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Abstract— A tumor growth model accounting for angiogenic
stimulation and inhibition is here considered, and a closed-loop
control law is presented with the aim of tumor volume reduction
by means of anti-angiogenic administration. To this end the
output-feedback linearization theory is exploited, with the
feedback designed on the basis of a state observer for nonlinear
systems. The control scheme allows to set independently the
control and the observer parameters thanks to the special
structural properties of the tumor growth model that guarantee
the separability of estimation and feedback control algorithms.
Preliminary results seem extremely promising, showing a no-
ticeable level of robustness against a wide range of the initial
state estimate.

I. INTRODUCTION

Anti-angiogenic therapies are relatively new cancer treat-
ments, proposed at first by Folkman [?] in the early seventies,
consolidated along the nineties by several discoveries on
the main principles regulating tumor angiogenesis [?] and
widely debated in several theoretical and experimental stud-
ies throughout the last decade. Anti-angiogenic treatments
aim at inhibiting the development of the vascular network
necessary to support tumor growth during the vascular phase,
so providing a way to control the heterogeneous and growth-
unconstrained tumor population throughout the control of
the homogeneous and growth-constrained population of en-
dothelial cells [?], [?]. Tumors have the capability to develop
resistance to the conventional chemotherapeutic drugs mainly
because of the rapidity of tumor cells in evolving towards
new resistant phenotypes. Due to the indirect action of the
anti-angiogenic drugs, the outcome of the therapy should
not be impaired by the capability of tumor cells to generate
resistant phenotypic variants [?], [?], and the effectiveness
of anti-angiogenic treatments on the control and possible
remission of experimental tumors has been demonstrated
[?]. Moreover, anti-angiogenic therapies have limited side
effects respect to the conventional chemotherapies and radio-
therapies. Conventional chemotherapies may also have anti-
angiogenic effects on the vascular network [?], [?], [?].

This note aims to investigate and design a closed-loop
model-based anti-angiogenic therapy. The adopted model
refers to [?], where a quantitative model describing the
growth of experimental tumors under the control of the
vascular network is presented. In [?], Hahnfeld and cowork-
ers introduced the concept of the carrying capacity of the
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vasculature, i.e. the tumor volume potentially sustainable by
the vasculature, in order to account for the vascular control
on the tumor growth. As the carrying capacity is strictly
dependent on the vasculature extension, its dynamics can be
assumed to represent the dynamics of the vascular network.
Moreover, the effect on the carrying capacity of stimulatory
and inhibitory angiogenic signals produced by the tumor
itself and of administered anti-angiogenic drugs are explicitly
accounted by the model formulation. The paper represents
one of the first attempts to model, with a minimal number
of parameters, the interplay between the dynamics of the
tumor volume and of the carrying capacity, with or without
administration of anti-angiogenic drugs. In [?] the predic-
tions of the model have also been successfully compared
with experimental data on anti-angiogenically treated and
untreated Lewis lung tumors in mice.

Besides experimental frameworks, the model proposed in
[?] has been widely exploited in theoretical studies in order
to predict the effectiveness of new anti-angiogenic therapies
and some model extensions have also been proposed in
the related scientific literature. In [?] some model modi-
fications are proposed and conditions for the eradication
of the tumor under a periodic anti-angiogenic treatment
are provided. In [?], [?] problems addressing the optimal
scheduling of a given amount of angiogenic inhibitors are
presented, while in [?] the optimal scheduling problem of
a combined radiotherapy and anti-angiogenic treatment is
formulated by exploiting a suitable modified version of
the original model. Further extensions are also proposed
in [?], where the Authors aim to describe the interplay
between the populations of tumor cells and endothelial cells
subject to a combined therapy of chemotherapeutic and anti-
angiogenic drugs. In [?] an optimal scheduling problem for
the combined chemotherapeutic/anti-angiogenic treatment is
presented. The model in [?] has been recently exploited
to design closed-loop model-based feedback control laws
in [?], [?], where robust control strategies are proposed
by exploiting a Linear Quadratic controller and an H∞
methodology applied to the linearized model.

By suitably exploiting the model in [?], the aim of tumor
volume reduction is here pursued according to a closed-loop,
model-based approach, with the control strategy making use
of the feedback linearization theory [?]. To this end only
available tumor volume measurements are exploited, with the
carrying capacity estimated by means of a state observer for
nonlinear system [?], [?], and the regulator is synthesized as
a feedback from the observed state. The closed-loop control
law is designed to track a desired low level of tumor volume,



possibly starting from a high level situation. It is proven that
the control scheme allows to set independently the control
and the observer parameters, thanks to the special structural
properties of the tumor growth model that guarantee the
separability of estimation and feedback control algorithms.
Numerical simulations revealed to be extremely promising,
showing a noticeable level of robustness against a wide range
of the initial state estimate and of the actual value of the
carrying capacity.

The paper is organized as follows. The next section is
devoted to detail the tumor growth mathematical model
chosen to design the closed-loop control law, which is
defined in Section 3, where the main theorem is proposed.
Simulations are reported in Section 4. Conclusions follow.

II. THE TUMOR GROWTH MODEL

The model under investigation is a nonlinear model ac-
counting for angiogenic stimulation and inhibition [?], and
is given by the following Ordinary Differential Equations
(ODE) system:{

ẋ1 = −λx1 ln
(
x1

x2

)
ẋ2 = bx1 − (µ+ dx

2/3
1 )x2 − cx2x3

(1)

where x1, [mm3], and x2, [mm3], denote the tumor volume
and the carrying capacity of the vasculature, respectively. The
first equation describes the phenomenology of tumor growth
slowdown, as the tumor grows and resorts its available
support with λ, [day−1], denoting the tumour growth rate. In
the second equation the first term represents the stimulatory
capacity of the tumor upon the inducible vasculature (bx1),
the second term accounts for spontaneous loss (µx2) and
for tumor-dependent endogenous inhibition (dx2/3

1 x2) of
previously generated vasculature; the third term refers to
the vasculature inhibitory action performed by an exogenous
drug administration (cx2x3) with x3, [mg/kg], denoting the
serum level of the administered angiogenic inhibitor (i.e. the
drug concentration). As far as the parameters, b, [day−1], is
the vascular birth rate, d, [day−1mm−2], is the endothelial
cell death, µ, [day−1], is the spontaneous vascular inacti-
vation rate, and c, [day−1(mg/kg)−1], is the sensitivity to
the drug. According to the model literature [?], without loss
of generality, parameter µ will be set equal to zero in the
following.

Being the anti-angiogenic drug not directly administered
in vein, a further compartment is considered to account for
drug diffusion:

x3(t) =

∫ t

0

e−η(t−t′)u(t′)dt′ (2)

with u, [day−1(mg/kg)], being the actual control law and η,
[day−1], being the diffusion rate into serum. As a matter of
fact, the whole system (1)-(2) (with µ = 0) may be written
in a compact ODE form:

ẋ1 = −λx1 ln
(
x1

x2

)
ẋ2 = bx1 − dx2/3

1 x2 − cx2x3

ẋ3 = −ηx3 + u

(3)

In the following, system (3) will be also referred to as:

ẋ = f(x) + g(x)u (4)

with f : R3 7→ R3 and g : R3 7→ R3×1 defined by:

f(x) =

 −λx1 ln
(
x1

x2

)
bx1 − dx2/3

1 x2 − cx2x3

−ηx3

 g(x) =

0
0
1

 (5)

III. THE CONTROL ALGORITHM

The goal of the control law is to design a feedback control
input that allows to stabilize the closed-loop system and let
the tumor volume (state vaiable x1) to track a desired level.
The feedback is synthesized by exploiting only the tumor
volume output, which is the available measurement from the
model:

y = h(x), h : R3 7→ R, h(x) = x1. (6)

Let r be the desired level of tumor volume to be tracked,
smaller and safer than the non-trivial equilibrium state com-
ing from the uncontrolled system (i.e. with u = 0):

x1,ss = x2,ss = (b/d)
3
2 (7)

The control algorithm is synthesized by applying the feed-
back linearization theory to the nonlinear system [?], with the
feedback synthesized by means of a state observer [?], [?].
To this end, consider a domain D in R3 that excludes x1 = 0
and x2 = 0. Then, the working hypothesis concerning the
state feedback linearization is satisfied, since the single-input
single-output system has full relative degree in D. Indeed,
∀x ∈ D it is:

Lgh(x) = LgLfh(x) = 0
LgL

2
fh(x) = −λcx1 6= 0

(8)

with Lkfh(x), k = 1, 2, . . . denoting the Lie derivative of
order k of the scalar function h : R3 7→ R along the vector
field f : R3 7→ R3, [?].

As a matter of fact [?], the following nonlinear map Θ :
R3 7→ R3:

Θ(x) =

h(x)− r
Lfh(x)
L2
fh(x)

 =

 x1 − r
−λx1 ln(x1/x2)

Θ3(x)

 (9)

with

Θ3(x) = λ2x1

(
ln
(
x1

x2

))2

+ λ2x1 ln
(
x1

x2

)
+ bλ

x2
1

x2

−λdx2/3
1 x1 − λcx1x3

(10)
is a diffeomorfism in D with the Jacobian matrix given by

JΘ =
dΘ

dx
=

 1 0 0
−λ(1 + ln(x1/x2)) λx1/x2 0

J31(x) J32(x) −λcx1


(11)

(see the Appendix for the explicit expression of entries
J31(x) and J32(x)). Therefore, z = Θ(x) is a state transfor-
mation, and system (4) becomes, in the z-coordinates:

ż = Abz+Bb
[
L3
fh(Θ−1(z)) + LgL

2
fh(Θ−1(z))u(t)

]
(12)



where Ab and Bb are the following Brunowski matrices

Ab =

0 1 0
0 0 1
0 0 0

 Bb =

0
0
1

 (13)

with the explicit computation of L3
fh(x) in Appendix.

Since LgL2
fh(x) 6= 0, the following state feedback control

law is well defined

u(t) =
Kcz(t)− L3

fh(x(t))

LgL2
fh(x(t))

z = Θ(x) (14)

and allows to write the closed-loop system in the z-
coordinates as follows:

ż = (Ab +BbKc)z (15)

The pair of Brunowski matrices (Ab, Bb) is controllable,
therefore matrix Kc can be designed in order to make Hur-
witz (i.e. eigenvalues with negative real part) the closed-loop
matrix Ab +BbKc. This fact ensures that the z components
asymptotically converge to zero and, as a matter of fact, so
does the first component z1 = x1 − r, thus ensuring the
convergence of the tumor growth x1 to the desired level
r > 0.

The drawback of such a control law is that it requires a
complete knowledge of the state x(t); however the carrying
capacity (x2) and the third component (x3), are not directly
measurable. A need exists, therefore, to exploit a state
observer to overcome the problem. To this end we exploit
the observer for nonlinear systems [?], [?], whose equations
are:

˙̂x = f(x̂) + g(x̂)u(t) + JΘ(x̂)−1Ko

(
y(t)− h(x̂)

)
(16)

where Ko ∈ R3×1 is the observer gain to be designed, and
J−1

Θ is the inverse of the Jacobian matrix defined in (11),
whose existence is ensured in D by the full relative degree
hypothesis, which implies that Θ is an observability map,
and system (4) is drift-observable.

According to [?], by applying the observer equations (16)
to (4) (which is drift-observable), provided that the following
additional sufficient conditions hold true:
H1) L3

fh(Θ−1(z)) is uniformly Lipschitz in Θ(D), that is,
there exists γ1 such that ∀z, z̄ ∈ Θ(D)

‖L3
fh(Θ−1(z))− L3

fh(Θ−1(z̄))‖ 6 γ1‖z − z̄‖ (17)

H2) LgL
2
fh(Θ−1(z)) is uniformly Lipschitz in Θ(D), that

is, there exists γ2 such that ∀z, z̄ ∈ Θ(D)

‖LgL2
fh(Θ−1(z))− LgL2

fh(Θ−1(z̄))‖ 6 γ2‖z − z̄‖
(18)

H3) the input u is uniformly bounded, that is:

sup
t≥0
‖u(t)‖ < M < +∞ (19)

then, there exists an observer matrix Ko ∈ R3×1, such that
the state estimate converges asymptotically to the real state
if the initial error is sufficiently small.

Differently than (14), by straightforwardly applying the
state observer (16) to design the closed loop control, the
control input would be given by:

û(t) =
Kcẑ(t)− L3

fh(x̂(t))

LgL2
fh(x̂(t))

ẑ = Θ(x̂) (20)

Though implementable by means of only measured state
variables, such a control law would not ensure the separa-
bility principle, since it is well known that the separability
principle does not hold true for nonlinear systems, unless
special cases. The following Theorem shows how to modify
the control scheme in order to elude such a drawback.

Theorem 1. Consider the control input:

u(t) =
Kcẑ(t)− L3

fh
(
x̂(t)

)
H
(
y(t)

) , ẑ = Θ(x̂) (21)

with H(y) = −λcy and x̂(t) provided by:

˙̂x = f(x̂)+JΘ(x̂)−1BbH(y)u(t)+JΘ(x̂)−1Ko

(
y(t)−h(x̂)

)
(22)

Then, provided that hypothesis H1) holds true, it is possible
to design the gain matrix Kc in (21) and the observer gain
Ko in (22) in order to ensure the asymptotic convergence of
the observer (by means of Ko) independently of the expontial
convergence of x1(t) 7→ r (by means of Kc).

Proof: The proof is organized in two steps. Step 1
shows that it is possible to design the observer gain in
order to ensure the asymptotic convergence to zero of the
observer error; Step 2 shows how to design the control gain
Kc independently of Ko in order to ensure the exponential
convergence of the tumor growth x1 to the desired level r.

Step 1. Define Cb = [1 0 0]. By exploiting the definition
of ẑ in (21), the observer equation (22) can be written in the
ẑ-coordinates as:

˙̂z =
[
dΘ
dx

˙̂x(t)
]
x̂=Θ−1(ẑ)

=
[
JΘ(x̂) ˙̂x(t)

]
x̂=Θ−1(ẑ)

= Abẑ +BbL
3
fh(Θ−1(ẑ)) +BbH(y)u(t)

+Ko

(
y(t)− Cbẑ

)
(23)

where the identity[
JΘ(x)f(x)

]∣∣
x=Θ−1(z)

= Abz +BbL
3
fh(Θ−1(z)) (24)

has been properly used.
Notice that the nonlinear function H(y) coincides with

LgL
2
fh(x), since this Lie derivative only depends on the first

(measured) coordinate x1, see (8). As a matter of fact, the
z-coordinate system (12) can be rewritten as:

ż = Abz +BbL
3
fh(Θ−1(z)) +BbH(y)u(t) (25)

Hence, we readily obtain that the observer error in the z-
coordinates ez(t) = z(t) − ẑ(t) does not depend on the
control input u:

ėz = (Ab−KoCb)ez +Bb
[
L3
fh(Θ−1(z))− L3

fh(Θ−1(ẑ))
]

(26)



By exploiting (26), it has been proven in [?] that:
(i) according to the sufficient hypothesis H1), the ez dy-

namics obeys the following inequality:

‖ez(t)‖ ≤ e
(
σ1+
√

3γ1‖V −1(σ)‖
)
t‖V −1(σ)‖

·‖V (σ)‖ · ‖ez(0)‖
(27)

where σ = {σ1, σ2, σ3} are distinct real eigenvalues
properly assigned by Ko to matrix Ab−KoCb, with σ1

the greater eigenvalue and

V (σ) =

 σ2
1 σ1 1
σ2

2 σ2 1
σ2

3 σ3 1

 (28)

is the Vandermonde matrix associate to spectrum σ;
(ii) for any chosen α > 0, there exist a way to choose

negative real eigenvalues σ3 < σ2 < σ1 < 0 such that:

σ1 +
√

3γ1‖V (σ)‖ < −α (29)

These facts ensure that the observer gain Ko can be designed
in order to have exponential convergence to zero of the ez
error, (27), and, therefore, asymptotic convergence to zero of
the error e(t) = x(t) − x̂(t), according to the continuity of
Θ−1.

Step 2. By substituting the control input (21) in (25), we
obtain:

ż = (Ab +BbKc)z −BbKcez

+Bb

[
L3
fh(Θ−1(z))− L3

fh(Θ−1(ẑ))
]
(30)

According to (30), we can write the following integral
equation

z(t)=e(Ab+BbKc)tz(0)−
∫ t

0

e(Ab+BbKc)(t−τ)BbKcez(τ)dτ

+

∫ t

0

e(Ab+BbKc)(t−τ)Bb
[
α(z(τ))− α(ẑ(τ))

]
dτ

(31)
where α(·) = L3

fh(Θ−1(·)). Now, let ν = U(ξ)z with
U(ξ) the Vandermonde matrix associated to the spectrum
ξ = {ξ1, ξ2, ξ3} of distinct real eigenvalues assigned by the
gain matrix Kc to Ab +KcBb. Then, by denoting

Ξ = diag{ξ1, ξ2, ξ3} = U(ξ)(Ab +BbKc)U
−1(ξ) (32)

we have:

ν(t) = eΞtν(0)−
∫ t

0

eΞ(t−τ)U(ξ)BbKcez(τ)dτ

+

∫ t

0

eΞ(t−τ)U(ξ)Bb
[
α(z(τ))− α(ẑ(τ))

]
dτ

(33)

and, according to hypothesis H1):

‖ν(t)‖ 6 eξ1t
(
‖ν(0)‖

+

∫ t

0

e−ξ1τ
√

3
(
γ1 + ‖Kc‖

)
‖ez(τ)‖dτ

)
(34)

where ξ1 is the greatest eigenvalue in ξ and the identity
‖U(ξ)Bb‖ =

√
3 (straightforwardly coming from the defi-

nitions of the Vandermonde matrix, (28), and Bb, (13)) has

been properly considered. Finally, by exploiting inequality
(27), and according to a proper choice for Ko in order to
ensure inequality (29), (34) becomes

‖ν(t)‖ 6 eξ1t
(
‖ν(0)‖+

∫ t

0

Ωe−(ξ1+α)τdτ

)
(35)

with

Ω =
√

3
(
γ1 + ‖Kc‖

)
· ‖V −1(σ)‖ · ‖V (σ)‖ · ‖ez(0)‖ (36)

After the computation of the integral:

‖ν(t)‖ 6 eξ1t‖ν(0)‖+
Ω

α+ ξ1

(
eξ1t − e−αt

)
(37)

Therefore, by properly designing Kc, independently from
Ko, in order to have ξ1 < 0, it is ‖ν(t)‖ 7→ 0. Thus z(t)
converges to zero exponentially since:

‖z(t)‖ 6 ‖U−1(ξ)‖ · ‖ν(t)‖ (38)

and this implies that x1(t) 7→ r exponentially as well, since
x1 − r is the first component of z.

Remark 2. Notice that, in case Θ−1 is Lipschitz in Θ(D),
that is

‖Θ−1(z)−Θ−1(z̄)‖ 6 γ3‖z − z̄‖ ∀z, z̄ ∈ Θ(D) (39)

then the observer error e(t) = x(t)− x̂(t) converges to zero
exponentially, since

‖e(t)‖ ≤ γ3‖ez(t)‖ 7→ 0 (40)

IV. SIMULATION RESUTS

To demonstrate the validity of the algorithm, simula-
tions are performed setting the model parameters to the
values estimated in [?]. Such an estimation was based on
experimental data of Lewis lung carcinoma implanted in
C57BL/6 mice. The data referred to volume measurements
of both untreated control tumors and treated tumors under
a regimen with endostatin. Treatment was initiated when
tumors were ∼200 mm3 in size and it ended after 13 days.
The treatment regimen was 20 mg/kg/day. The produced
fitting curve showed a final tumor volume of ∼135 mm3,
setting the initial value of the carrying capacity to 625 mm3.
The parameters estimated in [?], are reported in Table IV.

TABLE I
MODEL PARAMETERS

λ b d µ c
day−1 day−1 day−1 mm−2 day−1 day−1 (mg/kg)−1

0.192 5.85 0.00873 0 0.66

According to [?], the treatment length has been fixed to
13 days, and the desired tumor level r has been set equal to
135 mm3 with the goal to get close to r at the end of the
treatment.

Simulations have been carried out by setting the initial
tumor volume x1(0) equal to 200 mm3 and by varying the
initial value of the carrying capacity x2(0) in the percentage



range of [−40, +200]% with respect to the reference value
of 625 mm3. The initial value of the serum level of the
administered angiogenic inhibitor x3(0) is set equal to zero.
Also these initial values are consistent with real data coming
from [?].

For the observer initialization, x̂1(0) is set equal to the
measurement of the tumor volume at day zero, x̂3(0) is set
equal to zero, and x̂2(0) is allowed to vary in the percentage
range of [−40, +200]% with respect to real value x2(0).

For each pair of initial conditions (x2(0), x̂2(0)), three
different targets have been address that is:

1) to keep the final value of the tumor volume within 10%
of variation of the reference level:

x1(13∆) ∈ [0.9r, 1.1r], ∆ = 1 day (41)

2) to keep the total amount of the administered drug
smaller than 260 mg/kg (i.e. 20mg/kg per 13 day):

m =

∫ 13∆

0

u(t)dt 6 260, (42)

3) to keep the average daily amount of the administered
drug within 40% of variation with respect to 20
mg/kg/day:

md =
1

∆

∫ (T+1)∆

T

u(t)dt = 20 · (1± 40%) (43)

with T = 0, . . . , 12,
Matrices Kc and Ko are designed in order to ensure the

eigenvalues of Ab − KoCb and Ab − BbKc to be equal to
[−0.45, −0.9, −1.35] and [−1, −2, −3], respectively. The
same set of control parameters has been considered for all
simulations reported.

Accounting for different initial conditions of x2 and x̂2,
Table II and Table III report the values of x1(13∆) and m,
respectively, and Table IV refers to the maximum value (out
of 13 average daily delivered amounts) of md.

TABLE II
FINAL VALUE OF TUMOR VOLUME x1(13∆), AT THE END OF THE

TREATMENT

∆x2(0) (%)
-40 -20 0 50 100 200

∆
x̂
2
(0

)
(%

) -40 139.13 139.19 139.25 139.35 139.36 139.39
-20 139.09 138.97 138.94 138.62 138.46 138.80
0 138.73 138.62 138.34 137.82 137.86 138.42

50 137.76 137.11 136.88 136.95 137.23 137.96
100 136.45 136.17 136.15 136.46 136.87 137.66
200 135.15 135.21 135.39 135.91 136.40 137.25

The tables demonstrate the good performance of the
algorithm, in spite of the great range of variability of the
carrying capacity and of its estimate. Looking at Table II it
may be appreciated that the final value of the tumor volume
is very close to the desired value of 135 mm3, with its
variability lower than 4%. Table III ensures a total amount
smaller than the upper bound of 260 mm3, compatible with
the total amount delivered in the experiments of [?]. As far
as Table IV, even if it tells of an average daily delivery

TABLE III
TOTAL AMOUNT m OF THE ADMINISTERED ANTI-ANGIOGENIC DRUG

∆x2(0) (%)
-40 -20 0 50 100 200

∆
x̂
2
(0

)
(%

) -40 247.78 249.34 250.90 253.89 256.10 259.35
-20 247.39 248.82 249.73 251.68 253.37 257.53
0 247.00 247.65 248.04 249.47 251.81 256.36

50 242.97 242.71 243.62 246.61 249.60 254.67
100 238.94 240.11 241.54 245.18 248.43 253.76
200 235.95 237.90 239.85 243.88 247.26 252.59

TABLE IV
MAXIMUM AVERAGE DAILY AMOUNT md OF ANTI-ANGIOGENIC DRUG

∆x2(0) (%)
-40 -20 0 50 100 200

∆
x̂
2
(0

)
(%

) -40 26.24 26.44 26.61 26.95 27.16 27.50
-20 26.14 26.30 26.36 26.47 26.59 27.13
0 26.03 26.02 25.98 25.96 26.21 26.91
50 25.16 24.85 24.83 25.17 25.65 26.51

100 24.10 24.06 24.20 24.77 25.34 26.27
200 22.98 23.24 23.56 24.33 24.98 25.96

greater than 20 mm3, such delivery never shows a variability
greater than 40%. A further comment is that best results in
terms of Table II and Table IV are obtained when x̂2(0) is
overestimated. As expected the performance of the controller
worsen when x2(0) is high.

Finally, all tables deal with a control algorithm that shows
a noticeable level of robustness with respect to the initial
condition of the carrying capacity, as well as to its estimate.

In Fig.1 an example of the system dynamics is presented.

V. CONCLUSIONS

Based on a mathematical model of tumor growth, this
work proposes a closed-loop control law aiming to reduce
the tumor volume. The model accounts for angiogenic stim-
ulation and inhibition, and is one of the most adopted in
the literature to simulate and predict the effects of anti-
angiogenic drug delivery. Based on the feedback linearization
theory, the control law makes use of an observer for nonlinear
systems in order to design the model-based control by means
of only available measurements. Theoretical results ensure
that the control gain of the regulator can be set independently
of the observer gain, thanks to the structural properties of
the tumor growth model. Numerical simulations show the
effectiveness of the control law in spite of a wide range of
variation of the (not measured) carrying capacity.

APPENDIX

In this section the explicit expression of entries J31(x),
J32(x) in (11) and L3

fh(x) are reported.

J31(x) = λ2

(
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)
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)2
)

− 5
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3 )
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;

(44)

J32(x) = −λ
2x1

x2

(
2 ln
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)
+ 1

)
− λbx2

1

x2
2

; (45)



Fig. 1. Graphical comparison of the real and estimate state under the action
of the closed loop control law

L3
fh(x) = φ(x)λx1
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2
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]
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with

φ(x) = dx
2
3
1 x2 − bx1 + cx2x3 (47)

REFERENCES


