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Abstract. Debugging Cyber-Physical System (CPS) models can be ex-
tremely complex. Indeed, only the detection of a failure is insufficient to
know how to correct a faulty model. Faults can propagate in time and
in space producing observable misbehaviours in locations completely dif-
ferent from the location of the fault. Understanding the reason of an
observed failure is typically a challenging and laborious task left to the
experience and domain knowledge of the designer.

In this paper, we propose CPSDebug, a novel approach that by combin-
ing testing, specification mining, and failure analysis, can automatically
explain failures in Simulink/Stateflow models. We evaluate CPSDebug
on two case studies, involving two use scenarios and several classes of
faults, demonstrating the potential value of our approach.

1 Introduction

Cyber-Physical Systems (CPS) combine computational and physical entities that
interact with sophisticated and unpredictable environments via sensors and ac-
tuators. To cost-efficiently study their behavior, engineers typically apply model-
based development methodologies, which combine modeling and simulation ac-
tivities with prototyping. The successful development of CPS is thus strongly
dependent on the quality and correctness of their models.

CPS models can be extremely complex: they may include hundreds of vari-
ables, signals, look-up tables and components, combining continuous and discrete
dynamics. Verification and testing activities are thus of critical importance to
early detect problems in the models [BI7TI2IT4IT5], before they propagate to the
actual CPS. Discovering faults is however only part of the problem. Due to their
complexity, debugging the CPS models by identifying the causes of failures can
be as challenging as identifying the problems themselves [13].

CPS functionalities are often modelled using the MathWorks™ Simulink
toolset.A well-established approach to find bugs in Simulink/Stateflow models is
using falsification-based testing [2I20123]. This approach is based on quantifying
(by monitoring [4]) how much a simulated trace of CPS behavior is close to vi-
olate a requirement expressed in a formal specification language, such as Signal
Temporal Logic (STL) [18]. This measure enables the systematic exploration of
the input space searching for the first input sequence responsible for a violation.



However, this method does not provide any suitable information about which
component should be inspected to resolve the violation. Trace diagnostics [8]
identifies (small) segments of the observable model behavior that are sufficient to
imply the violation of the formula, thus providing a failure explanation at the in-
put/output model interface. However, this is a black-box technique that does not
attempt to open the model and explain the failure in terms of its internal signals
and components. Other approaches are based on fault-localization [BIZITSITEITE],
a statistical technique measuring the code coverage in the failed and successful
tests. This method provides a limited explanation that does not often help the
engineers to understand if the selected code is really faulty and how the fault
has propagated across the components resulting on actual failure.

In this paper, we advance the knowledge in failure analysis of CPS models by
presenting CPSDebug, a technique that originally combines testing, specification
mining, and failure analysis. CPSDebug first exercises the CPS model under
analysis by running the available test cases, while discriminating passing and
failing executions using requirements formalized as a set of STL formulas. While
running the test cases, CPSDebug records the internal behavior of the CPS
model, that is, it records the values of all the internal system variables at every
timestamp. It then uses the values collected from passing test cases to infer
properties about the variables and components involved in the computations.
These properties capture how the model behaves when the system runs correctly.

CPSDebug checks the mined properties against the traces collected for the
failed test cases to discover the internal variables, and corresponding compo-
nents, that are responsible for the violation of the requirements. Finally, failure
evidence is analyzed using trace diagnostics [§] and clustering [I0] to produce
a time-ordered sequence of snapshots that show where the anomalous variables
values originated and how they propagated within the system.

CPSDebug thus overcomes the limitation of state of the art approaches that
do not guide engineers in their analysis, but only indicate the inputs or the
code locations that might be responsible for the failure. On the contrary, the
sequence of snapshots returned by CPSDebug provides a step by step illustration
of the failure with explicit indication of the faulty behaviors. Our evaluation
involved with three classes of faults, two actual CPS models, and feedback from
industry engineers confirmed that the output produced by CPSDebug can be
indeed valuable to ease the failure analysis and debugging process.

The rest of the paper is organized as follows. We provide background infor-
mation in Section [2] and we describe the case study in Section [3] In Section [4 we
present our approach for failure explanation while in Section [5| we provide the
empirical evaluation. We discuss the related work in Section [6] and we draw our
conclusions in Section



2 Background

2.1 Signals and Signal Temporal Logic

We define S = {s1,...,8,} to be a set of signal variables. A signal or trace w is
a function T — R™, where T is the time domain in the form of [0, d] C R. We can
also see a multi-dimensional signal w as a vector of real-valued uni-dimensional
signals w; : T — R associated to variables s; for i = 1,...,n. We assume that
every signal w; is piecewise-linear. Given two signals u : T — R and v : T — R™,
we define their parallel composition u||v : T — R*™ in the expected way. Given
a signal w : T — R”™ defined over the set of variables S and a subset of variables
R C S, we denote by wgr the projection of w to R, where wr = ||s,erw;.

Let © be a set of terms of the form f(R) where R C S are subsets of variables
and f : RIfl - R are interpreted functions. The syntax of STL is defined by the
grammar:

eu=TI[f(R)>0]|-p|@1Ve| iUy,

where f(R) are terms in © and I are real intervals with bounds in Q>qU{co}. As
customary we use the shorthands ¢; o = T U ¢ for eventually, O; o = =01 —p
for always, T ¢ = ¢ A T S —p for rising edge and 1 ¢ = = A T S ¢ for falling
edgeﬂ We interpret STL with its classical semantics defined in [I7].

2.2 Daikon

Daikon is a template-based property inference technique that, starting from a
set of variables and a set of observations, can infer a set of properties that are
likely to hold for the input variables. More formally, given a set of variables V =
Vi,...,V, defined in the domains D1,...D,, an observation for these variables
is a tuple 7 = (v1,...,v,), with v; € D,.

Given a set of variables V' and multiple observations 7 .. .7, for these same
variables, Daikon is a function D(V,7;...7,,) that returns a set of properties
{p1,...pr}, such that 7; = p;Vi, j, that is, all the observations satisfy the inferred
properties. For example, considering two variables x and y and considering the
observations (1,3), (2,2), (4,0) for the tuple (z,y), Daikon can infer properties
such as x >0, x +y =4, and y > 0.

The inference of the properties is driven by a set of template operators that
Daikon instantiates over the input variables and checks against the input data.
Since template-based inference can generate redundant and implied properties,
Daikon automatically detects them and reports the relevant properties only.
Finally, to guarantee that the inferred properties are relevant, Daikon computes
the probability that the inferred property holds by chance for all the properties.
Only if the property is statistically significant with a probability higher than
0.99 the property is assumed to be reliable and it is reported in the output,
otherwise it is suppressed.

! We omit the timing modality I when I = [0, 00).



In our approach, we use Daikon to automatically generate fine-grained prop-
erties that capture the behavior of the individual components and individual
signals in the model under analysis. These properties can be used to precisely
detect misbehaviours and their propagation.

3 Case Study

We now introduce a case study that we use as a running example to illustrate
our approach step by step. The case study is an aircraft elevator control system,
introduced in [9], to illustrate model-based development of a fault detection, iso-
lation and recovery (FDIR) application for a redundant actuator control system.

Left Elevator Right Elevator

— — - -

. 55 55 g5 S5 :
hydraull{: § E § E £ 35 3 E hydraull;:
system = = = = =28 =5 system
y £ 3 £3 52 88 LY
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Fig. 1. Aircraft elevator control system [9].

Figure [T] shows the architecture of the aircraft elevator control system with
redundancy, with one elevator on the left and one on the right side. Each elevator
is equipped with two hydraulic actuators. Both actuators can position the eleva-
tor, but only one shall be active at any point in time. There are three different
hydraulic circuits that drive the four actuators. The left (LIO) and right (RIO)
outer actuators are controlled by a Primary Flight Control Unit (PFCU) with a
sophisticated input/output control law. If a failure happens, a less sophisticated
Direct-Link (DL) control law with reduced functionality takes over to handle the
left (LDL) and right (RDL) inner actuators. The system uses state machines to
coordinate the redundancy and assure its continual fail-operational activity.

This model has one input variable, the input pilot command, and two output
variables, the position of the left and right actuators, as measured by the sensors.
This is a complex model that could be extremely hard to analyze in case of



failure. In fact, the model has 426 signals, from which 361 are internal variables
that are instrumented (279 real-valued, 62 Boolean and 20 enumerated - state
machine - variables) and any of them, or even a combination of them, might be
responsible for an observed failure.

The model comes with a failure injection mechanism, which allows to dy-
namically insert failures that represent hardware/ageing problems into different
components of the system during its simulation. This mechanism allows inser-
tion of (1) low pressure failures for each of the three hydraulic systems, and (2)
failures of sensor position components in each of the four actuators. Due to the
use of the redundancy in the design of the control system, a single failure is not
sufficient to alter its intended behavior. In some cases even two failures are not
sufficient to produce faulty behaviors. For instance, the control system is able
to correctly function when both a left and a right sensor position components
simultaneously fail. This challenges the understanding of failures because there
are multiple causes that must be identified to explain a single failure.

To present our approach we consider the analysis of a system failure caused
by the activation of two failures: the sensor measuring the left outer actuator
position failing at time 2 and the sensor measuring the left inner actuator position
failing at time 4. To collect evidence of how the system behaves, we executed the
Simulink model with 150 test cases with different pilot commands and collected
the input-output behavior both with and without the failures.

When the system behaves correctly, the intended position of the aircraft
required by the pilot must be achieved within a predetermined time limit and
with a certain accuracy. This can be captured with several requirements. One
of them says that whenever pilot command cmd goes above a threshold m, the
actuator position measured by the sensor must stabilize (become at most n units
away from the command signal) within T + ¢ time units. This requirement is
formalized in STL with the following specification:

o =01 (emd > m) = Q0,71 Do, (|cmd — pos| < n)).

Figures 2] and [B|shows the correct and faulty behavior of the system. The control
system clearly stops following the reference signal after 4 seconds. The failure
observed on the input/output interface of the model does not give any indication
within the model on the reason leading to the property violation. In the next
section, we present how our failure explanation technique can address this case
producing a valuable output to engineers.

4 Failure Explanation

In this section we explain how CPSDebug works with help of the case study
introduced in Section [3] Figure M| illustrates the main steps of the workflow.
Briefly, the workflow starts from a target CPS model and a test suite with some
passing and failing test cases, and produces a failure explanation for each failing
test case. The workflow consists of three sequential phases:
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Fig. 2. Expected behavior of the air- Fig. 3. Failure of the aircraft control
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(i) Testing - simulating the instrumented CPS model with available test cases
to collect information about its behavior, both for passing and failing exe-
cutions,

(ii) Mining - mining properties from the traces produced by the passing test
cases; intuitively these properties capture the expected behavior of the model,

(iii) Explaining - using the mined properties to analyze the traces produced by
failures and generate failure explanations, which include information about
the root events responsible for the failure and their propagation.

4.1 Testing

CPSDebug starts by instrumenting the CPS model. This is an important pre-
processing step that is done before testing the model and that allows to log the
internal signals in the model. The instrumentation is inductively defined on the
hierarchical structure of the Simulink/Stateflow model and is done in a bottom-
up fashion. For every signal variable having the real, Boolean or enumeration
type, CPSDebug assigns a unique name to it and makes the simulation engine to
log its values. CPSDebug also instruments the look-up tables and state machines
in the model. It associates a dedicated variable to each look-up table. The vari-
able is used to produce a simulation trace that records the unique cell index that
is exercised by the input at every point in time. Similarly, CPSDebug associates
two dedicated variables per state-machine, one recording the transitions taken
and one recording the locations visited during the simulation. We denote by V'
the set of all instrumented model variables.

The first step of the testing phase, namely Model Simulation, runs the avail-
able test cases {w¥|1 < k < n} against the instrumented version of the simula-
tion model under analysis. The number of available test cases may vary case by
case, for instance in our case study the test suite included n = 150 tests.

The result of the model simulation consists of one simulation trace w* for
each test case w]f, 1 < k < n. The trace w* stores the sequence of (simulation
time, value) pairs w® for every instrumented variable v € V collected during
simulation.
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Fig. 4. Overview of the failure explanation procedure.

To determine the nature of each trace, we transform the informal model
specification, which is typically provided in form of free text, into an STL formula
@ that can be automatically evaluated by a monitor. In fact, CPSDebug checks
every trace wk against the STL formula ¢, 1 < k < n and labels the trace with
a pass verdict if w* satisfies @, or a fail verdict otherwise. In our case study, we
had 149 traces labeled as passing and one failing trace.

4.2 Mining

In the mining phase, CPSDebug selects the traces labeled with a pass verdict
and exploits them for property mining.

Prior to the property inference, CPSDebug performs several intermediate
steps that facilitate the mining task. First, CPSDebug reduces the set of variables
V to its subset V of significant variables by using cross-correlation. Intuitively,
the presence of two highly correlated variables implies that one variable adds



little information to the other one, and thus the analysis may actually focus
on one variable only. The approach cross-correlates all passing simulation traces
and whenever the cross-correlation between the simulation traces associated with
variables v; and vy in V' is higher than 0.99, CPSDebug removes one of the two
variables (and its associated traces) from further analysis. In our case study,
|V| =361 and |V| = 121, resulting in a reduction of 240 variables.

In the next step, CPSDebug associates each variable v € V to (1) its domain
D and (2) its parent block B. We denote by Vp g C V the set {vi,...,om}
of variables with the domain D associated to block B. CPSDebug collects all
observations 7 ...7, from all samples in all traces associated with variables in
Vb, and uses the Daikon function D(Vp, g, 71 ...7,) to infer a set of properties
{p1,...,px} related to the block B and the domain D. The property mining per
model block and model domain allows to avoid (1) combinatorial explosion of
learned properties and (2) learning properties between incompatible domains.

Finally, CPSDebug collects all the learned properties from all the blocks and
the domains, and translates them to an STL specification, where each Daikon
property p is transformed to an STL assertion of type [p.

In our case study, Daikon returned 96 behavioral properties involving 121
variables, hence CPSDebug generated an STL property 1 with 96 temporal
assertions, i.e., 1) = [11 ¥s...1gg]. Table [1| shows two examples of behavioral
properties from our case study inferred by Daikon and translated to STL. The
first property states that the Mode signal is always in the state 2 (Passive) or 3
(Standby), while the second property states that the left inner position failure
is encoded the same than the left outer position failure.

1 = 0O(mode € {2,3})
w2 = O(LLpos_fail == LO_pos_fail)

Table 1. Examples of properties learned by Daikon. Variables mode, LI_pos_fail
and LO_pos_fail denote internal signals Mode, Left Inner Position Failure and
Left Outer Position Failure from the aircraft position control Simulink model.

4.3 Explaining

This phase analyzes a trace w collected from a failing execution and produces a
failure explanation. The Monitoring step analyzes the trace against the mined
properties and returns the signals that violate the properties and the time inter-
vals in which the properties are violated. CPSDebug subsequently labels with F’
(fail) the internal signals involved in the violated properties and with P (pass)
the remaining signals from the trace. To each fail-annotated signal, CPSDebug
also assigns the violation time intervals of the corresponding violated properties
returned by the monitoring tool.

In our case study, the analysis of the left inner and the left outer sensor failure
resulted in the violation of 17 mined properties involving 19 internal signals.

For each internal signal there can be several fail-annotated signal instances,
each one with a different violation time interval. CPSDebug selects the instance



that occurs first in time, ignoring all other instances. This is because, to reach
the root cause of a failure, CPSDebug has to focus on the events that cause
observable misbehaviours first.

Table [2[ summarizes the set of property-violating signals, the block they be-
long to, and the instant of time the signal has first violated a property for our
case study. We can observe that the 17 signals participating in the violation of at
least one mined property belong to only 5 different Simulink blocks. In addition,
we can see that all the violations naturally cluster around two time instants — 2
seconds and 4 seconds. This suggests that CPSDebug can effectively isolate in
space and time a limited number of events likely responsible for the failure.

The Clustering & Mapping
10 ‘ step then (i) clusters the result-
ing fail-annotated signal instances
by their violation time intervals
and (ii) maps them to the corre-
sponding model blocks, i.e., to the
model blocks that have some of
the fail-annotated signal instances
as internal signals.
17 ] CPSDebug automatically de-
rives the clusters by applying
the elbow method with the k-
means clustering algorithm. CPS-
Fig. 5. Number of clusters versus the error, Debug groups mined properties
(and their associated signals) ac-
cording to the first time they are violated. The elbow method implements a
simple heuristic. Given a fixed error threshold, it starts by computing k-means
clustering for k = 1. The method increases the number of clusters as long as the
sum of squared errors of the current clusters with respect to observed data is
larger than the error threshold. The suspicious signals from the same time clus-
ters are then inductively associated to the Simulink blocks that contain them as
well as to all their block ancestors in the model hierarchy.

Sum of the squared error
w

1 2 3
No. of clusters

Figure 5| shows the diagram returned by the elbow method in our case study,
confirming that the violations are best clustered into 2 groups. The concrete
clusters (not shown here) returned by the elbow method precisely match the
two groups we can intuitively entail from Table

Finally, CPSDebug generates failure explanations that capture how the fault
originated and propagated in space and time. In particular, the failure expla-
nation is a sequence of snapshots of the system, one for each cluster of new
property-violations. Each snapshot reports (i) the mean time as approximative
time when the violations represented in the cluster occurred, (ii) the model blocks
that originate the violations reported in the cluster, (iii) the properties violated
by the cluster, representing the reason why the cluster of anomalies exist, and
(iv) the internal signals that participate to the violations of the properties as-
sociated with the cluster. Intuitively a snapshot represents a new relevant state



Index|Signal Name Block 7(s)
so52 |LI_pos_fail:1—Switch:2 Meas. Left In. Act. Pos. [1.99
so53 |Outlier/failure:1—Switch:1 Meas. Left In. Act. Pos. [1.99
So54 |Measured Position3:1—Mux:3 Meas. Left In. Act. Pos. [1.99
s255 |Measured Position2:1—Mux:2 Meas. Left In. Act. Pos. [1.99
S256 |Measured Positionl:1—Mux:1 Meas. Left In. Act. Pos. [1.99
ss5 |BusSelector:2—Mux1:2 Controller 2.03
S308 [In2:1—Mux1:2 L_pos_failures 2.03
$329 |Inl:1—Mux1:1 L_pos_failures 2.03
s33z2 |Right Outer Pos. Mon.:2—R_pos_failures:1|Actuator Positions 2.03
s333 |Right Inner Pos. Mon.:2—R _pos_failures:2 |Actuator Positions 2.03
s334 |Left Outer Pos. Mon.:2—L_pos_failures:1 |Actuator Positions 2.03
s335 |Right Inner Pos. Mon.:3—Goto3:1 Actuator Positions 2.03
s3zg |Left Outer Pos. Mon.:3—Goto:1 Actuator Positions 2.03
s341 |Left Inner Pos. Mon.:2—L_pos_failures:2 |Actuator Positions 2.03
so72 |LO_pos_fail:1—Switch:2 Meas. Left Out. Act. Pos.|3.99
8973 |Outlier/failure:1—Switch:1 Meas. Left Out. Act. Pos.|3.99
$o75 |Measured Positionl:1—Mux:1 Meas. Left Out. Act. Pos.|3.99
So7¢ |Measured Position2:1—Mux:2 Meas. Left Out. Act. Pos.|3.99
so77 |Measured Position3:1—Mux:3 Meas. Left Out. Act. Pos.|4.00

Table 2. Internal signals that violate at least one learned invariant and Simulink
blocks to which they belong. The column 7(s) denotes the first time that each
signal participates in an invariant violation.

of the system, and the sequence shows how the execution progresses from the
violation of set of properties to the final violation of the specification. The engi-
neer is supposed to exploit the sequence of snapshots to understand the failure,
and the first snapshot to localize the root cause of the problem. Figure [] shows
the first snapshot of the failure explanation that CPSDebug generated for the
case study. We can see that the explanation of the failure at time 2 involves the
Sensors block, and propagates to Signal conditioning and failures and Controller
blocks. By opening the Sensors block, we can immediately see that something
is wrong with the sensor that measures the left inner position of the actuator.
Going one level below, we can that the signal s252 coming out of the LI_pos_fail
is suspicious — indeed the fault was injected exactly in that block at time 2. It is
not a surprise that the malfunctioning of the sensor measuring the left inner po-
sition of the actuator affects the Signal conditioning and failures block (the block
that detects if there is a sensor that fails) and the Controller block. However, at
time 2 the failure in one sensor does not affect yet the correctness of the overall
system, hence the STL specification is not yet violated. The second snapshot
(not shown here) generated by CPSDebug reveals that the sensor measuring the
left outer position of the actuator fails at time 4. The redundancy mechanism is
not able to cope with multiple sensor faults, hence anomalies become manifested
in the observable behavior. From this sequence of snapshots, the engineer can
conclude that the problem is in the failure of t