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ABSTRACT: Deposition of misfolded proteins as extracellular amyloid aggregates is the pathological hallmark of systemic amyloi-

doses. Subcutaneous fat acquired by fine needle aspiration is the preferred screening tissue in suspected patients. In this study we 

employed Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) to investigate human abdominal fat 

aspirates with the aim to detect disease-related changes in the molecular structure and composition of the tissue and to exploit the 

potentiality of the method to discriminate between amyloid-positive and negative samples. The absorption and second derivative 

spectra of Congo Red (CR) positive and CR-negative specimens were analyzed by three multivariate methods in four spectral regions. 

The proposed ATR-FTIR method is label-free, rapid, relatively inexpensive and requires minimal sample preparation. We found that 

the ATR-FTIR approach can differentiate fat aspirates containing amyloid deposits from control specimens with high sensitivity and 

specificity, both of 100 [89-100]%. Noteworthy, the wavenumbers most important for discrimination indicate that changes both in 

the protein conformation and in resident lipids are intrinsic features of affected subcutaneous fat in comparison with the CR-negative 

controls. In this proof of concept study, we show that this approach could be useful for assessing tissue amyloid aggregates and for 

acquiring novel knowledge on the molecular bases of the disease. 

 

 

Amyloidoses are conformational diseases characterized by dep-

osition of misfolded proteins as extracellular amyloid fibrils in 

target tissues1,2. Aggregation is related to loss of protein native 

conformation and acquisition of an alternative cross β-sheet-

rich structure. This phenomenon subtends several human dis-

eases with enormous overall social and economic impact. At 

least 36 distinct proteins are known causative agents of amyloid 

diseases3; these range from central nervous system forms such 

as neurodegenerative diseases, to systemic forms, in which am-

yloid deposits are widespread and can affect multiple sites. Ma-

jor examples of these latter include light chain (AL), transthy-

retin (ATTR) and reactive (AA) amyloidosis. Fibril deposition 

leads to subversion of the tissue architecture and dysfunction of 

the affected organs. Demonstrating the presence of tissue amy-

loid deposits is required for the diagnosis of systemic amyloi-

doses. Amyloid-specific dyes, such as Congo red (CR), which 

display specific tinctorial properties when interacting with the 

ordered structure of the fibrils, are the diagnostic mainstay for 

this task. As a less invasive procedure compared to target organ 

biopsy, subcutaneous fat acquired by fine needle aspiration is 

the preferred screening site in suspected patients4. This tissue, 

in fact, is frequently affected and its acquisition is minimally 

invasive. In these progressive diseases, timely diagnosis is cru-

cial, since an array of effective therapies are now available to 

halt organ function deterioration in several of these forms5. 

Fourier transform infrared (FTIR) spectroscopy is an emerg-

ing tool of potential clinical usefulness in several pathological 

contexts. This label free approach can be applied to intact cells, 

tissues and biofluids, providing a “spectroscopic fingerprint”, 

which represents a snapshot of biomolecular composition and 

structure of the investigated sample6–9. The clinical potential of 

FTIR in the field of protein misfolding diseases is significant. 

The information provided by FTIR, in fact, is unique and com-

plementary with respect to all other tools for assessing fibrillar 

aggregates in tissues, including microscopy, amyloid-specific 

dyes, and in vivo imaging (e.g. scintigraphy). The distinctive 

value of FTIR stands in its ability to provide label-free infor-

mation on the structural properties of proteins in situ, including 

the presence of intermolecular β-sheets. After the pioneering 

work of Choo et al.10 reporting the in situ structural characteri-

zation of β-amyloids in a section of Alzheimer’s disease (AD) 

brain by infrared microspectroscopy, a number of FTIR inves-

tigations have provided promising evidence on the potentiality 

of this approach for the diagnosis of dementia using accessible 
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specimens such as biological fluids (recently reviewed in7). We 

have recently characterized in situ by FTIR microspectroscopy 

the infrared (IR) response of human biopsy tissues affected by 

AL amyloidosis11. In particular, the intermolecular β-sheet 

marker band was detected in cardiac and adipose tissue sec-

tions. Moreover, in cardiac tissues the protein deposits were 

found to be enriched with cholesterol, glycosaminoglycan and 

collagen11. However, FTIR microspectroscopy was not suitable 

to study adipose tissue aspirates, which cannot be cut into sec-

tions of proper thickness required for transmission measure-

ments.  

In this study we employed FTIR spectroscopy in attenuated 

total reflection (ATR), supported by multivariate analyses, to 

investigate human abdominal fat aspirates with the aim to dis-

criminate samples containing amyloid fibrils from amyloid-

negative ones. The identification of the wavenumbers responsi-

ble for the segregation between affected and unaffected individ-

uals allowed us to characterize in situ the main structural 

changes associated with the presence of amyloidosis. 

 

EXPERIMENTAL SECTION 

Patients and samples. Subcutaneous abdominal fat samples 

were obtained by fine needle aspiration during the routine diag-

nostic procedures at Centro per lo Studio e la Cura delle Ami-

loidosi Sistemiche of Fondazione IRCCS Policlinico San 

Matteo in Pavia, Italy. Consecutive individuals evaluated be-

tween February and April 2015 were included in the study. All 

individuals gave written informed consent for their biological 

samples to be stored and used for research purposes and the 

study was approved by the Ethical Committee of Policlinico 

San Matteo. The presence of amyloid fibrils was evaluated by 

CR staining  (Figure S-1a) and the amyloid load was graded 

semiquantitatively with a CR score from 0+ (negative) to 4+12. 

Amyloid typing was confirmed on adipose tissue in CR positive 

cases by immunoelectron microscopy (IEM)4 (Figure S-1b). 

Clinical characterization was performed as previously de-

scribed4,13. Samples indicated herein as controls are CR-

negative and derive from individuals who had no biochemical, 

genetic, instrumental and clinical signs consistent with the pres-

ence of systemic amyloidosis. None of the controls developed 

signs consistent with systemic amyloidosis over a median fol-

low up of 30 months. All specimens were stored unfixed and 

frozen at -80 °C until use. Sample processing prior to FTIR 

analysis was minimal; fat aspirates were thawed on ice and 

washed 3 times with 1 ml of ice-cold isotonic saline (0.9% 

NaCl) to completely remove blood.  Each washing was fol-

lowed by centrifugation (1 min, 13200 rpm, 4 °C). Only sam-

ples without visible blood after washing were retained for anal-

ysis.  

FTIR measurements. The subcutaneous fat aspirates were 

placed onto the crystal surface of the single reflection ATR de-

vice (Quest, Specac) for FTIR measurements. The sample was 

forced into close contact with the diamond ATR crystal using 

the clamp arm assembly of the device (Figure 1). ATR-FTIR 

spectra were collected by the Varian 670-IR spectrometer (Var-

ian Australia Pty Ltd.) under the following conditions: 2 cm-1 

resolution, scan speed of 25 kHz, 512 scan coadditions, trian-

gular apodization, and a nitrogen-cooled Mercury Cadmium 

Telluride detector. The spectrometer was continuously purged 

with dry air14,15. To take into account the sample macro-hetero-

geneity, up to 8 spectra were collected from different areas of 

the same abdominal fat sample. Spectra with very high lipid ab-

sorption were not considered for the subsequent analyses. In 

particular, the proteins to lipids ratio was evaluated from the 

area of the protein Amide I band (1700-1600 cm-1, mainly due 

to the C=O stretching vibrations of the peptide bond) and from 

that of the lipid C=O band (area between 1770-1715 cm-1). Only 

spectra with Amide I/C=O ratios above 2.7 were considered. 

The overall features of acceptable absorption spectra are re-

ported in Figure 1 and Figure S-2.  Measured absorption spectra 

were offset to zero at 1800 cm-1 and normalized at the same 

Amide I band area to compensate for differences in the protein 

content. Absorption spectra were smoothed using the Savitsky-

Golay method (25 points) before the second derivative calcula-

tion that was obtained without additional smoothing points. 

Spectral analyses were performed with the Resolutions-Pro 

software (Varian Australia Pty Ltd.) We should note that the 

measured absorption spectra (Figure S-2) were characterized by 

a flat baseline without evidences of scattering artifacts (such as 

the typical slopping baseline of the scattering-affected spec-

tra16). This result is in agreement with the common observation 

that ATR spectra are not influenced by resonant Mie scattering 

to the same extent compared to transmission spectra16.    

 

 Multivariate analysis. Multivariate analysis has been per-

formed using R version 3.4.3. Raw spectra have been checked 

for outliers using an algorithm based on principal component 

analysis which is especially suited for high-dimensional da-

tasets where the number of variables is much larger than the 

number of observations, as described in17 and implemented in 

the R package mvoutlier version 2.0.5. No outlier were found, 

so all spectra were retained for further analysis.  

Spectra have been split into four spectral regions and on each 

region three different multivariate data analysis methods have 

been tested, namely extreme gradient boosting (xgbTree), mul-

tivariate adaptive regression splines (MARS) and partial least 

square discriminant analysis (PLS-DA). The xgbTree belongs 

to the family of the boosting methods, i.e. classification meth-

ods that produce classification models from an ensemble of 

weak classifiers, classification trees in this case. The extreme 

adjective refers to the algorithmic tricks implemented in order 

to increase the computational performances18,19. The MARS 

method is an extension of linear regression that models nonlin-

earities and interactions among variables20. PLS-DA is a widely 

used multidimensional regression method, which is a variant of 

the classical partial least square method when the dependent 

variable is categorical21. 

 In order to assess the predictive discrimination and avoid 

over-fitting, for each method a 10-time repeated 5-fold cross-

validation was applied. So for each method 50 models were 

trained. Since each individual has multiple spectra, folds have 

been created at the individual level, ensuring that all spectra for 

a given individual are either in the training or in the test set. 

More specifically, having N individual each with mN spectra, 

on every round of cross-validation, the individuals have been 

partitioned into 5 folds. Four folds (containing N*4/5 individu-

als) have been used to train the model and the remaining fold 

(containing N*1/5 individuals) was used to test the model. 

Folds are complementary (i.e. no repeated individuals in differ-

ent folds) and the individuals are randomly chosen. The training 

of the model is repeated five times, each time varying the test 

partition. The 5-fold cross-validation is then repeated 10-times 

in order to lower the risk of partition-dependent artifacts. The 



 

best model has been selected using the “one standard error 

rule”. In this case, the model with the best performance value is 

identified and, using resampling, we can estimate the standard 

error of performance. The final model used was the simplest 

model within one standard error of the (empirically) best 

model22. As performance measure the area under the curve 

(AUC) was used (Figure S-3). The AUC is computed from the 

receiver operating characteristic curve (ROC curve) that is cre-

ated by plotting the true positive rate (i.e. sensitivity) against 

the false positive rate (i.e. specificity) at various threshold 

(value that discriminate between positive and negative out-

come) settings. When using normalized units, the AUC is equal 

to the probability that a classifier will rank a randomly chosen 

positive instance higher than a randomly chosen negative one 

(assuming 'positive' ranks higher than 'negative')23. For all 

trained models the sensitivity and specificity have been also 

computed. The sensitivity is computed as true positive / (true 

positive + false negative), while the specificity as true negative 

/ (true negative + false positive). Variable importance has been 

obtained differently for each method. For xgbTree method the 

variable importance expresses the gain contribution of each fea-

ture to the model. Each gain of each feature of each tree is taken 

into account, then average gain per feature obtained22. For 

MARS method the variable importance tracks the reduction in 

the generalized cross-validation statistic as terms are added24. 

For the PLS-DA method the variable importance measure here 

is based on weighted sums of the absolute regression coeffi-

cients25. 

 

RESULTS AND DISCUSSION 

FTIR characterization of abdominal fat aspirate. Samples 

from 10 patients affected by systemic light chain (AL) amyloi-

dosis (8 AL λ, 2 AL κ) and from 1 patient affected by reactive 

(AA) amyloidosis were included in the study.  Patients’ samples 

presented different degrees of amyloid infiltration. The control 

population included 13 unaffected individuals (Figure 1, Figure 

S-1). The main clinical features of patients’ and controls’ sam-

ples are indicated in Table S1. Sample weight ranged between 

10 and 30 mg.  

The ATR-FTIR spectrum of the abdominal fat aspirate from a 

CR negative sample is reported in Figure 1 (right spectrum). 

The spectrum provides information on the content and struc-

tures of the interrogated biological specimen26. In particular, the 

main peaks assigned to the sample biomolecules are indicated 

in Figure 1. The following main proteins bands are observed: 

Amide A (NH stretching vibration around 3295 cm-1), Amide I 

(mainly due to the C=O stretching vibration between 1700-1600 

cm-1) and Amide II (mainly due to the NH bending and the CN 

stretching vibrations between 1580-1516 cm-1)27. The absorp-

tion of the lipid hydrocarbon chains (CHx) occurs in the 3050-

2800 cm-1 spectral region, while the absorption of the lipid C=O 

around 1744 cm-1. In the 1500-1200 cm-1 region the absorption 

of the lipid heads and hydrocarbon chains28, as well as of pro-

teins and amino acid side chains takes place27,29. Moreover, IR 

peaks due to nucleic acid phosphate groups and to sugar moie-

ties are expected in the 1400-1000 cm-1 spectral regions26.  

With the aim to detect marker bands of amyloids and to exploit 

the potentiality of ATR-FTIR spectroscopy to discriminate be-

tween amyloid-positive and negative individuals, the spectra 

from CR-positive and CR-negative samples were measured 

(Figure 1). Noteworthy, this spectroscopic method does not re-

quire any sample preparation or labeling. Indeed, the fat aspi-

rates were only washed with isotonic saline to remove residual 

blood, which was found to interfere with the subsequent spec-

tral analyses (data not shown). In this work, the ATR-FTIR ap-

proach was selected over other sampling methods because it is 

practically infeasible to cut adipose tissue aspirates into sections 

of proper thickness required for transmission measurements by 

IR microspectroscopy. On the other hand, the ATR-FTIR spec-

troscopy does not allow to study sample micro-heterogeneity as 

instead previously reported for cardiac and adipose tissue sec-

tions of AL positive patients11.  

As shown in Figure 1, the ATR-FTIR absorption spectra from 

the amyloid-positive patients appeared to overlap to a great ex-

tent with those collected from controls. Therefore, to disclose 

and validate possible spectral differences, complex analyses are 

typically required, such as the second derivative calculation and 

the multivariate analyses6,7,26,30–32, which will be reported in the 

following paragraphs.  

 

 

Figure 1. Overview of the experimental workflow. Abdominal fat 

aspirates from 24 individuals (11 CR-positive amyloid patients and 

13 CR-negative controls) were deposed onto the ATR diamond 

crystal for FTIR measurements. Representative images of CR pos-

itive and negative samples, viewed using polarized light micros-

copy, are shown in the upper right panels. A representative ATR-

FTIR absorption spectrum of the fat aspirate from an amyloid-neg-

ative control and the 78 absorption spectra from the 24 individuals 

(amyloid-positive as red spectra and CR-negative controls as blue 

spectra) are reported in the left and right panels, respectively. The 

assignment of selected bands to the main biomolecules is shown26. 

The absorption or second derivative spectra from well character-

ized CR-positive (red) and CR-negative individuals (blue) were 

subjected to multivariate analyses to evaluate the discrimination 

potential of the method. The overall performance, sensitivity, and 

specificity of the multivariate models were estimated using 10-time 

repeated 5-fold cross-validation as described in the experimental 

section.  

 

Multivariate analyses of the ATR-FTIR absorption spec-

tra. To explore the ability of ATR-FTIR spectroscopy to pro-

vide molecular information that could allow discriminating be-

tween amyloid-positive patients and negative individuals, a 

multivariate analysis of the spectral data was performed. In par-

ticular, we evaluated the performance (AUC value), the sensi-

tivity, and the specificity of three different approaches on four 

spectral regions, namely between 3050-2800 cm-1 (mainly due 

to lipid hydrocarbon chains), 1700-1500 cm-1 (protein Amide I 



 

and Amide II bands), 1500-1200 cm-1 (overlapping contribu-

tions from lipids, proteins, nucleic acids and other biomole-

cules, such as glycosaminoglycans)11,26,33 and 1700-1200 cm-1 

spectral ranges. The predictive performance was estimated by 

applying a 10-time repeated 5-fold cross-validation. During 

each repetition the training and the test set have been created 

splitting the spectra at the individual level, i.e. ensuring that all 

spectra for a given patient are either in the training or in the test 

set (see the experimental section for details).  

Three different classification methods have been tested. PLS-

DA, extreme gradient boosting (xgbTree) and MARS. The 

PLS-DA was chosen because it is a well-known and robust 

method. The xbgTree is a recent improvement of the boosting 

method which turns out to be a really powerful method in many 

different scenarios34. The latter, MARS, was selected because it 

is a flexible, robust, and fast training method which generally 

gives good classification performances in large datasets20. An-

other reason we chosen these methods is because they are dras-

tically different among each others. Hence, obtaining similar re-

sults will be an indication of the confidence of the outcome of 

the analysis. 

The overall performance of the results obtained by the three 

multivariate approaches is summarized in Figure 2. The best 

classification ratios were obtained by PLS-DA that gives an av-

erage AUC (expressed as median [first, third quartile] over the 

repeated k-fold cross-validation) of 93 [91-95]%, specificity of 

81 [73-86]% and sensitivity of 97 [90-100]% when performed 

in the 1700-1500 cm-1 spectral region, and AUC of 94 [92-

96]%, specificity of 88 [85-93]% and sensitivity of 94 [92-

100]% for the 1700-1200 cm-1 spectral regions, respectively. 

Worse performances were obtained in the other tested spectral 

regions and using different chemometrics approaches (Figure 2 

and Table S2). 

 

 

 

Figure 2. Overall performances of the three multivariate 

methods performed on the absorption spectra.  Four spectral re-

gions were tested: 3050-2800 cm-1, 1700-1500 cm-1, 1500-1200 

cm-1, and 1700-1200 cm-1 ranges. For each condition the 

resampled area under the curve (AUC), sensitivity (Sens.) and 

specificity (Spec.) are reported as box-plots. Black horizontal 

line within the box is the median, box ends show the first (Q1) 

and third quartile (Q3), lower whisker computed as the maxi-

mum value between the absolute minimum and Q1-1.5*IQR, 

and upper whisker as the minimum between the absolute maxi-

mum and Q3+1.5*IQR. Here, IQR is the interquartile range 

computed as Q3-Q1. Values beyond whiskers (outliers) are 

shown as black dots. 

 

One of the main advantages of the above multivariate meth-

ods is the possibility to extract the wavenumbers that are re-

sponsible for the discrimination in a multivariate way (i.e. re-

moval of one component will affect the contributions of the re-

maining ones). These wavenumbers can be therefore taken as 

marker bands whose intensity variations reflect the relevant and 

statistically significant molecular changes associated with the 

presence of the disease. In particular, the PLS-DA analysis de-

tects as the most relevant the following peaks (Figure 3a): 

~1650 cm-1 (assigned to protein α-helical and random coil struc-

tures15,27), ~1624 cm-1 (assigned to protein β-sheets15,27), ~1612 

cm-1 (assigned to protein intermolecular β-sheets  and/or amino 

acid side chains14,15,27,35,36),  and ~1471 cm-1 (assigned mainly to 

the hydrocarbon chain CH2 groups28,37). This band is sensitive 

to hydrocarbon chain packing and conformation28. In agreement 

with the PLS-DA outcomes, intensity differences of the above 

wavenumbers were observed in the absorbance (Figure 3b) and 

second derivative spectra (see later) of CR-positive patients and 

unaffected controls. In particular, the α-helical/random coil 

structures were found to decrease in the CR-positive samples, 

compared to controls, while the β structures increase. Moreo-

ver, the 1471 cm-1 band, mainly due to hydrocarbon chain CH2 

groups, was found to decrease in CR-positive samples, suggest-

ing a variation of the lipid properties. Similar results were ob-

tained by the MARS and xgbTree analyses (Figure S-4), which 

in addition suggested relevant spectral changes around 1540 

cm-1 (Amide II27), ~1392 cm-1 (assigned to acidic side chains, 

as well as to lipid moieties28,29,37–39) and ~1294 cm-1 (tentatively 

assigned to the protein Amide III band27).  To further investigate 

the lipid contribution in discriminating between CR-positive 

and CR-negative specimens, the ratio of absorption at 2925 cm-

1 and at 2960 cm-1 (due to the CH2 and CH3 stretching, respec-

tively) was considered. This ratio has also been reported to be 

important to evaluate the contribution of polypeptide absorption 

to other spectral regions in addition to the Amide I band when 

proteins accumulate in particular sample areas40.  In the present 

study, there was no statistically significant difference in the 

2925 cm-1 and 2960 cm-1 absorption ratio between the CR-

positive and CR-negative specimens according to a two-tailed 

t-test: t=-1.94, p-value=0.054 (data not shown). This result is in 

agreement with the lowest discrimination accuracy obtained by 

the multivariate analyses performed in the 3050-2800 cm-1 

spectral region (Figure 2 and Figure S-5). Noteworthy, ab-

dominal fat aspirates are per-se particularly enriched of lipids 

with very high absorption in CH2 and CH3 stretching spectral 

region, which can eventually hide the spectral differences be-

tween the two groups. 

 

 



 

 

 

Figure 3. ATR-FTIR absorption spectra. (a) Wavenumber 

importance (domain 0-100) for PLS-DA discrimination per-

formed in the 1700-1200 cm-1 spectral region. (b) Average ab-

sorption spectra of amyloid-positive (Pos.) and negative (Neg.) 

individuals. Error bars represent the standard deviations.  

 

Multivariate analyses of the ATR-FTIR second derivative 

spectra. To further explore the potential of ATR-FTIR spec-

troscopy to characterize the fat aspirate, the multivariate anal-

yses were also performed on the second derivatives of the ab-

sorption spectra. The overall performance in the discrimination 

between amyloid-positive patients and unaffected controls is re-

ported in Figure 4 and Table S-2. Comparing these results with 

the one obtained using the absorption spectra, we can see a 

higher overall discrimination performance in general. The use 

of the second derivative spectra increased the overall discrimi-

nation performance (expressed as median [first, third quartile] 

over the repeated k-fold cross-validation) of the methods up to 

97 [95-98]% AUC, 100 [89-100]% sensitivity, and 100 [89-

100]% specificity in the case of PLS-DA performed in the 

1700-1200 cm-1 (Figure 4 and Table S-2). Such a high perfor-

mance may imply some degrees of over-fitting of the PLS-DA 

model. For this reason, it is important to take into account and 

compare the PLS-DA results with those of the other two meth-

ods (MARS and xgbTree) in order to perform a significant eval-

uation. 

The wavenumber importance profiles obtained from the three 

methods are consistent among each other when performed on 

the second derivative spectra (Figure S-6), as well as on the ab-

sorption data (Figure S-4). Moreover, the wavenumbers that are 

more relevant for the discrimination in the multivariate analyses 

(Figure 5 and S-6) occurred in the same region where spectral 

differences between the two groups were observed in the sec-

ond derivatives, whose minima correspond to absorption max-

ima (Figure 5). As already described in the “Multivariate anal-

yses of the ATR-FTIR absorption spectra” paragraph, these 

spectral changes involve the protein and lipid IR responses (see 

Figure 5 and S-6 for peak assignment). In particular, they are 

indicative of an overall decrease of the α-helical/random coil 

structures (component around 1654 cm-1) and an increase of β-

sheets in the CR-positive samples (components in the 1630-

1616 cm-1 range), compared to controls.  

 

 

 

 

Figure 4. Overall performances of the MARS, xgbTree and 

PLS-DA methods performed on the second derivative spectra.  

Four spectral regions were tested and the resampled area under 

the curve (AUC), sensitivity (Sens.) and specificity (Spec.) are 

reported as in Figure 2.  

 

 

 

 



 

Figure 5.  Second derivatives of the ATR-FTIR absorption 

spectra. (a) Wavenumber importance (domain 0-100) for PLS-

DA discrimination performed in the 1700-1200 cm-1 spectral 

region. (b) Average second derivative spectra of amyloid-posi-

tive (Pos.) and unaffected (Neg.) individuals. The Amide I spec-

tral region (c) and the components around 1467 cm-1 (d) were 

showed in expanded scales. Arrows point to the spectral 

changes occurring from control to CR-positive individuals. Er-

ror bars represent the standard deviations. 

 

CONCLUSIONS 

We showed that ATR-FTIR spectroscopy, coupled with multi-

variate analysis, can differentiate adipose tissue aspirates con-

taining amyloid deposits from unaffected samples with high 

sensitivity and specificity, both of 100 [89-100]% (expressed as 

median [first, third quartile] over the repeated k-fold cross-val-

idation) in the case of PLS-DA performed in the 1700-1200 cm-

1 spectral region. This approach is rapid and requires no sample 

processing besides blood removal. The inherently structural in-

formation provided by FTIR is additive to that provided by CR. 

This dye, in fact, delivers indirect clues on the fibril confor-

mation, thanks to its ability to interact with the  repetitive β-

sheet structure41. On the contrary, FTIR provides label-free 

knowledge on inter and intra-molecular β-sheets of proteins in 

the samples, and on other molecular species. Importantly, dis-

crimination between amyloid-affected and negative samples 

was obtained on the basis of the whole spectrum, and not only 

by considering the spectral regions sensitive to the protein con-

formation. This indicates that changes in the molecular compo-

sition of tissues, in particular resident lipids, are intrinsic fea-

tures of affected subcutaneous fat. Our report has notable im-

plications of potential clinical relevance. Of note, the classifi-

cation algorithm also correctly discriminated spectra from pa-

tients with small amounts of CR-positive areas. This may be 

due to the ability of FTIR spectroscopy, coupled to multivariate 

analysis, to reveal in situ not only protein deposits but also 

changes in the overall biomolecule composition and structural 

features. Moreover, the active area of the ATR crystal (about 

1.8 mm of diameter in our device) allows obtaining the average 

infrared response of a relatively large part of the sample possi-

bly enabling the detection of very small and scattered amyloid 

deposits.  

Overall, this report opens the road for further applications of 

ATR-FTIR to analyze subcutaneous fat and other tissues in sys-

temic amyloidosis; this could be most useful for diagnosis and 

for acquiring novel knowledge on the molecular bases of the 

disease. 
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