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Abstract. Over the last years, Linked Data has grown continuously. Today, we
count more than 10,000 datasets being available online following Linked Data
standards. These standards allow data to be machine readable and inter-operable.
Nevertheless, many applications, such as data integration, search, and interlink-
ing, cannot take full advantage of Linked Data if it is of low quality. There exist a
few approaches for the quality assessment of Linked Data, but their performance
degrades with the increase in data size and quickly grows beyond the capabilities
of a single machine. In this paper, we present DistQualityAssessment – an open
source implementation of quality assessment of large RDF datasets that can scale
out to a cluster of machines. This is the first distributed, in-memory approach for
computing di↵erent quality metrics for large RDF datasets using Apache Spark.
We also provide a quality assessment pattern that can be used to generate new
scalable metrics that can be applied to big data. The work presented here is in-
tegrated with the SANSA framework and has been applied to at least three use
cases beyond the SANSA community. The results show that our approach is more
generic, e�cient, and scalable as compared to previously proposed approaches.

1 Introduction

Large amounts of data are being published openly to Linked Data by di↵erent data
providers. A multitude of applications such as semantic search, query answering, and
machine reading [18] depend on these large-scale4 RDF datasets. The quality of un-
derlying RDF data plays a fundamental role in large-scale data consuming applica-
tions. Measuring the quality of linked data spans a number of dimensions including
but not limited to: accessibility, interlinking, performance, syntactic validity or com-
pleteness [22]. Each of these dimensions can be expressed through one or more quality
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metrics. Considering that each quality metric tries to capture a particular aspect of the
underlying data, numerous metrics are usually provided against the given data that may
or may not be processed simultaneously.

On the other hand, the limited number of existing techniques of quality assessment
for RDF datasets are not adequate to assess data quality at large-scale and these ap-
proaches mostly fail to capture the increasing volume of big data. To date, a limited
number of solutions have been conceived to o↵er quality assessment of RDF datasets
[11,13,4,10]. But, these methods can either be used on a small portion of large datasets
[13] or narrow down to specific problems e.g., syntactic accuracy of literal values [4],
or accessibility of resources [17]. In general, these existing e↵orts show severe defi-
ciencies in terms of performance when data grows beyond the capabilities of a single
machine. This limits the applicability of existing solutions to medium-sized datasets
only, in turn, paralyzing the role of applications in embracing the increasing volumes
of the available datasets.

To deal with big data, tools like Apache Spark5 have recently gained a lot of interest.
Apache Spark provides scalability, resilience, and e�ciency for dealing with large-scale
data. Spark uses the concepts of Resilient Distributed Datasets (RDDs) [21] and per-
forms operations like transformations and actions on this data in order to e↵ectively
deal with large-scale data.

To handle large-scale RDF data, it is important to develop flexible and extensible
methods that can assess the quality of data at scale. At the same time, due to the broad-
ness and variety of quality assessment domain and resulting metrics, there is a strong
need to provide a generic pattern to characterize the quality assessment of RDF data in
terms of scalability and applicability to big data.

In this paper, we borrow the concepts of data transformation and action from Spark
and present a pattern for designing quality assessment metrics over large RDF datasets,
which is inspired by design patterns. In software engineering, design patterns are gen-
eral and reusable solutions to common problems. Akin to design pattern, where each
pattern acts like a blueprint that can be customized to solve a particular design problem,
the introduced concept of Quality Assessment Pattern (QAP) represents a generalized
blueprint of scalable quality assessment metrics. In this way, the quality metrics de-
signed following QAP can exhibit the ability to achieve scalability to large-scale data
and work in a distributed manner. In addition, we also provide an open source im-
plementation and assessment of these quality metrics in Apache Spark following the
proposed QAP.

Our contributions can be summarized in the following points:

– We present a Quality Assessment Pattern QAP to characterize scalable quality
metrics.

– We provide DistQualityAssessment6 – a distributed (open source) implementation
of quality metrics using Apache Spark.

– We perform an analysis of the complexity of the metric evaluation in the cluster.

5
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– We evaluate our approach and demonstrate empirically its superiority over a previ-
ous centralized approach.

– We integrated the approach into the SANSA7 framework. SANSA is actively main-
tained and uses the community ecosystem (mailing list, issues trackers, continues
integration, web-site etc.).

– We briefly present three use cases where DistQualityAssessment has been used.

The paper is structured as follows: Our approach for the computation of RDF dataset
quality metrics is detailed in section 2 and evaluated in section 3. Related work on the
computation of quality metrics for RDF datasets is discussed in section 5. Finally, we
conclude and suggest planned extensions of our approach in section 6.

2 Approach

In this section, we first introduce basic notions used in our approach, the formal defini-
tion of the proposed quality assessment pattern and then describe the workflow.

2.1 Quality Assessment Pattern

Data quality is commonly conceived as a multi-dimensional construct [2] with a popu-
lar notion of ’fitness for use’ and can be measured along many dimensions D such as
accuracy (daccu 2 D), completeness (dcomp 2 D) and timeliness (dtmls 2 D). The assess-
ment of a quality dimensions d is based on quality metrics QM = m1,m2...mk where
mi is a heuristic that is designed to fit a specific assessment dimension. The following
definitions form the basis of QAP.

Definition 1 (Filter). Let F = f1, f2... fl be a set of filters where each filter fi sets
a criteria for extracting predicates, objects, subjects, or their combination. A filter fi
takes a set of RDF triples as input and returns a subgraph that satisfies the filtering
criteria.

Definition 2 (Rule). Let R = r1, r2...r j be a set of rules where each rule ri sets a con-
ditional criteria. A rule takes a subgraph as input and returns a new subgraph that
satisfies the conditions posed by the rule ri.

Definition 3 (Transformation). A transformation ⌧ : G ! G0 is an operation that
applies rules defined by R on the RDF graph G and returns an RDF subgraph G0. A
transformation ⌧ can be a union [ or intersection \ of other transformations.

Definition 4 (Action). An action ↵ : G! R is an operation that triggers the transfor-
mation of rules on the filtered RDF graph G0 and generates a numerical value. Action
↵ is the count of elements obtained after performing a ⌧ operation.

Definition 5 (Quality Assessment Pattern QAP). The Quality Assessment Pattern
QAP is a reusable template to implement and design scalable quality metrics. The
QAP is composed of transformations and actions. The output of a QAP is the outcome
of an action returning a numeric value against the particular metric.

7
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Table 1. Quality Assessment Pattern

Quality Metric := Action |(Action OP Action)
OP := ⇤ |� |/ |+
Action := Count(Transformation)

Transformation := Rule(Filter) |(Transformation BOP Transformation)
Filter := getPredicates ⇠?p |getSubjects ⇠?s |getObjects ⇠?o |getDistinct(Filter)

|Filter or Filter |Filter && Filter)
Rule := isURI(Filter) |isIRI(Filter) |isInternal(Filter) |isLiteral(Filter)

|!isBroken(Filter) |hasPredicateP |hasLicenceAssociated(Filter)
|hasLicenceIndications(Filter) |isExternal(Filter) |hasType((Filter)
|isLabeled(Filter)

BOP := \— [

QAP is inspired by Apache Spark operations and designed to fit di↵erent data qual-
ity metrics (for more details see Table 1). Each data quality metric can be defined fol-
lowing the QAP. Any given data quality metric mi that is represented through the QAP
using transformation ⌧ and action ↵ operations can be easily transformed into Spark
code to achieve scalability.

Table 2 demonstrates a few selected quality metrics defined against proposed QAP.
As shown in Table 2, each quality metric can contain multiple rules, filters or actions. It
is worth mentioning that action count(triples) returns the total number of triples in the
given data. This can also be seen that the action can be an arithmetic combination of
multiple actions i.e. ratio, sum etc. We illustrate our proposed approach on some metrics
selected from [10,22]. Given that the aim of this paper is to show the applicability of
the proposed approach and comparison with existing methods, we have only selected
those which are already provided out-of-box in Luzzu.

2.2 System Overview

In this section, we give an overall description of the data model and the architecture of
DistQualityAssessment. We model and store RDF graphs G based on the basic build-
ing block of the Spark framework, RDDs. RDDs are in-memory collections of records
that can be operated in parallel on a large distributed cluster. RDDs provide an inter-
face based on coarse-grained transformations (e.g map, filter and reduce): operations
applied on an entire RDD. A map function transforms each value from an input RDD
into another value while applying ⌧ rules. A filter transforms an input RDD to an output
RDD, which contains only the elements that satisfy a given condition. Reduce aggre-
gates the RDD elements using a specific function from ⌧.

The computation of the set of quality metrics QM is performed using Spark as
depicted in Figure 1. Our approach consists of four steps:

Defining quality metrics parameters (step 1) The metric definitions are kept in a ded-
icated file which contains most of the configurations needed for the system to evaluate
quality metrics and gather result sets.
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Metric Transformation ⌧ Action ↵

L1 Detection of a r = hasLicenceAssociated(?p) ↵ = count(r)

Machine Readable License ↵ > 0 ? 1 : 0

L2 Detection of a Human r = isURI(?s) \ hasLicenceIndications(?p) \ ↵ = count(r)

Readable License isLiteral(?o) \ isLicenseStatement(?o) ↵ > 0 ? 1 : 0

I2 Linkage Degree of Linked r_1 = isIRI(?s) \ internal(?s) \ ↵_1 = count(r_3)

External Data Providers isIRI(?o) \ external(?o) ↵_2 = count(triples)

r_2 = isIRI(?s) \ external(?s) \ ↵ = a_1/a_2

isIRI(?o) \ internal(?o)
r_3 = r_1 [ r_2

U1 Detection of a Human r_1 = isURI(?s) \ isInternal(?s) \ ↵_1 = count(r_1) +

Readable Labels isLabeled(?p) count(r_2) +

r_2 = isInternal(?p) \ isLabeled(?p) count(r_3)

r_3 = isURI(?o) \ isInternal(?o) \ ↵_2 = count(triples)

isLabeled(?p) ↵_1/ ↵_2

RC1 Short URIs r_1 = isURI(?s) [ isURI(?p) [ isURI(?o) ↵_1 =count(r_2)

r_2 = resTooLong(?s, ?p, ?o) ↵_1/count(triples)

SV3 Identification of Literals r = isLiteral(?o) \ getDatatype(?o) \ ↵ = count(r)

with Malformed Datatypes isLexicalFormCompatibleWithDatatype(?o)

CN2 Extensional Conciseness r = isURI(?s) \ isURI(?o) ↵_1 = count(r)

↵_2 = count(triples)

(↵_2- ↵_1)/ ↵_2

Table 2. Definition of selected metrics following QAP.
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Retrieving the RDF data (step 2) RDF data first needs to be loaded into a large-scale
storage that Spark can e�ciently read from. We use Hadoop Distributed File-System8

(HDFS). HDFS is able to fit and stores any type of data in its Hadoop-native format and
parallelizes them across a cluster while replicating them for fault tolerance. In such a
distributed environment, Spark automatically adopts di↵erent data locality strategies to
perform computations as close to the needed data as possible in HDFS and thus avoids
data transfer overhead.

Parsing and mapping RDF into the main dataset (step 3) We first create a distributed
dataset called main dataset that represent the HDFS file as a collection of triples. In
Spark, this dataset is parsed and loaded into an RDD of triples having the format
Triple<(s,p,o)>.

Quality metric evaluation (step 4) Considering the particular quality metric, Spark
generates an execution plan, which is composed of one or more ⌧ transformations and
↵ actions. The numerical output of the final action is the quality of the input RDF
corresponding to the given metric.

2.3 Implementation

We have used the Scala9 programming language API in Apache Spark to provide the
distributed implementation of the proposed approach.

The DistQualityAssessment (see algorithm 1) constructs the main dataset (line 1)
while reading RDF data (e.g. NTriples file or any other RDF serialization format) and
converts it into an RDD of triples. This latter undergoes the transformation operation of
applying the filtering through rules in R and producing a new filtered RDD (G0) (line 5).
At the end, G0 will serve as an input to the next step which applies a set of ↵ actions
(line 8). The output of this step is the metric output represented as a numerical value
(line 8). The result set of di↵erent quality metrics (line 12) can be further visualized and
monitored using SANSA-Notebooks [12].
The user can also choose to extract the output in a machine-readable format (line 10).
We have used the data quality vocabulary10 (DQV) to represent the quality metrics.

Furthermore, we also provide a Docker image of the system integrated within the
BDE platform11 - an open source Big Data processing platform allowing users to in-
stall numerous big data processing tools and frameworks and create working data flow
applications.

The work done here (available under Apache License 2.0) has been integrated into
SANSA [16], an open source12 data flow processing engine for scalable processing
of large-scale RDF datasets. SANSA uses Spark o↵ering fault-tolerant, highly avail-
able and scalable approaches to process massive sized datasets e�ciently. SANSA pro-
vides the facilities for semantic data representation, querying, inference, and analytics at

8
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

9
https://www.scala-lang.org/

10
https://www.w3.org/TR/vocab-dqv/

11
https://github.com/big-data-europe

12
https://github.com/SANSA-Stack
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Algorithm 1: Spark-based parallel quality assessment algorithm.
input : RDF: an RDF dataset, param: quality metrics parameters.
output: dqv description or metric numerical value

1 triples = spark.rdf(lang)(input)
2 triples.persist()
3 dqv ;
4 foreach m 2 param.getListO f Metrics do
5 triples triples.Tran f orm { t =>
6 rule m.Rule
7 t.apply(rule) }
8 metric triples.apply(m.Action)
9 if m.hasDQVdescription then

10 dqvi f y metric.dqvi f y()

11 dqv.add(dqvi f y)

12 return (dqv,metric)

scale. Being part of this integration, DistQualityAssessment can take advantage of hav-
ing the same user community as well as infrastructure build via SANSA project. Doing
so, it can also ensure the sustainability of the tool given that SANSA is supported by
several grants until at least 2021.

Complexity Analysis We deem that the overall time complexity of the distributed qual-
ity assessment evaluation is O(n). The performance of metrics computation depends on
data shu✏ing (while filtering using rules in R) and data scanning. Our approach per-
forms a direct mapping of any quality metric designed using QAP into a sequence of
Spark-compliant Scala-commands, as a consequence, most of the operators used are
a series of transformations like map, f ilter and reduce. The complexity of map and
f ilter is considered to be linear with respect to the number of triples associated with it.
The complexity of a metric then depends on the ↵ operation that returns the count of the
filtered output. This later step works on the distributed RDD between p nodes which
imply that the complexity of each node then becomes O(n/p), where n is number of
input triples. Let be O(⌧) a complexity of ⌧, then the complexity of the metric will be
O(n/p ⇤ O(⌧)). This indicates that the runtime increases linearly when the size of an
RDD increases and decreases linearly when more nodes p are added to the cluster.

3 Evaluation

The main aim of DistQualityAssessment is to serve massive large-scale real-life RDF
datasets. We are interested in addressing the following additional questions.

– Flexibility: How fast our approach processes di↵erent types of metrics?
– Scalability: How large are the RDF datasets that DistQualityAssessment can scale

to? What is the system speedup w.r.t the number of nodes in a cluster mode?
– E�ciency: How well our approach performs compared with other state-of-the-art

systems on real-world datasets?
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In the following, we present our experimental setup including the datasets used. There-
after, we give an overview of our results.

3.1 Experimental Setup

We chose two real-world and one synthetic datasets for our experiments:

1. DBpedia [15] (v 3.9) – a cross domain dataset. DBpedia is a knowledge base with a
large ontology. We build a set of 3 pipelines of increasing complexity: (i) Men

DBpedia

(⇡ 813M triples); (ii) Mde
DBpedia (⇡ 337M triples); (iii) M f r

DBpedia (⇡ 341M triples).
DBpedia has been chosen because of its popularity in the Semantic Web commu-
nity.

2. LinkedGeoData [20] – a spatial RDF knowledge base derived from OpenStreetMap.
3. Berlin SPARQL Benchmark (BSBM) [6] – a synthetic dataset based on an e-commerce

use case containing a set of products that are o↵ered by di↵erent vendors and re-
views posted by consumers about products. The benchmark provides a data gener-
ator, which can be used to create sets of connected triples of any particular size.

Properties of the considered datasets are given in Table 3.

Table 3. Dataset summary information (nt format).

�! DBpedia BSBM
LinkedGeoData en de fr 2GB 20GB 200GB

#nr. of triples 1,292,933,812 812,545,486 336,714,883 340,849,556 8,289,484 81,980,472 817,774,057
size (GB) 191.17 114.4 48.6 49.77 2 20 200

We implemented DistQualityAssessment using Spark-2.4.0, Scala 2.11.11 and Java
8, and all the data were stored on the the HDFS cluster using Hadoop 2.8.0. The exper-
iments in local mode are all performed on a single instance of the cluster. Specifically,
we compare our approach with Luzzu [10] v4.0.0, a state-of-the-art quality assessment
system13. All distributed experiments were carried out on a small cluster of 7 nodes (1
master, 6 workers): Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz (32 Cores), 128
GB RAM, 12 TB SATA RAID-5. The machines were connected via a Gigabit network.
All experiments have been executed three times and the average value is reported in the
results.

3.2 Results

We evaluate the proposed approach using the above datasets to compare it against
Luzzu [10]. We carry out two sets of experiments. First, we evaluate the runtime of
our distributed approach in contrast to Luzzu. Second, we evaluate the horizontal scal-
ability via increasing nodes in the cluster. Results of the experiments are presented in
13
https://github.com/Luzzu/Framework

https://github.com/Luzzu/Framework
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Table 4, Figure 2 and Figure 3. Based on the metric definition, some metrics make use
of external access (e.g. Dereferenceability of Forward Links) which leads to a signifi-
cant increase in Spark processing due to network latency. For the sake of the evaluation
we have suspended such metrics. As of that, we choose seven metrics (see Table 2 for
more details) where the level of di�culty vary from simple to complex according to
combination of transformation/action operations involved.

Performance evaluation on large-scale RDF datasets We started our experi-
ments by evaluating the speedup gained by adopting a distributed implementation of
quality assessment metrics using our approach, and compare it against Luzzu. We run
the experiments on five datasets (DBpediaen, DBpediade, DBpedia f r, LinkedGeoData
and BS BM200GB). Local mode represent a single instance of the cluster without any tun-
ing of Spark configuration and the cluster mode includes further tuning. Luzzu was run
in a local environment on a single machine with two strategies: (1) streaming the data
for each metric separately, and (2) one stream/load – all metrics evaluated just once.

Table 4. Performance evaluation on large-scale RDF datasets.

Runtime (m) (mean/std)

�! Luzzu DistQualityAssessment

a) single b) joint c) local d) cluster e) speedup ratio w.r.t
Luzzu |DistQualityAssessmentc)

L
ar

ge
-s

ca
le LinkedGeoData Fail Fail 446.9/63.34 7.79/0.54 n/a|56.4x

DBpediaen Fail Fail 274.31/38.17 1.99/0.04 n/a|136.8x
DBpediade Fail Fail 161.4/24.18 0.46/0.04 n/a|349.9x
DBpedia f r Fail Fail 195.3/26.16 0.38/0.04 n/a|512.9x
BS BM200GB Fail Fail 454.46/78.04 7.27/0.64 n/a|61.5x

Sm
al

lt
o

m
ed

iu
m

BS BM0.01GB 2.64/0.02 2.65/0.01 0.04/0.0 0.42/0.04 65x|(-0.9x)
BS BM0.02GB 5.9/0.16 5.66/0.02 0.04/0.0 0.43/0.03 146.5x|(-0.9x)
BS BM0.05GB 16.38/0.44 15.39/0.21 0.05/0.0 0.46/0.02 326.6x|(-0.9x)
BS BM0.1GB 40.59/0.56 37.94/0.28 0.06/0.0 0.44/0.05 675.5x|(-0.9x)
BS BM0.2GB 101.8/0.72 101.78/0.64 0.07/0.0 0.4/0.03 1453.3|(-0.8x)
BS BM0.5GB 459.19/18.72 468.64/21.7 0.15/0.01 0.48/0.03 3060.3x|(-0.7x)
BS BM1GB 1454.16/10.55 1532.95/51.6 0.4/0.02 0.56/0.02 3634.4x|(-0.3x)
BS BM2GB Timeout Timeout 3.19/0.16 0.62/0.04 n/a|4.1x
BS BM10GB Timeout Timeout 29.44/0.14 0.52/0.01 n/a|55.6x
BS BM20GB Fail Fail 34.32/9.22 0.75/0.29 n/a|44.8x

Table 4 shows the performance of two approaches applied to five datasets. In Ta-
ble 4 we indicate ”Timeout” whenever the process did not complete within a certain
amount of time14 and ”Fail” when the system crashed before this timeout delay. Col-
umn Luzzua) represents the performance of Luzzu on bulk load – considering each
metric as a sequence of the execution, on the other hand, the column Luzzub) reports
on the performance of Luzzu using a joint load by evaluating each metric using one
14 We set the timeout delay to 24 hours of the quality assessment evaluation stage.
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load. The last columns reports on the performance of DistQualityAssessment run on a
local mode c), cluster mode d) and speedup ratio of our approach compared to Luzzub)

(d)/b) � 1) and itself evaluated on local mode (d)/c) � 1) is reported on the column e).
We observe that the execution of our approach finishes with all the datasets whereas
this is not the case with Luzzu which either timeout or fail at some point.

Unfortunately, Luzzu was not capable of evaluating the metrics over large-scale
RDF datasets from Table 4 (part one). For that reason we run yet another set of experi-
ments on very small datasets which Luzzu was able to handle. Second part of the Table 4
shows a performance evaluation of our approach compared with Luzzu on very small
RDF datasets. In some cases (e.g. RC1, SV3) for a very small dataset Luzzu performs
better than our approach with a small margin of runtime in the local mode. It is due to the
fact that in the streaming mode, when Luzzua) finds the first statement which fulfills the
condition (e.g.finding the shortest URIs), it stops the evaluation and return the results.
On the contrary, our approach evaluates the metrics over the whole dataset exploiting
the fault-tolerance and resilient features build in Spark. In other cases Luzzu su↵ers
from significant slowdowns, which are several orders of magnitude slower. Therefore,
its average runtime over all metrics is worst as compared to our approach. It is impor-
tant to note that our approach on these very small datasets degrades while running on
the cluster mode. This is because of the network overhead while shu✏ing the data, but
it outperforms Luzzua),b) when considering ”average runtime” over all the metrics (even
for very small datasets).

Findings shown in Table 4 depict that our approach starts outperforming when the
size of the dataset grows (e.g. BS BM2GB). The runtime in the cluster mode stays con-
stant when the size of the data fits into the main memory of the cluster. On other hand,
Luzzu is not able to evaluate the metrics when the size of data starts increasing, the time
taken lasts beyond the delay we set for small datasets. Because of the large di↵erences,
we have used a logarithmic scale to better visualize these results.

Scalability performance analysis In this experiment we evaluate the e�ciency of
our approach. Figure 2 and Figure 3 illustrates the results of the comparative e�ciency
analysis.

Data scalability To measure the performance of size-up scalability of our approach,
we run experiments on five di↵erent sizes. We fix the number of nodes to 6 and grow
the size of datasets to measure whether DistQualityAssessment can deal with larger
datasets. For this set of experiments we consider BSBM benchmark tool to generate
syntethic datasets of di↵erent sizes, since the real-world dataset are considered to be
unique in their size and attributes.

We start by generating a dataset of 2GB. Then, we iteratively increase the size of
datasets. On each dataset, we run our approach and the runtime is reported on Figure 2.
The x-axis shows the size of BSBM dataset with an increasing order of 10x magnitude.

By comparing the runtime (see Figure 2), we note that the execution time increases
linearly and is near-constant when the size of the dataset increases. As expected, it stays
near-constant as long as the data fits in memory. This demonstrates one of the advan-
tages of utilizing the in-memory approach for performing the quality assessment com-
putation. The overall time spent in data read/write and network communication found
in disk-based approaches is saved. However, when the data overflows the memory, and
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Fig. 2. Sizeup performance evaluation.

it is spilled to disk, the performance degrades. These results show the scalability of our
algorithm in the context of size-up.

Node scalability In order to measure node scalability, we vary the number of the
workers on our cluster. The number of workers have varied from 1, 2, 3, 4 and 5 to 6.
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Fig. 3. Node scalability performance evaluation.

Figure 3 shows the speedup for BS BM200GB with the various number of worker
nodes. We can see that as the number of workers increases, the execution time cost-
decrease is almost linear. The execution time decreases about 14 times (from 433.31



12 Gezim Sejdiu, Anisa Rula, Jens Lehmann and Hajira Jabeen

minutes down to 28.8 minutes) as cluster nodes increase from one to six worker nodes.
The results shown here imply that our approach can achieve near linear scalability in
performance in the context of speedup.

Furthermore, we conduct the e↵ectiveness evaluation of our approach. Speedup S
is an important metric to evaluate a parallel algorithm. It is defined as a ratio S =
Ts/Tn, where Ts represents the execution time of the algorithm run on a single node and
Tn represents the execution time required for the same algorithm on n nodes with the
same configuration and resources. E�ciency is defined as a ratio E = S/n = Ts/nTn

which measures the processing power being used, in our case the speedup per node.
The speedup and e�ciency curves of DistQualityAssessment are shown in Figure 5.
The trend shows that it achieves almost linearly speedup and even super linear in some
cases. The upper curve in the Figure 5 indicates super linear speedup. The speedup
grows faster than the number of worker nodes. This is due to the computation task for
the metric being computationally intensive, and the data does not fit in the cache when
executed on a single node. But it fits into the caches of several machines when the
workload is divided amongst the cluster for parallel evaluation. While using Spark, the
super linear speedup is an outcome of the improved complexity and runtime, in addition
to e�cient memory management behavior of the parallel execution environment.

Correctness of metrics In order to test the correctness of implemented metrics,
we assess the numerical values for metrics like L1, L2, and RC1 on very small datasets
and the results are found correct w.r.t Luzzu. For metrics like I2 and CN2, Luzzu uses
approximate values for faster performance, and that is not the same as getting the exact
number as in the case of our implementation.

Overall analysis by metrics We analyze the overall run-time of the metric eval-
uation. Figure 4 reports on the run-time of each metric considered in this paper (see
Table 2) on both BS BM20GB and BS BM200GB datasets.
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Fig. 5. E↵ectiveness of DistQualityAssessment.

DistQualityAssessment implements predefined quality assessment metrics from [22].
We have implemented these metrics in a distributed manner such that most of them have
a run-time complexity of O(n) where n is the number of input triples. The overall per-
formance of analysis for BSBM dataset with two instances is shown in Figure 4. The
results obtained show that the execution is sometimes a little longer when there is a
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shu✏ing involved in the cluster compared to when data is processed without movement
e.g. Metric L2 and L1. Metric SV3 and CN2 are the most expensive ones in terms of
runtime. This is due to the extra overhead caused by extracting the literals for objects,
and checking the lexical form of its datatype.

Overall, the evaluation study carried out in this paper demonstrates that distributed
computation of di↵erent quality measures is scalable and the execution ends in reason-
able time given the large volume of data.

4 Use Cases

The proposed quality assessment tool is being used in many use cases. These includes
the projects QROWD, SLIPO, and an industrial application by Alethio15.

QROWD – Crowdsourcing Streaming Big Data Quality Assessment Use Case
QROWD16 is a cross-sectoral streaming Big Data integration project including geo-
graphic, transport, meteorological, cross domain and news data, aiming to capitalize on
hybrid Big Data integration and analytics methods. One of the major challenges faced in
QROWD, is to investigate options for e↵ective and scalable data quality assessment on
integrated (RDF) datasets using their crowdsourcing platform. In order to perform this
task e�ciently and e↵ectively, QROWD uses DistQualityAssessment as an underlying
quality assessment framework.

Blockchain – Alethio Use Case Alethio17 has build an Ethereum analytics plat-
form that strives to provide transparency over the transaction pool of the whole Ethereum
ecosystem. Their 18 billion triple data set18 contains large scale blockchain transaction
data modelled as RDF according to the structure of the Ethereum ontology19. Alethio is
using SANSA in general and DistQualityAssesment in particular, for performing large-
scale batch quality checks, e.g. analysing the quality while merging new data, comput-
ing attack pattern frequencies and fraud detection. Alethio uses DistQualityAssesment
on a cluster of 100 worker nodes to assess the quality of their ⇡7 TB of data.

SLIPO – Scalable Integration and Quality Assured fusion of Big POI data SLIPO20

is a project which leverages semantic web technologies for scalable and quality assured
integration of large Point of Interest (POI) datasets. One of the key features of the
project is the fusion process. SLIPO-fusion receives two di↵erent RDF datasets con-
taining POIs and their properties, as well as a set of links between POI entities of the
two datasets. SLIPO is using DistQualityAssessment to assess the quality of both in-
put datasets. The SLIPO-fusion produces a third, final dataset, containing consolidated
descriptions of the linked POIs. This process is often data and processing intensive,
therefore, it requires a scalable mechanism for data quality check. SLIPO uses Dis-
tQualityAssessment for fusion validation and quality statistics/assessment to facilitate
and assure the quality of the fusion process.

15
https://goo.gl/mJTkPp

16
http://qrowd-project.eu/

17
https://aleth.io/

18
https://medium.com/alethio/ethereum-linked-data-b72e6283812f

19
https://github.com/ConsenSys/EthOn

20
http://slipo.eu/

https://goo.gl/mJTkPp
http://qrowd-project.eu/
https://aleth.io/
https://medium.com/alethio/ethereum-linked-data-b72e6283812f
https://github.com/ConsenSys/EthOn
http://slipo.eu/
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5 Related Work

Even though quality assessment of big datasets is an important research area, it is still
largely under-explored. There have been a few works discussing the challenges and
issues of big data quality [3,19,8]. Only recently, a few of them have started to address
the problem from a practical point of view [10], which is the focus of our work as stated
in section 1. In the following, we divide the section between conceptual and practical
approaches proposed in the state of the art for big data quality assessment. In [9] the
authors propose a big data processing pipeline and a big data quality pipeline. For each
of the phases of the processing pipeline they discuss the corresponding phase of the
big data quality pipeline. Relevant quality dimensions such as accuracy, consistency
and completeness are discussed for the quality assessment of RDF datasets as part of
an integration scenario. Given that the quality dimensions and metrics have somehow
evolved from relational to Linked Data, it is relevant to understand the evolution of
quality dimensions according to the di↵erences between the structural characteristics
of the two data models [1]. This allows to manage the huge variability of methods
and techniques needed to manage data quality and understand which are the quality
dimensions that prevail when assessing large-scale RDF datasets.

Most of the existing approaches can be applied to small/medium scale datasets and
do not horizontally scale [10,14]. The work in [14] presents a methodology for assess-
ing the quality of Linked Data based on a test case generation analogy used for software
testing. The idea of this approach is to generate templates of the SPARQL queries (i.e.,
quality test case patterns) and then instantiate them by using the vocabulary or schema
information, thus producing quality test case queries. Luzzu [10] is similar in spirit with
our approach in that its objective is to provide a framework for quality assessment. In
contrast to our approach, where data is distributed and also the evaluation of metrics is
distributed, Luzzu does not provide any large-scale processing of the data. It only uses
Spark streaming for loading the data which is not part of the core framework. Another
approach proposed for assessing the quality of large-scale medical data implements
Hadoop Map/Reduce [7]. It takes advantage of query optimization and join strategies
which are tailored to the structure of the data and the SPARQL queries for that partic-
ular dataset. In addition, this work, di↵erently from our approach, does not assess any
data quality metric defined in [22]. The work in [5] propose a reasoning approach to de-
rive inconsistency rules and implements a Spark-based implementation of the inference
algorithm for capturing and cleaning inconsistencies in RDF datasets. The inference
generally incurs higher complexity. Our approach is designed for scalability, and we
also use Spark-based implementation for capturing inconsistencies in the data. While
the approach in [5] needs manual definitions of the inconsistency rules, our approach
runs automatically, not only for consistency metrics but also for other quality metrics.
In addition, we test the performance of our approach on large-scale RDF datasets while
their approach is not experimentally evaluated. LD-Sni↵er [17], is a tool for assessing
the accessibility of Linked Data resources according to the metrics defined in the Linked
Data Quality Model. The limitation of this tool, besides that it is a centralized version,
is that it does not provide most of the quality assessment metrics defined in [22]. In ad-
dition to above, there is a lack of unified structure to propose and develop new quality
metrics that are scalable and less computationally expensive.
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Based on the identified limitations of these aforementioned approaches, we have
introduced DistQualityAssessment which bases its computation and evaluations mainly
in-memory. As a result the computation of the quality metrics show a high performance
for large-scale datasets.

6 Conclusions and Future Work

The data quality assessment becomes challenging with the increasing sizes of data.
Many existing tools mostly contain a customized data quality functionality to detect
and analyze data quality issues within their own domain. However, this process is both
data-intensive and computing-intensive and it is a challenge to develop fast and e�cient
algorithms that can handle large scale RDF datasets.

In this paper, we have introduced DistQualityAssessment, a novel approach for dis-
tributed in-memory evaluation of RDF quality assessment metrics implemented on top
of the Spark framework. The presented approach o↵ers generic features to solve com-
mon data quality checks. As a consequence, this can enable further applications to build
trusted data utilities.

We have demonstrated empirically that our approach improves upon previous cen-
tralized approach that we have compared against. The benefit of using Spark is that its
core concepts (RDDs) are designed to scale horizontally. Users can adapt the cluster
sizes corresponding to the data sizes, by dropping when it is not needed and adding
more when there is a need for it.

Although we have achieved reasonable results in terms of scalability, we plan to
further improve time e�ciency by applying intelligent partitioning strategies and persist
the data to an even higher extent in memory and perform dependency analysis in order
to evaluate multiple metrics simultaneously. We also plan to explore near real-time
interactive quality assessment of large-scale RDF data using Spark Streaming. Finally,
in the future we intend to develop a declarative plugin for the current work using Quality
Metric Language (QML) [10], which gives users the ability to express, customize and
enhance quality metrics.
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