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Abstract— A metabolic pathway made of a cascade of biochem-
ical reactions is considered, with a substrate which is eventually
transformed into the final product by means of a sequence of
reactions, each catalyzed by the same enzyme. The amount of
the enzyme varies according to discrete noisy processes of pro-
duction and elimination. A feedback acts on the final product
clearance rate, exerted by the final product accumulation itself:
higher final product levels lead to a faster dynamics. The aim of
this note is to investigate how the noise scales with the length
of the cascade and how the feedback impacts on the noise
propagation. To this end, a Stochastic Hybrid System (SHS)
formulation is exploited, with the enzyme production/clearance
processes constituting the noise source. The noise propagation is
measured in terms of the square of the coefficient of variation of
the final product, and computations are carried out by means of
the equations of moments, which are estimated in closed form
after linearizing the SHS. Analytical solutions allow to infer
information and to relate the noise propagation to the model
parameters. Similarly to recent results occurring in other types
of enzymatic reactions, the results highlight the influential role
of feedback in noise reduction.

Index Terms— Metabolic pathways, Moment Equations, Neg-
ative Feedback

I. INTRODUCTION

In the last few years, mathematical control theory has been
increasingly applied in Systems and Synthetic Biology. On
the one hand, the aim of Systems Biology is to understand,
quantify and conceptualize the diverse frameworks involving
complex biological systems, possibly taking inspiration from
established engineering paradigms: one may cite, among the
others, the role of feedback, which has been widely investi-
gated, especially in transcriptional and metabolic regulation
where gene products are required to control their homeostatic
levels robustly with respect to parameter or environmental
fluctuations [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11]; on the other hand, Synthetic Biology aims at merging
molecular biological techniques with mathematical modeling
and forward engineering in order to design synthetic biolog-
ical circuits, able to replicate emergent properties potentially
useful for biotechnology industry, human health and environ-
ment (see [12], [13], [14], [15], [16] and references therein).

This note considers the case of a metabolic pathway,
with a substrate p0 undergoing a cascade of n metabolic
modifications, leading to the final product pn. Substrate
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production and final product clearance are also accounted
for, see the scheme in Fig. 1. Each substrate modification
is catalyzed by enzymes: the assumption is that there exists
only one enzyme acting on all the biochemical reactions.
The amount of the enzyme varies according to discrete
noisy processes of production and elimination. One may
think at the proposed scheme as to a simplified paradigm
for a wide range of sequential events like, e.g. cascades
of phosphorylations. The final product accumulation acts in
feedback to speed up its own dynamics. This fact has been
recently investigated in [17] at a single-cell level, where an
apparent correlation between the metabolic level and the
growth rate has been highlighted, while a similar cascade
scheme, related to gene expression, was investigated in a
different fashion in [18].

The aim of this note is to investigate how the noise scales
with the length n of the cascade and how the feedback
impacts on the noise propagation. To this end a Stochastic
Hybrid System (SHS) is exploited, with the enzyme updates
(production and clearance) being the only noise sources
of the system. Noise is measured in terms of the squared
coefficient of variation of the final product. Computations
are carried out by means of the moment equations [19],
[20], [21]: because of the nonlinearities involved by the
Ordinary Differential Equation (ODE) system associated to
the SHS, computations are made after linearization, so that
the moment equations come out in closed form. Despite the
simplifications adopted, an explicit easy-to-handle solution
is not provided, in favor of a recursive algorithm releasing
the second-order moment associated to pn. Results coming
after linearization are validated by the Gillespie Stochastic
Simulation Algorithm (SSA), run according to the original
nonlinear system, which is shown to be very close to the
approximated one on a wide range of model parameters.

Fig. 1. Cascade of biochemical reactions.

Similarly to recent results occurring in other types of
enzymatic reactions [7], [9], [10], [8], results highlight the
influential role of the feedback in noise reduction.

The note is organized as follows. Section 2 is devoted
to introduce the SHS mathematical model describing the
metabolic pathway. First and second order moments are
computed in Sections 3 and 4, showing how they are related
to the model and feedback parameters. Section 3 is devoted



TABLE I
CHEMICAL REACTIONS.

Event Enzyme reset Propensity function
Enzyme production e(t) 7→ e(t) + 1 a1 = ke
Enzyme clearance e(t) 7→ e(t)− 1 a2 = γee(t)

to introducing the linear approximation as well, which is
achieved in the neighborhood of the steady-state of the
system. Section 5 reports simulation results carried out in
order to stress the improvements in noise reduction achieved
by the feedback.

II. METABOLIC PATHWAY MODEL

Consider the scheme in Fig. 1, where a substrate is
sequentially modified n times passing from state 0, to state 1
and, eventually, to state n. These modifications are supposed
irreversible. Denote with pi, i = 0, 1, . . . , n the copy number
of the substrate in state i. By assuming standard mass-
action law to describe the substrate modifications catalyzed
by a unique enzyme (whose copy number is denoted by e),
the ODE system associated to the metabolic pathway under
investigation is:

dp0
dt = kp − λ

e? e(t)p0(t)

dpi
dt = λ

e? e(t)pi−1(t)− λ
e? e(t)pi(t) i = 1, . . . , n− 1

dpn
dt = λ

e? e(t)pn−1(t)− γppn(t)
(1)

where kp stands for the p0 substrate production rate, λ is the
rate of transformation from pi into pi+1 (and is normalized
by the average steady-state enzyme copy number, denoted
by e?) and γp stands for the final product clearance rate.

Motivated by [17], where an apparent correlation between
the metabolic level and the growth rate has been highlighted,
we introduce a feedback action exerted by the final product
accumulation on the clearance rate γp, according to the
following Hill function:

γp(pn) = γ̄p
phn

θh + phn
, (2)

where γ̄p is the clearance strength, providing the maximal
clearance rate, obtainable for negligible values of the repres-
sion threshold θ (negligible w.r.t. the pn copy number), θ
indicates half of the maximal value reached for pn = θ,
and parameter h is the feedback sensitivity, providing the
steepness of the sigmoidal function.

The copy number of the enzyme acting at catalyzing
the substrate transformation is allowed to vary according
to discrete noisy processes of production and clearance,
whose related chemical reactions are summarized in Table
I, detailing the resets on the enzyme and the propensities
associated to both production/clearance processes.

In the following, unless differently specified, the expected
value of a random variable x is denoted by 〈x〉, while
the steady-state of the average of a stochastic process x(t)
and of a second-order moment 〈x(t)y(t)〉 are denoted by

x? = limt7→+∞ 〈x(t)〉 and 〈xy〉? = limt 7→+∞ 〈x(t)y(t)〉,
respectively.

A. Metabolic noise computation

In order to quantify how the noise scales with respect to
the length of the metabolic pathway and the feedback action,
we define the metabolic noise associated to the final product
pn by means of the square of the coefficient of variation
CV 2

p,n, computed by the ratio:

CV 2
p,n = σ2

n/(p
?
n)2, (3)

where σ2
n and p?n are the steady-state values for variance and

mean of the marginal distribution of the final product pn copy
number. It readily comes out that, by varying the model or
the feedback parameters, CV 2

p,n may vary because of both
the pn steady-state and the fluctuations around p?n. Moreover,
in order to compare the feedback and the no-feedback cases,
the feedback relative noise is defined as the ratio

η2
n =

CV 2
p,n(feedback)

CV 2
p,n(no feedback)

(4)

where the no-feedback case refers to γp(pn) = γ̄p, a situation
occurring whenever the final product copy number is much
larger than the threshold: pn � θ.

III. AVERAGE STEADY-STATE SOLUTIONS

The first-order moment equations associated to the SHS
modeling the reaction schemes are derived from [19]. Since
the enzyme is not influenced by the substrate, any order
moment of e can be computed without any approximation,
readily providing the following results for the equilibrium
first- and second-order moments:

e? =
ke
γe
,

〈
e2
〉?

= (e?)2 + e?, (5)

from which it comes that

CV 2
e =

〈
e2
〉? − (e?)2

(e?)2
=

1

e?
=
γe
ke
. (6)

As expected, the noise source becomes larger by reducing
the average enzyme copy number.

On the other hand, the first-order moment equations ap-
plied to the SHS provide the following identities

〈ep0〉? = 〈ep1〉? = · · · = 〈epn−1〉? =
kpe

?

λ

〈γp(pn)pn〉? = λ
e? 〈epn−1〉? = kp

(7)

which do not allow any closed-form solutions because of the
nonlinearities involved in the ODE associated to the SHS.
To cope with this drawback, we linearize (around the steady
states e? and p?n) the nonlinear function γp(pn)pn as well
as the mass-action law related to the intermediate substrate
transformations, so that the ODE system associated to the



SHS becomes:

dp0
dt = kp − λp?0

e? e(t)− λ(p0(t)− p?0)

dpi
dt =

λp?i−1

e? e(t) + λ(pi−1(t)− p?i−1)

−λp
?
i

e? e(t)− λ(pi(t)− p?i ) i = 1, . . . , n− 1

dpn
dt =

λp?n−1

e? e(t) + λ(pn−1(t)− p?n−1)− γp(p?n)p?n

−
(
γp(p

?
n) + p?nγ

′
p(p

?
n)
)
(pn(t)− p?n).

(8)
Then, first-order moment equations readily provide the fol-
lowing solutions:

p?0 = p?1 = · · · = p?n−1 =
kp
λ
, (9)

with the steady-state solution p?n satisfying the following
nonlinear equation

ϕ(p?n) = γp(p
?
n)p?n − kp = 0. (10)

In fact, (10) admits a unique positive solution, since ϕ(p?n =
0) = −kp < 0, limp?n 7→+∞ ϕ(p?n) = +∞ and ϕ′(p?n) > 0 for
any positive p?n: by continuity there exists a unique positive
real p?n that satisfies (10).

Remark 1: According to (9)–(10), it comes out that the
first-order steady-state solutions p?0, p?1, . . ., p?n do not depend
of the length n of the cascade. To avoid confusion, in the
following, p?n will be shortly denoted by %, without the
possibly misleading suffix n.

Because of (9)–(10), the linearized system (8) simplifies
into:

dp0
dt = kp − λp?0

e? e(t)− e
?(p0(t)− p?0)

dpi
dt = λ

(
pi−1(t)− pi(t)

)
, i = 1, . . . , n− 1

dpn
dt =

λp?n−1

e? e(t) + λ(pn−1(t)− p?n−1)− kp
−
(
γp(p

?
n) + p?nγ

′
p(p

?
n)
)
(pn(t)− p?n).

(11)

It’s worth noticing that intermediate average steady-states
do not vary with the feedback, nor with the length of
the cascade. Instead, by varying the clearance strength γ̄p
and the feedback parameters θ and h, the average steady-
state solution % varies as described next (it can be readily
verified by accounting for the fact the solution to (10) is the
(unique) intersection of a fixed hyperbola, kp/%, with the
Hill function, γp(%), associated to the feedback).

i) Keeping fixed the other parameters, if one increases the
clearance strength γ̄p, then % reduces; instead, for γ̄p 7→
0+, the solution % becomes larger and larger, and it
tends to coincide with the solution without feedback
for % � θ. Fig. 2 shows on a log-scale how % varies
according to 4 different feedback sensitivities.

lim
γ̄p 7→+∞

p?n = 0, lim
γ̄p 7→0+

p?n = +∞. (12)

ii) Keeping fixed the other parameters, if one increases
the threshold θ, then % increases; instead, for θ 7→ 0+,
the solution % tends to coincide with the one without

feedback since %� θ. Fig. 3 shows on a log-scale how
% varies according to 4 different feedback sensitivities.

lim
θ 7→+∞

p?n = +∞, lim
θ 7→0+

p?n =
kp
γ̄p
. (13)

Fig. 2. Average steady-state of pn by varying the clearance strength γ̄p.
The black line provides the solution without feedback that lower bounds the
other feedback solutions and gets closer and closer to the feedback solutions
according to a threshold θ � %. Fixed parameters (kp, ke, γe, θ, λ) are
reported in Table II.

Fig. 3. Average steady-state of pn by varying the feedback threshold θ.
The black line provides the solution without feedback, which lower bounds
the other feedback solutions and gets closer and closer to the feedback
solutions according to a threshold θ � %. Fixed parameters (kp, ke, γp,
γe, λ) are reported in Table II.

In summary, with respect to the average steady-state
solutions, the effect of feedback is exerted only on the
final product p?n, providing an increase (with respect to
the no-feedback case) which is sharpened by increasing the
feedback sensitivity h. The length of the cascade does not
affect the average steady-state.

IV. SECOND ORDER MOMENTS

The computation of the metabolic noise defined in (3)
and (4) requires

〈
p2
n

〉?
. To this end, we need an algorithm

to obtain the second order moments associated to (11).
According to the linear fashion of (11), these moments will



TABLE II
MODEL PARAMETERS. MEASUREMENTS UNITS: kp , ke

[MOLECULES/TIME], λ, γe , γ̄p [TIME−1], θ [MOLECULES]

Parameter kp ke λ γ̄p γe θ
Value 40 10 10 1 1 30

be found in closed form. To this end, denote

dpi
dt

= fi
(
pi−1, pi, e), i = 0, 1, . . . , n, (14)

the generic linear equation associated to the state pi in (11).
Then, the following identities are derived from [19] when
setting equal to zero the second order dynamics for i, j,=
0, 1, . . . , n:

d 〈epi〉
dt

= 0 =⇒
〈
efi
(
pi−1, pi, e)

〉
+kepi−γe 〈epi〉 = 0

(15)
d〈pipj〉
dt = 0

=⇒
〈
pjfi

(
pi−1, pi, e)

〉
+
〈
pifj

(
pj−1, pj , e)

〉
= 0

(16)
providing a square linear system of n + 1 + (n+1)(n+2)

2
algebraic equations with respect to the unknowns 〈epi〉?,
〈pipj〉?. Below are provided the steps to compute

〈
p2
n

〉?
.

Step 1. From (15), the second-order moments 〈epi〉? are
found to satisfy the following closed form equation:

〈epi〉? = e?p?i
(
1− αi+1 · CV 2

e

)
(17)

for i = 0, 1, . . . , n− 1, with

α =
λ

λ+ γe
, (18)

whilst 〈epn〉? is provided by

〈epn〉? = e?%?
(

1 +
γp(%)(1− αn)

γe + Γ(%)
· CV 2

e

)
, (19)

where
Γ(%) = γp(%) + %γ′p(%). (20)

Remark 2: According to its definition in (18), it results
α < 1. As a matter of fact, long pathways share the same
insensitivity of 〈epn〉? to n, since for n large enough, one
has αn ' 0 and (19) simplifies into

〈epn〉? ' e?%?
(

1 +
γp(%)

γe + Γ(%)
· CV 2

e

)
. (21)

The length of the cascade such that (21) is a good approx-
imation of (19) depends on the enzyme dynamics. If we
increase the propensities of e without varying its average
steady-state e? (i.e. if we proportionally increase both ke
and γe), then λ does not vary either (because it refers to
the rate of modification normalized by a fixed value e?)
and α becomes smaller. The result is that, by increasing the
frequency at which the enzyme copy number varies (keeping
fixed e?), then the long-cascade approximation (21) becomes
accurate for smaller n.

Step 2. By properly exploiting the equations for 〈p0pi〉,
i = 0, 1, . . . , n in (16), we find the following recursive linear
system

〈p0pi+1〉? = 1
2 〈p0pi〉? +

p?0p
?
i

2

(
1 + αi+2 · CV 2

e

)
,

i = 0, 1, . . . , n− 2,

(22)
〈p0pn〉? = λ

λ+Γ(ρ) 〈p0pn−1〉? + p?0%
(

1− γp(%)
λ+Γ(%)

)
−p

?
0%γp(%)
λ+Γ(%)

(
λ(1−αn)
γe+Γ(%) − α

)
CV 2

e ,

(23)
with initial condition〈

p2
0

〉?
= (p?0)2

(
1 + α · CV 2

e

)
. (24)

The n−1 equations in (22) are recursively solved providing

〈p0pn−1〉?=p?0p
?
n−1+

αp?0p
?
n−1

2n−1

(
1+α

1− (2α)n−1

1− 2α

)
CV 2

e .

(25)
By substituting (25) into (23), we obtain 〈p0pn〉?:

〈p0pn〉? = p?0%+
p?0%γp(%)
λ+Γ(%)

(
α

2n−1

(
1 + α 1−(2α)n−1

1−2α

)
−λ(1−αn)
γe+Γ(%) + α

)
CV 2

e .

(26)
Similarly to what has been said in Remark 2, for n large

enough we have that 〈p0pn〉? can be approximated by the
limit

〈p0pn〉?'p?0%
(

1− λγp(%)(λ− Γ(%))

(λ+ Γ(%))(γe + Γ(%))(λ+ γe)
CV 2

e

)
.

(27)

Step 3. We compute the steady-state solutions for 〈pipj〉,
with i = 1, . . . , n, j = 1, . . . , n − 1, according to the
following Lemma.

Lemma 3: Let k = 0, 1, . . . , n− 1 and define

Xk =

〈p1pk〉?
...

〈pnpk〉?

 ∈ Rn. (28)

Then, Xk obeys the following recursive linear equation for
k = 0, 1, . . . , n− 2:

Xk+1 = A(%)Xk +B(%)Uk, (29)

where
A(%) =

(
In −A2(%)

)−1
A1(%),

B(%) =
(
In −A2(%)

)−1
B1,

(30)

with In the identity matrix in Rn×n and

A1(%) = diag

{
1

2
,

1

2
, · · · , 1

2
,

λ

λ+ Γ(%)

}
, (31)

A2(%) ∈ Rn×n, B1 ∈ Rn×2 matrices with the only nontrivial
elements given by

A2(i, i− 1) = 1
2 , i = 2, 3, . . . , n− 1,

A2(n, n− 1) = λ
λ+Γ(%) , B1(1, 1) = 1

2 , B1(n, 2) = 1.
(32)



The input Uk in (29) is defined by

Uk =

[
〈p0pk+1〉?

p0%
λ+Γ(%)

(
%γ′p(%)− γp(%)αk+1 · CV 2

e

)] . (33)

Proof: The proof comes straightforwardly by comput-
ing the second order moments from (16), according to which:

Xk+1 = A1(%)Xk +A2(%)Xk+1 +B1(%)Uk. (34)

Lemma 3, together with the initial conditions X0 provided
by Step 2, allows to formally write the explicit solution for
Xn−1:

Xn−1 = A(%)n−1X0 +

n−2∑
k=0

A(%)n−k−2B(%)Uk, (35)

from which the second order moment 〈pnpn−1〉? is given by
the last component of Xn−1.

According to Remark 2, for n large enough, Xn−1 does
not depend any more of X0 (the first term in (35) can be
neglected), since matrix A(%) has all positive eigenvalues
and in the unit circle (indeed, the spectrum of A coincides
with the spectrum of A1, as it can be readily seen by the
triangular shape of the matrices). Unfortunately, no apparent
easy-to-handle solutions are available for 〈pnpn−1〉?, even
according to simplifying assumption of large n.

Step 4. The last step consists in the computation of
〈
p2
n

〉?
,

coming from (16) written for i = j = n. Then, after
computations:〈
p2
n

〉?
= %2 ·

(
1− γp(%)

Γ(%)

)
+ λ

Γ(%) 〈pnpn−1〉?

+
k2p(1−αn)

Γ(%)
(
γe+Γ(%)

) · CV 2
e ,

(36)
with 〈pnpn−1〉? achieved in Step 3. CV 2

p,n is straightfor-
wardly computed according to (3).

Remark 4: In summary, with respect to the way the noise
scales with the length of the metabolic pathway, analytical
solutions for the second-order moments highlight the fact
that the influence of n is related to the value of the proper
fraction α, since n appears in the moments computations in
the form of αn. The values of CV 2

p,n converge to a limit
point when n 7→ +∞, according to a rate given by α: the
smaller is α (i.e. the closer to zero), the faster is the rate. As
previously stated in Remark 2, α is related to the enzyme
dynamics.

The way the feedback influences the noise propagation
will be discussed by simulations in the next section.

V. NUMERICAL SIMULATIONS

Numerical simulations have been carried out in order to
evaluate how the feedback scales with noise propagation.
Figs. 4 and 5 report the standard deviation according to
different values of the clearance strength γ̄p and of the
threshold θ. Other parameters can be found in Table II.
Continuous lines refer to the shortest cascade with only p0,
p1, p2, whilst dotted lines refer to the case of n = 12.
Parameters are set providing α = 10/11 closer to 1 than

to 0, thus allowing the length n to play a nontrivial role. By
comparing Figs. 4–5 with Figs. 2–3 it is apparent that for
values of γ̄p (and of θ) small enough to provide an average
steady-state %� θ, the feedback does not exert a real action
(because the Hill function in (2) can be confused with γ̄p)
and the standard deviation without the feedback (black line)
is not modified by the feedback (colored lines). Instead, by
increasing γ̄p in Fig. 4 (and θ in Fig. 5), the feedback exerts
its action and both figures show an overall increase in σ,
with the curves showing non-monotonicity for the feedback
sensitivity h > 1. However, this fact does not provide a
corresponding increase in the metabolic noise (quantified
by the coefficient of variation defined in (3)) because the
feedback leads also to an increment of the steady-state %.
This fact can be appreciated by the plot of the feedback
relative noise (4), where it is apparent (in Figs. 6–7) how
the feedback strongly reduces η2

n according to a monotonic
decrease, which becomes sharper by increasing the feedback
sensitivity h.

Fig. 4. Standard deviation of pn by varying the clearance strength γ̄p.
The black line provides the solution without feedback. Fixed parameters
(kp, ke, γe, θ, λ) are reported in Table II. Continuous lines refer to n = 2;
dotted lines refer to n = 12.

Fig. 5. Standard deviation of pn by varying the feedback threshold θ. The
black line provides the solution without feedback. Fixed parameters (kp,
ke, γp, γe, λ) are reported in Table II. Continuous lines refer to n = 2;
dotted lines refer to n = 12.

Finally, Figs. 8–9 report numerical results on the steady-
state % and

〈
p2
n

〉?
computed by means of the Gillespie

Stochastic Simulation Algorithm (SSA) [22], properly mod-
ified to take into account the SHS framework. Stochastic



Fig. 6. Feedback relative noise versus the clearance strength γ̄p for different
values of the feedback sensitivity. The Hill coefficient has been fixed to
h = 4. Fixed parameters (kp, ke, γp, γe, θ) are reported in Table II.
Continuous lines refer to n = 2; dotted lines refer to n = 12.

Fig. 7. Feedback relative noise versus the threshold θ for different values
of the feedback sensitivity. The Hill coefficient has been fixed to h = 4.
Fixed parameters (kp, ke, γp, γe, θ) are reported in Table II. Continuous
lines refer to n = 2; dotted lines refer to n = 12.

simulations are carried out without the linearization and are
very close to the linear SHS approximation: they apparently
show that the linear approximation adopted to achieve closed
moment equations with SHS is a reasonable tradeoff to
lighten the computational burden, still keeping meaningful
results.

VI. CONCLUSIONS

In this note, a study on noise propagation in a class of
metabolic networks has been carried out. The biological sys-
tem under investigation is a cascade of metabolic reactions,
eventually leading to the formation of a final product by
means of intermediate substrate transformations. The formal-
ization adopted is a Stochastic Hybrid System (linearized in
order to achieve closed moment equations), with the only
noise source provided by the production/clearance processes
associated to the copy number variations of the enzyme e.
Noise propagation has been investigated with respect to the
length of the cascade and with respect to the action exerted
in feedback on the final product clearance rate by the product
accumulation itself. In addition to showing the unmistakable
role of the feedback in noise reduction (a positive feedback,

Fig. 8. Average steady-state % versus the length of the cascade n.
Comparison between linearized SHS results and non-linearized Gillespie
numerical simulation. All parameters (except n) are fixed to the values of
Table II.

Fig. 9. Second order moments
〈
p2n

〉? versus the length of the cascade
n. Comparison between linearized SHS results and non-linearized Gillespie
numerical simulation. All parameters (except n) are fixed to the values of
Table II.

in this case), analytical results allow to investigate the impact
of different model parameters on noise regulation where, in
particular, an interesting result correlates the impact of the
length n of the cascade to the enzyme dynamics.
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