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Previous studies found that an automatic meaning-composition process affects the process-
ing of morphologically complex words, and related this operation to conceptual combination.
However, research on embodied cognition demonstrates that concepts are more than just lexical
meanings, rather being also grounded in perceptual experience. Therefore, perception-based
information should also be involved in mental operations on concepts, such as conceptual com-
bination. Consequently, we should expect to find perceptual effects in the processing of mor-
phologically complex words. In order to investigate this hypothesis, we present the first fully-
implemented and data-driven model of perception-based (more specifically, vision-based) con-
ceptual combination, and use the predictions of such a model to investigate processing times
for compound words in four large-scale behavioral experiments employing three paradigms
(naming, lexical decision, and timed sensibility judgments). We observe facilitatory effects of
vision-based compositionality in all three paradigms, over and above a strong language-based
(lexical and semantic) baseline, thus demonstrating for the first time perceptually grounded ef-
fects at the sub-lexical level. This suggests that perceptually-grounded information is not only
utilized according to specific task demands but rather automatically activated when available.
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A fascinating competence of humans is the ability
to combine familiar elements into new, complex ones. For
example, by putting a small house on a boat, we can create
a houseboat. In fact, we can even perform such a combi-
nation on a purely cognitive, conceptual level — which can
lead to the concrete implementation of such a combination,
but doesn’t need to. Additionally, as can be seen from the
“houseboat” example, we are also immediately able to refer
to these combinations using linguistic expressions (in this
case compound words) and thus to communicate the novel
idea to other people.

Therefore, compound words — combinations of two
existing words forming a new word, such as houseboat,
airport, or clickbait — are often discussed as the linguistic
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counterpart to conceptual combination (see Murphy, 2002;
Ran & Duimering, 2009; Thagard, 1984), and indeed as the
most fundamental combined expressions from which other
complex linguistic forms have evolved (Jackendoff, 2002;
Libben, 2014). However, such complex linguistic expres-
sions can only be useful if the principle of compositional-
ity — that the meaning of a complex expression can be de-
rived from its constituents and the structure by which they
are combined (Frege, 1892) — holds to at least some degree,
and thus if the constituents are informative of the intended
meaning (Costello & Keane, 2000, based on Grice, 1975).
Of course, there is no principled reason stopping us from
using completely new expression such as syllip to refer to
a house on a boat, or even to call it olivegrass — after all,
linguistic symbols should be largely arbitrary (de Saussure,
1916). However, using the label houseboat, and hence ad-
hering to the principle of compositionality, comes with quite
obvious advantages in terms of comprehension and commu-
nication. Due to this, the use of compositional expressions
naturally evolves as a means of communication in scenarios
involving complex stimuli (Franke, 2016; Kirby, Cornish, &
Smith, 2008). Thus, compounds are not just arbitrary con-
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catenations of familiar words, but inherently compositional
expressions.

From a purely efficiency-based perspective how-
ever, it could be argued that a listener or reader doesn’t
necessarily have to actively compose the meaning of ev-
ery compound on the basis of its constituents: After repeat-
edly encountering words such as houseboat or clickbait, one
can eventually form separate whole-word representations for
these words and understand them directly (Sandra, 1990;
Schreuder & Baayen, 1995). In fact, for semantically opaque
compounds such as ladybird or windfall, these whole-word
meanings differ dramatically from their compositionally-
obtained meanings (for an overview on semantic transparen-
cy/opacity, see Schifer, 2018). However, from a process-
ing perspective, it still makes sense to immediately initiate a
compositional process whenever a compound is encountered
(see Chamberlain, Gagné, Spalding, & Ldo, 2019; Giinther
& Marelli, 2019a). Assuming that the main purpose of lan-
guage is to convey meaning, language processing would be
geared towards understanding the linguistic stimuli we en-
counter (Libben, 2014): Before the whole-word lexical entry
has been accessed, one cannot know whether the compound
is familiar or not — and thus, whether there even is such an
entry (see El-Bialy, Gagné, & Spalding, 2013). The same
argument can be made concerning semantic transparency
(one cannot know in advance whether the processed com-
plex word will be transparent or opaque; Rastle & Davis,
2008) — and since the distribution of semantic transparency
leans heavily towards the transparent side (Gagné, Spalding,
& Schmidtke, 2019), the product of a compositional process
will be informative of the intended meaning in the vast ma-
jority of cases (Rastle & Davis, 2008). As argued by Libben
(2006, 2014), compound processing is aimed at maximizing
the opportunity to understand the intended meaning in a nat-
ural language comprehension context, rather than maximiz-
ing efficiency. In this perspective, the processing objective is
achieved by immediately initiating a compositional process,
rather than delaying it until it is necessarily required.

In line with these theoretical points, several empiri-
cal studies have found that the ease of meaning-composition
affects compound processing: Libben, Gibson, Yoon, and
Sandra (2003) found that compounds whose meaning was
rated as predictable from their constituents were processed
faster than non-predictable compounds. Marelli and Luz-
zatti (2012) collected ratings on the semantic transparency
of Italian compounds, and found that only ratings on their
compositionality (to which degree the meaning of the com-
pound word can be predicted from its constituent mean-
ings), but not on their constituent-compound semantic re-
latedness, predicted processing times. While both semantic
relatedness and compositionality describe the semantic re-
lation between a compound and its constituents, there is a
fundamental difference between the two variables: Related-

ness refers to the semantic similarity between the constituent
meanings and the whole-word, lexicalized compound; on the
other hand, compositionality refers to the active role of con-
stituent meanings in a compound-driven combination pro-
cess. One consequence of this is that novel compounds can
be described in terms of compositionality, but not related-
ness (Giinther, Marelli, & Bolte, in press; Giinther & Marelli,
2016, in press). On a psychological level, while relatedness
conceptualizes constituent and compound meanings as sep-
arate, stored representations in memory, the compositional
approach considers the compound meaning as the result of
an active process combining the constituents. More detailed
discussions on the distinction between the two approaches
are provided in Giinther and Marelli (2019a); Giinther et al.
(in press), and Marelli and Luzzatti (2012).

Using a computational model to characterize com-
positionality, Giinther and Marelli (2019a) found that lexical
decisions on English compounds are faster in cases where
the constituents are more easily integrated into a combined
meaning. At the same time, the semantic relatedness be-
tween the constituents and the lexicalized, whole-word com-
pound meanings did not affect processing times. In a more
recent study, Giinther et al. (in press) found that this pattern
also holds for lexical decisions in German, and against word-
like nonwords (such as Flughafan (airpurt) or Knotenpferd
(knothorse)). In fact, the latter class of nonwords are, for all
intents and purposes, novel compound candidates. Accord-
ingly, rejections of such items were slower in cases where
the constituents are more easily integrated into a combined
meaning (Giinther et al., in press; Giinther & Marelli, in
press). Additionally, Amenta, Marelli, and Crepaldi (2015)
found, in an eye-tracking study, that a meaning-composition
process already sets in very early in the time course of com-
plex word processing.

These results have been interpreted as reflecting an
automatic process of conceptual combination in compound
processing (in line with, for example, Gagné & Shoben,
1997; Gagné, 2001; Murphy, 1990; Smith & Osherson,
1984; Spalding, Gagné, Mullaly, & Ji, 2010; Wisniewski,
1997; Wisniewski & Love, 1998; see Ran & Duimering,
2009 for an overview), rather than a purely linguistic compo-
sition of lexical meanings. However, concepts are more than
“just” mental representations of word meanings, or linguistic
representations (Kelter & Kaup, 2012). Our conceptual sys-
tem is not only shaped by the language input we experience,
but also by our sensorimotor (i.e., perceptual and motor) ex-
perience (Glenberg & Robertson, 2000). This consideration
lies at the core of theories of embodied cognition (e.g. Barsa-
lou, 1999; Barsalou, Santos, Simmons, & Wilson, 2008; Fis-
cher, 2012; Glenberg & Robertson, 2000; Glenberg, 2015;
Zwaan & Madden, 2005), which have taken a central place
in the debate on concept acquisition and representation. In
this view, concepts such as DOG are formed through the
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interplay between linguistic experience (hearing or reading
the word dog) as well as sensorimotor experience (seeing a
dog, or hearing it bark) (Zwaan & Madden, 2005). Conse-
quently, in language processing, the linguistic stimuli would
act as cues to re-activate this sensorimotor experience, or the
representation formed from it. Although language typically
encodes many aspects of the perceptual world, and language-
based representations can come a long way in approximating
this perception-based experience (Louwerse, 2011), such re-
dundancies are surely not perfect, and therefore not having
direct access to sensorimotor experience will ultimately re-
sult in different conceptual representations and processing
(Giinther, Dudschig, & Kaup, 2018; Kim, Elli, & Bedny,
2019; Striem-Amit, Wang, Bi, & Caramazza, 2018).

It is therefore too narrow a view to understand con-
ceptual combination purely as a language-based meaning-
composition process. As concepts are also shaped by sen-
sorimotor experience, these aspects of the concept represen-
tations cannot be neglected when considering the combina-
tion process. We thus assume that, when a compound is
processed, the concepts related to its constituent meanings
are accessed. This operation would involve the re-activation
of sensorimotor experiential traces linked to the constituents
(Zwaan & Madden, 2005), including representations formed
from visual experience. These multi-modal representations,
in turn, constitute the building blocks of a conceptual combi-
nation process, in which they are combined into a new repre-
sentation (Spalding et al., 2010). A very intuitive illustration
(that has, in fact, heavily inspired the present study) of how
perceptually-grounded properties can be routinely involved
in an automatic conceptual combination process is provided
in Figure 1.

As an illustrative example of how this differs from a
purely linguistic meaning composition, consider the case of
swordfish. From a purely language-based perspective, the
meaning of this word is not extremely compositional (see
Gagné et al., 2019): The semantic properties of both sword-
fish and fish, and the language contexts these words occur in,
have very little overlap with those of sword. From this per-
spective, the contribution of sword to a combined meaning
should therefore not be obvious. However, once visual infor-
mation is considered, this contribution becomes very clear:
Swordfish have a long, flat bill that is shaped like a sword,
and by “concatenating” the shape of a sword and a fish, one
would create something looking very much like a swordfish.!

In line with such intuitions, Lynott and Connell
(2010) argue that traditional theories of conceptual combina-
tion cannot account for the role of sensorimotor information,
and propose the Embodied Conceptual Combination (ECCo)
model to address and overcome these issues. However, this
model in its current state has considerable shortcomings: On
the one hand, it is a purely verbal theory, which leaves many
open degrees of freedom — which are, in practice, usually

filled out by researcher intuition — when it comes to actually
testing it. On the other hand, there are only very sparse direct
empirical tests of this model (we are only aware of a single
study by Connell & Lynott, 2011, which employs a small
item set). In a similar vein, Wu and Barsalou (2009) pro-
pose that conceptual combination involves spontaneous per-
ceptual simulation of the combined concepts, and provide ev-
idence from property generation tasks: For example, partici-
pants produced similar distributions of properties regardless
of whether they were instructed to construct mental images
for combined concepts or not. However, this study focused
on very explicit, off-line tasks rather than on-line processing.
In addition, the result of the conceptual combination process
for any given combination of elements has to be predicted
based on intuition, since the conceptual representations as
well as the combination process are under-defined. Further-
more, both previous accounts have not been linked to word
recognition and the processing of morphologically complex
words, and thus, the role of perceptually-grounded composi-
tion effects at the sub-lexical level (that is, concerning units
smaller than an individual word) has been left entirely unad-
dressed.

In the present article, we address these issues by
putting forward a model of perceptually-grounded concep-
tual combination. This model directly includes vision-based
information in its very architecture. Being a fully compu-
tationally implemented, entirely data-driven model — rooted
in representations induced through (deep) neural networks
combined with a learning-based compositional system — it
also goes beyond verbal theories and researcher intuitions,
instead providing completely quantitative characterizations
and predictions, which can in turn be subjected to empirical
tests. Our model thus naturally allows us to address theoret-
ical hypotheses such as the one discussed so far: If the auto-
matic compositional effect in compound processing observed
in previous studies (Glinther & Marelli, 2019a; Giinther et
al., in press) actually reflects a process of conceptual com-
bination, rather than a purely lexical meaning-composition
process, then the ease of combining vision-based representa-
tions should lead to processing advantages, over and above
what is predicted by language alone.

In the following section, we first describe the model
architecture and its components — language-based represen-
tations, vision-based representations, and the compositional
model framework — in detail. In a next step, we describe the
measures derived from this model, which quantify the ease
of combining the representations, and the contribution of the
constituent elements to the newly combined representation.
We then proceed to test the model predictions on four large-
scale behavioral datasets of compound processing, employ-

'This example will later be confirmed quantitatively, once we
have established the model put forward in this article (see the
Vision-based Measures of Compositionality section).
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Figure 1. A comic by John McNamee (www.piecomic.com) illustrating on an intuitive level how perceptually-grounded
properties can be routinely involved in conceptual combination. All copyrights belong to the artist, who kindly allowed us to

use his work here.

ing three different experimental paradigms that require vary-
ing degrees of semantic processing (speeded naming, lexical
decision, and timed sensibility judgments).

A Computational Framework for Language- and
Vision-based Conceptual Combination

Language-based Representations

A graphical illustration of the model architecture and its
components is displayed in Figure 2. Language-based rep-
resentations were obtained via the distributional semantics
framework (Landauer & Dumais, 1997; Lenci, 2018; Turney
& Pantel, 2010). In distributional semantic models, seman-

tic representations are operationalized as high-dimensional
numerical vectors, which are estimated based on the co-
occurrence patterns of words in large collections of natural
text. The rationale behind this is the distributional hypothe-
sis, stating that words with similar meanings occur in simi-
lar contexts (Harris, 1954; Firth, 1957), which in its strong
version assumes that semantic representations in humans are
shaped through such co-occurrence patterns (Lenci, 2008;
see also Jenkins, 1954). In numerous studies, it has been
shown that distributional semantic models predict human be-
havior in a large variety of tasks (e.g. Baroni, Dinu, &
Kruszewski, 2014; Jones, Kintsch, & Mewhort, 2006; Man-
dera, Keuleers, & Brysbaert, 2017; Pereira, Gershman, Rit-
ter, & Botvinick, 2016), and there is a wide range of ar-
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guments in favor of their plausibility as models of human
semantic representation (see Giinther, Rinaldi, & Marelli,
2019; Jones, Willits, & Dennis, 2015, for overviews present-
ing distributional models as theories of semantic memory,
and discussing their assumptions and implications).

In the present study, we employed the best-
performing word-embeddings model provided by Baroni et
al. (2014) to obtain language-based representations. This
model was trained on an English ~ 2.8 billion word
source corpus (a concatenation of the ukWaC corpus,
Baroni, Bernardini, Ferraresi, & Zanchetta, 2009, an En-
glish Wikipedia dump, and the British National corpus, BNC
Consortium, 2007) using the cbow algorithm (with a con-
text window size of 5 words, 400-dimensional vectors, neg-
ative sampling with k = 10, subsampling with t = 1¢7>), as
implemented in the word2vec toolkit (Mikolov, Chen, Cor-
rado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013). The cbow algorithm estimates word embed-
dings (i.e., distributional vectors) as the activation values of
the hidden layer of a one-layer neural network model, aimed
at predicting a target word from the words in a pre-defined
context window (see the upper-left part of Figure 2). Thus,
we can in principle derive language-based representation for
all words occurring in a language via the chow model. In
several works, the chow model has been identified as a psy-
chologically plausible model for the acquisition of semantic
representations (Hollis, 2017; Mandera et al., 2017). In or-
der to obtain reliable word embeddings, we only considered
words with a frequency larger than 50 in the source corpus.
Examples for language-based neighborhoods (i.e., the most
similar word embeddings for a given word) are displayed in
Table 1 (left-hand part).

Vision-based Representations

Vision-based representations were obtained from a deep con-
volutional neural network model, as used in computer vi-
sion (Krizhevsky, Sutskever, & Hinton, 2012). Such mod-
els are originally trained to predict an image label from a
vector representation encoding the pixel-based RGB values
of the respective image (see the upper-right part of Fig-
ure 2), and have reached impressive levels of performance in
this task (Chatfield, Simonyan, Vedaldi, & Zisserman, 2014;
Krizhevsky et al., 2012). Furthermore, representations ob-
tained from such models have been validated as measures of
visual similarity (Petilli, Giinther, Vergallito, Ciaparelli, &
Marelli, 2019), and it has been shown that they closely cor-
respond to human intuitions (Bracci, Ritchie, Kalfas, & de
Beeck, 2019; Lazaridou, Marelli, & Baroni, 2017; Phillips et
al., 2018; Zhang, Isola, Efros, Shechtman, & Wang, 2018).
The starting point for such models is a set of la-
beled images. In our study, these were obtained from the
widely-used ImageNet database (Deng et al., 2009), which
adopts the WordNet category structure (Miller, 1995). For

each word in our compound dataset (i.e., the compounds as
well as their constituents, see below), a set of 100 to 200 im-
ages (depending on the number available) was retrieved by
means of ImageNet labels. In cases where a word was used
as a label for more than one ImageNet category, the category
including more images was selected (see also Petilli et al.,
2019). Note that ImageNet “only” contains about 33,000 dif-
ferent image categories — far fewer than the words included in
our language-based model — and thus there are many words
for which we can derive language- but not vision-based rep-
resentations. This is not necessarily a technical shortcoming
of the specific database, but reflects the actual properties of
the considered concepts: For many words where visual ex-
perience is lacking (e.g., abstract words), there are principled
reasons why a vision-based representation does not exist (see
Borghi et al., 2017).2

Vision-based representation vectors for these im-
ages were then induced by feeding them to a pre-trained
eight-layer deep convolutional neural network (the VGG-
F model; Chatfield et al., 2014), as implemented in the
MatConvNet Matlab toolbox (Vedaldi & Lenc, 2015). In
a recent large-scale evaluation study, Zhang et al. (2018)
found that perceptual similarity measures derived from these
VGG models outperform a large variety of other models,
and come very close to mimicking actual human behavioral
data. As established in previous studies (e.g. Lazaridou
et al.,, 2017), we used the activation values of the 4,096-
dimensional second-to-last layer of the network (which cap-
tures complex, high-level gestalt representations of the im-
ages; LeCun, Bengio, & Hinton, 2015; Zeiler & Fergus,
2014) as vision-based representations.

However, at this point, we still have multiple vision-
based vectors for each word — one for each of the 100 to 200
images forwarded to the network. From the set of these vec-
tors, we estimated visual prototype vectors as the centroid
of all image vectors obtained for a given word (Petilli et al.,
2019) which didn’t deviate too far from the median activa-
tion value (interquartile ranges over 1.5; Ratcliff, 1993). Ex-
amples for vision-based neighborhoods (i.e., images associ-
ated with the most similar visual prototype vectors for given
words) are displayed in Table 1 (right-hand part).

In order to make the obtained vision-based vectors
more computationally manageable, we reduced the original
dimensionality of d = 4,096 to d’ = 300 using Singular
Value Decomposition (SVD; Martin & Berry, 2007), as im-
plemented in the DISSECT toolkit (Dinu, Pham, & Baroni,
2013). This did not reduce the informativity of the vision-
based representations: The original neighborhoods of the
prototype vectors as well as the cosine similarities between

2Note that the argument can also run the other way: There can
be visual representations for which we have no corresponding lin-
guistic expression, and these cannot be captured by either of the
models employed here.
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Figure 2. Graphical illustration of the workflow of the models applied here. Vector representations obtained from the word2vec
model (cbow algorithm) and the VGG-F model, respectively, are used to train two separate CAOSS models (language- and
vision-based). The trained weight matrices are then used to derive vector representations for combinations of constituent

vector representations.

the target and these neighbors were almost perfectly main-
tained after applying dimensionality reduction. On average,
19.9 out of the 20 closest neighbors to a word were identical,
and the average rank correlation between their positions in
the neighborhood was rg = .99.

Compositional Model

Using these (language- and vision-based) representations,
we trained two compositional models — aimed at predicting
compound representations from their constituent represen-
tations — using exactly the same compositional architecture
(CAOSS; Marelli, Gagné, & Spalding, 2017; see also
Guevara, 2010). This model estimates a compositional
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Table 1
Examples of language-based (cbow) and vision-based (VGG-F) neighbors, all included within the 20 most similar represen-
tations in the respective model. All reported images are the closest images to the visual prototype representations.

word neighbors (language-based) image neighbors (vision-based)
lemon

yellow, juice, orange-red, khakis,

orange pekoe”
i werewolf, hellhounds, hyenas,
wo fenris, jackal
moon, sunlight, pleiades, sunshine,
sun moonset

compound representation ¢ as are, on average, best predicted by Equation 1 (see Figure 2).
These matrices M and H can then be applied to any new com-
c=M-u+H-v (1) bination of left-hand constituents (the modifier of English

compounds) and right-hand constituents (the head of En-
glish compounds; Williams, 1981), in order to compute up-
dated, position-specific as-constituent meanings (Marelli et
al., 2017; for an in-depth discussion on these as-constituent
meanings and their psychological status, see Libben, 2014).

, with # and v being the n-dimensional constituent representa-
tions, and M and H being a single set of constituent-specific
n X n weight matrices. These matrices are estimated from a
training set of existing compounds via least-squares regres-
sion, so that the compound representations in the training set
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Depending on the specific input vector as well as the specific
weights in this matrix, either as-constituent meaning can be
very similar to or very different from the original free-word
meaning of the constituent: For example, a matrix multipli-

0 1
1 0
up = (2,2)atall (M- u; = (2,2)), but u, = (10, 1) will be
changed dramatically (M - u, = (1, 10)). As a result, the out-
come of this meaning-updating process will crucially depend
on the properties of both the word involved in it and the pro-
cedure itself. In the final step, these as-constituent meanings
are then added together to obtain a a compositional represen-
tation for the resulting compound (see Figure 2).

cation with M = will not change the input vector

The relatively simple CAOSS model was shown to
capture relational effects in the processing of novel com-
pounds (Marelli et al., 2017; see Gagné, 2001; Gagné &
Shoben, 1997), compositional effects in the processing of
existing and novel compounds (Giinther & Marelli, 2019a, in
press; Giinther et al., in press), and even to predict compound
meanings across languages (Giinther & Marelli, 2018). Fur-
thermore, it has been shown to outperform a wide range of
other possible compositional models (for example, simple
vector addition) in a large-scale study (Dima, 2015).

For the language-based representations, the train-
ing set consisted of 5,988 compounds: 2,637 hyphenated
compounds such as singer-songwriter, and 3,351 closed-
form compounds such as airport, collected from the CELEX
database (Baayen, Piepenbrock, & Gulikers, 1995), the En-
glish Lexicon Project (Balota et al., 2007), and the com-
pound database by Juhasz, Lai, and Woodcock (2015). For
the vision-based representations, the training set consisted
of the subset of 388 compound words for which com-
plete compound-constituent sets were available in ImageNet
(Deng et al., 2009). Thus, the vision-based model was
trained on considerably fewer examples than the language-
based model. In addition, since there are many compounds
for which both constituents but not the compound itself are
available as ImageNet labels, the vision-based composition
model is only trained on a subset of the available compounds,
while the language-based model is trained on all of them.

Once the models were trained, we applied the esti-
mated CAOSS weight matrices (two sets of M and H matri-
ces, either language-based or vision-based) to induce compo-
sitional vectors for all compounds in our datasets for which
both constituent representations were available (see below).
These computations (training and composition) were per-
formed using the DISSECT toolkit (Dinu et al., 2013). Note
that, due to the differences in the training procedure, the
vision-based model has to extrapolate from a smaller training
set to obtain its compositional representations, and has to do
so also for items outside the training set. Examples of pre-
dictions of the visual composition model for items that were
not included in the training set (i.e., items that are completely

new to the model, and for which it has to rely on the compo-
sitional process it learned during training), are displayed in
Figure 3.

Method

In the present study, we investigated an item set of 736 ex-
isting target compounds. These were selected as all com-
pound words (a) for which a compositional vision-based rep-
resentation could be obtained (i.e., vision-based represen-
tations were available for both constituents), and (b) which
were included in each of three large datasets that constitute
the empirical basis for the present study (described below).
These datasets include data from three different tasks that
require different degrees of semantic processing: A naming
task, a lexical decision task, and a timed sensibility judg-
ment task. We investigated these different scenarios to ensure
the robustness of our model predictions over different task
demands, in which semantic processing is required at vari-
ous degrees. In fact, evaluating potential cross-task dissocia-
tions is currently considered one of the main challenges faced
by embodied cognition research (Ostarek & Huettig, 2019),
where experiments typically rely on paradigms in which sen-
sorimotor processes are explicitly probed. In this perspec-
tive, evaluating our model estimates under various experi-
mental conditions will help establishing the routine applica-
tion of the proposed vision-based compositional process.

Experiment 1: Naming Task

The naming dataset was obtained from the English Lexicon
Project (Balota et al., 2007) megastudy. This database con-
tains aggregated naming response times for 40,481 different
words, the vast majority of which are not compound words.
This data was collected from 444 participants, each of whom
was presented with 2,500 words (25 participants per item).
In this task, participants saw the word stimuli on a screen
and were instructed to read them out aloud as fast and as
accurately as possible. The response time was measured as
the onset of their response, as recorded with a voice key. The
naming task, in principle, could be performed by mapping
graphemes to phonemes (a shallow processing task; Barsa-
lou et al., 2008). With a completely transparent orthography,
naming could be performed by a foreign speaker who does
not even know whether the presented words exist in the tar-
get language; thus, this task can in principle be performed
without accessing any lexical representation. Certainly, such
lexical access may be helpful for naming in a language with
opaque orthography such as English, but semantic and con-
ceptual processing remains, in principle, largely unnecessary.
Accordingly, previous research identified only limited se-
mantic effects in the naming task (Balota et al., 2007; Hodg-
son, 1991; Lucas, 2000).
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handmaiden

icehouse

handbag

rosewater

Figure 3. Illustration of (the most similar images to) model predictions of the visual composition model. All these items
(displayed in boldface above the images), are not part of ImageNet, and therefore no visual representations can be derived

directly using the VGG-F model.

Experiments 2a and 2b: Lexical Decision Tasks

The lexical decision dataset of Experiment 2a was also ob-
tained from the English Lexicon Project (Balota et al., 2007).
Aggregated data for 40,481 words was originally collected
from 815 participants, each of whom was presented with
1,700 nonwords (created by changing a letter for each of the
40,481 words) and 1,700 target words (34 participants per
item). As a supplementary analysis to Experiment 2a, in Ex-
periment 2b we employed a second lexical decision dataset
from the British Lexicon Project (BLP; Keuleers, Lacey,
Rastle, & Brysbaert, 2012), in order to validate the results
of Experiment 2a with data collected from British partici-
pants (since with ukWaC and BNC, our source text corpus
consists in large parts of British-English documents). The
BLP includes lexical decision data for 14,365 words and the
same number of nonwords, collected from and aggregated
over 78 participants, who each were presented with half of
the items (resulting in 38 or 40 participants per item). As a
consequence, the BLP only contains data for a subset of 532
out of our 736 target compounds.

In both experiments, participants saw the stimuli on
a screen and had to decide — as fast and accurately as pos-
sible — for each letter string presented to them whether it
was an existing English word. Although the lexical deci-
sion task, in principle, only requires lexical access, and not
necessarily semantic processing, previous research has es-

tablished that semantic effects do influence lexical decision
response times (Amenta, Marelli, & Sulpizio, 2017; Balota et
al., 2007; Giinther & Marelli, 2019a; Lucas, 2000), although
these effects can depend on specific task settings such as the
choice of nonwords (Barsalou et al., 2008; James, 1975).

Experiment 3: Timed Sensibility Judgment Task

The timed sensibility dataset was collected by the authors
of the present study, and contains data from 145 partici-
pants, each of whom was presented with 500 items (22 — 26
participants per item) in a web-based crowdsourcing study
(Buhrmester, Kwang, & Gosling, 2011; de Leeuw, 2015; de
Leeuw & Motz, 2016). The original dataset contains 1,499
different compound words — all of which are included in the
English Lexicon Project — and as many compound ‘“non-
words”. The dataset, along with a detailed methodological
description is publicly available (Giinther & Marelli, 2019b),
via the Open Science Framework (Foster & Deardorft, 2017)
at https://doi.org/10.17605/0SF.I0/7KYNQ. For this
task, the “nonwords” were created by re-combining existing
compound constituents into non-existing compounds (i.e.,
words not observed in the ~ 2.8 billion word language corpus
presented earlier, such as nodemother or asylumhiker). Par-
ticipants were instructed to decide — as fast and accurately
as possible — whether the words presented to them had a
sensible interpretation. Response times under 100 ms and
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over 5,000 ms were excluded from the data before it was ag-
gregated over participants. Since the timed sensibility judg-
ment task explicitly requires judgments on the meaning of
the stimuli, and therefore semantic access to a meaning rep-
resentation, processing times are expected to be largely in-
fluenced by semantic effects (Connell & Lynott, 2013; Estes,
2003; Gagné, 2000).

Linguistic Baseline Measures

The focus of the present study lies on investigating the im-
pact of a vision-based conceptual combination process on
response times when processing compound words. Since
all our experiments employ inherently linguistic tasks (par-
ticipants read words and have to respond to them, with-
out any instruction or requirement for mental imagination
or visual simulation), we consider as a baseline a vari-
ety of language-based lexical and semantic parameters that
are known to influence the processing of compound words
(Giinther & Marelli, 2019a; Kuperman, Bertram, & Baayen,
2008; Kuperman, Schreuder, Bertram, & Baayen, 2009). All
language-based measures were derived for the whole set of
736 target compounds.

Compound length was defined as the number of
letters in a compound. Word frequency measures — modi-
fier (left-hand constituent) frequency, head (right-hand con-
stituent) frequency, and compound frequency — were ob-
tained from the same ~ 2.8 billion word source corpus from
which the language-based representations were derived. All
frequencies were logarithmized when entered in any analy-
sis. Modifier and head family sizes (the number of compound
types sharing the respective constituent) were obtained from
the 5,988-word training set for the language-based CAOSS
model, which our training approach assumes to be a repre-
sentative set of compounds in the source corpus. The three
language-based compositional measures were computed as
the cosine similarity between the language-based composi-
tional meaning of the compound and (i) the modifier meaning
(modifier composition), (ii) the head meaning (head compo-
sition), and (iii) the whole-word compound meaning (com-
pound compositionality), see Table 2 and Figure 2 (lower-left

part).
Vision-based Measures of Compositionality

We computed two vision-based measures of compositional-
ity as the cosine similarity between the vision-based compo-
sitional representation of the compound and (i) the vision-
based prototype representation of the modifier (visual mod-
ifier composition), and (ii) the vision-based prototype repre-
sentation of the head (visual head composition), see Table 2
and Figure 2 (lower-right part). These vision-based measures
were obtained for the 736 target compounds. Out of these
736 items, we then excluded 10 items for which both vi-
sual modifier and head composition had values below -.2, be-

cause strong negative cosine similarities are not interpretable
(McNamara, Cai, & Louwerse, 2007).

The correlations between all semantic variables
(vision- and language-based) are displayed in Table 3. No-
tably, for the vision-based model, these two composition
measures are highly correlated (r = .72) — which is not
the case for the language-based model (r = —.13; see Ta-
ble 3). Thus, the notion of “partial transparency” (Libben et
al., 2003; Zwitserlood, 1994) seems to be far less relevant
for vision-based representations, where compositionality ap-
pears to be a rather unidimensional construct. At this point,
we can only speculate as to why this is the case. One pos-
sibility is that linguistic meanings “react more strongly” to
asymmetries: The word usage patterns — and thus, according
to the distributional hypothesis (Harris, 1954; Lenci, 2008),
the meaning — of swordfish will be very similar to fish but
not to sword; similarly, the usage pattern of stairwell will
be very similar to stair but not to well. However, the visual
representation of swordfish still shares many visual features
with a sword, and that of a stairwell with a well, even if this
similarity is not reflected in the way we talk about these con-
cepts. Additionally, as is evident in the well example, the
vision-based model might be less susceptible to homonymy
and polysemy (which can dilute language-based similarities)
— we only have visual representations for the object-related
meanings of words, not for all the other possible meanings.

Thus, since visual modifier and head composi-
tion appear to measure very similar constructs, we sub-
sumed these variables in the single parameter visual compo-
sition, defined as the average of the two measures, to avoid
collinearity-related issues such as suppression in our statis-
tical analyses. Correlations between language- and vision
based measures of compositionality were quite low (r = .17
for both the correlation between language- and vision-based
modifier composition and head composition), indicating that
the language- and the vision-based (composition) models in-
deed capture different pieces of information. Note that no
visual equivalent to compound compositionality was com-
puted, since no images (and therefore no observed, “whole-
word” vision-based representations) are available in Ima-
geNet for 352 out of 736 compounds in the dataset.

Having established these measures, we can re-
consider the swordfish example: Its language-based modi-
fier composition (.40) has a percentile value of 44.8 within
the set of 726 compounds for which vision-based represen-
tations are available, while its language-based head compo-
sition (.57) has a percentile value of 94.6. On the other hand,
its vision-based modifier composition (.89) has a percentile
value of 90.9, while its vision-based head composition (.82)
has a percentile value of 63.4. As can be seen from this
example, integrating sword into the combined concept of
swordfish is indeed easier when considering visual informa-
tion rather than linguistic data.
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Table 2

Language- and vision-based measures of semantic compositionality. All similarities are defined as cosine similarities between
the respective vector representations (language-based word embeddings or vision-based prototype vectors). Abbreviation:

cmpd. for compound, vis. for visual.

type measure definition

examples

language-based  modifier composition
head composition

compound compositionality

vision-based vis. modifier composition

vis. head composition

cos(modifier, compositional cmpd.)
cos(head, compositional cmpd.)

cos(whole-word cmpd., comp. cmpd.)

cos(vis. head, vis. compositional cmpd.)

low: reindeer, wormwood
high. millstone, roadhouse
low: stairwell, hornbill
high: firewater, silverfish
low: windfall, clubfoot
high: saucepan, sugarcane

cos(vis. modifier, vis. compositional cmpd.)

low: deerskin, fingerprint
high: tramcar, hillside
low: witchdoctor, beetroot
high: shipwreck, soybean

Table 3

Correlations between measures of language- and vision-based compositionality.

head comp. comp. compos. | vis. mod. comp  vis. head comp | vis. composition

mod. comp. -.13 18 1 17 -.01 1 .08

head comp. .16 : .03 17 : 11

comp. compos. | 13 A4 14

vis. mod. comp [ 20 92

vis. head comp ‘ ‘ .94
Results heads. These random effects were included to capture the

Having computed all required measures, we test for each
of the three tasks investigated here (naming, lexical deci-
sion, timed sensibility judgments) the hypothesis that dif-
ferences in vision-based compositionality (as measured by
the visual composition metric) predict the performance in
behavioral tasks over and above language-based effects —
including lexical (length, logarithmic constituent and com-
pound frequencies, family sizes) as well as semantic vari-
ables (Table 2). This analysis therefore concerns effects
within the set of compounds for which visual composition
values can be derived. An additional analysis demonstrat-
ing that there are also systematic processing differences be-
tween these compounds and non-visually-represented ones
— in line with a general concreteness/imageability effect in
compounds (Feldman, Basnight-Brown, & Pastizzo, 2006;
Schmidtke & Kuperman, 2019; see Paivio, 1966, 1986) — is
provided in Supplementary Material A.

The testing procedure is displayed in Figure 4. For
each task, we estimated a baseline Linear Mixed Effect
Model (Baayen, Davidson, & Bates, 2008) to predict the de-
pendent variable, using the R packages Ime4 (Bates, Michler,
Bolker, & Walker, 2015) and ImerTest (Kuznetsova, Brock-
hoff, & Christensen, 2017). As predictors, this model con-
tained all language-based lexical and semantic measures, as
well as random intercepts for the compound modifiers and

partial repeated-measure structure of the data resulting from
repeated modifiers and heads, and to account for item vari-
ability without introducing an idiosyncratic effect for each
item (since we have exactly one observation per item in each
analysis). We then estimated another model, containing the
very same parameters plus an additional parameter for visual
composition. The resulting model was then compared to the
baseline model using a likelihood-ratio test, to test whether
the inclusion of the additional parameter significantly im-
proved the model fit.

Obviously, the resulting models will contain many
non-predictive parameters from the baseline models, some
of which are correlated to other variables, rendering the pa-
rameters of any resulting model difficult to interpret. In or-
der to obtain interpretable final models, we removed all non-
significant effects of the final models in a step-wise backward
selection procedure (Kuznetsova et al., 2017).

The raw data and R scripts for all analyses reported
here are available at the Open Science framework (https://
doi.org/10.17605/0SF.I0/KMRV7).

Response Times

Response times were log-transformed for the analyses
(Baayen & Milin, 2010). In all four experiments, includ-
ing a visual composition parameter significantly improves
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Linguistic Baseline

Likelihood-ratio Test

Linguistic Baseline
+ Visual Composition

Step-wise Back-
ward Selection

Final Model

Figure 4. The testing procedure applied for the analyses presented here.

the baseline model (naming: )(2(1) = 4.49, p = .034; lexical
decision: y*(1) = 4.35, p = .037 in the ELP, y*(1) = 4.37,
p = .037 in the BLP; timed sensibility judgments: y*(1) =
6.13, p = .013). The final model parameters predicting re-
sponse times (after elimination via backwards selection) for
all three tasks are displayed in Table 4. Variance inflation
due to collinearity was not an issue for any reported model
(variance inflation factors for all variables between 1.01 and
1.17, estimated using the R package usdm; Naimi, Hamm,
Groen, Skidmore, & Toxopeus, 2014). The visual composi-
tion parameter in all resulting models is negative, indicating a
facilitatory effect of vision-based compositionality: the more
easily the denoted object can be visually composed, the faster
are the observed response times to the word.

In a follow-up analysis to compare task effects, we
then estimated an overall model for the three tasks (naming,
ELP lexical decision, timed sensibility), including as fixed
effects all possible interactions between the predictors and
a dummy variable encoding the task, as well as random in-
tercepts for modifiers and heads. The BLP data was not in-
cluded in this analysis, since it contains fewer items than the
other tasks. To specifically test if the visual composition ef-
fect is different between tasks, we compared this full model
with a model that contains the same fixed effect structure ex-
cept for the interaction between task and visual composition.
Removing this interaction did not significantly affect model
predictions (y*(2) = 1.21, p = .545); we therefore have no
indication for a task-dependency of the visual composition
effect. The parameters of the final model after exclusion of
non-significant parameters via backwards selection is pro-
vided in Table 5.

Note that, while the study by Giinther and Marelli
(2019a) observed effects of modifier- and head-composition
in a lexical decision task, the same pattern did not emerge in
the present study (see Table 4). A post-hoc analysis estab-
lishing the conformity between our present results and those
of the Giinther and Marelli (2019a) study is provided in Sup-
plementary Material A.

Accuracy

We further investigated accuracy data across all four experi-
ments. However, since the tasks are relatively easy, accuracy
data is extremely skewed in all of them, with very high or
even perfect accuracy for a large majority of items (median
accuracies are .92 for the timed sensibility task, .94 for the
ELP lexical decisions, .90 for the BLP lexical decisions, and
1.00 for naming). Accuracy values were logit-transformed
for this analysis (replacing values of 0.0 with 0.1 and 1.00
with .99, since the logit for these values is infinity.)

The visual composition parameter significantly improves
the baseline model in the two lexical decision tasks (ELP:
x?(1) = 5.76, p = .016; BLP: y*(1) = 5.33, p = .021) and in
the timed sensibility judgment task (y*(1) = 7.94, p = .005).
Visual composition did not predict the accuracy in the nam-
ing task (y2(1) = 0.10, p = .753), but there is extremely
little variance to explain in naming accuracy in the first place
(mean = .98, Q| = .96, median = 1.00).

The final model parameters predicting accuracies (after elim-
ination via backwards selection) for all three tasks are dis-

*Note again that the BLP analysis is based on 532 out of the 726
items in the other analyses.
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Table 4

Model parameters — regression weights (t-values) — predicting logarithmic response times in the final models (after elimina-
tion of non-significant parameters via backwards selection), for all four analyses. Abbreviations: modifier (mod.), compound
(comp.), frequency (freq.). Only the significant effects which remain in the resulting models are displayed (p < .05).

type parameter naming LDT (ELP) LDT (BLP) timed sensibility
intercept 6.74 (124.69) 6.89 (111.52) 6.82 (317.72) 711 (124.72)
777777 lexical ~ lemgth 003 (10.100  0.03 (7200 002 = (402)
comp. freq. -0.02 (-8.96) -0.05  (-13.72)  -0.04 (-15.35) -0.04  (-11.67)
mod. freq. -0.01 (-4.17) -0.01 (-3.69)
head freq. -0.01 (-3.80)
mod. family size -0.001 (-2.11)
head family size 0.01 (3.42)
" language-based  mod. compositon 012 (207
head composition -0.14 (-2.78)
comp. compos. 0.10 2.11)
~ vision-based visual composition ~ -0.04 ~ (-2.11)  -0.05 (2.08) -005 (253)  -0.06  (-2.37)

Table 5

Model parameters — regression weights (t-values) — predicting log-transformed response times in the overall task-combined
analysis (after elimination of non-significant parameters via backwards selection). The ELP lexical decision task serves as a
reference level for this analysis. Abbreviations: modifier (mod.), compound (comp.), frequency (freq.), timed sensibility (TS).
Only the significant effects which remain in the resulting models are displayed (p < .05).

type parameter b t
intercept  7.04 (102.51)
7777777 task ~ naming -021  (-3.49)
TS 0.02 (0.40)
C lexical length -0.03 ~ (7.45)
comp. freq. -0.04 (-12.85)
mod. freq. -0.01 (-2.84)
head freq. -0.01 (-1.96)
mod. family size -0.00 (-0.84)
"~ task:lexical  naming:length -0.00  (0.16)
TS : length  -0.01 (-2.20)
naming : comp. freq. -0.02 (5.16)
TS : comp. freq. -0.00 (-0.90)
naming : head freq. -0.00 (-0.79)
TS: head freq.  0.02 4.67)
naming : mod. family size -0.00 (-1.19)
TS : mod. family size  0.00 (1.84)
" language-based ~ mod. composition -0.01  (-2.42)
 vision-based visual composition -0.01 ~ (-3.00) -

played in Table 6. Variance inflation factors for all variables
lay between 1.0 and 1.11, indicating no collinearity issues.
The visual composition parameter in all resulting models is
positive, so the more easily the denoted object can be visually
composed, the more likely participants are to give the correct
answer in lexical decision and timed sensibility judgments.

In the overall analysis of accuracy data (which was
set up analogously to the overall analysis for response times),

we observe an interaction between visual composition and
task (removing this parameter leads to significantly worse
model ﬁt;XZ(Z) = 8.44, p = .015). This is due to the fact that
the visual composition effect is absent in naming accuracies
(see Table 7, which displays the parameters of the final model
after exclusion of non-significant parameters via backwards
selection). However, as already noted, one should be careful
in the interpretation of these naming accuracies.
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Table 6

Model parameters — regression weights (t-values) — predicting logit-transformed accuracies in the final models (after elim-
ination of non-significant parameters via backwards selection), for all three tasks. Note for parameter interpretation that
logit(.50) = 0, and logit(.99) = 4.60. Abbreviations: modifier (mod.), compound (comp.), frequency (freq.). Only the significant
effects which remain in the resulting models are displayed (p < .05).

type parameter naming LDT (ELP) LDT (BLP) timed sensibility
intercept  1.59 (14.53) -1.00 (-3.94) -1.48 (-7.47) -0.16 (-0.49)
777777 lexical ~~ length -0.02 (2260 006 (322)
comp. freq. 0.04  (6.18) 0.13 (9.06) 032 (14.17) 023 (13.51)
mod. freq.  0.03  (3.53) 0.10 (5.36) 0.05 (2.41)
head freq. -0.05 (-2.77)
" language-based  mod. composition 066 (67 057  (2.18)
 vision-based  visual composition 025 (237) 046 (274 033  (2.77)

Table 7

Model parameters — regression weights (t-values) — predicting logit-transformed accuracies in the overall task-combined
analysis (after elimination of non-significant parameters via backwards selection). The ELP lexical decision task serves as a
reference level for this analysis. Abbreviations: modifier (mod.), compound (comp.), frequency (freq.), timed sensibility (TS).
Only the significant effects which remain in the resulting models are displayed (p < .05).

type parameter b t
intercept -0.84 (-2.76)
7777777 task  naming 199 (7.73)
TS 0.58 (2.25)
© lexical  length 0.0l (0.66)
comp. freq. 0.12  (9.67)
mod. freq. 0.01 3.17)
head freq. 0.03 (1.87)
mod. family size 0.01 (245
 task:lexical 1 naming : length ~ -0.04  (-2.37)
TS : length -0.08 (-4.76)
naming : comp. freq.  -0.10 (-6.38)
TS : comp. freq. 0.10  (6.09)
naming : head freq. -0.02  (-1.35)
TS: head freq. -0.06 (-4.15)
naming : mod. family size -0.004 (-3.55)
TS : mod. family size -0.004 (-3.23)
" language-based ~ mod. composition ~ 0.51  (2.85)
" vision-based visual composition ~ 0.22  (2.31)
naming : visual composition  -0.22  (-2.08)
TS : visual composition 0.11  (1.03)

Discussion

In the present study, we investigated effects of vision-based
compositionality — that is, the ease of combining the visual
representations of the objects denoted by compound con-
stituents into a single newly-composed representation — on
the processing of compound words. To this end, we consid-
ered four large-scale behavioral experiments of compound
word processing employing three different tasks: a naming
experiment, two lexical decision experiments, and a timed

sensibility judgment experiment. In principle, these tasks re-
quire different degrees of semantic processing to be success-
fully performed. Across tasks, we found that vision-based
compositionality predicts compound processing times and
accuracies over and above a baseline of language-based mea-
sures of semantic compositionality and other lexical vari-
ables. Leaving aside the overall extremely high naming
accuracies, we find no indication for a difference in the
strength of the visual composition effect between different
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tasks. This indicates that compound processing entails an
automatic compositional process combining the constituent
meanings, and further indicates that such composition is also
grounded in perceptual experience.

Perceptually-Grounded Conceptual Combination

Critically, the present results characterize this meaning-
composition process not as a purely language-based compo-
sition of lexical meanings, but rather as a full-fledged con-
ceptual combination process that also relies on the perceptu-
ally grounded information available for the constituent con-
cepts (Lynott & Connell, 2010; Wu & Barsalou, 2009). In-
deed, the vision-based component even appears to be more
adequate to characterize the conceptual combination pro-
cess, as we find vision-based effects of compositionality even
when language-based compositionality effects are relatively
weak.

To our knowledge, the present study is the first to systemati-
cally examine perceptually grounded effects at a sub-lexical
composition level. While semantic effects in the processing
of morphologically complex words have received consider-
able research attention, this research line was so far based on
language-centric conceptualizations of semantic representa-
tion (e.g., Giinther & Marelli, 2019a; Libben et al., 2003;
Schmidtke, Van Dyke, & Kuperman, 2018; Marelli & Ba-
roni, 2015; Marslen-Wilson, Tyler, Waksler, & Older, 1994;
Rastle, Davis, Marslen-Wilson, & Tyler, 2000; Sandra, 1990;
Smolka, Preller, & Eulitz, 2014; Zwitserlood, 1994). How-
ever, as indicated by the present results, a wider conceptual-
level approach that also considers perception-based represen-
tations and processes (Barsalou, 1999; Kelter & Kaup, 2012;
Zwaan & Madden, 2005) might be more adequate to inves-
tigate semantic effects than an approach narrowed down to
lexical-meaning representations.

On the other hand, embodied theories of concep-
tual combination (Lynott & Connell, 2010; Wu & Barsalou,
2009) are typically concerned with novel multi-word com-
binations rather than familiar complex words, and focus on
explicit interpretations rather than on-line processing. Thus,
up to now, the literature on embodied cognition and on mor-
phological processing seem to have completely ignored each
other. The most similar study to the one presented here was
conducted by Connell and Lynott (2011), who investigated
processing times in an interpretation task for 27 novel two-
word phrases (similar to the timed sensibility task employed
in the present task). However, our study significantly ex-
tends upon this study, by employing two other tasks which do
not necessarily require semantic processing and are heavily
employed in the morphological processing literature (naming
and lexical decision), by employing independently-obtained,
data-driven measures rather then researcher intuitions, and
by testing item sets that are many times larger than the one
by Connell and Lynott (2011).

Furthermore, the present study demonstrates
perceptually-grounded combination in existing rather than
the novel combinations which so far have been the focus
of the embodied conceptual combination literature. We thus
bring together the research lines on morphological process-
ing on the one hand, and embodied cognition on the other
hand, which have so far been completely disconnected. How-
ever, their topics of interest have much in common: Both
examine how we are able to extract meaning from the ar-
bitrary flow of symbols that is language, and how the form
of these symbols is systematically connected to the concepts
and mental representations for which it serves as a cue. Fur-
ther, both fields have already been linked with conceptual
combination, which plays a vital role in advancing our con-
ceptual system (El-Bialy et al., 2013; Gagné & Spalding,
2004; Ji, Gagné, & Spalding, 2011; and Lynott & Connell,
2010; Wu & Barsalou, 2009) — although one can argue that
this connection is also under-explored from both sides. The
present study demonstrates that these research lines naturally
complement one another, and that their potential synergy can
result in new insights furthering our understanding in all in-
volved fields.

Importantly, none of the tasks employed here re-
quired or even encouraged participants to engage in mental
imagination or visual simulation. Rather, all three experi-
ments employed completely language-centered tasks, two of
which (naming and lexical decisions) do not even, in princi-
ple, require any kind of semantic processing. As highlighted
by Ostarek and Huettig (2019), these are no trivial condi-
tions for observing effects of sensorimotor activation: These
effects are often only found when sensorimotor simulation
processes are explicitly encouraged, and there are serious
doubts that such processes are automatic (Lebois, Wilson-
Mendenhall, & Barsalou, 2015). Nevertheless, our findings
are in line with results from previous studies: Petilli et al.
(2019) found that the visual similarity between prime-target
word pairs (also measured via the VGG-F model, Chatfield
et al.,, 2014) predicted semantic priming effects in a lexi-
cal decision task. Giinther and Marelli (2019a) observed
an automatic effect of semantic compositionality in a lexi-
cal decision task, which was interpreted as reflecting con-
ceptual combination; and at the same time, Wu and Barsa-
lou (2009) demonstrated that participants engage in per-
ceptual simulation during conceptual combination, irrespec-
tive of whether they were instructed to do so. Considering
these findings alongside our present results, we conclude that
conceptual combination always involves the combination of
perceptually-grounded information. Of course, we assume
that this only happens in cases where perceptual experience
with the constituents is available.

This is in line with the LASS (language and sit-
uated simulation) theory of embodied language processing
by Barsalou et al. (2008), which postulates that both lin-
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guistic processing and perceptually-grounded simulations al-
ways take place during conceptual processing. According
to the LASS theory, the relative role of these two compo-
nents varies greatly depending on the task requirements: In
explicitly perceptually-related task, such as the generation of
perceptual features for objects, perceptual simulation should
play the leading role. However, in tasks that require relatively
shallow processing — such as lexical decision or naming —
linguistic processing should be sufficient for successful per-
formance and therefore play the leading role, with perceptual
simulation hardly being involved. The present results refine
this picture, while still adhering to the general reasoning by
Barsalou et al. (2008): If a processing step runs automati-
cally (as in the case of conceptual combination processes),
it will influence performance in the task irrespective of task
demands. This is a common finding across the psycholog-
ical literature: For example, already the classic study by
Stroop (1935) demonstrates that completely task-irrelevant
processes (in this case reading and, in fact, semantic access
to the respective word meanings) affect task performance, if
they are executed automatically.

Implications of the Model Architecture

Being implemented on powerful, data-driven models of lin-
guistic and visual representation (Chatfield et al., 2014;
Mikolov, Chen, et al., 2013), our model allows us to test
precise, quantitative predictions for effects of vision- and
language-based semantic compositionality in the process-
ing of complex words. This enables us to investigate large
datasets of items, for which predictions based on human intu-
ition would be extremely laborious to collect, and most likely
highly ambiguous or inconsistent for many items. To our
knowledge, the present study is the first to put forward a fully
implemented, cognitively plausible, and structure-sensitive
model of vision-based conceptual combination that is tested
on large-scale behavioral datasets. The closest candidate for
such a model so far was presented by Pezzelle, Shekhar,
and Bernardi (2016), who proposed a compositional model
based on simple vector addition. However, these authors
only tested the model predictions internally, as the corre-
spondence between the model-predicted compositional vec-
tors with observed vectors for images depicting compound
word referents. In addition, on an empirical level, studies
in the language domain have demonstrated that a CAOSS-
style model outperforms simple vector addition, also when
it comes to maximizing the correspondence between model-
predicted and observed vectors (Dima, 2015). And on a
theoretical level, simple vector addition implies implausi-
ble assumptions about compounding (Marelli et al., 2017):
For example, differential constituent roles cannot be consid-
ered, despite the fact that compounds are inherently asym-
metric constructions (Di Sciullo, 2005; a houseboat is not a

_— S — —
boathouse, but house + boat = boat + house).

It is also important to note that the vision-based
compositional model, although trained on representations
induced from images, also builds on linguistic categoriza-
tions, since it moves from images that are annotated with
linguistic labels — in this case, compounds and their con-
stituents. For example, the training item houseboat will be
a vision-based representation constructed from images la-
beled as houseboat, which is to be predicted from a repre-
sentation based on images labeled as house and represen-
tation based on images labeled as boat. Since the training
item is a compound word, the model will be fed a structure
that it can adapt to: One constituent is in the left-hand posi-
tion and will be updated through the weight matrix M, and
the other is in the right-hand position and will be updated
through another weight matrix H. Critically, these positions
are not arbitrary in English compounds: In most cases, the
word in the right-hand position specifies the object category
(a houseboat is a kind of boat). While it could be argued
that this imposes a language-based structure on the vision-
based system, we would attribute this structure to a concep-
tual rather than a linguistic level: A combination of visual
objects (or the corresponding vision-based representations)
is not just a symmetric blending of visual features, and the
visual features are combined differently in a boathouse than
in a houseboat. Training the CAOSS matrices of the vi-
sual composition model on compounds allows them to cap-
ture this structure, if needed. For example, one could spec-
ulate that the right-hand constituent, typically defining the
compound category, provides more shape-related informa-
tion about the resulting combined representation than the
left-hand constituent: A bluebird, redbird and blackbird have
very similar shapes, and differ mostly in color.

Importantly, our architecture relies on the exact
same compositional system (although applied on different in-
put vectors and training sets) to derive language- and vision-
based representations for combined concepts (the CAOSS
model, Marelli et al., 2017). Thus, while this compositional
model is quite simple (it learns a weighted-addition combi-
nation function from experience with combinations of the
same type, and then applies what it learned to combine new
elements), it is flexible enough to handle different types of
input derived from qualitatively very different sources. In
fact, Glinther and Marelli (2019a) already proposed that the
CAOSS model is not restricted to distributional word embed-
dings (on which it was originally implemented), but can be
applied for any type of vector-based dimensional represen-
tation. Thus, unlike previous theories of embodied concep-
tual combination (Lynott & Connell, 2010; Wu & Barsalou,
2009) we don’t have to assume any qualitative differences in
the conceptual combination procedure for different types of
input; the architecture proposed here at most warrants grad-
ual differences in the weighting of dimensional attributes.

In a more general context, our approach is based
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on the fundamental assumption that the cognitive system uti-
lizes and adjusts to statistical regularities in the environment
to construct mental representations and concepts (Giinther et
al., 2019; Ramscar, Hendrix, Love, & Baayen, 2013). This
assumption constitutes the basis for both the language-based
model (Landauer & Dumais, 1997; Westbury, 2016) and the
vision-based model (Chatfield et al., 2014; Krizhevsky et al.,
2012), as well as the compositional system itself (Marelli et
al., 2017). This perspective directly parallels core theoretical
proposals both in the fields of embodied cognition (Zwaan
& Madden, 2005) and morphological processing (Baayen,
Milin, Filipovi¢ Purdevié, Hendrix, & Marelli, 2011; Giin-
ther, Smolka, & Marelli, 2019; Milin, Feldman, Ramscar,
Hendrix, & Baayen, 2017; Rastle, 2018), which attribute a
central role in shaping the cognitive system and its repre-
sentations to learning systematic patterns linking linguistic
forms on the one hand to meaning representations and con-
cepts on the other hand.

While in the present study we focused on the visual
domain to approximate sensorimotor experience, we are of
course not implying that visual experience is the only rel-
evant type of such experience. Still, the visual domain is
arguably the most prominent one, in our cognitive represen-
tations as well as in psychological and cognitive science re-
search. As a result, vast amounts of work have been invested
in the field of computer vision over the last years (as of this
writing, the study Krizhevsky et al., 2012, alone is cited over
55,000 times on Google Scholar), and models of visual rep-
resentation are in a state where they produce high-quality re-
sults (Zhang et al., 2018). Nevertheless, as discussed in the
previous paragraph, our model architecture is flexible enough
to perform combinations of any type of vector representa-
tion. At the same time, recent studies have started to propose
models to obtain auditory (Kiela & Clark, 2015; Lopopolo &
Miltenburg, 2015) or even olfactory representations (Kiela,
Bulat, & Clark, 2015). As these models start to produce
high-quality representations, they can be easily integrated in
the architecture proposed here, and other modalities can be
considered alongside vision.

Note that, in the model architecture presented here,
the language- and vision-based systems essentially run “in
parallel”, with two separate compositional systems associ-
ated with them. With this, we don’t want to claim that we
have separate mental representations for a single concept,
and separate combination systems, each informed by a spe-
cific modality. Instead, we opted for this approach in order
to disentangle the information provided from different input
systems, and to test for the specific influence of vision-based
information over and above what is available purely from
language input. To this end, we computed and employed a
variable exclusively encoding this information (visual com-
position), which allows us to estimate the additional predic-
tive power brought specifically by information from the vi-

sual domain.

In principle, there is also the possibility to combine
language- and vision-based vectors to derive a unitary rep-
resentation for each concept, for example by concatenating
them (Andrews, Vigliocco, & Vinson, 2009; Bruni, Tran,
& Baroni, 2014) or mapping the two systems onto one an-
other (Lazaridou, Pham, & Baroni, 2015; Lazaridou et al.,
2017). However, such approaches come with their own prob-
lems: The relative number of dimensions from the language-
and the vision-based part is arbitrary, but in a concatenation-
based system this parameter will impact our composition
model, whose weight matrices capture the influence that ev-
ery input element has on every output element. Also, while
at first appearing cognitively plausible, concatenation-based
models cannot effectively account for concepts for which no
information is available from one source.

Additionally, in all these models, language- and
vision-based representations are acquired from completely
independent contexts and training instances. Therefore, to
reach a truly realistic model, we advocate for an approach
that learns language- and vision-based representations from
the very same contexts, in which linguistic and visual expe-
rience co-occur together (see Gilinther et al., 2019, for a the-
oretical proposal of such a model based on the experiential
trace model by Zwaan & Madden, 2005).

Automatic Compositional Processes

The assumption that the effects of compositionality reported
here are due to an active meaning-composition process and
not to activation of information linked with a stored whole-
word representation is in line with earlier empirical results
and theoretical arguments: First, compositionality is a prop-
erty that by definition involves not only the compound rep-
resentation, but also the constituent representations. In this
context, Giinther and Marelli (2019a) have demonstrated that
the interplay between compound and constituent representa-
tions in compound processing has to be understood in com-
positional terms, since processing times are only explained
by the contribution of constituents to the compositional com-
pound representation, and not by their semantic relatedness
to the whole-word compound representation.

This still leaves open the possibility that, once constructed,
the compositional representation is stored alongside with,
or in addition to, the whole-word representation. However,
this can severely hinder access to the whole-word represen-
tation required for actual comprehension in the case of non-
compositional, opaque compounds, and at best not be helpful
for highly compositional compounds. Thus, compositional
representations are expected to be helpful only in on-line pro-
cessing, where we don’t know whether we are familiar with a
given complex word (El-Bialy et al., 2013) — and in order to
understand novel words, engaging in a compositional process
is necessary. However, due to this very fact, the meaning-
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composition process is initiated and executed in any case:
Delaying it would cause a breakdown in understanding in
cases where it is actually needed (Libben, 2014), and in the
majority of cases where the compound is transparent (we also
cannot know in advance whether the word might be opaque;
Rastle & Davis, 2008), the compositional process can facil-
itate access to the whole-word meaning and thus word com-
prehension. In fact, this assumption is supported by recent
studies demonstrating that the compositional semantic ef-
fects in novel compound processing mirror those for existing
words (Giinther & Marelli, in press; Giinther et al., in press).

Such an automatic process of conceptual combina-
tion necessarily requires that the individual constituent rep-
resentations have been identified from the compound, which
is encountered as a single character string. In the morpholog-
ical processing literature, several models have been proposed
and discussed how this can be achieved (for an overview, see
Amenta & Crepaldi, 2012): The activation of morphology-
related information can be the result of a meaning-blind,
automatic decomposition process that segments any seem-
ingly morphologically-complex string into its potential con-
stituents (Marslen-Wilson et al., 1994; Rastle, Davis, & New,
2004; Rastle & Davis, 2008); however, it can even be con-
sidered a by-product of a learned systematic mapping be-
tween orthographic cues and lexico-semantic representations
(Baayen et al., 2011; Milin et al., 2017). In this context,
it has already been argued that the function and purpose of
this process is to identify the constituents that subsequently
serve as the building blocks for a concept-composition pro-
cess (this argument is explicit in the study by Rastle &
Davis, 2008). This in turn enables speakers to rapidly under-
stand the meaning of novel combinations in natural language
(Libben, 2014), which in turn allows us to use such combina-
tions to communicate of new ideas, and to create new words
to express a new meaning when we need it (Downing, 1977).

However, with this emphasis on compositional pro-
cessing we don’t want to claim that the whole-word com-
pound representation is irrelevant for the representation and
processing of existing compounds. At some point dur-
ing processing, the whole-word representation clearly is ac-
cessed, which is for example demonstrated by the consis-
tently strong compound frequency effect over and above the
constituent frequency effects (see Table 4 and Table 6). In
addition, the effect of compound compositionality (the simi-
larity between the language-based compositional and whole-
word meaning) in the ELP lexical decision data indicates that
also the whole-word meaning of the compound is accessed.
Furthermore, Giinther et al. (in press) investigated semantic
effects across multiple tasks, and observed that the whole-
word meaning plays a central role for explicit judgments on
the compound meaning (see also Marelli & Baroni, 2015).

Compositionality beyond compounds

In the present article, we focused on compounds as composi-
tional expressions that can be used to convey new meanings,
and that reflect the cognitive operation of conceptual com-
bination in the linguistic domain. However, compounds are
only one instance of such expressions. We are confident that
the general framework of our computationally-implemented,
perceptually-grounded conceptual combination model can
be adapted to other constructions related to the same phe-
nomenon:

At the individual-word level, affixed words such as rewrite
or solidify also are combinations of two meaning-bearing el-
ements, the difference to compounds being that only one of
the constituents (the stem) can occur as a free word, while
the other (the affix) is a bound morpheme that cannot oc-
cur in isolation. Nevertheless, affixation is also a productive
word-formation technique, and can thus be used to composi-
tionally produce new meanings (such as reinsult). In empir-
ical studies, it has been shown that a compositional distribu-
tional semantic model very similar to the CAOSS model (the
FRACSS model, Marelli & Baroni, 2015) can successfully
predict the meaning of such words, and empirical data such
as explicit judgments and processing times. In this model,
each affix is conceptualized as a separate weight matrix that
is applied to the distributional vector representing the free
word meaning of the stem (for a similar, linear-mapping
based approach that does not require separate representa-
tions for each affix, see Baayen, Chuang, Shafaei-Bajestan,
& Blevins, 2019). As long as vision-based representations
for the stems are available, this framework can be adapted
to model perceptually-grounded conceptual combination in
affixed words, analogously to the CAOSS-based model in-
troduced in the present study.

The same argument can be made for phrases consisting of
more than one individual word, such as adjective-noun con-
structions. These expressions have been the focus of the
earliest conceptual combination theories (Smith & Osherson,
1984), and arguably take an even more prominent position in
this line of literature than compounds do (Murphy, 2002; Ran
& Duimering, 2009). This is interestingly paralleled by the
development of compositional distributional semantic mod-
els, which also started with a strong focus on adjective-noun
combinations (Baroni & Zamparelli, 2010; Mitchell & Lap-
ata, 2010) and have been demonstrated to predict explicit par-
ticipant judgments on the sensibility of such phrases (Vecchi,
Marelli, Zamparelli, & Baroni, 2017). Again, these models
can be straightforwardly adapted to take vision-based repre-
sentations as input.

Thus, since conceptual combination is defined as the com-
bination of multiple meanings into a single new one, we are
confident that variations of the model presented here can be
adapted for any compositional process whose result can rea-
sonably be described as a “single concept”. At the level of
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larger constructions, such as sentences or whole texts, psy-
chological models of meaning construction usually shift to-
wards a different level of description (mental models that in-
clude relations between many concepts, instead of concep-
tual combination; e.g. Johnson-Laird, 1983; Kintsch, 1988),
and compositional distributional semantic models tend to de-
scribe very different phenomena with very different methods
(e.g. Coecke, Sadrzadeh, & Clark, 2010).

Conclusion

In the present study, we advocate the view that concepts are
formed through all experience available with them (Zwaan
& Madden, 2005; see also Giinther et al., 2019). Some of
their constituting and associated information might be lin-
guistic, other information grounded in sensorimotor experi-
ence, with the relative proportion depending on the experi-
ence we make (Giinther et al., 2018). When performing cog-
nitive operations on these concepts, such as conceptual com-
bination, we use the information and integrated experience
available to us (Barsalou, 2008; Wu & Barsalou, 2009), as
there is no reason to discard portions of it due to the modality
through which it was acquired. In this perspective, processes
involving the activation and mental manipulation of concepts
— such as the processing of morphologically complex words
— are routinely influenced by the available information from
different sources. The present study empirically supports this
view, by identifying effects of vision-based compositional-
ity in four large-scale experiments employing three different,
purely linguistic tasks. Due to the automatic nature of this
concept-combination process, these perceptually-grounded
compositional effects emerge even during the processing of
existing, familiar complex words which already have a de-
fined meaning in the reader’s mind.
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Supplementary Material A: Follow-Up Analyses
Follow-Up Analysis 1: Conformity with Previous Results

Lexical decision data obtained from the English Lexicon
Project (Balota et al., 2007) — albeit a considerably larger
dataset, since it was not required that vision-based represen-
tations were available — was already employed in the study
by Giinther and Marelli (2019a), which focused on investi-
gating language-based measures of compositionality. While
the study by Giinther and Marelli (2019a) observed effects
of modifier and head composition, the same pattern did not
emerge in the present study (see Table 4 of the main article).
However, these differences can potentially be attributed to
two different factors: On the one hand, there are slight differ-
ences concerning the parametrization of the language-based
model between the present study and the previous one. The
CAOSS model in the previous study was estimated from a
smaller training set, and other frequency-cutoff criteria were
applied for the training of word embeddings. On the other
hand, the present study employs a systematically selected
item set that is significantly smaller than the previous one,
since only compounds with visual representations associated
to both their constituents have been investigated here.

To ensure that the parameter choices for the language-based
model did not cause changes in the pattern of results, we
replicated the analysis by Giinther and Marelli (2019a) with
our present language-based model. We first estimated a Lin-
ear Mixed Effects Model to predict logarithmic lexical de-
cision response times for the larger set of all 1,443 com-
pounds included in all three behavioral datasets which oc-
curred more than 50 times in the source corpus (i.e., also
considering compounds for which vision-based representa-
tions were not available). As predictors, this model con-
tained random intercepts for modifiers and heads, as well as
fixed effect parameters for compound length, modifier, head,
and compound frequencies, and (language-based) modifier
and head composition (Giinther & Marelli, 2019a). As in
the previous study, both constituent-composition parameters
significantly predicted response times (see Table 8, middle
column). Thus, differences in the model setup are not re-
sponsible for the absence of modifier and head composition
effects in the present study.

In a next step, we extended this analysis to the two
additional experimental paradigms that were not previously
tested by Glinther and Marelli (2019a). In the timed sensibil-
ity judgment task, we again observed significant effects for
both modifier and head composition (Table 8, right column).
In the naming task however, we observed no such effects (Ta-
ble 8, left column).

We next examined whether the differences in re-
sults between the present study and the one by Giinther and
Marelli (2019a) can be traced back to the fact that the present
study investigated a smaller item set. To examine this pos-

sibility, we first estimated the same models as described in
the previous step on the subset of compounds for which all
vision-based measures are available. In the timed sensibil-
ity judgment task, both effects were still significant (modi-
fier composition: ¢ = -2.14, p = .033; head composition:
t = —2.45, p = .015). However, in the lexical decision task,
the constituent composition effects were no longer significant
(modifier composition: ¢ = —1.52, p = .130; head composi-
tion: t = —0.64, p = .524). The same was still true for the
naming task (modifier composition: ¢ = —1.28, p = .203;
head composition: t = —0.53, p = .597).

Thus, modifier and head composition effects in lex-
ical decision are not significant for this subset. However,
this can either be caused by a lack of statistical power due
to the smaller size of the item set, or by a systematic dif-
ference between the subsets. We therefore tested whether
the effects of language-based modifier and head composi-
tion differ between the two subsets of compounds (Gelman
& Stern, 2006): The one for which all vision-based mea-
sures are available, and the one for which they are not. We
performed two separate likelihood-ratio tests for each of the
models reported in Table 8, comparing the respective mod-
els (each of which now also included a dummy variable en-
coding whether the vision-based measures are available for
the compound) to (a) a model that additionally contained an
interaction between modifier composition and this dummy
variable, and (b) a model that additionally contained an in-
teraction between head composition and this dummy vari-
able. None of those tests was significant (all (1) < 0.62, all
p > .429.). This suggests that the absence of language-based
constituent composition effects in the lexical decision tasks
in the subset can be attributed to a lack of statistical power,
rather than systematic differences between the subsets.

However, these analyses yielded another, interest-
ing result: The main effect for the dummy variable itself was
significant for the lexical decision task (b = —0.02,r = —=2.47,
p = .014) and closely failed to reach significance for the
timed sensibility task (b = —0.02,r = —1.89, p = .059), indi-
cating faster lexical decisions for compounds for which the
vision-based measures are available (which are exactly those
compounds for which both constituents have a vision-based
representation). Including this dummy variable did not affect
the significance level of the other parameters in the model.

Follow-Up Analysis 2: Imagery Effects

We followed up on this finding by subjecting it to a more
rigorous test. For each task, we estimated a baseline mixed-
effect model, predicting logarithmic reaction times from all
language-based predictors: length, all frequencies and fam-
ily sizes, and all language-based semantic measures in Ta-
ble 2 of the main article, as well as random intercepts for
the modifiers and heads. We then compared, for each task,
this baseline model to a model that additionally contained the
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Table 8

Model parameters — regression weights (t-values) — predicting logarithmic response times in pre-analysis 1. Only significant

parameters are displayed (p < .05).

parameter naming lexical decision timed sensibility
intercept 6.76  (170.94) 7.03 (146.77) 7.08 (120.54)
777777777 length  0.03 (13.76) 002 (985  0.02  (530)
compound frequency -0.02  (-12.84) -0.04 (-18.26) -0.04 (-16.33)
modifier frequency -0.01 (-6.79) -0.01 (-5.51) -0.01 (-2.29)
head frequency -0.01 (-4.76) 0.01 (-3.11D) 0.01 (2.23)
" modifier composition 006  (-209  -0.10  (-2.36)
head composition -0.07 (-2.04) -0.13 (-3.18)

dummy variable encoding whether all vision-based measures
are available for the compound in a likelihood-ratio test.

For the naming task, including the dummy variable
did not improve the model fit (y*(1) = 0.08, p = .782).
For the lexical decision task, including the dummy vari-
able did significantly improve the model fit (y?(1) = 5.78,
p = .016), but it failed to reach significance for the timed
sensibility judgment task (y*(1) = 3.59, p = .058). There
was no additional processing advantage for the 384 items for
which also a compound visual representations was available
(r*(1) = 0.89, p = .345 for timed sensibility judgments,
()(2(1) = 0.001, p = .967 for lexical decisions).

Thus, at least in the lexical decision task, just having
available perceptual information for the constituents speeds
up processing. This finding is in line with a large body
of literature on concreteness effects (e.g. Kroll & Merves,
1986), which are usually explained in terms of an imagery ef-

fect — words with associated verbal and perceptual informa-
tion (i.e., for which a mental image can be created) are pro-
cessed faster than words for which only verbal information is
available (Paivio, 1966, 1986). While previous studies have
demonstrated processing advantages for imageable complex
words (Feldman et al., 2006), our results extend upon pre-
vious findings by shifting the locus of the effect to the sub-
lexical level: Complex words are processed faster if mental
images can be created for their constituents, indicating sub-
lexical semantic influences on processing (in line with pre-
vious studies observing semantic effects of the constituents,
such as stem valence effects; Schmidtke, Matsuki, & Kuper-
man, 2017; Schmidtke & Kuperman, 2019). Of course, im-
ageable constituents are also extremely likely to result in an
imageable combined representation, but we find no evidence
for an additional benefit at the compound level.



