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Abstract— Exogenous insulin administration is the standard
way to regulate hyperglycemia in diabetic patients and, in
the recent decades, the challenging task to design an artificial
pancreas has been addressed with the aim to synthesize a closed-
loop control law by means of sampled glucose measurements.
Model-based control law allow to explicitly exploit the glucose-
insulin mathematical model, but need to cope with different
sources of uncertainties and disturbances affecting the system.
The present note investigates the framework of the H∞ control
as a tool to attenuate the effect of a meal, modeled as an
unknown disturbance. To this end an LMI-based feedback
control law is synthesized, by properly exploiting a Delay
Differential Equation model of the glucose-insulin system,
that makes use of only glucose measurements, to avoid the
use of insulin measurements, known to be slower and more
cumbersome to obtain, more expensive and also less accurate
than glucose measurements. It is shown by simulations that,
besides to regulate plasma glycemia onto a desired level starting
from a hyperglycemic state, the control law efficiently constrains
the post-prandial increase of glycemia on a very tight control,
preventing dangerous oscillations.

Index Terms— Linear Matrix Inequalities, Retarded Systems,
Glucose-Insulin System.

I. INTRODUCTION

Diabetes Mellitus is a very common disease characterized
by hyperglycemia resulting from defects in insulin secretion,
insulin action, or both. The standard fashion to cope with any
malfunction of the endogenous insulin feedback action is via
exogenous insulin administration, usually by means of sub-
cutaneous or intravenous insulin injections. Type 1 diabetic
patients require insulin to survive, since their pancreas does
not produce insulin any more; on the other hand, exogenous
insulin therapies for type 2 diabetes aim to complement the
endogenous, though insufficient, insulin delivery.

The present work proposes a model-based, feedback con-
trol law for an artificial pancreas, with exogenous insulin
delivered intravenously. Even if directly applicable, so far,
only to problems of glycemia stabilization in critically ill
subjects, such as in surgical Intensive Care Units after major
procedures, the use of intravenous insulin administration
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provides a wider range of possible strategies with respect
to the subcutaneous route, and ensures a rapid delivery with
negligible delays.

The glucose-insulin model chosen to synthesize the
closed-loop control is a Delay Differential Equation (DDE)
nonlinear system, [19], [24]. Differently from other model-
based approaches, which make use of Ordinary Differen-
tial Equation (ODE) models of the glucose-insulin system
to design the feedback control law according to different
control strategies (e.g. Model Predictive Control in [8], [16],
Parametric Programming in [5], H∞ control in [25], [13],
[14], [15], non-standard H∞ control in [3], [29]), a DDE
model based control law is able to take into account irreg-
ularly varying pancreatic Insulin Delivery Rate (IDR) ([17]
and references therein), thus allowing the construction of a
control scheme applicable also to Type 2 diabetes patients.
Despite the attention given to DDE models of the glucose-
insulin system in the last decade, their use as components of
the artificial pancreas has only recently sparked interest, and
has been mainly limited to open-loop approaches (see [9]
and references therein). Indeed, attempts to design closed-
loop ODE model-based glucose controls have been limited
so far to Type 1 diabetic patients (who have essentially
no endogenous insulin production), circumventing in this
way the need to model pancreatic IDR. The DDE model
considered here can realistically account for endogenous
IDR, thereby modeling in a unified fashion healthy subjects,
insulin resistant and insulin-deficient diabetic patients. Such
a model has already been exploited in [20], [21], [23] to
track a desired glucose profile according to a control strategy
based on feedback linearization with delay cancelation, with
the control law synthesized for a patient at rest. In [22] it
has been shown that the resulting closed-loop system satisfies
the local Input-to-State Stability (ISS) property with respect
to an unknown disturbance in the glucose dynamics, like a
meal.

The present note investigates the synthesis of a robust
glucose controller according to the H∞ approach, with the
goal of minimizing the effect of an unknown disturbance (the
meal) on the output of the system (plasma glycemia). Since
a standard H∞ approach is developed for linear systems,
we linearize the DDE nonlinear model at different levels of
glycemia and insulinemia, and provide a stabilizer for each
linear model by involving LMIs (see, for instance, [1], [7],
[18]). Also, for each linear model we provide an observer,
in order to compensate for missing insulin measurements,
known to be slower and more cumbersome to obtain, more
expensive and less accurate than glucose measurements.

The simulations show a very good performance of the
proposed controller (i.e, the glycemia is driven to the desired



level in good timing and satisfactory shape, avoiding danger-
ous oscillations). Moreover, when an unknown disturbance
appears (i.e., a meal), the performance of the controller is
still satisfactory, as shown by comprehensive simulations.

The paper is organized as follows. Soon after a short set
of notations, some basic results on LMI-based control are
briefly reported in Section II for linear time-delay systems.
Section III reports the DDE model of the glucose-insulin
system under investigation and Section IV details the pro-
posed LMI-based control algorithm. Numerical simulations
are reported in Section V, followed by concluding remarks.

Notations
For a positive integer n, for a positive real ∆ (maximum
involved time-delay), C denotes the space of the continuous
functions mapping [−∆, 0] into Rn. For a function x :
[−∆, c)→ Rn, with 0 < c ≤ +∞, for any real t ∈ [0, c): xt
is the function in C defined as xt(τ) = x(t+τ), τ ∈ [−∆, 0].
For a symmetric matrix P ∈ Rn×n, we say P > 0 if P is
positive definite, P < 0 if it is negative definite.

RFDE stands for retarded functional differential equation,
GAS stands for uniform global asymptotic stability or uni-
formly, globally asymptotically stable, LMI stands for Linear
Matrix Inequality. We recall here that a system is said to be
0-GAS if the origin is GAS.

II. PRELIMINARIES: LMI-BASED CONTROL

Let us consider a single-input, single-output system de-
scribed by the following linear RFDE

ẋ(t) = A0x(t) +A1x(t−∆) +Bu(t) +B1d(t),

t ≥ 0,

x(τ) = x0(τ), τ ∈ [−∆, 0],

y(t) = Cx(t), t ≥ 0,
(1)

where xt ∈ C, t ≥ 0, is the state of the system, u(t) ∈ R
is the control input, d(t) ∈ R is the unknown disturbance
(Lebesgue square integrable in R+), y(t) ∈ R is the
measured output, ∆ is a positive real, and matrices A0, A1 ∈
Rn×n, B,B1 ∈ Rn×1, C ∈ R1×n.

The proposed control law makes use of the following
standard observer-based controller for the retarded linear
system described by (1):

ξ̇(t) = A0ξ(t) +A1ξ(t−∆) + L
(
y(t)− Cξ(t)

)
+Bu(t),

t ≥ 0,

ξ(τ) = ξ0(τ), τ ∈ [−∆, 0], ξ0 ∈ C,
u(t) = Kξ(t), t ≥ 0,

(2)
where ξ(t) ∈ Rn, t ≥ −∆, is the observed state, and
K ∈ R1×n, L ∈ Rn×1 the control and observer gains,
respectively, whose design is based on the following result
(see, e.g., [28], [1]; the formalism is taken from Theorem
5.6 of [1] for the design of the control gain K within the
state feedback H∞ formulation, and from Theorem 3.1 of
[1] for the design of the observer gain L).

Theorem 1: Consider system (1). Let the following hy-
potheses hold true:

– there exist symmetric, positive definite matrices P > 0,
Q > 0, in Rn×n, and a vector Z ∈ Rn, such that the
following LMI holds satisfied[

AT0 P + PA0 − CTZT − ZC +Q PA1

AT1 P −Q

]
< 0

(3)
– Let γ > 0 be a given scalar. Let the symmetric, positive-

definite matrices X,Qi ∈ Rn×n, i = 1, 2, 3, and a
vector Y ∈ R1×n such that the following LMI holds
satisfied

H1,1 B1 H1,3 H1,4

BT1 −γ2In + ∆BT1 Q3B1 0 0
HT

1,3 0 −In 0
HT

1,4 0 0 −Q

 < 0,

(4)
where In is the identity matrix in Rn×n, and

H1,1 = (A0 +A1)X +X(A0 +A1)T

+BY + Y TBT + ∆A1Q1A
T
1 + ∆A1Q2A

T
1 ,

H1,3 = XCT ,

H1,4 =
[
XAT0 + Y BT XAT1 A1

]
,

Q = 1
∆

 Q1 0 0
0 Q2 0
0 0 Q3

 .
(5)

Then, the observer-based control law (2), with L = P−1Z,
K = Y X−1, is such that the closed-loop system (1), (2) is, in
the disturbance-free case, 0-GAS. Moreover, for the system
(1) in closed-loop with the control law u(t) = Kx(t), the
H∞ inequality holds (when the initial state x0 is assumed
equal to zero):

‖y[0,∞)‖2 ≤ γ‖d[0,∞)‖2 (6)

Remark 2: In the disturbance free case (i.e., d(t) ≡ 0),
when the observer-based control law (2) is applied to the
system described by (1), we obtain, for the estimation error
e(t) = x(t)− ξ(t), the equation

ė(t) = (A0 − LC)e(t) +A1e(t−∆), (7)

and for the variable x(t) the equation

ẋ(t) = (A0 +BK)x(t) +A1x(t−∆)−BKe(t). (8)

If the LMI (3) is feasible and L is chosen as L = P−1Z,
then the system described by (7) is 0-GAS. If the LMI
(4) is feasible, and K is chosen as K = Y X−1, then the
system described by (8) is 0-GAS (i.e., when e(t) ≡ 0).
The system described by (7), (8) is in cascade form. From
linearity and the 0-GAS property, it follows that the system
described by (8) is input-to-state stable (state x, input e,
see [26], Proposition 2.5). Thus the cascade (7), (8) is 0-
GAS (see [10], Remark 13, and take into account of converse
Lyapunov-Krasovskii theorems in [11], [12]). It follows that
the closed-loop system (1), (2) (which can be rewritten in the



cascade form (7), (8)) is, in the disturbance free-case, 0-GAS.
The same conclusion can be easily achieved by rewriting
the RFDEs (7), (8) on a suitable Hilbert space (see [6] and
references therein), and exploiting the exponential stability
of involved semigroups as well as equivalence of the 0-GAS
property with respect to continuous or absolutely continuous
initial conditions (see [27]).

Remark 3: In the disturbance free-case, if one sets B1 = 0
in the LMI (4), the positive real γ plays no role. That is, the
LMI (4) with B1 = 0 is feasible if and only if the following
LMI (with the same entries as in (5)) is feasible H1,1 H1,3 H1,4

HT
1,3 −In 0

HT
1,4 0 −Q

 < 0 (9)

In this paper we will find the controller by always using
the LMI (4) with B1 6= 0, since the 0-GAS property is
guaranteed by the LMI (4), when feasible with B1 6= 0.
Moreover, we will make use of the observer-based control
law (2), for which only the 0-GAS property of the closed-
loop disturbance free system is guaranteed, also in the case
the disturbance is not zero, and we will show excellent
performances with the practical case study dealt within this
paper.

III. THE GLUCOSE-INSULIN SYSTEM

Denote G(t), [mM], I(t), [pM], plasma glycemia and
insulinemia, respectively. The glucose-insulin model consid-
ered here belongs to the family of DDE models described
in [19] and consists of a single discrete-delay differential
equation system:

dG(t)
dt

= −KxgiG(t)I(t) +
Tgh
VG

+
d(t)
VG

, t ≥ 0,

dI(t)
dt

= −KxiI(t) +
TiGmax
VI

f
(
G(t− τg)

)
+
u(t)
VI

,

(10)
with the nonlinear function f(·) modeling the pancreatic
Insulin Delivery Rate as:

f(G) =

(
G
G∗

)γ
1 +

(
G
G∗

)γ (11)

Refer to [24] for details on the model parameters. The signal
u(t) [pmol/kgBW/min] is the exogenous intra-venous insulin
delivery rate, i.e. the control input; d(t) [mmol/kgBW/min]
is an unknown disturbance, which models a glucose intake,
e.g. by means of a meal.

Initial conditions are G(τ) = G0(τ), I(τ) = I0(τ),
τ ∈ [−τg, 0], corresponding to the plasma glucose/insulin
concentrations before the control input u(t) is applied and
the disturbance d(t) is administered. For instance, they can
be assumed equal to the constant basal levels (Gb, Ib).

It has to be stressed that model (10) may represent equally
well healthy subjects and insulin-resistant or severely insulin-
deficient diabetic patients by appropriately changing the
parameter values.

IV. THE LMI-BASED CONTROL ALGORITHM

Let Gdes [mM] be the desired level of plasma glycemia,
smaller than the basal hyperglycemic level of glycemia of a
diabetic patient, and define

Ides =
Tgh
VG

1
KxgiGdes

,

udes = VIKxiIdes − TiGmaxf
(
Gdes

)
(12)

Then, if G(τ) = Gdes, τ ∈ [−τg, 0], I(0) = Ides, u(t) =
udes, t ≥ 0, d(t) ≡ 0, the solution of (10) is given by G(t) =
Gdes, I(t) = Ides, t ≥ 0. In other words, once Gdes has been
chosen, we may compute Ides and udes from (12) as the
insulinemia and the input references which asymptotically
correspond to a perfect tracking of Gdes [21].

Let Gmax > Gb be a feasible maximum value for plasma
glycemia (indeed, from a mathematical viewpoint such a
bound exists since it has been proven that the DDE model
(10) has persistent solutions, [19]) and define the following
partition of the glucose interval (0, Gmax]:

Wk = (Gk − ak, Gk + bk], k = 0, 1, . . . , p (13)

with G0 = 0, Gp = Gmax, a0 = 0, bp = 0 and

0 ≤ Gk < Gk+1 ≤ Gmax ∀k = 0, 1, . . . , p− 1 (14)

ak =
1
2

(Gk −Gk−1), k = 1, 2, . . . , p (15)

bk =
1
2

(Gk+1 −Gk), k = 0, 1, . . . , p− 1 (16)

For each Gk, k = 0, 1, . . . , p, the following values can be
computed for Ik and uk:

Ik =
Tgh
VG

1
KxgiGk

,

uk = VIKxiIk − TiGmaxf
(
Gk
)

(17)

The proposed control algorithm consists of a variable
structure regulator with the control parameters tuned accord-
ing to the linearization of the DDE nonlinear model of the
glucose-insulin system around the triple (Gk, Ik, uk):

ẋk(t) = A0,kxk(t)+A1,kxk(t−τg)+Bvk(t)+B1d(t) (18)

where

xk(t) =
[
G(t)−Gk
I(t)− Ik

]
vk(t) = u(t)− uk (19)

and

A0,k =
[
−KxgiIk −KxgiGk

0 −Kxi

]
, B =

[
0

1/VI

]
(20)

A1,k =
[

0 0
TiGmax

VI
f ′(Gk) 0

]
, B1 =

[
1/VG

0

]
(21)

Without loss of generality, assume Gdes = Gk̄ < Gb for
some k̄ ∈ {1, 2, . . . , p−1}. The idea of the proposed method-
ology is to move towards the desired level of glycemia by
means of intermediate control steps, according to which, at
each step the controller aims to track a temporary desired
glycemia given by a suitably chosen Gk ∈ Wk: to this



end Theorem 1 is repeatedly applied to the DDE system
linearized around the triple (Gk, Ik, uk). Thus, these triples
constitute an a priori setting of the control algorithm. As
a matter of fact, the matrices of the linearized system can
be computed offline, as well as the control gains K and the
observer gains L (as feasible LMI solutions), as a sort of
control library to be properly selected during the algorithm
application. To this aim, assume there exist LMI solutions
to (3)-(4) for any region Wk of the partition, and define
(Kk, Lk) a chosen pair of gains associated to Wk. The
algorithm follows below.

Algorithm. Define matrix C = [1 0]. Let Ĝ(τ) =
Ĝ0(τ), Î(τ) = Î0(τ), τ ∈ [−τg, 0], with Ĝ0, Î0 continuous
functions (for instance, constant) mapping [−τg, 0] 7→ R,
initial estimations of the glucose and insulin variables. Let
G(0) ∈Wj0 , with j0 ∈ {0, 1, . . . , p}. Let

l =


j0 + 1, j0 < k,

j0 − 1, j0 > k,

j0, j0 = k

(22)

Let j ∈ {1, 2, . . . , p− 1} be a switching index, as specified
in next points, and consider the closed-loop system given by
(10) and u(t) = v(t) + uj as follows:

ξ̇(t) = A0,jξ(t) +A1,jξ(t− τg)
+Lj(G(t)−Gj − Cξ(t)) +Bv(t), t ≥ 0,

ξ(τ) =

[
Ĝ(τ)−Gl
Î(τ)− Il

]
, τ ∈ [−τg, 0],

v(t) = Kjξ(t), t ≥ 0;
(23)

– if G(t) ∈Wk, with k > k, then j = k− 1, (Kj , Lj) =
(Kk−1, Lk−1) and

A0,j = A0,k−1, A1,j = A1,k−1, (24)

with A0,k−1, A1,k−1 computed according to the lin-
earization of the DDE system around the triple
(Gk−1, Ik−1, uk−1), (20)-(21);

– if G(t) ∈Wk, with k < k, then j = k+ 1, (Kj , Lj) =
(Kk+1, Lk+1) and

A0,j = A0,k+1, A1,j = A1,k+1, (25)

with A0,k+1, A1,k+1 computed according to the lin-
earization of the DDE system around the triple
(Gk+1, Ik+1, uk+1), (20)-(21);

– if G(t) ∈ Wk, with k = k, then j = k, (Kj , Lj) =
(Kk, Lk) and

A0,j = A0,k, A1,j = A1,k, (26)

with A0,k, A1,k computed according to the linearization
of the DDE system around the triple (Gdes, Ides, udes),
(20)-(21).

Remark 4: Notice that the control law is designed without
taking into account saturation constraints that, on the con-
trary, are clearly present since the control law is, in fact, an
insulin infusion rate and cannot become negative. To properly
cope with this fact, the algorithm trivially provides a zero

TABLE I
CONTROL/OBSERVER PARAMETERS FOR PATIENT AT REST

Regions K L

W10 [7.66 -0.20] [1.15 -13.35]T

W9 [4.70 -0.15] [1.01 -18.02]T

W8 [8.64 -0.21] [0.99 -21.38]T

W7 [5.19 -0.15] [1.00 -22.05]T

W6 [13.66 -0.20] [1.01 -19.09]T

W5 [13.04 -0.19] [1.01 -13.95]T

control input whenever a negative insulin delivery rate is
required from the control law.

V. NUMERICAL SIMULATIONS

Simulations have been carried out on a virtual patient
with the following model parameters showing severe hyper-
glycemia and the state of frank Type 2 Diabetes Mellitus
(refer to [21] for the details):

Gb = 10.66

γ = 3.205

VG=0.187

VI = 0.25

Ib = 49.29

G∗ = 9

Kxi=1.211 · 10−2

Kxgi=3.11 · 10−5

TiGmax=0.236

τg = 24

Tgh = 0.003

(27)
The desired reference level is Gdes = 5mM. Let us

consider a maximum bound Gmax for plasma glycemia equal
to 30mM: even if post-prandial glycemia could be rather
high, especially for diabetic patients (and comparable to such
an upper bound) simulations will show that such an upper
bound is far larger than what we really obtain. The partition
Wk, k = 0, 1, . . . , 30 of the glucose interval (13) is set with
Gk = kmM and

ak+1 = bk = 0.5mM, k = 0, 1, . . . , 29 (28)

so that to have 30 intervals, all but the boundary ones W0

and Wp equally spaced with length 1mM. Again, we stress
the fact that very few intervals will be involved in the glucose
evolution.

Let us consider first the task to regulate the patient
glycemia at rest, that means without meal disturbances. In
Table I the values of K and L are reported for regions Wk,
k = 5, . . . , 10. Since no disturbance is present, parameter
γ does not play any role for this first set of simulations.
According to the proposed control algorithm, the plasma
glycemia reduces below the safety level of 6mM within
the first 3/4 hours and becomes closer and closer to the
desired level of glycemia within 6 hours, in a monotonically
decreasing fashion: as a matter of fact only the 6 regions
W5, . . . ,W10 are in fact involved, and no dangerous glucose
oscillations appear. The observer is supposed to start with
an initial error of 10% for both glycemia and insulinemia
measurements. Simulated plasma glycemia is reported in
Fig.1.

The second set of simulations is done by taking into
account a meal administration, modeled by the presence of
an unknown disturbance in the plasma glycemia dynamics.



Fig. 1. Plasma glycemia for a closed loop system without disturbance.

TABLE II
CONTROL GAIN K FOR γ =

√
800 AND γ =

√
10

Regions K for γ =
√

800 K for γ =
√

10
W10 [423.9 -1.1] [3274.7 -3.8]
W9 [481.0 -1.2] [2189.0 -2.9]
W8 [333.3 -0.9] [1717.4 -2.9]
W7 [1955.5 -2.4] [3747.9 -4.1]
W6 [325.9 -0.8] [5605.8 -3.8]
W5 [224.7 -0.9] [2438.9 -2.5]

The meal is administered at time t = 20min: the rate of
appearance of the glucose intake in the plasma compartment,
the unknown disturbance d(t), is taken from [4], according
to proper unit conversions.

These kind of simulations are carried out by assuming that
the patient’s glycemia has already been controlled to track the
desired value, so that the present simulations are made after
the transient of the first class of simulations has vanished
and the desired values (Gdes, Ides, udes) in (12) have been
asymptotically reached. In the spirit of the H∞ approach,
two simulations are here reported, obtained by means of a
couple of values of parameter γ. In Table II the values of
the controller gain K are reported for the different values
of the linearization region and for different values of γ. The
observer gains L do not change from the values of Table I,
exploited to synthesize the control law without the presence
of the meal disturbance (indeed, the LMI (4) in Theorem 1
does not involve L).

Figs.2-3 report plasma glycemia and insulinemia, respec-
tively, according to the exogenous insulin infusion rate
pictured in Fig.4 and corresponding to a value of γ equal
to
√

800. The simulation considers the 7 hours after the
meal administration. As it clearly appears, the maximum
value of plasma glycemia is below 8.5mM and is reached
within the first hour of simulation; two hours after the meal
administration plasma glycemia is already below 7.5mM
according to a monotonically decreasing behavior, that is
considered an excellent result according to the efficacy
criteria adopted to evaluate glucose controllers (see, e.g. [2]
where excellent efficacy in the post-prandial state is assessed
if after two hours of meal administration plasma glycemia is

constrained below 8mM). Notice that the spikes in the insulin
infusion rate appear in correspondence of the time instant
when plasma glycemia crosses one of the Wk regions and
the control parameters switch according to a new glucose
target.

Fig. 2. Plasma glycemia for a closed loop system with γ =
√

800.

Fig. 3. Plasma insulinemia for a closed loop system with γ =
√

800.

Remark 5: By decreasing parameter γ the disturbance is
required to be more attenuated. Indeed, by setting γ at

√
10

we obtain a further improvement of the disturbance rejection.
Of course, in this latter case, a greater insulin administration
is required at the beginning of the regulation.

VI. CONCLUSIONS

A challenging task in model-based artificial pancreas is to
cope with the many sources of uncertainties and disturbances
that unavoidably affect the system, such as exercise, stress
and meals.

In the spirit of the H∞ approach, a new control algorithm
for the regulation of plasma glycemia is here presented,
aiming to properly address the disturbances appearing in
the glucose dynamics during a meal administration. Such
an algorithm is based on LMIs for retarded systems, and
makes use of a switching control law, with the switches
depending on the current value of the glycemia. A partition
of an interval of glycemia is used, and linearization of the
RFDE describing the glucose-insulin system is considered



Fig. 4. Exogenous insulin administration for a closed loop system with
γ =
√

800.

in each sub-interval. On the basis of the set of linear
models, a set of controllers is found by means of standard
LMIs. The simulations show very good performances of the
controller, especially in cases modeling a meal admnistration.
Future research efforts will concern the theoretical proof of
convergence of the glycemia to the desired level, when the
control law here presented is applied.
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