bounded domains.

Theorem 2.1 (Faber-Krahn Inequality). Let ω ⊆ RN be open and bounded and let λD1 (ω) denote
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the first eigenvalue of the Dirichlet-Laplacian on ω. Then

λD1 (ω) ≥ λD1 (B1)|B1|2/N

|ω|2/N
,

where B1 denotes the N -dimensional ball centered at the origin and with radius 1.

Moreover, if we denote

CN :=
1

|B1|2/NλD1 (B1)
, (15)

and we combine the previous Theorem with the usual Poincaré Inequality, we have that∫
ω

|u|2 dx ≤ CN |ω|2/N
∫
ω

|∇u|2 dx for all u ∈ H1
0 (ω). (16)

2.1 The Space HR

For R > 1 let us define the function space HR as the completion of C∞c (ΠR ∪ S+
R ) with respect to

the norm induced by the scalar product

(u, v)HR :=

∫
ΠR

∇u · ∇v dx.

Since ΠR is bounded in at least 1 direction, the Poincaré Inequality holds. Hence HR ↪→ H1(ΠR)
continuously and we have the following characterization

HR :=
{
u ∈ H1(ΠR) : u = 0 on ∂ΠR \ S+

R

}
.

Moreover, when N ≥ 3, the classical Sobolev inequality implies that HR ↪→ L2∗
(ΠR) continuously,

where 2∗ = 2N
N−2 .

2.2 Limit Profiles

In this section we introduce some limit profiles that will appear in the blow-up analysis of scaled
eigenfunctions. We recall the following result from [22, Lemma 2.4].

Proposition 2.2. For every ψ ∈ C2(RN+ ) ∩ C1(RN+ ) such that{
−∆ψ = 0, in RN+ ,

ψ = 0, on ∂RN+ ,

there exists a unique Φ = Φ(ψ) : Π→ R such that

Φ ∈ HR, for all R > 1, (17){
−∆Φ = 0, in Π,

Φ = 0, on ∂Π,
(18)∫

Π

|∇(ψ − Φ)|2 dx < +∞. (19)

Hereafter we will denote
Φ := Φ(ψk) (20)

where ψk is the function defined in (10). As observed in [22] we have that

Φ =

{
ψk + wk, in RN+ ,
wk, in Π \ RN+ ,

(21)

where wk is the function realizing the minimum mk(Σ) in (11). We observe that, in the particular
case N = 2, the function Φ corresponds to the function Xk introduced in [23, Sections 10-11]. By
a classical Dirichlet principle, one can easily obtain the following result.
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Lemma 2.3. For every R > 1 there exists a unique function UR ∈ HR solution to the following
minimization problem

min
u∈HR

{∫
ΠR

|∇u|2 dx : u = ψk on S+
R

}
.

Moreover it weakly solves 
−∆UR = 0, in ΠR,

UR = 0, on ∂ΠR \ S+
R ,

UR = ψk, on S+
R .

Lemma 2.4. For every r > 1 we have

UR −→ Φ in Hr, as R→ +∞.

Proof. We can assume R > max{r, 2}. The function UR − Φ satisfies, in a weak sense,
−∆(UR − Φ) = 0, in ΠR,

UR − Φ = 0, on ∂ΠR \ S+
R ,

UR − Φ = ψk − Φ, on S+
R ,

and then it is the least energy function among those having these boundary conditions. Let
η = ηR ∈ C∞(Π) be the cut-off function defined in (14). Then∫

Πr

|∇(UR − Φ)|2 dx ≤
∫

ΠR

|∇(UR − Φ)|2 dx ≤
∫

ΠR

|∇(η(ψk − Φ))|2 dx ≤

≤ 2

∫
ΠR

|∇η|2|ψk − Φ|2 dx+ 2

∫
Π

|η|2|∇(ψk − Φ)|2 dx ≤

≤ 32

R2

∫
ΠR\ΠR/2

|ψk − Φ|2 dx+ 2

∫
Π−ΠR/2

|∇(ψk − Φ)|2 dx ≤

≤ 32

∫
Π\ΠR/2

|ψk − Φ|2

|x|2
dx+ 2

∫
Π−ΠR/2

|∇(ψk − Φ)|2 dx −→ 0

thanks to (19) and Hardy’s Inequality. In the case N = 2 we use the fact that 1 + |x|2 ≤ 2|x|2 for
|x| ≥ 1 and the 2-dimensional Hardy’s Inequality (117).

Using again the Dirichlet principle, we construct also the limit profile ZR as follows.

Lemma 2.5. For every R > 1 there exists a unique function ZR ∈ H1(B+
R) solution to the

following minimization problem

min
u∈H1(B+

R)

{∫
B+
R

|∇u|2 dx : u = 0 on CR, u = Φ on S+
R

}
.

Moreover it weakly solves 
−∆ZR = 0, in B+

R ,

ZR = 0, on CR,
ZR = Φ, on S+

R .

3 A Pohozaev-Type Inequality

The purpose of this section is to prove the following inequality.

Proposition 3.1. There exists ε̃, r̃ > 0, with 0 < ε̃ < r̃ ≤ Rmax, such that, for ε ∈ (0, ε̃], r ∈ (ε, r̃]
and i ∈ {1, . . . , j}, we have∫

S+
r

|∇ϕεi |
2

dS − N − 2

r

∫
Ωεr

|∇ϕεi |
2

dx ≥ 2

∫
S+
r

(
∂ϕεi
∂ν

)2

dS +
2λεi
r

∫
Ωεr

pϕεi∇ϕεi · xdx. (22)
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We observe that solutions to problems of type{
−∆u = f, in Ωεr,

u = 0, on ∂Ωεr,

with f ∈ L2(Ωεr), in general do not belong to H2(Ωεr) since ∂Ωεr is only Lipschitz continuous and
doesn’t verify a uniform exterior ball condition (which ensures L2-integrability of second order
derivatives, see [4]). But, along a proof of a Pohozaev Identity, one tests the equation with the
function ∇ϕεi · x, which could fail to be H1 in our case. To overcome this difficulty we implement
an approximation process.

3.1 Approximating Domains

Let ε ∈ (0, 1] and r ∈ (ε, Rmax]: in order to remove the concave edge Γε := ∂(εΣ), we will
approximate the domain Ωεr with a family of starshaped domains Ωεr,δ (with 0 ≤ δ < r − ε) such
that

Ωεr,0 = Ωεr, Ωεr,δ1 ⊂ Ωεr,δ2 for all 0 ≤ δ1 ≤ δ2 < r − ε,

and such that every Ωεr,δ verifies the uniform exterior ball condition. In particular we will define
Qδ such that

Ωεr,δ = Ωεr ∪Qδ.

For δ > 0 small we define a “δ-enlargement” of εΣ:

εΣδ :=
{
x ∈ RN−1 \ εΣ: dist(x,Γε) < δ

}
.

Let h ∈ C∞((0,+∞)) ∩ C([0,+∞)) such that h(0) = δ, h(s) = 0 for s ∈ [δ,+∞), h′(s) < 0 for all
s ∈ (0, δ) and h−1(s) = h(s) for s ∈ (0, δ). We define G : εΣδ ⊂ RN−1 → R as

G(z) := −h(d(z)),

where d(z) = dist(z,Γε). Now, let

Qδ =
{
x ∈ RN : (0, x2, . . . , xN ) ∈ εΣδ and G(x2, . . . , xN ) < x1 ≤ 0

}
,

see Figure 2.
For what concerns the regularity we observe that, since Γε is of class C2, then also d and the

graph of G are of class C2 (see [30]). Moreover it is easy to verify that the approximating domain
Ωεr,δ satisfies the uniform exterior ball condition.
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Remark 3.2. We point out that Ωεr,δ is starshaped. Indeed, first, if x ∈ Cr \ (εΣδ ∪ εΣ), trivially
x · ν(x) = 0. If x ∈ {x1 = −ε} ∩ ∂Ωεr,δ, then x · ν(x) = −x1 = ε > 0. Third, if x ∈ (−ε,−δ)× Γε,
then ν(x) = ν0(x′), where x′ = (x2, . . . , xN ) and ν0(x′) is the exterior unit normal of Γε; thus
x · ν(x) = x′ · ν0(x′) ≥ 0 by (2). Finally, let x ∈ {(G(x′), x′) : x′ ∈ εΣδ}: in this case we have that

ν(x) =
(−1,−h′(d(x′))∇d(x′))

‖(−1,−h′(d(x′))∇d(x′))‖
,

and so

x · ν(x) =
−G(x′)− h′(d(x′))∇d(x′) · x′

‖(−1,−h′(d(x′))∇d(x′))‖
≥ 0,

where we used the properties of the functions G and h and the fact that, since 0 ∈ Σ and Σ is
starshaped, ∂d

∂xi
xi ≥ 0 for any i = 2, . . . , N , see [25, Proof of Lemma 14.16].

3.2 Approximating Problems

For α ∈ (0, 1), let us fix r̃, ε̃ > 0, with 0 < ε̃ < r̃ ≤ Rmax, such that

∣∣Ωεr,δ∣∣ ≤ ( 1− α
CNλj‖p‖∞

)N
2

for all ε ∈ (0, ε̃), r ∈ (ε, r̃), δ ∈ (0, r − ε), (23)

where CN has been defined in (15).
For fixed i ∈ {1, . . . , j}, ε ∈ (0, ε̃], r ∈ (ε, r̃] and for all δ ∈ (0, r− ε), let us consider the problem

−∆u = λεipu, in Dδ,

u = 0, on ∂Dδ \ S+
r ,

u = ϕεi , on S+
r ,

(24)

where, for simplicity of notation, in this section we call Dδ := Ωεr,δ; we also denote δ0 := r − ε.

Theorem 3.3. There exists a unique uδ ∈ H1(Dδ) solution to problem (24). Moreover the family
{uδ}δ∈(0,δ0) is bounded in H1(Dδ0) with respect to δ.

Proof. We observe that, if we extend ϕεi to zero in Dδ0 \ Ωεr and we let v = u− ϕεi , then problem
(24) is equivalent to {

−∆v = λεipv + F, in Dδ,

v = 0, on ∂Dδ,
(25)

where F := λεipϕ
ε
i + ∆ϕεi ∈ H−1(Dδ). Existence and uniqueness of a solution vδ ∈ H1

0 (Dδ) to (25)
easily comes from Lax-Milgram Theorem. Indeed, the bilinear form

a(v, w) :=

∫
Dδ

(∇v · ∇w − λεipvw) dx, v, w ∈ H1
0 (Dδ)

is coercive, since, by (16) and (23), we have

a(v, v) =

∫
Dδ

(
|∇v|2 − λεip|v|

2
)

dx

≥
(

1− CNλj‖p‖∞|Dδ|
2
N

)∫
Dδ

|∇v|2 dx ≥ α
∫
Dδ

|∇v|2 dx.

(26)

From Lax-Milgram Theorem we also know that

‖∇vδ‖L2(Dδ0 ) = ‖∇vδ‖L2(Dδ)
≤
‖F‖H−1(Dδ)

α
,

where vδ has been trivially extended in Dδ0 \Dδ. One can easily prove that ‖F‖H−1(Dδ)
= O(1)

as δ → 0. Then uδ := vδ + ϕεi is the unique solution to (24) and {uδ}δ∈(0,δ0) is bounded in
H1(Dδ0).
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Theorem 3.4. If uδ ∈ H1(Dδ) is the unique solution to (24), then

uδ −→ ϕεi in H1(Dδ0), as δ → 0.

Proof. Since {uδ}δ∈(0,δ0) is bounded in H1(Dδ0), then there exists U ∈ H1(Dδ0) such that, up to
a subsequence,

uδ ⇀ U weakly in H1(Dδ0), as δ → 0.

Actually U ∈ H1(Ωεr) and moreover it weakly solves
−∆U = λεipU, in Ωεr,

U = 0, on ∂Ωεr \ S+
r ,

U = ϕεi , on S+
r .

From the coercivity obtained in (26) we deduce that U = ϕεi .
In order to prove strong convergence in H1(Dδ0), we notice that∫

Dδ0

|∇uδ|2 dx = λεi

∫
Dδ0

pu2
δ dx+

∫
S+
r

ϕεi
∂uδ
∂ν

dS. (27)

From the compactness of the embedding H1(Dδ0) ↪→ L2(Dδ0) we have that uδ → ϕεi in L2(Dδ0) and

so
∫
Dδ0

p|uδ|2 dx →
∫
Dδ0

p|ϕεi |
2

dx. Moreover, from the equation (24), we have that ∇uδ ⇀ ∇ϕεi
weakly in H(div, Dδ0) as δ → 0. Hence classical trace theorems for vector functions yield∫

S+
r

∂uδ
∂ν

ϕεi dS →
∫
S+
r

∂ϕεi
∂ν

ϕεi dS, as δ → 0.

Therefore, from (27) and from the equation satisfied by ϕεi , we conclude that, along a subsequence,

lim
δ→0

∫
Dδ0

|∇uδ|2 dx = λεi

∫
Dδ0

p|ϕεi |
2

dx+

∫
S+
r

∂ϕεi
∂ν

ϕεi dS =

∫
Ωεr

|∇ϕεi |
2

dx =

∫
Dδ0

|∇ϕεi |
2

dx.

Thanks to Urysohn’s Subsequence Principle the proof is thereby complete.

Theorem 3.5. Let uδ ∈ H1(Dδ) be the unique solution to (24). Then

∇uδ −→ ∇ϕεi in L2(S+
r ), as δ → 0.

Proof. By classical elliptic regularity theory, it is easy to prove that an odd reflection of uδ through
the hyperplane {x1 = 0} in a neighbourhood of {x : |x| = r} converges to ϕεi in H2, as δ → 0.
Hence the conclusion follows by trace embeddings.

Theorem 3.6. Let uδ be the unique solution to (24). Then the following identity holds∫
S+
r

|∇uδ|2 dS − N − 2

r

∫
Dδ

|∇uδ|2 dx

=
1

r

∫
∂Dδ\S+

r

(
∂uδ
∂ν

)2

x · ν dS + 2

∫
S+
r

(
∂uδ
∂ν

)2

dS +
2λεi
r

∫
Dδ

p uδ∇uδ · xdx.

Proof. We first observe that, by classical regularity theory, uδ ∈ H2(Dδ) since Dδ verifies an
exterior ball condition. Let us now test equation (24) with the function ∇uδ · x ∈ H1(Dδ).
Integrating by parts and using the following identity

∇uδ · ∇(∇uδ · x) =
1

2
div
(
|∇uδ|2x

)
− N − 2

2
|∇uδ|2

we obtain the conclusion.
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Proof of Proposition 3.1. Let uδ be the unique solution to (24). From Theorem 3.6 and Remark
3.2 we know that∫

S+
r

|∇uδ|2 dS − N − 2

r

∫
Dδ

|∇uδ|2 dx ≥ 2

∫
S+
r

(
∂uδ
∂ν

)2

dS +
2λεi
r

∫
Dδ

p uδ∇uδ · xdx.

Now, thanks to Theorems 3.4 and 3.5, we can pass to the limit as δ → 0 in the above inequality,
thus obtaining (22).

Remark 3.7. We observe that the assumption of C2-regularity for ∂Σ can be relaxed; indeed, if
Σ is less regular (e.g. if ∂Σ is Lipschitz continuous), we can approximate εΣ with a class of C2-
regular domains (εΣ)β and start the procedure of Section 3 from the domain (εΣ)β .

4 Poincaré-Type Inequalities

In this section we consider the following spaces for ε ∈ (0, 1] and r > ε:

Vε(B
+
r ) :=

{
u ∈ H1(B+

r ) : u = 0 on Cr \ εΣ
}
, V0(B+

r ) := {u ∈ H1(B+
r ) : u = 0 on Cr}.

We point out that, for 0 ≤ ε1 ≤ ε2 < r,

H1
0 (B+

r ) ⊆ V0(B+
r ) ⊆ Vε1(B+

r ) ⊆ Vε2(B+
r ) ⊆ H1(B+

r ). (28)

Lemma 4.1 (Poincaré-Type Inequality). Let r > 0. Then, for every u ∈ H1(B+
r ), the following

inequality holds
N − 1

r2

∫
B+
r

|u|2 dx ≤
∫
B+
r

|∇u|2 dx+
1

r

∫
S+
r

|u|2 dS. (29)

Proof. Integrating the equality div(u2x) = 2u∇u · x+Nu2 over B+
r and recalling the elementary

inequality 0 ≤ (u+∇u · x)2 = |u|2 + |∇u · x|2 + 2u∇u · x, we obtain that∫
∂B+

r

|u|2x · ν dS =

∫
B+
r

(
2u∇u · x+N |u|2

)
dx ≥ −

∫
B+
r

(
|u|2 + |∇u · x|2

)
dx+N

∫
B+
r

|u|2 dx.

Since x · ν = 0 on Cr and |x| ≤ r, then

r

∫
S+
r

|u|2 dS ≥ −r2

∫
B+
r

|∇u|2 dx+ (N − 1)

∫
B+
r

|u|2 dx.

Reorganizing the terms and dividing by r2 yields the thesis.

Lemma 4.2. For 0 ≤ σ < 1 the infimum

mσ = inf
u∈Vσ(B+

1 )
u6=0

∫
B+

1
|∇u|2 dx∫

S+
1
|u|2 dS

is achieved. Moreover mσ > 0, the map σ 7→ mσ is non-increasing in [0, 1) and continuous in 0
and m0 = 1.

Proof. For u ∈ Vσ(B+
1 ), let us denote

F (u) :=

∫
B+

1
|∇u|2 dx∫

S+
1
|u|2 dS

.

Let {un}n ⊆ Vσ(B+
1 ) be a minimizing sequence such that

∫
S+
1
|un|2 dS = 1. From (29) it follows

that {un}n is bounded in H1(B+
1 ) and so there exists ũ ∈ H1(B+

1 ) such that, up to a subsequence,
un ⇀ ũ in H1(B+

1 ). Taking into account the compact embedding H1(B+
1 ) ↪→ L2(∂B+

1 ), we have
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that
∫
S+
1
|ũ|2 dS = 1 and then ũ 6= 0. Moreover ũ = 0 on Cr \ σΣ, since {un} do; in particular

ũ ∈ Vσ(B+
1 ). By weak lower semicontinuity, we have that∫

B+
1

|∇ũ|2 dx ≤ lim inf
n→+∞

∫
B+

1

|∇un|2 dx = mσ.

Then mσ = F (ũ), i.e. ũ attains the infimum mσ. Trivially mσ > 0, due to the null boundary
conditions on Cr \ σΣ. The monotonicity of the map σ 7→ mσ follows from (28).

Now we have to prove continuity. Let σn → 0+. For every n there exists ũn ∈ Vσn(B+
1 ) such

that ∫
S+
1

|ũn|2 dS = 1,

∫
B+

1

|∇ũn|2 dx = mσn .

Then, since mσn ≤ m0 for all n, we have that {ũn}n is bounded in H1(B+
1 ). Thus there exists

u0 ∈ H1(B+
1 ) sucht that, up to a subsequence, ũn ⇀ u0 weakly in H1(B+

1 ). So, first∫
S+
1

|u0|2 dS = 1 and u0 = 0 on Cr.

Furthermore

m0 ≤
∫
B+

1

|∇u0|2 dx ≤ lim inf mσn ≤ lim supmσn ≤ m0.

Then, along the subsequence, m0 = limn→+∞mσn . Thanks to Urysohn’s Subsequence Principle
we may conclude that m0 = limσ→0+ mσ.

Finally we prove that m0 = 1. Since the function u0 achieving m0 is harmonic in B+
1 , thanks to

classical monotonicity arguments (we refer to [21] for further details) we can say that the function

r 7−→M(r) :=
r
∫
B+
r
|∇u0|2 dx∫

S+
r
|u0|2 dS

is non-decreasing and that there exists k ∈ N, k ≥ 1, such that limr→0+ M(r) = k. Hence M(r) ≥ 1
for every r ≥ 0. Then

m0 =

∫
B+

1
|∇u0|2 dx∫

S+
1
|u0|2 dS

= M(1) ≥ 1.

Furthermore the function v(x) = x1 belongs to V0(B+
1 ) and F (v) = 1; hence m0 = 1.

Corollary 4.3. Let ε ∈ (0, 1] and r > ε. Then

mε/r

r

∫
S+
r

|u|2 dS ≤
∫
B+
r

|∇u|2 dx for all u ∈ Vε(B+
r ).

Moreover, for every ρ ∈ (0, 1) there exists µρ > 1 such that, if ε < r
µρ

, then

1− ρ
r

∫
S+
r

|u|2 dS ≤
∫
B+
r

|∇u|2 dx for all u ∈ Vε(B+
r ). (30)

Proof. If we let σ = ε/r in the previous Lemma, we have that

mε/r

∫
S+
1

|u|2 dS ≤
∫
B+

1

|∇u|2 dx for all u ∈ Vε/r(B+
1 ).

The first inequality follows by the change of variables y = rx, while the second one trivially comes
from the continuity of mσ in 0.

From (29) and Corollary 4.3 one can easily prove the following corollary.

Corollary 4.4. For every ρ ∈ (0, 1) there exists µρ > 1 such that, for every r > 0 and ε < r
µρ

,

N − 1

r2

∫
B+
r

|v|2 dx ≤
(

1 +
1

1− ρ

)∫
B+
r

|∇v|2 dx for all v ∈ Vε(B+
r ). (31)
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5 Monotonicity Formula

For any 0 < ε < r ≤ Rmax, λ > 0, ϕ ∈ H1(Ωεr), let us introduce the functions

E(ϕ, r, λ, ε) :=
1

rN−2

∫
Ωεr

(
|∇ϕ|2 − λp|ϕ|2

)
dx

and

H(ϕ, r) :=
1

rN−1

∫
S+
r

|ϕ|2 dS.

Moreover we define the Almgren type frequency function

N (ϕ, r, λ, ε) :=
E(ϕ, r, λ, ε)

H(ϕ, r)
.

Lemma 5.1 (Integration on the Tube). There exists a constant κ = κ(N,Σ) > 0, depending only
on N and |Σ|, such that, for every ε ∈ (0, 1] and for every u ∈ H1(Tε) such that u = 0 on ∂Tε \ εΣ,∫

Tε

|u|2 dx ≤ κε2(N−1)/N

∫
Tε

|∇u|2 dx.

Proof. Let T̃ε = Tε ∪ ς(Tε), where ς is the reflection through the hyperplane {x1 = 0}, and let ũ
be the even extension of u on T̃ε. Since ũ ∈ H1

0 (T̃ε), thanks to (16) we have that∫
Tε

|u|2 dx =
1

2

∫
T̃ε

|ũ|2 dx ≤ CN
2
|T̃ε|2/N

∫
T̃ε

|∇ũ|2 dx = CN22/N |Σ|2/N ε2(N−1)/N

∫
Tε

|∇u|2 dx.

Hence we can conclude the proof letting κ = CN22/N |Σ|2/N .

Lemma 5.2. There exists ε1 ∈ (0, 1], R1 > 0, with 0 < ε1 < R1 ≤ Rmax, such that

H(ϕεi , r) > 0 for all ε ∈ (0, ε1], for all r ∈ (ε, R1], for all i = 1, . . . , j.

Proof. Suppose by contradiction that for every n there exists εn ∈ (0, 1], rn ∈ (εn, Rmax] and
in ∈ {1, . . . , j} such that rn → 0 and H(ϕεnin , rn) = 0. Let us denote νn := λεnin , ξn := ϕεnin and
Ωn := Ωεnrn . From this it follows that ξn = 0 on S+

rn and that∫
Ωn

|∇ξn|2 dx = νn

∫
Ωn

p|ξn|2 dx ≤ λj‖p‖∞
∫

Ωn

|ξn|2 dx.

Using Lemma 5.1 when integrating on the tube we obtain∫
Tεn

|ξn|2 dx ≤ κε2(N−1)/N
n

∫
Ωn

|∇ξn|2 dx.

Moreover (29) says that ∫
B+
rn

|ξn|2 dx ≤ r2
n

N − 1

∫
Ωn

|∇ξn|2 dx.

Then we have that∫
Ωn

|∇ξn|2 dx ≤ λj‖p‖∞

(
κε2(N−1)/N
n +

r2
n

N − 1

)∫
Ωn

|∇ξn|2 dx.

Thus ξn ≡ 0 in Ωn, provided n is sufficiently large. Thanks to classical unique continuation
properties for elliptic equations it follows that ξn = 0 in Ωεn , which is a contradiction.

Lemma 5.3. Let

R2 = min

{(
N − 1

λj‖p‖∞

)1/2

, Rmax

}
.

For every r ∈ (0, R2] there exist cr > 0 and εr ∈ (0, 1], with εr < r, such that

H(ϕεi , r) ≥ cr for all ε ∈ (0, εr), for all i = 1, . . . , j.
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Proof. We will prove the lemma for a fixed i ∈ {1, . . . , j} and take as cr the minimum among the
constants found for each i. Suppose by contradiction that for a certain r ∈ (0, R2] and for every n
(large enough) there exists εn ∈ (0, 1/n) such that

H(ϕεni , r) <
1

n
. (32)

We first note that, since εn → 0, then λεni → λi (see [19]). Moreover∫
Ω1

|∇ϕεni |dx =

∫
Ωεn
|∇ϕεni |dx = λεni

∫
Ωεn

p|ϕεni |
2

= λεni ≤ λj .

Hence there exists v ∈ H1
0 (Ω1) such that ϕεni ⇀ v weakly in H1

0 (Ω1) along a subsequence. Note

that actually v ∈ H1
0 (Ω) and v 6≡ 0 in Ω, since

∫
Ω
p|v|2 dx = 1. Moreover ϕεni → v strongly in

L2(Ω1) and in L2(S+
r ), so that (32) implies that v = 0 on S+

r . This tells us that v weakly solves{
−∆v = λipv, in B+

r ,

v = 0, on ∂B+
r .

Testing the above equation with v we obtain that
∫
B+
r
|∇v|2 dx = λi

∫
B+
r
p|v|2 dx and then, thanks

to (29) and the fact that λi ≤ λj and r ≤ R2,

0 =

∫
B+
r

(
|∇v|2 − λip|v|2

)
dx ≥

(
N − 1

r2
− λj‖p‖∞

)∫
B+
r

|v|2 dx

≥
(
N − 1

R2
2

− λj‖p‖∞

)∫
B+
r

|v|2 dx.

Due to the initial choice of R2 we have that this last factor is positive; then v = 0 in B+
r .

This, together with classical unique continuation principles, implies that v = 0 in Ω, which is a
contradiction.

Let ε̃ and r̃ be the constants found in Proposition 3.1.

Proposition 5.4. Let i ∈ {1, . . . , j}, ε ∈ (0, ε̃] and r ∈ (ε, r̃]. Then

dE

dr
(ϕεi , r, λ

ε
i , ε) ≥

1

rN−2

[
2

∫
S+
r

(
∂ϕεi
∂ν

)2

dS+

+
2λεi
r

∫
Ωεr

pϕεi ∇ϕεi · xdx− λεi
∫
S+
r

p|ϕεi |
2

dS +
N − 2

r
λεi

∫
Ωεr

p|ϕεi |
2

dx

]
(33)

and
dH

dr
(ϕεi , r) =

2

rN−1

∫
S+
r

ϕεi
∂ϕεi
∂ν

dS =
2

r
E(ϕεi , r, λ

ε
i , ε). (34)

Proof. We compute the derivative

dE

dr
=

2−N
rN−1

∫
Ωεr

(
|∇ϕεi |

2 − λεip|ϕεi |
2
)

dx+
1

rN−2

∫
S+
r

(
|∇ϕεi |

2 − λεip|ϕεi |
2
)

dS.

Then, thanks to (22), we obtain (33). The proof of (34) follows from direct computations, the
equation satisfied by ϕεi and integration by parts.

Lemma 5.5. Let ρ ∈ (0, 1/2], µρ be as in Corollary 4.3, ε ∈ (0, 1] and r ∈ (ε, Rmax]. If εµρ < r,
then ∫

Ωεr

|u|2 dx ≤ K1
ε,r

∫
Ωεr

|∇u|2 dx

for any u ∈ H1(Ωεr) such that u = 0 on ∂Ωεr \ S+
r , where

K1
ε,r = κε2(N−1)/N +

3r2

N − 1

and κ is as in Lemma 5.1.
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Proof. Thanks to Lemma 5.1 we have an estimate about the integral on the tube, i.e.∫
Tε

|u|2 dx ≤ κε2(N−1)/N

∫
Tε

|∇u|2 dx ≤ κε2(N−1)/N

∫
Ωεr

|∇u|2 dx.

On the other hand, by (31) we have that∫
B+
r

|u|2 dx ≤ r2

N − 1

(
1 +

1

1− ρ

)∫
B+
r

|∇u|2 dx ≤ 3r2

N − 1

∫
Ωεr

|∇u|2 dx.

The conclusion follows by adding the two parts.

Lemma 5.6. Let ρ ∈ (0, 1/2), µρ be as in Corollary 4.3, ε ∈ (0, 1] and r ∈ (ε, Rmax]. If εµρ < r,
then ∫

Ωεr

|u∇u · x|dx ≤ K2
ε,r

∫
Ωεr

|∇u|2 dx

for any u ∈ H1(Ωεr) such that u = 0 on ∂Ωεr \ S+
r , where

K2
ε,r =

√
2κε(N−1)/N +

√
3

N − 1
r2

and κ is as in Lemma 5.1.

Proof. First we consider the integral over Tε: thanks to Cauchy-Schwarz Inequality and Lemma
5.1 we know that ∫

Tε

|u∇u · x|dx dx ≤
√

2κε(N−1)/N

∫
Ωεr

|∇u|2 dx.

From the Cauchy-Schwarz Inequality and (31) it follows that∫
B+
r

|u∇u · x|dx ≤
√

3

N − 1
r2

∫
Ωεr

|∇u|2 dx.

Adding the two parts we conclude the proof.

Corollary 5.7. Let ρ ∈ (0, 1/2), µρ be as in Corollary 4.3, ε ∈ (0, 1], r ∈ (ε, Rmax]. If εµρ < r
then ∫

Ωεr

(
|∇u|2 − λεip|u|

2
)

dx ≥
(
1− λεi‖p‖∞K

1
ε,r

) ∫
Ωεr

|∇u|2 dx (35)

for any u ∈ H1(Ωεr) such that u = 0 on ∂Ωεr \ S+
r and for all i ∈ {1, . . . , j}. Furthermore there

exists r0 ≤ Rmax such that, for every r, ε satisfying εµρ < r ≤ r0, we have∫
Ωεr

|∇u|2 dx ≤ 2

∫
Ωεr

(
|∇u|2 − λεip|u|

2
)

dx

for any u ∈ H1(Ωεr) such that u = 0 on ∂Ωεr \ S+
r and for all i ∈ {1, . . . , j}.

Proof. The first statement (35) easily comes from Lemma 5.5. Besides, if we choose r0 ≤ Rmax

such that

K1
ε,r ≤ K1

r0,r0 ≤
1

2λj‖p‖∞
,

from (35), we can conclude the proof.

Lemma 5.8. Let ρ ∈ (0, 1/2) and µρ be as in Corollary 4.3. Let R1 and ε1 be as in Lemma 5.2.
Then there exists τ > 0 depending only on N , λj, ‖p‖∞ and |Σ| such that, for every ε ∈ (0, ε1],
r1, r2, with 0 < µρε < r1 ≤ r2 ≤ min{1, R1}, we have that

H(ϕεi , r2)

H(ϕεi , r1)
≥ exp

(
−τR2(N−1)/N

1

)(r2

r1

)2(1−ρ)

for all i ∈ {1, . . . , j}.
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Proof. With the notation E(r) = E(ϕεi , r, λ
ε
i , ε), H(r) = H(ϕεi , r) and dH

dr (ϕεi , r) = H ′(r), we have
that, from Proposition 5.4 and Corollary 5.7

H ′(r) =
2

r
E(r) =

2

rN−1

∫
Ωεr

(
|∇ϕεi |

2 − λεip|ϕεi |
2
)

dx ≥ 2

rN−1
(1− λεi‖p‖∞K

1
ε,r)

∫
Ωεr

|∇ϕεi |
2

dx

for all εµρ < r ≤ min{1, R1}. Hence, since λεi ≤ λj , thanks to (30)

H ′(r) ≥ 2

rN−1
(1− λj‖p‖∞K

1
ε,r)

1− ρ
r

∫
S+
r

|ϕεi |
2

dS =
2(1− ρ)

r
(1− λj‖p‖∞K

1
ε,r)H(r).

So we have
H ′(r)

H(r)
≥ 2(1− ρ)

r

[
1− τ1ε2(N−1)/N − τ2r2

]
where τ1 = λj‖p‖∞κ and τ2 = λj‖p‖∞

3
N−1 . Since ε < r and r ≤ 1, if τ0 = τ1 + τ2, then

(logH(r))
′

=
H ′(r)

H(r)
≥ 2(1− ρ)

r

[
1− τ0r2(N−1)/N

]
≥ 2(1− ρ)

r
− 2τ0r

1− 2
N .

Integrating from r1 to r2 and letting τ := τ0N/(N − 1), we obtain

log
H(ϕεi , r2)

H(ϕεi , r1)
≥ 2(1− ρ) log

r2

r1
− τ(r

2(N−1)/N
2 − r2(N−2)/N

1 ) ≥ 2(1− ρ) log
r2

r1
− τR2(N−1)/N

1 .

Taking the exponentials yields the thesis.

Hereafter let R0 := min{1, R1, R2, r0} where R1, R2, r0 are defined in Lemma 5.2, Lemma 5.3
and Corollary 5.7 respectively. Moreover let ε0 = min{1, ε̃, ε1} where ε̃, ε1 are defined in Proposition
3.1 and Lemma 5.2 respectively.

Proposition 5.9. Let ρ ∈ (0, 1/2) and µρ be as in Corollary 4.3. Then, for every r ∈ (0, R0],
ε ∈ (0, ε0] such that 0 < εµρ < r ≤ R0

dN
dr

(ϕεi , r, λ
ε
i , ε) ≥ −f(r)N (ϕεi , r, λ

ε
i , ε) for all i ∈ {1, . . . , j},

where
f(r) = c1r + c2r

(N−2)/N + c3r
−1/N

and cn’s are positive constants depending only on ρ, ‖p‖∞, λj, the dimension N and the geometry
of the problem (in particular on Ω and on |Σ|N−1).

Proof. With the usual notation

dN
dr

(ϕεi , r, λ
ε
i , ε) =: N ′(r), dE

dr
(ϕεi , r, λ

ε
i , ε) := E′(r),

dH

dr
(ϕεi , r) := H ′(r),

from Proposition 5.4 we have that

N ′(r) ≥ 1

H2

2

r2N−3

{[(∫
S+
r

(
∂ϕεi
∂ν

)2

dS

)(∫
S+
r

|ϕεi |
2

dS

)
−
(∫

S+
r

ϕεi
∂ϕεi
∂ν

dS

)2
]

+

[
λεi
r

∫
Ωεr

pϕεi ∇ϕεi · xdx− λεi
2

∫
S+
r

p|ϕεi |
2

dS +
N − 2

2r
λεi

∫
Ωεr

p|ϕεi |
2

dx

]∫
S+
r

|ϕεi |
2

dS

}
.

By Cauchy-Schwarz Inequality we have that

N ′(r) ≥ 2λεi∫
S+
r
|ϕεi |

2

[∫
Ωεr

pϕεi ∇ϕεi · x dx+
N − 2

2

∫
Ωεr

p|ϕεi |
2

dx− r

2

∫
S+
r

p|ϕεi |
2

dS

]
.
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Thanks to Lemmas 5.5, 5.6, Corollary 4.3 and Corollary 5.7 we can say that

N ′(r) ≥ −
2λεi‖p‖∞∫
S+
r
|ϕεi |

2

[
K2
ε,r +

(N − 2)

2
K1
ε,r +

r2

2(1− ρ)

] ∫
Ωεr

|∇ϕεi |
2

dx

≥ −
4λεi‖p‖∞
rN−1H(r)

rN−2E(r)

[
K2
ε,r +

(N − 2)

2
K1
ε,r + r2

]
.

Taking into account that Kn
ε,r < Kn

r,r, n = 1, 2, we have

N ′(r) ≥ −
(
c1r + c2r

(N−2)/N + c3r
−1/N

)
N (r) = −f(r)N (r)

by some constants c1, c2, c3 > 0 independent of r and ε.

Corollary 5.10. Let ρ ∈ (0, 1
2 ) and µρ be as in Corollary 4.3. Then, for every µ > µρ, r ∈ (0, R0],

and ε ∈ (0, ε0] such that εµ ≤ r ≤ R0, we have that

N (ϕεi , r, λ
ε
i , ε) ≤ e

∫R0
r

f(t) dtN (ϕεi , R0, λ
ε
i , ε).

Proof. Form Proposition 5.9 it follows that
(
e−

∫R0
r

f(t) dtN (r)
)′ ≥ 0, which, by integration over

(r,R0), yields the conclusion.

5.1 Energy Estimates

Proposition 5.11. Let ρ ∈ (0, 1/2). Then there exists Kρ > 0 such that, for every R ≥ Kρ and
for every i ∈ {1, . . . , j}, we have∫

ΩεRε

|∇ϕεi |
2

dx = O(εN−2H(ϕεi ,Kρε)) as ε→ 0+, (36)∫
ΩεRε

|ϕεi |
2

dx = O(εN−
2
NH(ϕεi ,Kρε)) as ε→ 0+, (37)∫

S+
Rε

|ϕεi |
2

dS = O(εN−1H(ϕεi ,Kρε)) as ε→ 0+. (38)

Proof. For ρ ∈ (0, 1/2) let us consider µρ as in Corollary 4.3, ε0 = min{1, ε̃, ε1}, εR0
as in Lemma

5.3 and let Kρ > max{µρ, R0/ε0, R0/εR0}. From Corollary 5.10 we deduce that, if R ≥ Kρ and
Rε < R0

N (ϕεi , Rε, λ
ε
i , ε) ≤ e

∫R0
Rε f(t) dtN (ϕεi , R0, λ

ε
i , ε). (39)

Now let us analyze the frequency function N at radius R0:

E(ϕεi , R0, λ
ε
i , ε) =

1

RN−2
0

∫
ΩεR0

(
|∇ϕεi |

2 − λεi |ϕεi |
2
)

dx ≤ 1

RN−2
0

∫
Ωε
|∇ϕεi |

2
dx ≤ λj

RN−2
0

.

Moreover, thanks to Lemma 5.3
H(ϕεi , R0) ≥ cR0

.

Thus we have that

N (ϕεi , R0, λ
ε
i , ε) ≤

λj

cR0R
N−2
0

. (40)

Then, from (39) ∫
ΩεRε

(
|∇ϕεi |

2 − λεi |ϕεi |
2
)

dx ≤ constH(ϕεi , Rε)(Rε)
N−2. (41)

From the second statement of Corollary 5.7 we have that∫
ΩεRε

|∇ϕεi |
2

dx ≤ 2 constH(ϕεi , Rε)(Rε)
N−2. (42)
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Now let Kρε ≤ r ≤ R0. Then, from Proposition 5.4

H ′(ϕεi , r)

H(ϕεi , r)
=

2

r
N (ϕεi , r, λ

ε
i , ε)

and from Corollary 5.10 and (40)
H ′(ϕεi , r)

H(ϕεi , r)
≤ C

r
. (43)

Now, integrating the previous inequality from Kρε to Rε, we obtain

log
H(ϕεi , Rε)

H(ϕεi ,Kρε)
≤ C log

Rε

Kρε
,

hence H(ϕεi , Rε) ≤ constρ,RH(ϕεi ,Kρε), i.e. H(ϕεi , Rε) = O(H(ϕεi ,Kρε)) as ε → 0. Then (36)
follows from (42), whereas (38) is a direct consequence of the previous estimate and definition of
H. Finally, thanks to Lemma 5.5 and (36), we have∫

ΩεRε

|ϕεi |
2

dx ≤ (c1ε
2(N−1)/N + c2(Rε)2)

∫
ΩεRε

|∇ϕεi |dx = O(εN−
2
NH(ϕεi ,Kρε)),

as ε→ 0, thus proving (37).

Proposition 5.12. Let ρ ∈ (0, 1/2) and Kρ be as in Proposition 5.11. Then there exists Cρ > 0
such that, for every R ≥ Kρ, for every ε ∈ (0, ε0] such that Rε ≤ R0, and for every i ∈ {1, . . . , j}
we have ∫

ΩεRε

|∇ϕεi |
2

dx ≤ Cρ(Rε)N−2ρ,∫
ΩεRε

|ϕεi |
2

dx ≤ Cρ(Rε)N+2−2ρ−2/N ,∫
S+
Rε

|ϕεi |
2

dx ≤ Cρ(Rε)N+1−2ρ.

Proof. From Lemma 5.8 we know that

H(ϕεi , Rε) ≤ exp
(
τR

2(N−1)/N
1

)(Rε
R0

)2(1−ρ)

H(ϕεi , R0) (44)

and, from (30), we have

H(ϕεi , R0) =
1

RN−1
0

∫
S+
R0

|ϕεi |
2

dS ≤ 1

RN−2
0 (1− ρ)

∫
ΩεR0

|∇ϕεi |
2

dx ≤ λj

RN−2
0 (1− ρ)

. (45)

Combining (44) and (45) with Proposition 5.11 (in particular estimate (42) in the proof) we can
deduce all the claims.

As a consequence of Proposition 5.12 we can say that

H(ϕεi ,Kρε) = O(ε2−2ρ) as ε→ 0. (46)

As a byproduct of the proof of Proposition 5.11 we obtain the following result.

Corollary 5.13. Let ρ ∈ (0, 1/2) and Kρ be as in Proposition 5.11. Then there exist C̄, q > 0
such that, if ε ∈ (0, ε0] and Kρε < R0,

H(ϕεj ,Kρε) ≥ C̄εq. (47)
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Proof. If we integrate (43) over (Kρε, R0) and take the exponentials, we obtain

H(ϕεj , R0)

H(ϕεj ,Kρε)
≤
(
R0

Kρε

)q
,

denoting by q the constant C in (43). Then Lemma 5.3 implies that

H(ϕεj ,Kρε) ≥ cR0

(
Kρε

R0

)q
.

Hence the claim is proved with C̄ := cR0
(Kρ/R0)q.

6 Estimates on the Difference λj − λεj

6.1 Upper Bound

For any i ∈ {0, . . . , j}, R > 1 and ε ∈ (0, 1], with Rε ≤ Rmax, let us consider the following
minimization problem

min

{∫
B+
Rε

|∇u|2 dx : u ∈ H1(B+
Rε), u = 0 on CRε, u = ϕεi on S+

Rε

}
.

One can prove that this problem has a unique solution vint
i,R,ε, which weakly solves

−∆vint
i,R,ε = 0, in B+

Rε,

vint
i,R,ε = 0, on CRε,
vint
i,R,ε = ϕεi , on S+

Rε.

Proposition 6.1. Let ρ ∈ (0, 1/2) and Kρ be as in Proposition 5.11. Then∫
B+
Rε

∣∣∇vint
i,R,ε

∣∣2 dx = O(εN−2H(ϕεi ,Kρε)) as ε→ 0+, (48)∫
B+
Rε

∣∣vint
i,R,ε

∣∣2 dx = O(εNH(ϕεi ,Kρε)) as ε→ 0+, (49)∫
S+
Rε

∣∣vint
i,R,ε

∣∣2 dx = O(εN−1H(ϕεi ,Kρε)) as ε→ 0+. (50)

for all R ≥ 2 and for any i = 1, . . . , j. Moreover there exists Ĉρ such that, if R ≥ max{2,Kρ} and
ε < R0/R, ∫

B+
Rε

∣∣∇vint
i,R,ε

∣∣2 dx ≤ Ĉρ(Rε)N−2ρ, (51)∫
B+
Rε

∣∣vint
i,R,ε

∣∣2 dx ≤ Ĉρ(Rε)N+2−2ρ, (52)∫
S+
Rε

∣∣vint
i,R,ε

∣∣2 dx ≤ Ĉρ(Rε)N+1−2ρ. (53)

Proof. Proving (50) is trivial due to (38), since vint
i,R,ε = ϕεi on S+

Rε. Let η = ηR( ·ε ), with ηR defined
in (14); then∫

B+
Rε

∣∣∇vint
i,R,ε

∣∣2 dx ≤
∫
B+
Rε

|∇(ηϕεi)|
2

dx ≤

≤ 2

(∫
B+
Rε

|∇ϕεi |
2

+
16

(Rε)2

∫
B+
Rε

|ϕεi |
2

dx

)
≤ constρ

∫
ΩεRε

|∇ϕεi |
2

dx,
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where the last step comes from (31). Combining this inequality with (36) we obtain (48). More-
over (31) and (48) yield (49). Finally estimates (51)–(53) follow from the above argument and
Proposition 5.12.

Now let us define, for all i ∈ {1, . . . , j}, for all R > 1 and ε ∈ (0, 1] such that Rε ≤ Rmax,

vi,R,ε :=

{
vint
i,R,ε, in B+

Rε,

ϕεi , in Ω \B+
Rε,

(54)

and

ZεR(x) :=
vint
j,R,ε(εx)√
H(ϕεj ,Kρε)

, ϕ̃ε(x) :=
ϕεj(εx)√
H(ϕεj ,Kρε)

. (55)

It is easy to prove that the family of functions {v1,R,ε, . . . , vj,R,ε} is linearly independent in H1
0 (Ω).

Lemma 6.2. For all R ≥ max{2,Kρ}, we have that, as ε→ 0+,∫
Ω

|∇vj,R,ε|2 dx = λεj + εN−2H(ϕεj ,Kρε)

(∫
B+
R

|∇ZεR|
2

dx−
∫

ΠR

|∇ϕ̃ε|2 dx

)
, (56)∫

Ω

|∇vi,R,ε|2 dx = λεi +O(εN−2ρ) for all i ∈ {1, . . . , j}, (57)∫
Ω

∇vi,R,ε · ∇vj,R,ε dx = O
(
εN−1−ρ

√
H(ϕεj ,Kρε)

)
for all i ∈ {1, . . . , j − 1}, (58)∫

Ω

∇vi,R,ε · ∇vn,R,ε dx = O(εN−2ρ) for all i, n ∈ {1, . . . , j}, i 6= n, (59)∫
Ω

p|vj,R,ε|2 dx = 1 +O(εN−2/NH(ϕεj ,Kρε)), (60)∫
Ω

p|vi,R,ε|2 dx = 1 +O(εN+2−2ρ−2/N ) for all i ∈ {1, . . . , j}, (61)∫
Ω

pvi,R,εvj,R,ε dx = O
(
εN+1−ρ−2/N

√
H(ϕεj ,Kρε)

)
for all i ∈ {1, . . . , j − 1}, (62)∫

Ω

pvi,R,εvn,R,ε dx = O(εN+2−2ρ−2/N ) for all i, n ∈ {1, . . . , j}, i 6= n, (63)

where, in (56), ϕ̃ε has been trivially extended in ΠR outside its domain.

Proof. We will only prove the first part of the estimates, i.e. (56), (57), (58), (59), since the second
part is completely analogous. To prove (56) we observe that, by scaling,∫

Ω

|∇vj,R,ε|2 dx =

∫
B+
Rε

∣∣∇vint
j,R,ε

∣∣2 dx+

∫
Ωε

∣∣∇ϕεj∣∣2 dx−
∫

ΩεRε

∣∣∇ϕεj∣∣2 dx

= λεj + εN−2H(ϕεj ,Kρε)

(∫
B+
R

|∇ZεR|
2

dx−
∫

ΠR

|∇ϕ̃ε|2 dx

)
.

Thanks to Propositions 5.12 and 6.1 we have that∫
Ω

|∇vi,R,ε|2 dx =

∫
B+
Rε

∣∣∇vint
i,R,ε

∣∣2 dx+

∫
Ωε
|∇ϕεi |

2
dx−

∫
ΩεRε

|∇ϕεi |
2

dx

= λεi +O(εN−2ρ),

as ε→ 0+, thus proving (57) and, by Cauchy-Schwarz Inequality, for i < j∫
Ω

∇vi,R,ε · ∇vj,R,ε =

∫
B+
Rε

∇vint
i,R,ε∇vint

j,R,ε dx+

∫
Ωε
∇ϕεi · ∇ϕεj dx−

∫
ΩεRε

∇ϕεi · ∇ϕεj dx

= O(ε
N−2ρ

2 )O
(
ε
N−2

2

√
H(ϕεj ,Kρε)

)
= O

(
εN−1−ρ

√
H(ϕεj ,Kρε)

)
,
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as ε→ 0+, thus proving (58). Similarly, for i 6= n∫
Ω

∇vi,R,ε · ∇vn,R,ε =

∫
B+
Rε

∇vint
i,R,ε∇vint

n,R,ε dx+

∫
Ωε
∇ϕεi · ∇ϕεn dx−

∫
ΩεRε

∇ϕεi · ∇ϕεn dx

= O(εN−2ρ),

as ε→ 0+, which provides (59).

We construct a basis {v̂1,R,ε, . . . , v̂j,R,ε} of the space span {v1,R,ε, . . . , vj,R,ε} such that∫
Ω

p v̂n,R,εv̂m,R,ε dx = 0 for n 6= m,

by defining

v̂j,R,ε = vj,R,ε, v̂i,R,ε = vi,R,ε −
j∑

n=i+1

dεi,nv̂n,R,ε, for all i = 1, . . . , j − 1 ,

where

dεi,n =

∫
Ω
p vi,R,ε v̂n,R,ε dx∫
Ω
p|v̂n,R,ε|2 dx

.

Using the estimates established in Lemma 6.2, one can prove the following∫
Ω

|∇v̂j,R,ε|2 dx = λεj + εN−2H(ϕεj ,Kρε)

(∫
B+
R

|∇ZεR|
2

dx−
∫

ΠR

|∇ϕ̃ε|2 dx

)
, (64)∫

Ω

|∇v̂i,R,ε|2 dx = λεi +O(εN−2ρ) for all i ∈ {1, . . . , j}, (65)∫
Ω

∇v̂j,R,ε · ∇v̂i,R,ε dx = O(εN−1−ρ
√
H(ϕεj ,Kρε)) for all i ∈ {1, . . . , j − 1}, (66)∫

Ω

∇v̂i,R,ε · ∇v̂m,R,ε dx = O(εN−2ρ) for all i,m ∈ {1, . . . , j}, i 6= m, (67)∫
Ω

p|v̂j,R,ε|2 dx = 1 +O(εN−2/NH(ϕεj ,Kρε)), (68)∫
Ω

p|v̂i,R,ε|2 dx = 1 +O(εN+2−2ρ−2/N ) for all i ∈ {1, . . . , j}, (69)

as ε→ 0.

Proposition 6.3. Let ρ ∈ (0, 1/2), Kρ as defined in Proposition 5.11 and R ≥ Kρ. For ε < R0/R
there exists fR(ε) such that

λj − λεj ≤ εN−2H(ϕεj ,Kρε)(fR(ε) + o(1)) as ε→ 0

and

fR(ε) =

∫
B+
R

|∇ZεR|
2

dx−
∫

ΠR

|∇ϕ̃ε|2 dx,

where ϕ̃ε has been trivially extended in ΠR outside its domain.

Proof. By the Courant-Fischer Min-Max characterization of eigenvalues

λj = min

 max
α1,...,αj∈R∑j
i=1|αi|

2=1

∫
Ω

∣∣∣∇(∑j
i=1 αiui

)∣∣∣2 dx∫
Ω
p
∣∣∣∑j

i=1 αiui

∣∣∣2 dx
: {u1, . . . , uj} ⊆ H1

0 (Ω) linearly independent

 .

Testing the Rayleigh quotient with the family of functions

ṽi,R,ε =
v̂i,R,ε√∫

Ω
p|v̂i,R,ε|2 dx
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we obtain that

λj − λεj ≤ max
α1,...,αj∈R∑j
i=1|αi|

2=1

∫
Ω

∣∣∣∣∇( j∑
i=1

αiṽi,R,ε

)∣∣∣∣2 dx− λεj = max
α1,...,αj∈R∑j
i=1|αi|

2=1

j∑
i,n=1

M ε
i,nαiαn

where

M ε
i,n =

∫
Ω
∇v̂i,R,ε · ∇v̂n,R,ε dx(∫

Ω
p|v̂i,R,ε|2 dx

)1/2 (∫
Ω
p|v̂n,R,ε|2 dx

)1/2
− λεjδni ,

with δni denoting the usual Kronecker delta, i.e. δni = 0 for i 6= n and δni = 1 for i = n. From
estimates (64)–(69) one can derive the following estimates

Mj,j(ε) = εN−2H(ϕεj ,Kρε)(fR(ε) +O(ε2−2/N )),

Mi,j(ε) = O
(
εN−1−ρ

√
H(ϕεj ,Kρε)

)
and Mi,i(ε) = λεi − λεj + o(1) for all i < j,

Mi,n(ε) = O(εN−2ρ) for all i, n < j, i 6= n,

as ε → 0. Moreover, from Corollary 5.13, we know that H(ϕεj ,Kρε) ≥ C̄εq for some C̄, q > 0.
Therefore, taking also into account (46) and the fact that fR(ε) = O(1) as ε → 0 in view of (36)
and (48), the hypotheses of Lemma 9.3 are satisfied with

σ(ε) = εN−2H(ϕεj ,Kρε), µ(ε) = fR(ε) + o(1), α =
N

2
− ρ, M > (2ρ− 2 + q)

2

N − 2ρ
.

The proof is thereby complete.

6.2 Lower Bound

For any R > 1 and ε ∈ (0, 1], with Rε ≤ Rmax, let us consider the following minimization problem

min

{∫
ΩεRε

|∇u|2 dx : u ∈ H1(ΩεRε), u = 0 on ∂ΩεRε \ S+
Rε, u = ϕj on S+

Rε

}
. (70)

One can prove that this problem has a unique solution wint
j,R,ε, which weakly verifies

−∆wint
j,R,ε = 0, in ΩεRε,

wint
j,R,ε = 0, on ∂ΩεRε \ S+

Rε,

wint
j,R,ε = ϕj , on S+

Rε.

Let us define

wj,R,ε :=

{
wint
j,R,ε, in ΩεRε,

ϕj , in Ω \B+
Rε.

Lemma 6.4. There exists C̃ > 0 such that, for all i ∈ {1, . . . , j − 1}, for all R > 1 and ε ∈ (0, 1],
with Rε ≤ Rmax,∫

B+
Rε

|∇ϕi|2 dx ≤ C̃(Rε)N ,

∫
B+
Rε

|ϕi|2 dx ≤ C̃(Rε)N+2,

∫
S+
Rε

|ϕi|2 dx ≤ C̃(Rε)N+1,

and∫
B+
Rε

|∇ϕj |2 dx ≤ C̃(Rε)N+2k−2,

∫
B+
Rε

|ϕj |2 dx ≤ C̃(Rε)N+2k,

∫
S+
Rε

|ϕj |2 dx ≤ C̃(Rε)N+2k−1.

Proof. It follows from classical asymptotic estimates at the boundary, see e.g. [21, Th. 1.3] and
(8),(9).
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Lemma 6.5. There exists Ĉ > 0 such that, for all R > 1 and ε ∈ (0, 1], with Rε ≤ Rmax,∫
ΩεRε

∣∣∇wint
j,R,ε

∣∣2 dx ≤ Ĉ(Rε)N+2k−2, (71)∫
S+
Rε

∣∣wint
j,R,ε

∣∣2 dx ≤ Ĉ(Rε)N+2k−1. (72)

Furthermore, for all R > µ1/2 and ε ∈ (0, 1], with Rε ≤ Rmax,∫
ΩεRε

∣∣wint
j,R,ε

∣∣2 dx ≤ Ĉ(Rε)N+2k−2/N . (73)

Proof. (72) is trivial since wint
j,R,ε = ϕj on S+

Rε. Also (71) is simple since ϕj is an admissible test
function for (70). Finally (73) comes from (71), (72) and Lemma 5.5.

Now let us define, for all R > 1 and ε ∈ (0, 1] such that Rε ≤ Rmax,

U εR(x) =
wint
j,R,ε(εx)

εk
, W ε(x) =

ϕj(εx)

εk
. (74)

From (8), we easily deduce that

W ε −→ ψk in H1(B+
R) as ε→ 0, for all R > 0,

where ψk has been defined in (10).

Lemma 6.6. We have that

U εR −→ UR in HR as ε→ 0, for all R > 1,

where UR is defined in Lemma 2.3.

Proof. From Lemma 6.5 and from the definition of U εR we know that∫
ΠR

|∇U εR|
2

dx = O(1) as ε→ 0.

where U εR has been trivially extended in ΠR outside its domain. So there exists V = VR ∈ HR
such that, along a sequence ε = εn → 0,

U εR ⇀ V weakly in HR as ε = εn → 0.

This means that
∇U εR ⇀ ∇V weakly in L2(ΠR) as ε = εn → 0.

Since U εR = W ε on S+
R and W ε → ψk in L2(S+

R ), then V satisfies (in a weak sense) the same
equation as UR, defined in Lemma 2.3. So, by uniqueness, V = UR. Since the limit V = UR
is the same for every subsequence, Urysohn’s Subsequence Principle implies that the convergence
U εR ⇀ UR holds as ε→ 0 (not only along subsequences).

To prove strong convergence it is enough to show that ‖U εR‖HR → ‖UR‖HR as ε → 0. First
we notice that, trivially, −∆U εR ⇀ −∆UR weakly in L2(ΠR): so, we have that ∇U εR ⇀ ∇UR in
H(div,ΠR), thus

∂U εR
∂ν

⇀
∂UR
∂ν

in
(
H

1/2
00 (S+

R )
)∗

as ε→ 0,

where (H
1/2
00 (S+

R ))∗ is the dual of the Lions-Magenes space H
1/2
00 (S+

R ). Then, since W ε → ψk in

H
1/2
00 (S+

R ) as ε→ 0, we obtain that∫
ΠR

|∇U εR|
2

dx =

∫
S+
R

∂U εR
∂ν

W ε dS →
∫
S+
R

∂UR
∂ν

ψk dS =

∫
ΠR

|∇UR|2 as ε→ 0,

thus completing the proof.
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It is easy to prove that the family of functions {ϕ1, ϕ2, . . . , ϕj−1, wj,R,ε} is linearly independent
in H1

0 (Ωε). As in the previous section, we construct a new basis of the space

span{ϕ1, ϕ2, . . . , ϕj−1, wj,R,ε} ⊆ H1
0 (Ωε)

by defining, for all i = 1, . . . , j − 1
ŵi,R,ε = ϕi

and

ŵj,R,ε = wj,R,ε −
j−1∑
i=1

cεiϕi,

where

cεi =

∫
Ωε
pwj,R,εϕi dx.

In this way we have that
∫

Ωε
p ŵn,R,εŵm,R,ε dx = 0 if n 6= m.

Using the estimates established in Lemmas 6.4 and 6.5, one can prove the following∫
Ωε
|∇ŵj,R,ε|2 dx = λj + εN+2k−2

(∫
ΠR

|∇U εR|
2

dx−
∫
B+
R

|∇W ε|2 dx+ o(1)

)
, (75)∫

Ωε
∇ŵj,R,ε · ∇ŵi,R,ε dx = O(εN+k−1) for all i ∈ {1, . . . , j − 1}, (76)∫

Ωε
p|ŵj,R,ε|2 dx = 1 +O(εN+2k−2/N ), (77)

as ε→ 0.

Proposition 6.7. Let ρ ∈ (0, 1/2), Kρ as defined in Proposition 5.11 and R ≥ Kρ. For ε < R0/R
there exists gR(ε) such that

λεj − λj ≤ εN+2k−2(gR(ε) + o(1)) as ε→ 0

and

gR(ε) =

∫
ΠR

|∇U εR|
2

dx−
∫
B+
R

|∇W ε|2 dx,

where U εR has been trivially extended in ΠR outside its domain.

Proof. By the Courant-Fischer Min-Max characterization of eigenvalues

λεj = min

 max
α1,...,αj∈R∑j
i=1|αi|

2=1

∫
Ωε

∣∣∇(∑j
i=1 αiui

)∣∣2 dx∫
Ωε
p
∣∣∑j

i=1 αiui
∣∣2 dx

: {u1, . . . , uj} ⊆ H1
0 (Ωε) linearly independent

 .

Testing the Rayleigh quotient with the family of functions

w̃i,R,ε =
ŵi,R,ε√∫

Ωε
p|ŵi,R,ε|2 dx

we obtain that

λεj − λj ≤ max
α1,...,αj∈R∑j
i=1|αi|

2=1

∫
Ωε

∣∣∣∇(∑αiw̃i,R,ε

)∣∣∣2 dx− λj = max
α1,...,αj∈R∑j
i=1|αi|

2=1

j∑
i,n=1

Lεi,nαiαn,

where

Lεi,n =

∫
Ωε
∇ŵi,R,ε · ∇ŵn,R,ε dx(∫

Ωε
p|ŵi,R,ε|2 dx

)1/2 (∫
Ωε
p|ŵn,R,ε|2 dx

)1/2
− λjδni ,
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with δni denoting the usual Kronecker delta. From estimates (75)–(77) it follows that

Lεj,j = εN+2k−2(gR(ε) + o(1)), Lεi,j = O(εN+k−1) for all i < j,

Lεi,i = λi − λj for all i < j, Lεi,n = 0 for all i, n < j, i 6= n,

as ε → 0. Therefore, taking into account that gR(ε) = O(1) as ε → 0 in view of Lemma 6.4 and
(71), the hypotheses of Lemma 9.3 are satisfied with

σ(ε) = εN+2k−2, µ(ε) = gR(ε) + o(1), α =
N

2
, M >

4(k − 1)

N
.

The proof is thereby complete.

From the fact that W ε → ψk in H1(B+
R), as ε→ 0, for all R > 0, and from Lemma 6.6 we can

deduce the following result.

Lemma 6.8. For all R > 1 we have that

gR(ε) −→ gR as ε→ 0,

where

gR :=

∫
ΠR

|∇UR|2 dx−
∫
B+
R

|∇ψk|2 dx. (78)

In order to compute the limit limR→∞ gR, we introduce the functions

ζ(r) :=

∫
S+
1

Φ(rθ)Ψ(θ) dS(θ) for r ≥ 1, (79)

χR(r) :=

∫
S+
1

UR(rθ)Ψ(θ) dS(θ) for 1 ≤ r ≤ R. (80)

Moreover, we denote

γN :=

∫
S+
1

|Ψ(θ)|2 dS(θ). (81)

We immediatly notice, thanks to Lemma 2.4 and to the embedding H1(B+
1 ) ↪→ L2(S+

1 ), that

ζ(1) = lim
R→+∞

χR(1). (82)

Lemma 6.9. Let ζ be the function defined in (79), γN the constant defined in (81) and mk(Σ)
the one defined in (11). Then

ζ(1) = γN −
2mk(Σ)

N + 2k − 2
. (83)

Proof. From the definition of Φ, given in (20), one can easily prove that ζ satisfies the following
ODE (

rN+2k−1(r−kζ(r))′
)′

= 0 in (1,+∞).

This yields

r−kζ(r) = ζ(1) + C
1− r−N−2k+2

N + 2k − 2
(84)

for some constant C ∈ R. Now we note that r−kζ(r)→ γN as r → +∞. Indeed, since Φ = wk+ψk,
we can rewrite

ζ(r) =

∫
S+
1

wk(rθ)Ψ(θ) dS(θ) + γNr
k.

By evaluating the vanishing order at 0 of the Kelvin transform of the restriction of the function
wk on Π \Π1, we can prove that

|wk(x)| ≤ const|x|1−N for |x| > 1.
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Hence, when r → +∞∣∣r−kζ(r)− γN
∣∣ ≤ ∫

S+
1

|wk(rθ)|
rk

|Ψ(θ)|dS(θ) ≤ const r1−N−k → 0.

Then we can find the constant C in (84), letting r → +∞; so we can rewrite ζ as

ζ(r) = γNr
k + (ζ(1)− γN )r−N−k+2 in (1,+∞). (85)

Taking the derivative leads to

ζ ′(r) = kγNr
k−1 + (N + k − 2)(γN − ζ(1))r−N−k+1

= (N + 2k − 2)γNr
k−1 − (N + k − 2)ζ(r)

r
.

(86)

Hence, taking into account the definition of ζ and evaluating its derivative at r = 1, we obtain∫
S+
1

∂Φ

∂ν
(θ)Ψ(θ) dS(θ) = (N + 2k − 2)γN − (N + k − 2)ζ(1). (87)

Since −∆Φ = 0 in B+
1 , multiplying this equation by ψk and integrating by parts we obtain that∫

B+
1

∇Φ · ∇ψk dx =

∫
S+
1

∂Φ

∂ν
ψk dS =

∫
S+
1

∂Φ

∂ν
Ψ dS. (88)

Then, let us test the equation −∆ψk = 0 with Φ. From (12) and (21) it follows that∫
B+

1

∇ψk · ∇Φ dx =

∫
S+
1

∂ψk
∂ν

Φ dS −
∫

Σ

∂ψk
∂x1

Φ dS =

∫
S+
1

∂ψk
∂ν

Φ dS −
∫

Σ

∂ψk
∂x1

wk dS

=

∫
S+
1

∂ψk
∂ν

Φ dS + 2mk(Σ).

(89)

Moreover we note that
∂ψk
∂ν

(θ) = kΨ(θ) on S+
1 . (90)

Then, from (89) and (90) we obtain∫
B+

1

∇ψk · ∇Φ dx = k

∫
S+
1

ΦΨ dS + 2mk(Σ) = kζ(1) + 2mk(Σ). (91)

Finally, combining (87), (88) and (91) leads to the thesis.

Lemma 6.10. Let gR be as defined in (78) and mk(Σ) as in (11). Then limR→+∞ gR = 2mk(Σ).

Proof. Integrating by parts we have that

gR =

∫
S+
R

(
∂UR
∂ν
− ∂ψk

∂ν

)
ψk dS.

If χR is the function defined in (80), then

χ′R(r) =

∫
S+
1

∂UR
∂ν

(rθ)Ψ(θ) dS(θ)

and, by a change of variable,

χ′R(r) = r1−N−k
∫
S+
r

∂UR
∂ν

ψk dS. (92)

By simple computations one can prove that χR solves(
rN+2k−1(r−kχR(r))′

)′
= 0 in (1, R).
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By integration, we arrive at

r−kχR(r) = χR(1) + C
1− r−N−2k+2

N + 2k − 2
. (93)

From the fact that UR = RKΨ on S+
R , we have that χR(R) = RkγN , and this allows us to know

the constant C. After some computations, the expression (93) then becomes as follows

r−kχR(r) = χR(1) + (γN − χR(1))
1− r−N−2k+2

1−R−N−2k+2
, r ∈ (1, R).

From (92), we get∫
S+
R

∂UR
∂ν

ψk dS = χ′R(R)RN+k−1

=
[γN (N + k − 2)− χR(1)(N + 2k − 2)]R−N−k+1 + kγNR

k−1

1−R−N−2k+2
RN+k−1

=
γN (N + k − 2)− χR(1)(N + 2k − 2) + kγNR

N+2k−2

1−R−N−2k+2
.

(94)

For what concerns the second part of gR, it is easy to see that

∂ψk
∂ν

(rθ) = krk−1Ψ(θ).

Therefore ∫
S+
R

∂ψk
∂ν

ψk dS =

∫
S+
1

kRN+2k−2|Ψ|2 dS(θ) = kRN+2k−2γN . (95)

Finally, combining (82), (94), (95) and Lemma 6.9 and taking the limit when R → +∞ we reach
the conclusion.

Combining Propositions 6.3 and 6.7 with Lemmas 6.8 and 6.10 we obtain the following upper-
lower estimate for the eigenvalue variation.

Proposition 6.11. Let ρ ∈ (0, 1/2), Kρ as defined in Proposition 5.11 and mk(Σ) as in (11).
Then, for all R ≥ Kρ, we have that, as ε→ 0,

−2mk(Σ) + o(1) ≤
λj − λεj
εN+2k−2

≤
H(ϕεj ,Kρε)

ε2k
(fR(ε) + o(1)).

Since−2mk(Σ) > 0, as a direct consequence of Proposition 6.11 we obtain the following estimate
from below for H(ϕεj ,Kρε).

Corollary 6.12. We have that

ε2k

H(ϕεj ,Kρε)
= O(1) as ε→ 0.

7 Blow-up Analysis

Let us introduce the functional

F : R×H1
0 (Ω) −→ R×H−1(Ω)

(λ, ϕ) 7−→ (‖ϕ‖2H1
0 (Ω) − λj ,−∆ϕ− λpϕ)

where ‖ϕ‖2
H1

0 (Ω)
=
∫

Ω
|∇ϕ|2 dx and

H−1(Ω)〈−∆ϕ− λpϕ, v〉H1
0 (Ω) =

∫
Ω

(∇ϕ · ∇v − λpϕv) dx.

From the assumptions we know that F (λj , ϕj) = (0, 0). Moreover, from the simplicity assumption
(4) and Fredholm Alternative, one can easily prove the following result (see e.g. [1] for details for
a similar operator).
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Lemma 7.1. The functional F is differentiable at (λj , ϕj) and its differential

dF (λj , ϕj) : R×H1
0 (Ω) −→ R×H−1(Ω)

dF (λj , ϕj)(λ, ϕ) =

(
2

∫
Ω

∇ϕj · ∇ϕdx,−∆ϕ− λpϕj − λjpϕ
)

is invertible.

Lemma 7.2. Let ρ ∈ (0, 1/2), Kρ as defined in Proposition 5.11 and R ≥ Kρ. Then, when ε→ 0,

vj,R,ε −→ ϕj in H1
0 (Ω),

where vj,R,ε is defined in (54).

Proof. First note that∫
Ω

|∇(vj,R,ε − ϕj)|2 dx =

∫
Ωε

∣∣∇(ϕεj − ϕj)
∣∣2 dx

−
∫

ΩεRε

∣∣∇(ϕεj − ϕj)
∣∣2 dx+

∫
B+
Rε

∣∣∇(vint
j,R,ε − ϕj)

∣∣2 dx.

The first term tends to zero because of (6). For the second and the third term we can exploit the
energy estimates in Proposition 5.12, Lemma 6.4 and Proposition 6.1 to conclude.

Lemma 7.3. Let ρ ∈ (0, 1/2), Kρ as defined in Proposition 5.11 and R ≥ Kρ. Then

‖vj,R,ε − ϕj‖H1
0 (Ω) = O

(
εN/2−1

√
H(ϕεj ,Kρε)

)
as ε→ 0

and, in particular,∫
Ω\B+

Rε

∣∣∇(ϕεj − ϕj)
∣∣2 dx = O

(
εN−2H(ϕεj ,Kρε)

)
as ε→ 0. (96)

Proof. Taking into account Lemma 7.2 and (5), from the differentiability of the functional F it
follows that

F (λεj , vj,R,ε) = dF (λj , ϕj)(λ
ε
j − λj , vj,R,ε − ϕj) + o

(∣∣λεj − λj∣∣+ ‖vj,R,ε − ϕj‖H1
0 (Ω)

)
as ε→ 0. Now let us apply dF (λj , ϕj)

−1 to both members and obtain∣∣λεj − λj∣∣+ ‖vj,R,ε − ϕj‖H1
0 (Ω)

≤
∥∥dF (λj , ϕj)

−1
∥∥
L(R×H−1(Ω),R×H1

0 (Ω))

∥∥F (λεj , vj,R,ε)
∥∥
R×H−1(Ω)

(1 + o(1))

and so

‖vj,R,ε − ϕj‖H1
0 (Ω) ≤ C

(∣∣∣‖vj,R,ε‖2H1
0 (Ω) − λj

∣∣∣+
∥∥−∆vj,R,ε − λεjpvj,R,ε

∥∥
H−1(Ω)

)
. (97)

Thanks to (56), Proposition 6.11, and the fact that fR(ε) = O(1) as ε → 0 in view of (36) and
(48), ∣∣∣‖vj,R,ε‖2H1

0 (Ω) − λj
∣∣∣ ≤ ∣∣∣‖vj,R,ε‖H1

0 (Ω) − λ
ε
j

∣∣∣+
∣∣λεj − λj∣∣ = O(εN−2H(ϕεj ,Kρε)). (98)

Let u ∈ H1
0 (Ω) be such that ‖u‖H1

0 (Ω) ≤ 1. Note that∫
Ω

∇vj,R,ε · ∇udx =

∫
B+
Rε

∇vint
j,R,ε · ∇udx+

∫
Ωε
∇ϕεj · ∇udx−

∫
ΩεRε

∇ϕεj · ∇udx ≤

≤
√∫

B+
Rε

∣∣∣∇vint
j,R,ε

∣∣∣2 dx+ λεj

∫
Ωε
pϕεjudx+

√∫
ΩεRε

∣∣∇ϕεj∣∣2 dx.
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So we have that∫
Ω

∇vj,R,ε · ∇udx− λεj
∫

Ω

pvj,R,εudx ≤

≤
√∫

B+
Rε

∣∣∣∇vint
j,R,ε

∣∣∣2 dx+ λεj

(∫
Ωε
pϕεjudx−

∫
Ω

pvj,R,εudx

)
+

√∫
ΩεRε

∣∣∇ϕεj∣∣2 dx.

(99)

Now let us analyze the middle term∫
Ωε
pϕεjudx−

∫
Ω

pvj,R,εudx =

∫
B+
Rε

pϕεjudx−
∫
B+
Rε

pvint
j,R,εudx ≤

≤ const

(√∫
B+
Rε

∣∣ϕεj∣∣2 dx+

√∫
B+
Rε

|vint
j,R,ε|2 dx

)

where we implicitly used the Poincaré Inequality. Thanks to inequality (29) and to the energy
estimates made in Proposition 5.11∫

B+
Rε

∣∣ϕεj∣∣2 dx ≤ (Rε)2

N − 1

∫
B+
Rε

∣∣∇ϕεj∣∣2 dx+
Rε

N − 1

∫
S+
Rε

|ϕεj |2 dx = O(εNH(ϕεj ,Kρε)) as ε→ 0.

Then, from (99), Proposition 5.12 and Proposition 6.1 we obtain that∫
Ω

∇vj,R,ε · ∇udx− λεj
∫

Ω

pvj,R,εudx = O
(
εN/2−1

√
H(ϕεj ,Kρε)

)
as ε→ 0

uniformly with respect to u ∈ H1
0 (Ω) with ‖u‖H1

0 (Ω) ≤ 1 and hence

∥∥−∆vj,R,ε − λεjpvj,R,ε
∥∥
H−1(Ω)

= O
(
εN/2−1

√
H(ϕεj ,Kρε)

)
as ε→ 0. (100)

The conclusion follows by combining (97), (98), and (100).

Corollary 7.4. Let ρ ∈ (0, 1/2), Kρ as defined in Proposition 5.11 and R ≥ Kρ. Then∫
1
εΩ\B+

R

∣∣∣∇ϕ̃ε − εkH(ϕεj ,Kρε)
−1/2∇W ε

∣∣∣2 dx = O(1), as ε→ 0,

where ϕ̃ε is defined in (55) and W ε in (74), while 1
εΩ = { 1

εx : x ∈ Ω}.

Proof. It directly follows from a change of variables in (96).

The following Theorem provides a blow-up analysis for scaled eigenfunctions, which contains
Theorem 1.2.

Theorem 7.5. Let ρ ∈ (0, 1/2) and Kρ as defined in Proposition 5.11. Then

ϕ̃ε −→ 1√
Λρ

Φ in HR for all R > 2, (101)

H(ϕεj ,Kρε)

ε2k
−→ Λρ, (102)

ϕεj(εx)

εk
−→ Φ(x) in HR for all R > 2, (103)

as ε→ 0, where

Λρ :=
1

KN−1
ρ

∫
S+
Kρ

|Φ|2 dS.
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Proof. Let εn → 0. From Corollary 6.12 we deduce that, up to a subsequence,

(εn)k√
H(ϕεnj ,Kρεn)

−→ c ≥ 0.

Since, in view of Proposition 5.11, {ϕ̃εn} is bounded in HR, by a diagonal process there exists Φ̃,
with Φ̃ ∈ HR for all R > 2, and a subsequence (still denoted by εn) such that

ϕ̃εn ⇀ Φ̃ weakly in HR for all R > 2. (104)

Moreover
∫
S+
Kρ

|ϕ̃εn |2 dS = KN−1
ρ , hence, by compactness of trace embeddings,∫

S+
Kρ

|Φ̃|2 dS = KN−1
ρ , (105)

thus implying that Φ̃ 6≡ 0.
Actually we can prove that the convergence in (104) is strong. Indeed, consider the equation

solved by ϕ̃εn : 
−∆ϕ̃εn = (εn)2λεnj p ϕ̃

εn , in
((
− 1

εn
, 0
]
× Σ

)
∪B+

R ,

ϕ̃εn = 0, on ∂
(((
− 1

εn
, 0
]
× Σ

)
∪B+

R

)
\ S+

R ,

ϕ̃εn(x) =
ϕεnj (εnx)√
H(ϕεnj ,Kρεn)

, on S+
R .

If we consider the restriction to B+
R \B

+
R/2 and the odd reflection through the hyperplane x1 = 0,

we have that {ϕ̃εn} is bounded in H2(BR \BR/2), where BR = {x ∈ RN : |x| < R}. Hence, up to

a subsequence, ∂ϕ̃εn

∂ν →
∂Φ̃
∂ν in L2(S+

R ) and therefore∫
ΠR

|∇ϕ̃εn |2 dx = (εn)2λεnj

∫
ΠR

p|ϕ̃εn |2 dx+

∫
S+
R

∂ϕ̃εn

∂ν
ϕ̃εn dS →

∫
S+
R

∂Φ̃

∂ν
Φ̃ dS =

∫
ΠR

|∇Φ̃|2 dx.

Then we conclude that ϕ̃εn → Φ̃ strongly in HR for all R > 2.
From Corollary 7.4 it follows that there exist c′ > 0 and n0 ∈ N such that, for all n ≥ n0 and

R̃ > R, ∫
B+

R̃
\B+

R

∣∣∣∇ϕ̃εn − (εn)kH(ϕεnj ,Kρεn)−1/2∇W εn
∣∣∣2 dx ≤ c′.

Let us recall that W εn → ψk in H1(B+

R̃
) and (since the norms are equivalent) also in HR̃: so,

passing to the limit as n→∞ in the above estimate, we obtain that∫
B+

R̃
\B+

R

|∇Φ̃− c∇ψk|2 dx ≤ c′.

Since the constant c′ is independent on R̃, we deduce that∫
Π

|∇Φ̃− c∇ψk|2 dx < +∞. (106)

Moreover, the function Φ̃ satisfies the following equation{
−∆Φ̃ = 0, in Π,

Φ̃ = 0, on ∂Π.
(107)

We claim that c > 0. Otherwise, if c = 0 then, by (106) and (107), we could say that Φ̃ = 0, which
would contradict (105).

From Proposition 2.2 we conclude that Φ̃ = cΦ and hence, in view of (105), c = Λ
−1/2
ρ . Since

the limit of the sequence {ϕ̃εn} is the same for any choice of the subsequence, we conclude the
proof by invoking the Urysohn’s Subsequence Principle.
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Corollary 7.6. For all R > 2 we have that

ZεR −→
1√
Λρ
ZR in H1(B+

R) as ε→ 0.

Proof. From the definitions of the functions ZεR and ZR (in (55) and Lemma 2.5 respectively)
−∆(

√
ΛρZ

ε
R − ZR) = 0, in B+

R ,√
ΛρZ

ε
R − ZR = 0, on CR,√

ΛρZ
ε
R − ZR =

√
Λρϕ̃

ε − Φ, on S+
R .

So ZεR − ZR is the unique, least energy solution with these prescribed boundary conditions. Now,
let η = ηR be as defined in (14). We have that∫

B+
R

∣∣∣∇(
√

ΛρZ
ε
R − ZR)

∣∣∣2 dx ≤
∫
B+
R

∣∣∣∇(η(
√

Λρϕ̃
ε − Φ))

∣∣∣2 dx ≤

≤ 2

∫
B+
R

|∇η|2
∣∣∣√Λρϕ̃

ε − Φ
∣∣∣2 dx+ 2

∫
B+
R

η2
∣∣∣∇(
√

Λρϕ̃
ε − Φ)

∣∣∣2 dx ≤

≤ 32

R2

∫
B+
R

∣∣∣√Λρϕ̃
ε − Φ

∣∣∣2 dx+ 2

∫
B+
R

∣∣∣∇(
√

Λρϕ̃
ε − Φ)

∣∣∣2 dx→ 0

as ε→ 0, thanks to (101) and to the embedding HR ⊂ L2(ΠR). The conclusion follows taking into
account Poincaré Inequality for functions vanishing on a portion of the boundary.

8 Proof of Theorem 1.1

Thanks to Theorem 7.5 and Corollary 7.6, we know that

fR := lim
ε→0

fR(ε) =
1

Λρ

∫
B+
R

|∇ZR|2 dx− 1

Λρ

∫
ΠR

|∇Φ|2 dx.

Moreover, in view of Proposition 6.11 and (102), we have that, for any R > max{2,Kρ}

Ck(Σ) ≤ lim inf
ε→0

λj − λεj
εN+2k−2

≤ lim sup
ε→0

λj − λεj
εN+2k−2

≤ ΛρfR, (108)

where Ck(Σ) = −2mk(Σ) > 0. To complete the proof of our main result it is then enough to show
that

lim
R→+∞

ΛρfR = Ck(Σ).

For every R > 2 let us define

ξR(r) :=

∫
S+
1

ZR(rθ)Ψ(θ) dS(θ) for 0 ≤ r ≤ R. (109)

Lemma 8.1. There holds∫
S+
R

∂(ZR − ψk)

∂ν
(Φ− ψk) dS −→ 0 as R→ +∞, (110)∫

S+
R

∂(ψk − Φ)

∂ν
(Φ− ψk) dS −→ 0 as R→ +∞. (111)

Proof. In order to prove (110), we first take into account the equation solved by ZR − ψk, i.e.
−∆(ZR − ψk) = 0, in B+

R ,

ZR − ψk = 0, on CR,
ZR − ψk = Φ− ψk, on S+

R .

(112)
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Let η = ηR as defined in (14). Testing (112) with η(Φ− ψk), we obtain that∫
B+
R

∇(ZR − ψk) · ∇(η(Φ− ψk)) dx =

∫
S+
R

∂(ZR − ψk)

∂ν
(Φ− ψk) dS.

Then, by the Dirichlet principle,∫
S+
R

∂(ZR − ψk)

∂ν
(Φ− ψk) dS ≤

√∫
B+
R

|∇(ZR − ψk)|2 dx

√∫
B+
R

|∇(η(Φ− ψk))|2 dx ≤

≤
∫
B+
R

|∇(η(Φ− ψk))|2 dx ≤ 32

R2

∫
B+
R\B

+
R/2

|Φ− ψk|2 dx+ 2

∫
B+
R\B

+
R/2

|∇(Φ− ψk)|2 dx→ 0

as R→ +∞, thanks to the fact that Φ− ψk ∈ D1,2(Π) and to Hardy’s inequality (reasoning as in
Lemma 2.4).

For the second part, since −∆(Φ− ψk) = 0 in Π \ΠR and Φ− ψk = 0 on {x1 = 0} \ Σ, then∫
S+
R

∂(ψk − Φ)

∂ν
(Φ− ψk) dS =

∫
Π\ΠR

|∇(Φ− ψk)|2 dx→ 0

as R→ +∞.

Lemma 8.2. We have that limR→+∞ ΛρfR = −2mk(Σ).

Proof. Thanks to Lemma 8.1 we know that

lim
R→+∞

ΛρfR = lim
R→+∞

∫
S+
R

(
∂ZR
∂ν
− ∂Φ

∂ν

)
ψk dS. (113)

From the definition of ζ (79) and from (86) we deduce that∫
S+
R

∂Φ

∂ν
ψk dS = RN+k−1ζ ′(R) = kγNR

N+2k−2 + (N + k − 2)(γN − ζ(1)). (114)

It’s easy to verify that the function ξR defined in (109) satisfies the following ODE(
rN+2k−1(r−kξR(r))′

)′
= 0 in (0, R).

By integration, we obtain

rN+k−2ξR(r) = rN+2k−2R−kξR(R)− C

N + 2k − 2
+

C

N + 2k − 2
rN+2k−2R−N−2k+2.

Since ZR is regular at 0, we have necessarily that C = 0; hence

ξR(r) =
( r
R

)k
ξR(R).

From the definition of ξR (109) we have∫
S+
R

∂ZR
∂ν

ψk dS = RN+k−1ξ′R(R) = kRN+k−2ξR(R) = kRN+k−2ζ(R). (115)

Then, from (113), (114), (115), (85) and (83)

lim
R→+∞

ΛρfR = lim
R→+∞

(
kRN+k−2ζ(R)− kγNRN+2k−2 − (N + k − 2)(γN − ζ(1))

)
= lim
R→+∞

RN+k−2(N + 2k − 2)(ζ(R)− γNRk)

= (N + 2k − 2)(ζ(1)− γN ) = −2mk(Σ),

thus concluding the proof.

We are now able to prove our main result.

Proof of Theorem 1.1. From (108) and Lemma 8.2 we conclude that

lim inf
ε→0

λj − λεj
εN+2k−2

= lim sup
ε→0

λj − λεj
εN+2k−2

= Ck(Σ),

thus completing the proof.
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9 Appendix

It is well known that the classical Hardy’s Inequality(
N − 2

2

)2 ∫
RN

|u|2

|x|2
dx ≤

∫
RN
|∇u|2 dx, u ∈ C∞c (RN ), N ≥ 3,

fails in dimension 2. However we observe, in the following theorem, that, under a vanishing
condition on part of the domain (at least on a half-line), it is possible to recover a Hardy-type
Inequality even in dimension 2.

Let p = (xp, 0) ∈ R2 with xp > 0 and let sp := {(x, 0) : x ≥ xp}. Let Dp denote the completion
of the space C∞c (R2 \ sp) with respect to the norm

‖u‖Dp
:=

(∫
R2

|∇u|2 dx

)1/2

.

Let us consider the function

θp : R2 \ sp −→ (0, 2π), θp(xp + r cos t, r sin t) = t.

We have that θp ∈ C∞(R2 \ sp).

Theorem 9.1. For all ϕ ∈ C∞c (R2 \ sp)

1

4

∫
R2

|ϕ(z)|2

|z − p|2
dz ≤

∫
R2

|∇ϕ(z)|2 dz. (116)

Moreover the space Dp can be characterized as

Dp =
{
u ∈ L1

loc(R2) : ∇u ∈ L2(R2), u
|z−p| ∈ L

2(R2), and u = 0 on sp

}
and inequality (116) holds for every ϕ ∈ Dp.

Proof. Let ϕ ∈ C∞c (R2 \ sp) and let ϕ̃(z) := ϕ(z)ei
θp(z)

2 ∈ C∞c (R2 \ sp,C). By direct calculations,
we have that

i∇ϕ(z) = e−i
θp(z)

2 (i∇+ Ap)ϕ̃(z),

where

Ap(x, y) :=
1

2

(
−y

(x− xp)2 + y2
,

x− xp
(x− xp)2 + y2

)
is the Aharonov-Bohm vector potential with pole p and circulation 1/2. Now let us compute the
L2-norm of |i∇ϕ| and use the Hardy’s Inequality for Aharonov-Bohm operators (see [32]):∫

R2

|∇ϕ|2 dz =

∫
R2

|(i∇+ Ap)ϕ̃|2 dz ≥ 1

4

∫
R2

|ϕ̃|2

|z − p|2
dz =

1

4

∫
R2

|ϕ|2

|z − p|2
dz.

The second part of the statement follows from (116) by classical completion and density arguments.

Corollary 9.2. There exists C = C(p) > 0 such that∫
R2

|ϕ(z)|2

1 + |z|2
dz ≤ C

∫
R2

|∇ϕ(z)|2 dz for all ϕ ∈ Dp. (117)

Proof. We observe that there exists K = K(|p|) > 0 such that

|z − p|2 ≤ K(|p|)(1 + |z|2) for all z ∈ R2.

Therefore the claim easily follows from Theorem 9.1 with C(p) = 4K(|p|).
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We conclude this appendix by recalling from [1] the following lemma about maxima of quadratic
forms depending on a parameter, which we used in Section 6.

Lemma 9.3. For every ε > 0 let us consider a quadratic form

Qε : Rj −→ R,

Qε(ξ1, . . . , ξj) =

j∑
i,n=1

Mi,n(ε)ξiξn,

with real coefficients Mi,n(ε) such that Mi,n(ε) = Mn,i(ε). Let us assume that there exist α > 0,
ε 7→ σ(ε) ∈ R with σ(ε) ≥ 0 and σ(ε) = O(ε2α) as ε → 0, and ε 7→ µ(ε) ∈ R with µ(ε) = O(1) as
ε→ 0, such that the coefficients Mi,n(ε) satisfy the following conditions:

Mj,j(ε) = σ(ε)µ(ε),

for all i < j Mi,i(ε)→Mi < 0, as ε→ 0,

for all i < j Mi,j(ε) = O(εα
√
σ(ε)) as ε→ 0,

for all i, n < j with i 6= n Mi,n = O(ε2α) as ε→ 0,

there exists M ∈ N such that ε(2+M)α = o(σ(ε)) as ε→ 0.

Then
max
ξ∈Rj
‖ξ‖=1

Qε(ξ) = σ(ε)(µ(ε) + o(1)) as ε→ 0,

where ‖ξ‖ = ‖(ξ1, . . . , ξj)‖ =
(∑j

i=1 ξ
2
i

)1/2
.
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