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Abstract. We consider an elliptic equation in a cone, endowed with (possibly inhomogeneous) Neumann
conditions. The operator and the forcing terms can also allow non-Lipschitz singularities at the vertex of
the cone.

In this setting, we provide unique continuation results, both in terms of interior and boundary points.
The proof relies on a suitable Almgren-type frequency formula with remainders. As a byproduct, we

obtain classification results for blow-up limits.

1. Introduction

In this article we consider an elliptic equation with Neumann boundary condition. The domain taken
into consideration is a cone, and the equation and the boundary condition can be inhomogeneous and be
singular at the origin.

The main results that we provide are of unique continuation type. Roughly speaking, we will show that
if a solution vanishes at any order at the vertex of the cone, then the solution must necessarily vanish in
a neighborhood of the vertex (and then everywhere, up to suitable assumptions).

The notion of vanishing can be framed both with respect to the convergence of points coming from the
interior of the domain and, under the appropriate assumptions, with respect to the convergence of points
coming from the boundary.

From these results, we also obtain classification results for the blow-up limits. The method of proof will
rely on the special geometric structure of the cone, which is a set invariant under dilations and in which
the normal on the side of the cone is perpendicular to the radial direction. The main analytic tool in use
will be an appropriate type of frequency function. Differently from the classical case in [Alm79], the choice
of the frequency function in our case has to comprise additional quantities and reminders to deal with the
forcing terms and possibly compensate for the singular behaviors near the vertex.

The mathematical setting in which we work is the following. We let Ω ⊆ Rn, with n > 2, be a cone with
vertex at the origin (namely, we assume that x ∈ Ω if and only if tx ∈ Ω for all t > 0). We consider the
spherical cap

(1.1) Σ =

{
x

|x|
: x ∈ Ω

}
⊂ Sn−1

and we assume that Σ has C2 boundary in Sn−1.
We also take into account a positive function A ∈ W 1,1(Ω) such that

(1.2) c 6 A(x) 6
1

c
for some c > 0 and a.e. x ∈ Ω.
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For every r > 0 we denote Br = {x ∈ Rn : |x| < r}. We deal with weak solutions of the following partial
differential equation in a neighbourhood of the vertex of the cone (to fix the notations we consider Ω∩B1)
with possibly inhomogeneous Neumann datum:

(1.3)

{
div
(
A(x)∇u(x)

)
= g(x, u(x)), for every x ∈ Ω ∩B1,

A(x)∇u(x) · ν(x) = f(x, u(x)), for every x ∈ B1 ∩ ∂Ω,

where ν(x) denotes the exterior unit normal of Ω at x ∈ ∂Ω, f ∈ C1((Ω \ {0})×R), and g : Ω×R→ R is
a Carathéodory function.

We say that a function u ∈ H1(B1 ∩ Ω) is a weak solution to (1.3) if, for all ϕ ∈ C∞c (B1 ∩ Ω),

(1.4)

∫
B1∩Ω

A(x)∇u(x) · ∇ϕ(x) dx = −
∫
B1∩Ω

g(x, u(x))ϕ(x) dx+

∫
B1∩∂Ω

f(x, u(x))ϕ(x) dH n−1
x .

As a technical observation, we point out that the integrals at the right hand side of the above identity are
finite under the assumptions of Theorem 1.1 below in view of the Poincaré-type Inequality and the Trace
Inequality proved in Corollary 2.3 and Lemma 2.5 respectively.

The use of Almgren-type frequency functions to study unique continuation properties of elliptic partial
differential equations dates back to the pioneering contribution of Garofalo and Lin [GL86] and relies
essentially on the possibility of deducing from the boundedness of the frequency quotient a doubling-type
condition. Unique continuation from boundary points was investigated via Almgren-type monotonicity
arguments in [AE97,AEK95,FF13,KN98,TZ08]. As far as elliptic equations with Neumann-type boundary
conditions are concerned, we mention that in [TZ05] boundary unique continuation theorems and doubling
properties near the boundary were established under zero Neumann boundary conditions. The main
novelty of the present paper is a strong unique continuation result for solutions whose restriction to the
boundary vanishes at any order at the vertex under non-homogeneous Neumann boundary conditions,
while in [TZ05, Theorem 1.7] unique continuation from the boundary was proved for solutions vanishing
on positive surface measure subsets of the boundary and satisfying a zero Neumann condition on such set.
The achievement of such a result requires a combination of the monotonicity argument with a blow-up
analysis for scaled solutions, in the spirit of [FFT11,FF14].

We now introduce the notation needed to define the frequency function for our setting. For r > 0, we
define

D(r) := r2−n
∫
Br∩Ω

A(x) |∇u(x)|2 dx− r2−n
∫
Br∩∂Ω

f(x, u(x))u(x) dH n−1
x

+ r2−n
∫
Br∩Ω

g(x, u(x))u(x) dx

and H(r) : = r1−n
∫
∂Br∩Ω

A(x)u2(x) dH n−1
x

=

∫
Σ

A(ry)u2(ry) dH n−1
y .

(1.5)

We also introduce the “Almgren frequency function” in our framework, given by

(1.6) N (r) :=
D(r)

H(r)
.

With this setting, the pivotal result that we obtain is an appropriate monotonicity formula with re-
minders, which we state as follows:
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Theorem 1.1. Suppose that (1.2) holds and

|∇A(x) · x| 6 εr A(x), for a.e. x ∈ Br ∩ Ω, with lim
r↘0

εr = 0,(1.7)

|∇A(x)| 6 C A(x)

|x|
, for a.e. x ∈ B1 ∩ Ω,(1.8)

|f(x, t)| 6 C A(x) |x|δ−1 |t|, for a.e. x ∈ Ω ∩B1 and any t ∈ R,(1.9)

|∇xf(x, t)| 6 C A(x) |x|δ−2 |t|, for a.e. x ∈ Ω ∩B1 and any t ∈ R,(1.10)

and |g(x, t)| 6 C A(x) |x|δ−2 |t|, for a.e. x ∈ B1 ∩ Ω and any t ∈ R,(1.11)

for some C > 0 and δ > 0.
Let also

(1.12) F (x, t) :=

∫ t

0

f(x, τ) dτ.

Let

(1.13) u ∈ H1(Ω ∩B1) ∩ L∞(Ω ∩B1)

be a solution of (1.3) in the sense of (1.4), such that

(1.14) u 6≡ 0 in Ω ∩Br,

for all r ∈ (0, 1).
Then the following holds true.

(i) There exists r0 > 0 such that

(1.15) H(r) > 0 and N (r) + 1 > 0 for all r ∈ (0, r0);

in particular the function N defined in (1.6) is well defined on (0, r0).
(ii) There exist r1 ∈ (0, r0) and C1 > 0 such that

(1.16) N ′(r) > −C1 max{rδ, εr}r−1(2 + N (r)) for all r ∈ (0, r1).

(iii) If also

(1.17) r 7→ εr
r
∈ L1(0, r1),

then the limit

(1.18) γ := lim
r↘0

N (r)

exists, is finite and γ > 0.

We observe that the assumptions of Theorem 1.1 are very general and do not necessarily require the
weight A to be Lipschitz continuous or the source terms f and g to be bounded. In particular, esti-
mate (1.16) requires assumptions (1.7) and (1.8) which could be satisfied even by unbounded potentials,
as for example A(x) = log |x|(cos(xn/|x|) − 2). On the other hand, to prove that N is bounded and has
finite limit as r → 0+ assumption (1.17) is also needed; we observe that (1.17) forces the boundedness of A
but could be satisfied by non-Lipschitz continuous weights, like A(x) = 1 + |x|δ with δ positive and small,
for example.

The functions f and g can be singular as well, in accordance with (1.9) and (1.11). To allow all these
possible singularities, it is crucial that the “frequency function” also takes into account the special behaviors
of A, f and g, as in (1.5). Moreover, the special geometry of the cone Ω will turn out to be the cornerstone
for our main estimates to hold, thus providing an interesting interplay between analytic and geometric
properties of the problem.

We also observe that condition (1.14) is quite natural, since it requires that the solution is nontrivial in
any neighborhood of the vertex of the cone. Furthermore, under the additional assumption that A is locally
Lipschitz continuous, assumption (1.14) is satisfied by all nontrivial solutions, in light of the classical unique
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continuation principle in [GL87], see also [Kur93] (similarly, if A satisfies a Muckenhoupt-type assumption,
then (1.14) is a consequence of the unique continuation principle in [TZ08], see also [GL86]).

From Theorem 1.1 and a “doubling property” method one obtains a number of results of unique contin-
uation type. In this spirit, we first provide a unique continuation result from the vertex of the cone with
respect to interior points:

Theorem 1.2. Let u be a solution of (1.3), under assumptions (1.2), (1.7), (1.8), (1.9), (1.10), (1.11),
(1.13) and (1.17).

Assume also that u vanishes at the origin at any order with respect to interior points, namely that for
every k ∈ N

(1.19) lim
Ω3x→0

u(x)

|x|k
= 0.

Then there exists r > 0 such that

(1.20) u ≡ 0 in Ω ∩Br.

If, in addition, A is locally Lipschitz continuous, then

(1.21) u ≡ 0 in Ω ∩B1.

An interesting consequence of our Theorem 1.1 deals with blow-up limits. Namely, for each λ > 0, we
define

(1.22) uλ(x) :=
u(λx)√
H(λ)

.

We consider the Laplace-Beltrami operator LΣ := −∆Sn−1 on the spherical cap Σ under null Neumann
boundary conditions. By classical spectral theory, the spectrum of the operator LΣ is discrete and consists
in a nondecreasing diverging sequence of eigenvalues 0 = λ1(Σ) < λ2(Σ) 6 · · · 6 λk(Σ) 6 · · · with finite
multiplicity.

In the following theorem we describe the limit profiles of the blowed-up family (1.22) in terms of the
eigenvalues and the eigenfunctions of LΣ.

Theorem 1.3. Let u be a solution of (1.3), under assumptions (1.2), (1.7), (1.8), (1.9), (1.10), (1.11),
(1.13) and (1.17).

Assume that (1.14) holds true,

(1.23) |ft(x, t)| 6 C |x|δ−1, for a.e. x ∈ Ω ∩B1 and any t ∈ R,
and that

(1.24) lim
x→0

A(x) = 1.

Then, up to a subsequence, as λ ↘ 0, we have that uλ converges strongly in H1(Ω ∩ B1) to a function ũ
which is positively homogeneous and can be written in the form

(1.25) ũ(x) = |x|γ ψ
(
x

|x|

)
,

where

γ = −n− 2

2
+

√(
n− 2

2

)2

+ λk0(Σ) > 0

for some k0 ∈ N \ {0} and ψ is an eigenfunction of the operator LΣ associated to the eigenvalue λk0(Σ)
such that

(1.26)

∫
Σ

ψ2(x) dH n−1
x = 1.

From Theorem 1.3, one can also obtain a unique continuation result from the vertex of the cone with
respect to boundary points:
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Theorem 1.4. Let u be a solution of (1.3), under assumptions (1.2), (1.7), (1.8), (1.9), (1.10), (1.11),
(1.13), (1.17), (1.23) and (1.24).

Assume also that u vanishes at the origin at any order with respect to boundary points, namely that for
every k ∈ N

(1.27) lim
∂Ω3x→0

u(x)

|x|k
= 0.

Then there exists r > 0 such that

(1.28) u ≡ 0 in Ω ∩Br.

If, in addition, A is locally Lipschitz continuous, then

(1.29) u ≡ 0 in Ω.

We stress that while (1.19) is assumed for interior points, we have that hypothesis (1.27) focuses on
boundary points.

The rest of the article is organized as follows. Section 2 presents a number of ancillary results, to be
exploited in the proofs of the main theorems. In particular, we will collect there some observations on the
geometry of the cone and suitable functional inequalities.

The proof of Theorem 1.1 is presented in Section 3 and will serve as a pivotal result for the main theorems
of this paper. Namely, Theorem 1.2 will be proved in Section 4, Theorem 1.3 will be proved in Section 5,
and Theorem 1.4 will be proved in Section 6.

2. Toolbox

This section collects ancillary results used in the main proofs.

2.1. Cone structure. We recall here an elementary property of the cones:

Lemma 2.1. Let Ω ⊂ Rn be a cone with respect to the origin. Then

(2.1) ν(x) · x = 0 for any x ∈ ∂Ω \ {0}.

Proof. Fixed x0 ∈ ∂Ω \ {0}, we have that there exists r0 > 0 such that Ω ∩ Br(x0) coincides with the

sublevel sets of some nondegenerate function Φ0 : Br(x0)→ R, with ν(x) = ∇Φ0(x)
|∇Φ0(x)| . By the cone structure

of Ω, we thereby see that, for any t close to 1,

0 = Φ0(x0) = Φ0(tx0),

and so

0 =
d

dt
Φ0(tx0)

∣∣∣∣
t=1

= ∇Φ0(x0) · x0 = |∇Φ(x0)| ν(x0) · x0.

This proves that ν(x0) · x0 = 0 and establishes (2.1). �

2.2. A Poincaré-type Inequality. In this subsection, we provide some results concerning suitable weighted
Poincaré-type Inequalities which will play an important role in some of the technical estimates needed to
prove the main results.

Lemma 2.2. Let µ ∈ (−∞, n). Let Ω ⊂ Rn be a cone with respect to the origin such that the spherical
cap Σ defined in (1.1) is smooth. Let A ∈  L∞(Ω) satisfy (1.8). For every r > 0 and u ∈ C∞(Ω ∩Br)∫

Ω∩Br

(
n− µ

2
A(x) +∇A(x) · x

)
u2(x)

|x|µ
dx 6

1

rµ−1

∫
∂Br∩Ω

A(x)u2(x) dH n−1
x +

2

n− µ

∫
Ω∩Br

A(x)|∇u(x)|2

|x|µ−2
dx.
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Proof. Let u ∈ C∞(Ω ∩Br). Since

div

(
Au2 x

|x|µ

)
=
n− µ
|x|µ

Au2 + u2∇A · x

|x|µ
+ 2Au∇u · x

|x|µ
,

by the Divergence Theorem and (2.1) we deduce that

(n− µ)

∫
Ω∩Br

A(x)u2(x)

|x|µ
dx

=

∫
Ω∩Br

[
div

(
A(x)u2(x)

x

|x|µ

)
− u2∇A(x) · x

|x|µ
− 2A(x)u(x)∇u(x) · x

|x|µ
,

]
=

1

rµ−1

∫
∂Br∩Ω

A(x)u2(x) dH n−1 −
∫

Ω∩Br

(∇A(x) · x)u2(x)

|x|µ
dx− 2

∫
Ω∩Br

A(x)u∇u(x) · x
|x|µ

dx

6
1

rµ−1

∫
∂Br∩Ω

A(x)u2(x) dH n−1 −
∫

Ω∩Br

(∇A(x) · x)u2(x)

|x|µ
dx+

n− µ
2

∫
Ω∩Br

A(x)u2(x)

|x|µ
dx

+
2

n− µ

∫
Ω∩Br

A(x)|∇u(x)|2

|x|µ−2
dx,

and hence the conclusion follows. �

Corollary 2.3. Let µ ∈ (−∞, n). Let Ω ⊂ Rn be a cone with respect to the origin such that the spherical
cap Σ defined in (1.1) is smooth. Let c ∈

(
0, n−µ

2

)
and A ∈  L∞(Ω) satisfy (1.8) and (1.7). Then there

exists rµ > 0 such that for every r ∈ (0, rµ) and u ∈ C∞(Ω ∩Br)

c

∫
Ω∩Br

A(x)u2(x)

|x|µ
dx 6

1

rµ−1

∫
∂Br∩Ω

A(x)u2(x) dH n−1
x +

2

n− µ

∫
Ω∩Br

A(x)|∇u(x)|2

|x|µ−2
dx.

Proof. Exploiting (1.7), we observe that

n− µ
2

A(x) +∇A(x) · x > n− µ
2

A(x)− εr A(x) > cA(x),

as long as r is small enough, and hence the desired result follows by Lemma 2.2. �

For µ < 2 the previous corollary yields the following result.

Corollary 2.4. Let µ < 2. Let Ω ⊂ Rn be a cone with respect to the origin such that the spherical
cap Σ defined in (1.1) is smooth. Let c ∈

(
0, n−µ

2

)
and A ∈  L∞(Ω) satisfy (1.8) and (1.7). Then there

exists rµ > 0 such that, for every r ∈ (0, rµ) and u ∈ H1(Ω ∩Br), u|x|−µ/2 ∈ L2(Ω ∩Br) and

c

∫
Ω∩Br

A(x)u2(x)

|x|µ
dx 6

1

rµ−1

∫
∂Br∩Ω

A(x)u2(x) dH n−1
x +

2 r2−µ

n− µ

∫
Ω∩Br

A(x)|∇u(x)|2 dx.

Proof. The inequality for u ∈ C∞(Ω ∩Br) follows esily from Corollary 2.3 and the fact that, since 2−µ > 0,
|x|2−µ 6 r2−µ in Ω ∩Br. The conclusion follows by density and the Fatou’s Lemma. �

2.3. Trace Inequalities. Now we present a result of trace-type which will be exploited in the proofs of
the main theorems.

Lemma 2.5. Let γ ∈ (−∞, n− 1). Let Ω ⊂ Rn be a cone with respect to the origin such that the spherical
cap Σ defined in (1.1) is smooth. Let A ∈  L∞(Ω) satisfy (1.2). For every r > 0 and u ∈ C∞(Ω ∩Br) we
have that ∫

∂Ω∩Br

A(x)u2(x)

|x|γ
dH n−1 6 C

∫
Ω∩Br

[
A(x) |∇u(x)|2

|x|γ−1
+
A(x)u2(x)

|x|γ+1

]
dx,

for some C > 0 independent of r. Furthermore, if γ < 1, then every function u ∈ H1(Ω ∩ Br) has a trace
belonging to L2(∂Ω ∩Br; |x|−γ/2) and∫

∂Ω∩Br

A(x)u2(x)

|x|γ
dH n−1 6 C

[
r1−γ

∫
Ω∩Br

A(x) |∇u(x)|2 dx+

∫
Ω∩Br

A(x)u2(x)

|x|γ+1

]
dx.
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Proof. We let u ∈ C∞(Ω ∩Br). Also, for all ρ ∈ (0, r) and θ ∈ Σ, we define u(ρ)(θ) := u(ρθ). By Fubini’s
Theorem and the Sobolev Trace Theorem on manifolds we have that∫

∂Ω∩Br

u2(x)

|x|γ
dH n−1 =

∫ r

0

ρ−γ

(∫
∂Ω∩∂Bρ

u2 dH n−2

)
dρ

=

∫ r

0

ρ−γ+n−2

(∫
∂Σ

u2(ρθ) dθ

)
dρ

=

∫ r

0

ρ−γ+n−2

(∫
∂Σ

|u(ρ)(θ)|2 dθ
)
dρ

6 C

∫ r

0

ρ−γ+n−2

(∫
Σ

(
|∇θu

(ρ)(θ)|2 + |u(ρ)(θ)|2
)
dθ

)
dρ,

where ∇θ denotes the tangential gradient along Σ, so that, if x = ρθ,

|∇θu
(ρ)(θ)| = ρ

∣∣∣∣∇u(x)−
(
∇u(x) · x

) x

|x|2

∣∣∣∣ 6 ρ |∇u(x)|.

Hence, in view of (1.2), we find that∫
∂Ω∩Br

A(x)u2(x)

|x|γ
dH n−1 6

C

c

∫ r

0

ρ−γ+n−2

(∫
Σ

(
ρ2|∇u(ρθ)|2 + u2(ρθ)

)
dθ

)
dρ

=
C

c

∫
Ω∩Br

|x|−γ−1
(
|x|2|∇u(x)|2 + u2(x)

)
dx

6
C

c2

∫
Ω∩Br

|x|−γ−1
(
|x|2A(x)|∇u(x)|2 + A(x)u2(x)

)
dx,

which yields the inequality for functions in C∞(Ω ∩Br). If γ < 1, then |x|1−γ 6 r1−γ in Ω ∩ Br, then the
conclusion follows by density and Fatou’s Lemma. �

3. Proof of Theorem 1.1

We first observe that, by elliptic regularity theory (see e.g. Theorem 8.13 in [Sal08], [ADN59, ADN64]
or [LM72]) we have that, under the assumptions of Theorem 1.1,

(3.1) u ∈ H2
(
Ω ∩ (Br \Bδ)

)
, for all 0 < δ < r < 1.

We denote by ν both the exterior normal at ∂Ω and the exterior normal at ∂Br, since no confusion can
arise. Testing the equation in (1.3) against the solution itself, we see that∫

Br∩Ω

gu =

∫
Br∩Ω

div(A∇u)u

=

∫
Br∩Ω

(
div(Au∇u)− A|∇u|2

)
=

∫
∂Br∩Ω

Au∇u · ν +

∫
Br∩∂Ω

Au∇u · ν −
∫
Br∩Ω

A|∇u|2

=

∫
∂Br∩Ω

Au∇u · ν +

∫
Br∩∂Ω

fu−
∫
Br∩Ω

A|∇u|2.

Hence, recalling (1.5),

(3.2)

∫
∂Br∩Ω

Au∇u · ν = rn−2D(r).



8 SERENA DIPIERRO, VERONICA FELLI, AND ENRICO VALDINOCI

Using again (1.3), we also observe that

div

(
A(∇u · x)∇u− A

2
|∇u|2x

)
− (∇u · x)g

= (∇u · x)div(A∇u)− (∇u · x)g + A∇u · ∇(∇u · x)− 1

2
div(A|∇u|2x)

=
n∑

i,j=1

(
A∂iu ∂i(∂juxj)−

1

2
∂i(A(∂ju)2xi)

)
=

n∑
i,j=1

(
A∂iu ∂

2
ijuxj + A(∂iu)2δij −

1

2
∂iA(∂ju)2xi − A∂ju ∂2

ijuxi −
1

2
A(∂ju)2

)
=

n∑
i,j=1

(
A(∂iu)2δij −

1

2
∂iA(∂ju)2xi −

1

2
A(∂ju)2

)
=

(2− n)A

2
|∇u|2 − 1

2
|∇u|2∇A · x.

(3.3)

On the other hand, from (1.5) we know that

D′(r) = (2− n)r1−n
∫
Br∩Ω

A|∇u|2 + r2−n
∫
∂Br∩Ω

A|∇u|2

− (2− n)r1−n
∫
Br∩∂Ω

fu− r2−n
∫
∂Br∩∂Ω

fu

+ (2− n)r1−n
∫
Br∩Ω

gu+ r2−n
∫
∂Br∩Ω

gu,

(3.4)

and (recalling that Ω is a cone, hence Ω/r = Ω for each r > 0)

H ′(r) =

∫
Σ

∇A(ry) · y u2(ry) dH n−1
y + 2

∫
Σ

A(ry)u(ry)∇u(ry) · y dH n−1
y

= r1−n
∫
∂Br∩Ω

∇A · ν u2 + 2r1−n
∫
∂Br∩Ω

Au∇u · ν.
(3.5)

Thus, comparing (3.2) with (3.5) we conclude that

H ′(r)− r1−n
∫
∂Br∩Ω

∇A · ν u2 = 2r1−n
∫
∂Br∩Ω

Au∇u · ν =
2D(r)

r
,

and therefore

(3.6) D(r) =
rH ′(r)

2
− r2−n

2

∫
∂Br∩Ω

∇A · ν u2.

From (3.1) it follows that, for all 0 < δ < r < 1, A(∇u · x)∇u− A
2
|∇u|2x ∈ W 1,1(Ω ∩ (Br \Bδ) so that

(3.7)

∫
Ω∩(Br\Bδ)

div

(
A(∇u · x)∇u− A

2
|∇u|2x

)
=

∫
∂Br∩Ω

r

(
A(∇u · ν)2 − A

2
|∇u|2

)
−
∫
∂Bδ∩Ω

δ

(
A(∇u · ν)2 − A

2
|∇u|2

)
+

∫
(Br\Bδ)∩∂Ω

(
f ∇u · x− A

2
|∇u|2x · ν

)
.

Since ∫ 1

0

[∫
Ω∩∂Br

|∇u|2
]
dr =

∫
Ω∩B1

|∇u|2 < +∞,

there exists a decreasing sequence {δn} ⊂ (0, 1) such that limn→+∞ δn = 0 and

δn

∫
Ω∩∂Bδn

|∇u|2 −→ 0 as n→ +∞.
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Choosing δ = δn in (3.7) and letting n→∞ we then obtain

∫
Ω∩Br

div

(
A(∇u · x)∇u− A

2
|∇u|2x

)
=

∫
∂Br∩Ω

r

(
A(∇u · ν)2 − A

2
|∇u|2

)
+

∫
Br∩∂Ω

(
f ∇u · x− A

2
|∇u|2x · ν

)
.

Therefore, taking into account (3.3),

(2− n)r1−n
∫
Br∩Ω

A|∇u|2

= 2r1−n
∫
Br∩Ω

[
1

2
|∇u|2∇A · x+ div

(
A(∇u · x)∇u− A

2
|∇u|2x

)
− (∇u · x)g

]
= r1−n

∫
Br∩Ω

(
|∇u|2∇A · x− 2(∇u · x)g

)
+

∫
∂Br∩Ω

(
2r−nA(∇u · x)2 − r2−nA|∇u|2

)
+r1−n

∫
Br∩∂Ω

(
2f ∇u · x− A|∇u|2x · ν

)
.

We thereby substitute this identity into (3.4) and we conclude that

D′(r) = r1−n
∫
Br∩Ω

(
|∇u|2∇A · x− 2(∇u · x)g

)
+ 2r−n

∫
∂Br∩Ω

A(∇u · x)2

+ r1−n
∫
Br∩∂Ω

(
2f ∇u · x− A|∇u|2x · ν

)
− (2− n)r1−n

∫
Br∩∂Ω

fu− r2−n
∫
∂Br∩∂Ω

fu

+ (2− n)r1−n
∫
Br∩Ω

gu+ r2−n
∫
∂Br∩Ω

gu.

From this and (3.6), we find that

D′(r)H(r)−H ′(r)D(r)

= H(r)

[
r1−n

∫
Br∩Ω

(
|∇u|2∇A · x− 2(∇u · x)g

)
+ 2r−n

∫
∂Br∩Ω

A(∇u · x)2

+ r1−n
∫
Br∩∂Ω

(
2f ∇u · x− A|∇u|2x · ν

)
− (2− n)r1−n

∫
Br∩∂Ω

fu− r2−n
∫
∂Br∩∂Ω

fu

+(2− n)r1−n
∫
Br∩Ω

gu+ r2−n
∫
∂Br∩Ω

gu

]
− r(H ′(r))2

2
+
r2−nH ′(r)

2

∫
∂Br∩Ω

∇A · ν u2.

(3.8)
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On the other hand, recalling (3.5), we see that

− r(H ′(r))2

2
+
r2−nH ′(r)

2

∫
∂Br∩Ω

∇A · ν u2

= − r

2

(
r1−n

∫
∂Br∩Ω

∇A · ν u2 + 2r1−n
∫
∂Br∩Ω

Au∇u · ν
)2

+
r2−n

2

(∫
∂Br∩Ω

∇A · ν u2

)(
r1−n

∫
∂Br∩Ω

∇A · ν u2 + 2r1−n
∫
∂Br∩Ω

Au∇u · ν
)

= − r3−2n

2

(∫
∂Br∩Ω

∇A · ν u2

)2

− 2r3−2n

(∫
∂Br∩Ω

∇A · ν u2

)(∫
∂Br∩Ω

Au∇u · ν
)

− 2r3−2n

(∫
∂Br∩Ω

Au∇u · ν
)2

+
r3−2n

2

(∫
∂Br∩Ω

∇A · ν u2

)2

+ r3−2n

(∫
∂Br∩Ω

∇A · ν u2

)(∫
∂Br∩Ω

Au∇u · ν
)

= − r3−2n

(∫
∂Br∩Ω

∇A · ν u2

)(∫
∂Br∩Ω

Au∇u · ν
)
− 2r3−2n

(∫
∂Br∩Ω

Au∇u · ν
)2

.

Hence, substituting this identity into (3.8), we conclude that

D′(r)H(r)−H ′(r)D(r)

= H(r)

[
r1−n

∫
Br∩Ω

(
|∇u|2∇A · x− 2(∇u · x)g

)
+ 2r−n

∫
∂Br∩Ω

A(∇u · x)2

+ r1−n
∫
Br∩∂Ω

(
2f ∇u · x− A|∇u|2x · ν

)
− (2− n)r1−n

∫
Br∩∂Ω

fu− r2−n
∫
∂Br∩∂Ω

fu

+(2− n)r1−n
∫
Br∩Ω

gu+ r2−n
∫
∂Br∩Ω

gu

]
− r3−2n

(∫
∂Br∩Ω

∇A · ν u2

)(∫
∂Br∩Ω

Au∇u · ν
)
− 2r3−2n

(∫
∂Br∩Ω

Au∇u · ν
)2

.

(3.9)

Moreover, from the Cauchy-Schwarz Inequality, we know that

∫
∂Br∩Ω

Au∇u · x 6

√∫
∂Br∩Ω

Au2

∫
∂Br∩Ω

A(∇u · x)2 .

Consequently, using again (1.5), we also observe that

2r−nH(r)

∫
∂Br∩Ω

A(∇u · x)2 − 2r3−2n

(∫
∂Br∩Ω

Au∇u · ν
)2

= 2r1−2n

[(∫
∂Br∩Ω

Au2

)(∫
∂Br∩Ω

A(∇u · x)2

)
−
(∫

∂Br∩Ω

Au∇u · x
)2
]

> 0.
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Plugging this information into (3.9), we thus obtain that

D′(r)H(r)−H ′(r)D(r)

> H(r)

[
r1−n

∫
Br∩Ω

(
|∇u|2∇A · x− 2(∇u · x)g

)
+ r1−n

∫
Br∩∂Ω

(
2f ∇u · x− A|∇u|2x · ν

)
− (2− n)r1−n

∫
Br∩∂Ω

fu− r2−n
∫
∂Br∩∂Ω

fu

+(2− n)r1−n
∫
Br∩Ω

gu+ r2−n
∫
∂Br∩Ω

gu

]
− r3−2n

(∫
∂Br∩Ω

∇A · ν u2

)(∫
∂Br∩Ω

Au∇u · ν
)
.

(3.10)

Then, from (3.10) and (2.1), we obtain that

D′(r)H(r)−H ′(r)D(r)

> H(r)

[
r1−n

∫
Br∩Ω

(
|∇u|2∇A · x− 2(∇u · x)g

)
+ 2r1−n

∫
Br∩∂Ω

f ∇u · x− (2− n)r1−n
∫
Br∩∂Ω

fu− r2−n
∫
∂Br∩∂Ω

fu

+(2− n)r1−n
∫
Br∩Ω

gu+ r2−n
∫
∂Br∩Ω

gu

]
− r3−2n

(∫
∂Br∩Ω

∇A · ν u2

)(∫
∂Br∩Ω

Au∇u · ν
)
.

(3.11)

Now, we define

(3.12) E(r) := r2−n
∫
Br∩Ω

A|∇u|2.

By (1.9), we have that

(3.13)

∣∣∣∣∫
Br∩∂Ω

fu

∣∣∣∣ 6 C

∫
Br∩∂Ω

A |x|δ−1 |u|2.

On the other hand, by Lemma 2.5 (used here with γ := 1− δ), we see that∫
Br∩∂Ω

A |x|δ−1 |u|2 6 C

∫
Ω∩Br

[
rδ A |∇u|2 +

Au2

|x|2−δ

]
.

Hence, in view of Corollary 2.4 (used here with µ := 2− δ), (1.5) and (3.12)∫
Br∩∂Ω

A |x|δ−1 |u|2 6 C rδ
∫

Ω∩Br
A |∇u|2 +

C

r1−δ

∫
∂Br∩Ω

Au2

6 C rn−2+δ
(
H(r) + E(r)

)
.

(3.14)

Therefore, in light of (3.13)

(3.15)

∣∣∣∣∫
Br∩∂Ω

fu

∣∣∣∣ 6 C rn−2+δ
(
H(r) + E(r)

)
.
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Also, by (1.11) and Corollary 2.4 (used here with µ := 2− δ),∫
Br∩Ω

|g| |u| 6 C

∫
Br∩Ω

A|x|δ−2 |u|2

6 C rδ
∫

Ω∩Br
A |∇u|2 +

C

r1−δ

∫
∂Br∩Ω

Au2 6 C rn−2+δ
(
H(r) + E(r)

)
.

(3.16)

Consequently, by (3.15) and (3.16)

E(r)−D(r) 6 |D(r)− E(r)| 6 r2−n
∣∣∣∣∫
Br∩∂Ω

fu−
∫
Br∩Ω

gu

∣∣∣∣ 6 C rδ
(
H(r) + E(r)

)
,

and therefore, for any r ∈ (0, 1) sufficiently small,

(3.17)
E(r)

2
6 (1− Crδ)E(r) 6 CrδH(r) +D(r).

Estimate (3.17) implies statement (i) with r0 > 0 so small as to satisfy condition (3.17) and Crδ0 < 1.
Indeed, let us argue by contradiction and assume that there exists r̄ ∈ (0, r0) such that H(r̄) = 0. By (1.5)
this would imply that u ≡ 0 on Ω ∩ ∂Br̄ and hence, in view of (3.2), D(r̄) = 0. Then (3.17) yields that
E(r̄) = 0 and hence u is constant in Ω ∩ Br̄. Therefore u ≡ 0 in Ω ∩ Br̄, which is in contradiction with
(1.14).

Furthermore, for all r ∈ (0, r0), (3.17) implies that

(3.18) 0 6
E(r)

2
< H(r) +D(r),

and hence N (r) + 1 > 0.
Moreover, from the Sobolev Trace Theorem on manifolds applied on the spherical cap ∂Br ∩ ∂Ω = r∂Σ,

we have that, recalling (1.2),∫
∂Br∩∂Ω

A |u|2 6 1

c

∫
∂Br∩∂Ω

|u|2 =
rn−2

c

∫
∂Σ

|u(rθ)|2

6 Crn−2

∫
Σ

(
u2(rθ) + |∇(u2(rθ)|

)
6 Crn−2

∫
Σ

(
u2(rθ) + 2r|u(rθ)||∇u(rθ)|

)
6 Crn−2H(r) + 2Crn−1

√∫
Σ

u2(rθ)

√∫
Σ

|∇u(rθ)|2

6 Crn−2H(r) + Crn−
3
2

√
H(r)

√
r2−n

∫
Ω∩∂Br

A|∇u|2

6 C

(
r

∫
∂Br∩Ω

A |∇u|2 + rn−2H(r)

)

(3.19)

for some C > 0 independent of r (varying from line to line). Now, we recall (1.9) and we observe that

(3.20)

∣∣∣∣∫
∂Br∩∂Ω

fu

∣∣∣∣ 6 C

∫
∂Br∩∂Ω

A |x|δ−1 |u|2 = Crδ−1

∫
∂Br∩∂Ω

A |u|2.

In addition, from (1.11),

(3.21)

∣∣∣∣∫
∂Br∩Ω

gu

∣∣∣∣ 6 C

∫
∂Br∩Ω

A |x|δ−2|u|2 = Crδ−2

∫
∂Br∩Ω

A |u|2 = Crn+δ−3H(r).
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From (3.4), (3.20) and (3.21), we obtain that

r2−n
∫
∂Br∩Ω

A|∇u|2 = D′(r) +
n− 2

r
D(r) + r2−n

∫
∂Br∩∂Ω

fu− r2−n
∫
∂Br∩Ω

gu

6 D′(r) +
n− 2

r
D(r) + C

(
rδ+1−n

∫
∂Br∩∂Ω

A |u|2 + rδ−1H(r)

)
.

Then from (3.19) it follows that

r2−n
∫
∂Br∩Ω

A|∇u|2 6 D′(r) +
n− 2

r
D(r) + Crδ−1H(r) + Crδ+2−n

∫
∂Br∩Ω

A |∇u|2,

from which it follows that

(3.22) r2−n
∫
∂Br∩Ω

A|∇u|2 6 C

(
D′(r) +

n− 2

r
D(r) + Crδ−1H(r)

)
,

for some C > 0 and for all r > 0 sufficiently small.
Plugging (3.22) into (3.19) we conclude that

∫
∂Br∩∂Ω

A |u|2 6 Crn−2H(r) + Crn−
3
2

√
H(r)

√
r2−n

∫
Ω∩∂Br

A|∇u|2

6 Crn−2H(r) + Crn−
3
2

√
H(r)

√
D′(r) + n−2

r
D(r) + Crδ−1H(r)

(3.23)

as long as r is sufficiently small. It is now our goal to use the previously obtained information in order to
estimate the right hand side of (3.11). To this end, we first observe that, from (1.7),

r3−2n

∣∣∣∣(∫
∂Br∩Ω

∇A · ν u2

)(∫
∂Br∩Ω

Au∇u · ν
)∣∣∣∣

6 εr r
2−2n

∣∣∣∣(∫
∂Br∩Ω

Au2

)(∫
∂Br∩Ω

Au∇u · ν
)∣∣∣∣

= εr r
1−nH(r)

∣∣∣∣∫
∂Br∩Ω

Au∇u · ν
∣∣∣∣

6 εr r
1−nH(r)

√∫
∂Br∩Ω

A |u|2
√∫

∂Br∩Ω

A |∇u|2

= εr r
1−n
2

(
H(r)

) 3
2

√∫
∂Br∩Ω

A |∇u|2.

This and (3.22) lead to

r3−2n

∣∣∣∣(∫
∂Br∩Ω

∇A · ν u2

)(∫
∂Br∩Ω

Au∇u · ν
)∣∣∣∣

6 Cεr r
− 1

2

(
H(r)

) 3
2

√
D′(r) + n−2

r
D(r) + Crδ−1H(r).

(3.24)
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Furthermore, by (1.7) and (1.11),

r1−n
∣∣∣∣∫
Br∩Ω

(
|∇u|2∇A · x− 2(∇u · x)g

)∣∣∣∣
6 Cr1−n

∫
Br∩Ω

(
εr A|∇u|2 + A |x|δ−1|∇u| |u|

)
6 Cr1−n

(
εr

∫
Br∩Ω

A |∇u|2 +

√∫
Br∩Ω

A |∇u|2
√∫

Br∩Ω

A |x|2(δ−1)|u|2
)

= Cr1−n

(
εrr

n−2E(r) + r
n−2
2

√
E(r)

√∫
Br∩Ω

A |x|2(δ−1)|u|2
)
.

Consequently, exploiting Corollary 2.4 with µ := 2(1− δ),

r1−n
∣∣∣∣∫
Br∩Ω

(
|∇u|2∇A · x− 2(∇u · x)g

)∣∣∣∣
6 Cr1−n

(
εrr

n−2E(r) + r
n−2
2

√
E(r)

√
r2δ−1

∫
∂Br∩Ω

A |u|2 + r2δ

∫
Br∩Ω

A |∇u|2
)

6 C
(εr
r
E(r) + rδ−1

√
E(r)

√
H(r) + E(r)

)
.

Now, plugging the latter inequality, (3.15), (3.16), (3.21) and (3.24) into (3.11), we conclude that

D′(r)H(r)−H ′(r)D(r)

> H(r)

[
− C

(εr
r
E(r) + rδ−1

√
E(r)

√
H(r) + E(r)

)
+ 2r1−n

∫
Br∩∂Ω

f ∇u · x− C rδ−1
(
H(r) + E(r)

)
− r2−n

∫
∂Br∩∂Ω

fu

− C rδ−1
(
H(r) + E(r)

)
− Crδ−1H(r)

]
− Cεr r−

1
2

(
H(r)

) 3
2

√
D′(r) + n−2

r
D(r) + Crδ−1H(r)

> H(r)

[
− C

(εr
r
E(r) + rδ−1

√
E(r)

√
H(r) + E(r)

)
− C rδ−1

(
H(r) + E(r)

)
+ 2r1−n

∫
Br∩∂Ω

f ∇u · x− r2−n
∫
∂Br∩∂Ω

fu

]
− Cεr r−

1
2

(
H(r)

) 3
2

√
D′(r) + n−2

r
D(r) + Crδ−1H(r),

(3.25)

for some C > 0.
Now, recalling (3.20) and (3.23), we notice that∣∣∣∣∫

∂Br∩∂Ω

fu

∣∣∣∣ 6 C
(
rn+δ−3H(r) + rn+δ− 5

2

√
H(r)

√
D′(r) + n−2

r
D(r) + Crδ−1H(r)

)
.
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This and (3.25) give that

D′(r)H(r)−H ′(r)D(r)

> H(r)

[
− C

(εr
r
E(r) + rδ−1

√
E(r)

√
H(r) + E(r)

)
− C rδ−1

(
H(r) + E(r)

)
+ 2r1−n

∫
Br∩∂Ω

f ∇u · x− C rδ−1H(r)− Crδ−
1
2

√
H(r)

√
D′(r) + n−2

r
D(r) + Crδ−1H(r)

]
− Cεr r−

1
2

(
H(r)

) 3
2

√
D′(r) + n−2

r
D(r) + Crδ−1H(r)

> H(r)

[
− C

(εr
r
E(r) + rδ−1

√
E(r)

√
H(r) + E(r)

)
− C rδ−1

(
H(r) + E(r)

)
+ 2r1−n

∫
Br∩∂Ω

f ∇u · x

]
− C max{rδ, εr} r−

1
2

(
H(r)

) 3
2

√
D′(r) + n−2

r
D(r) + Crδ−1H(r).

(3.26)

Now, we denote by ∂? := x
|x| ·∇ and we observe that ∂? is the “radial” component of the tangential gradient

along ∂Ω, since Ω is a cone. Hence, since, by (1.12),

∇
(
F (x, u(x))

)
= ∇

(∫ u(x)

0

f(x, τ) dτ

)
=

∫ u(x)

0

∇xf(x, τ) dτ + f(x, u(x))∇u(x),

we obtain that

|x| ∂?
(
F (x, u(x))

)
=

∫ u(x)

0

∇xf(x, τ) · x dτ + f(x, u(x))∇u(x) · x.

As a consequence, by (1.10),

f(x, u(x))∇u(x) · x 6 |x| ∂?
(
F (x, u(x))

)
+ C

∫ |u(x)|

0

A(x) |x|δ−1 τ dτ

6 |x| ∂?
(
F (x, u(x))

)
+ C A(x) |x|δ−1 |u(x)|2.

(3.27)

Moreover, integrating by parts along ∂Ω,

(3.28)

∣∣∣∣∫
Br∩∂Ω

|x| ∂?
(
F (x, u(x))

)∣∣∣∣ 6 C

∫
Br∩∂Ω

∣∣F (x, u(x))
∣∣+ C

∫
∂(Br∩∂Ω)

|x|
∣∣F (x, u(x)

∣∣.
In addition, by (1.9) and (1.12), we know that

|F (x, t)| 6 C A(x) |x|δ−1

∫ |t|
0

τ dτ 6 C A(x) |x|δ−1 |t|2.

This and (3.28) lead to∣∣∣∣∫
Br∩∂Ω

|x| ∂?
(
F (x, u(x))

)∣∣∣∣ 6 C

∫
Br∩∂Ω

A(x) |x|δ−1 |u(x)|2 + C

∫
∂Br∩∂Ω

A(x) |x|δ |u(x)|2.

Hence, recalling (3.27),∣∣∣∣∫
Br∩∂Ω

f(x, u(x))∇u(x) · x
∣∣∣∣ 6 ∣∣∣∣∫

Br∩∂Ω

|x| ∂?
(
F (x, u(x))

)∣∣∣∣+ C

∫
Br∩∂Ω

A(x) |x|δ−1 |u(x)|2

6 C

∫
Br∩∂Ω

A(x) |x|δ−1 |u(x)|2 + C

∫
∂Br∩∂Ω

A(x) |x|δ |u(x)|2,

up to renaming C > 0.
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Therefore, recalling (3.14) and (3.23),∣∣∣∣∫
Br∩∂Ω

f(x, u(x))∇u(x) · x
∣∣∣∣

6 C rn−2+δ
(
H(r) + E(r)

)
+ Crn+δ− 3

2

√
H(r)

√
D′(r) + n−2

r
D(r) + Crδ−1H(r).

Then, we insert this information into (3.26) and we conclude that

D′(r)H(r)−H ′(r)D(r)

> H(r)

[
− C

(εr
r
E(r) + rδ−1

√
E(r)

√
H(r) + E(r)

)
− C rδ−1

(
H(r) + E(r)

)
− C rδ−1

(
H(r) + E(r)

)
− Crδ−

1
2

√
H(r)

√
D′(r) + n−2

r
D(r) + Crδ−1H(r)

]
− C max{rδ, εr} r−

1
2

(
H(r)

) 3
2

√
D′(r) + n−2

r
D(r) + Crδ−1H(r)

> H(r)

[
− C

(εr
r
E(r) + rδ−1

√
E(r)

√
H(r) + E(r)

)
− C rδ−1

(
H(r) + E(r)

)]
− C max{rδ, εr} r−

1
2

(
H(r)

) 3
2

√
D′(r) + n−2

r
D(r) + Crδ−1H(r).

Accordingly, by (1.6),

N ′(r) =
d

dr

(
D(r)

H(r)

)
=
D′(r)H(r)−H ′(r)D(r)

H2(r)

> −C

(
εr
r

E(r)

H(r)
+ rδ−1

√
E(r)

H(r)

√
1 +

E(r)

H(r)

)
− C rδ−1

(
1 +

E(r)

H(r)

)

− C max{rδ, εr} r−
1
2

√
D′(r)

H(r)
+
n− 2

r

D(r)

H(r)
+ Crδ−1.

From this inequality and (3.17) we find that

N ′(r) > −C
(εr
r

(1 + N (r)) + rδ−1
√

1 + N (r)
√

2 + N (r)
)
− C rδ−1 (2 + N (r))

− C max{rδ, εr} r−
1
2

√
D′(r)

H(r)
+
n− 2

r

D(r)

H(r)
+ Crδ−1

> −C εr
r

(1 + N (r))− C rδ−1(1 + N (r))− C rδ−1

− C max{rδ, εr}r−
1
2

√
D′(r)

H(r)
+
n− 2

r

D(r)

H(r)
+ Crδ−1

> −C max{rδ, εr}r−1

[
(2 + N (r)) +

√
r
D′(r)

H(r)
+ (n− 2)

D(r)

H(r)
+ Crδ

]
.

(3.29)

Let

Λ = {r ∈ (0, r0) : D′(r)H(r) 6 D(r)H ′(r)}.
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In view of (3.6), (1.15), and (1.7), for r ∈ Λ we can estimate D′(r) as follows:

D′(r) 6
D(r)H ′(r)

H(r)
=

2

r

D2(r)

H(r)
+ r1−n(N (r) + 1)

∫
∂Br∩Ω

∇A · ν u2 − r1−n
∫
∂Br∩Ω

∇A · ν u2

6
2

r

D2(r)

H(r)
+ (N (r) + 1)

εr
r
H(r) +

εr
r
H(r) =

2

r

D2(r)

H(r)
+ (N (r) + 2)

εr
r
H(r).

It follows that, for all r ∈ Λ,√
r
D′(r)

H(r)
+ (n− 2)

D(r)

H(r)
+ Crδ 6

√
2N 2(r) + εr(N (r) + 2) + (n− 2)N (r) + Crδ

6 C(N (r) + 2).

Combining the previous estimate with (3.29) we obtain that, for all r ∈ Λ sufficiently small

(3.30) N ′(r) > −C max{rδ, εr}r−1(2 + N (r)).

For r 6∈ Λ estimate (3.30) is trivial, since the left hand side of (3.30) is nonnegative outside Λ whereas the
right hand side is nonpositive because of (1.15). Estimate (1.16) and statement (ii) are thereby proved.

To prove statement (iii), let h(r) := max{rδ, εr}r−1. By assumption (1.17), we have that h ∈ L1(0, r1).
Then, from (1.16) it follows that(

(2 + N (r))e−C1

∫ 1
r h(s) ds

)′
= e−C1

∫ 1
r h(s) ds

(
N ′(r) + C1h(r)(2 + N (r))

)
> 0

hence the function w(r) := (2 + N (r))e−C1

∫ 1
r h(s) ds is nondecreasing in (0, r1).

Moreover w > 0 in view of (1.15). Therefore w admits a finite limit as r → 0+ and then also N has
a finite limit γ as r → 0+. Since estimate (3.17) implies that N (r) > −Crδ in (0, r0), we conclude that
γ > 0.

4. Proof of Theorem 1.2

We start by proving (1.20). To this end, we argue for a contradiction and we suppose that (1.20) is
violated. Then, we have that (1.14) is satisfied and hence all the hypotheses of Theorem 1.1 are fulfilled.
In particular, by the fact that the limit in (1.18) is finite and N is continuous in (0, r0), we find that N
is bounded, i.e. for all r ∈ (0, r0),

(4.1) N (r) 6 C,

for some C > 0.
Moreover, by (3.6),

2D(r)

rH(r)
=
H ′(r)

H(r)
− r1−n

H(r)

∫
∂Br∩Ω

∇A · ν u2.

As a consequence, recalling (1.8),

H ′(r)

H(r)
=

2D(r)

rH(r)
+
r1−n

H(r)

∫
∂Br∩Ω

∇A · ν u2

=
2N (r)

r
+
r1−n

H(r)

∫
∂Br∩Ω

∇A · ν u2

6
2N (r)

r
+ C

r1−n

rH(r)

∫
∂Br∩Ω

Au2

=
2N (r)

r
+
C

r

6
C

r

(
N (r) + 1

)
,



18 SERENA DIPIERRO, VERONICA FELLI, AND ENRICO VALDINOCI

for some C > 0 independent of r (varying from line to line). This and (4.1) yield that

(4.2)
H ′(r)

H(r)
6
C

r
,

up to renaming C > 0 and therefore, if r ∈ (0, r0/2),

H(2r)

H(r)
= exp (logH(2r)− logH(r))

= exp

(∫ 2r

r

H ′(ρ)

H(ρ)
dρ

)
6 exp

(
C

∫ 2r

r

dρ

ρ

)
= C,

(4.3)

up to renaming C line after line. More in general, integration of (4.2) over the interval (r, rR) yields that
for every R > 1 there exists CR > 0 (depending on R but independent of r) such that

(4.4) H(Rr) 6 CRH(r) for all r ∈ (0, r0/R).

The inequality in (4.3) provides a pivotal “doubling property” in our setting. From this, we obtain that∫
∂B2r∩Ω

A(x)u2(x) dH n−1
x 6 C

∫
∂Br∩Ω

A(x)u2(x) dH n−1
x ,

up to renaming C.
Integrating the latter inequality in r, we find that∫

B2r∩Ω

A(x)u2(x) dx 6 C0

∫
Br∩Ω

A(x)u2(x) dx,

for some C0 > 0 independent of r, which gives that

(4.5)

∫
Br∩Ω

A(x)u2(x) dx 6 Cm
0

∫
Br/2m∩Ω

A(x)u2(x) dx,

for all m ∈ N and r ∈ (0, r0).
Now we fix k ∈ N such that 22k > 2C0. In light of (1.19) we can write that

|u(x)| 6 |x|k,

as long as x ∈ Ω and |x| is sufficiently small. Hence, we can exploit (4.5) for m sufficiently large and
conclude that ∫

Br0∩Ω

A(x)u2(x) dx 6 Cm
0

∫
Br0/2m∩Ω

A(x) |x|2k dx

6 Cm
0

( r0

2m

)2k
∫
Br0/2m∩Ω

A(x) dx 6
r2k

0

2m
‖A‖L1(Ω).

Then, sending m→ +∞, we conclude that∫
Br0∩Ω

A(x)u2(x) dx = 0,

and therefore, by (1.2), it follows that u must vanish necessarily in Br0 ∩ Ω. This proves (1.20), against
our initial contradictory assumption.

Having established (1.20), we can now complete the proof of Theorem 1.2, since, if A is Lipschitz, we
can use (1.20) and the classical unique continuation principle in [GL87] and obtain (1.21), as desired.
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5. Proof of Theorem 1.3

By (1.3) and (1.22), we see that, if x ∈ Ω and λ is sufficiently small,

0 = div
(
A(λx)∇uλ(x)

)
− λ2√

H(λ)
g(λx,

√
H(λ)uλ(x))

= div
(
Aλ(x)∇uλ(x)

)
− gλ(x, uλ(x)),

(5.1)

where

Aλ(x) := A(λx)

and gλ(x, t) :=
λ2√
H(λ)

g(λx,
√
H(λ) t).

Similarly, we see that, if x ∈ ∂Ω,

0 =
λ√
H(λ)

(
A(λx)∇u(λx) · ν(λx)− f(λx, u(λx))

)
= Aλ(x)∇uλ(x) · ν(x)− λ√

H(λ)
f(λx,

√
H(λ)uλ(x))

= Aλ(x)∇uλ(x) · ν(x)− fλ(x, uλ(x)),

(5.2)

where

fλ(x, t) :=
λ√
H(λ)

f(λx,
√
H(λ) t).

Now, in the notation of (1.5), we write Du,A,f,g and Hu,A to emphasize their dependences. In the same
way, in the notation of (1.6), we write Nu,A,f,g. For short, we drop the indexes when they refer to the
original configuration in (1.3) and we write

(5.3) Dλ := Duλ,Aλ,fλ,gλ , Hλ := Huλ,Aλ and Nλ := Nuλ,Aλ,fλ,gλ .

We remark that

Hλ(r) = r1−n
∫
∂Br∩Ω

Aλ(x)u2
λ(x) dH n−1

x

=
r1−n

H(λ)

∫
∂Br∩Ω

A(λx)u2(λx) dH n−1
x

=
(λr)1−n

H(λ)

∫
∂Bλr∩Ω

A(y)u2(y) dH n−1
y

=
H(λr)

H(λ)
.
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In addition,

Dλ(r) = r2−n
∫
Br∩Ω

Aλ(x) |∇uλ(x)|2 dx− r2−n
∫
Br∩∂Ω

fλ(x, uλ(x))uλ(x) dH n−1
x

+r2−n
∫
Br∩Ω

gλ(x, uλ(x))uλ(x) dx

=
λ2r2−n

H(λ)

∫
Br∩Ω

A(λx) |∇u(λx)|2 dx− λr2−n

H(λ)

∫
Br∩∂Ω

f(λx, u(λx))u(λx) dH n−1
x

+
λ2r2−n

H(λ)

∫
Br∩Ω

g(λx, u(λx))u(λx) dx

=
(λr)2−n

H(λ)

∫
Bλr∩Ω

A(y) |∇u(y)|2 dy − (λr)2−n

H(λ)

∫
Bλr∩∂Ω

f(y, u(y))u(y) dH n−1
y

+
(λr)2−n

H(λ)

∫
Bλr∩Ω

g(y, u(y))u(y) dy

=
D(λr)

H(λ)
,

and therefore

(5.4) Nλ(r) =
D(λr)

H(λr)
= N (λr).

This and (1.18) give that, for all r > 0,
lim
λ↘0

Nλ(r) = γ,

for some finite γ > 0.
Now we claim that, for all R > 0 and λ ∈ (0, r0/R),

(5.5) ‖uλ‖H1(Ω∩BR) 6 CR,

for some CR > 0 (eventually depending on R). To this end, we exploit (3.12), (3.18), (4.4), and (4.1) to
see that, for all λ ∈ (0, r0/R),∫

Ω∩BR
Aλ(x) |∇uλ(x)|2 dx =

λ2

H(λ)

∫
Ω∩BR

A(λx) |∇u(λx)|2 dx

=
λ2−n

H(λ)

∫
Ω∩BRλ

A(y) |∇u(y)|2 dy = Rn−2E(λR)

H(λ)
6 2Rn−2 H(λR) +D(λR)

H(λ)

= 2Rn−2 H(λR)

H(λ)
(1 + N (λR)) 6 CR,

(5.6)

for some CR > 0 depending on R.
Moreover, using again (4.4), we observe that∫

∂BR∩Ω

Aλ(x)u2
λ(x) dH n−1

x =
1

H(λ)

∫
∂BR∩Ω

A(λx)u2(λx) dH n−1
x

=
λ1−n

H(λ)

∫
∂BRλ∩Ω

A(y)u2(y) dH n−1
y = Rn−1H(Rλ)

H(λ)
6 CR,

(5.7)

up to renaming CR. Hence, recalling Corollary 2.4 (used here with µ := 0, r := R, and on the function uλ
and with weight Aλ) and (5.6),∫

Ω∩BR
Aλ(x)u2

λ(x) dx 6 CR

(∫
∂BR∩Ω

Aλ(x)u2
λ(x) dH n−1

x +

∫
Ω∩BR

Aλ(x)|∇uλ(x)|2 dx
)

6 CR,

(5.8)

up to renaming CR. This inequality and (5.6), combined with (1.2), give (5.5), as desired.
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Now, from (5.5) and a diagonal process, we deduce that, along a subsequence, uλ converges a.e. in Ω,
strongly in L2(Ω∩BR) and weakly in H1(Ω∩BR) for all R > 0, as λ↘ 0. Consistently with the notation
in Theorem 1.3, we denote by ũ this limit; we observe that ũ ∈

⋂
R>0H

1(Ω ∩BR).
As a particular case of (5.7) with R = 1 we have that∫

∂B1∩Ω

Aλ(x)u2
λ(x) dH n−1

x = 1

which, in view of the compactness of the trace embedding H1(Ω ∩B1) ↪→↪→ L2(Ω ∩ ∂B1), implies that

(5.9)

∫
∂B1∩Ω

ũ2(x) dH n−1
x = lim

λ↘0

∫
∂B1∩Ω

Aλ(x)u2
λ(x) dH n−1

x = 1.

Hence ũ 6≡ 0.
We observe that, by (1.11), for every x ∈ B1,

|gλ(x, uλ(x))| = λ2√
H(λ)

∣∣g(λx,
√
H(λ)uλ(x))

∣∣
6 C λδ A(λx) |x|δ−2 |uλ(x)|
6 C λδ |x|δ−2 |uλ(x)|,

(5.10)

up to renaming C line after line.
Moreover, by (1.9),

|fλ(x, uλ(x))| = λ√
H(λ)

∣∣f(λx,
√
H(λ)uλ(x))

∣∣
6 C λδ A(λx) |x|δ−1 |uλ(x)|
6 C λδ |x|δ−1 |uλ(x)|.

(5.11)

Now we claim that, for all R > 0,

lim
λ↘0

∫
Ω∩BR

gλ(x, uλ(x))uλ(x) dx = 0

and lim
λ↘0

∫
∂Ω∩BR

fλ(x, uλ(x))uλ(x) dH n−1
x = 0.

(5.12)

Indeed, using (5.10), Corollary 2.4 (used here with A := 1, r := R, and µ := 2− δ), and (1.2), we see that∣∣∣∣∫
Ω∩BR

gλ(x, uλ(x))uλ(x) dx

∣∣∣∣ 6 C λδ
∫

Ω∩BR
|x|δ−2 u2

λ(x) dx

6 CR λ
δ

(∫
∂BR∩Ω

u2
λ(x) dH n−1

x +

∫
Ω∩BR

|∇uλ(x)|2 dx
)

6 CR λ
δ

(∫
∂BR∩Ω

Aλ(x)u2
λ(x) dH n−1

x +

∫
Ω∩BR

Aλ(x) |∇uλ(x)|2 dx
)
.

From this, (5.7) and (5.6), we deduce that∣∣∣∣∫
Ω∩B1

gλ(x, uλ(x))uλ(x) dx

∣∣∣∣ 6 CRλ
δ,

up to renaming CR > 0.
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This proves the first claim in (5.12), and we now prove the second. For this, using (5.11), and then
Lemma 2.5 (with A := 1, r := R and γ := 1− δ) we find that∣∣∣∣∫

∂Ω∩BR
fλ(x, uλ(x))uλ(x) dH n−1

x

∣∣∣∣ 6 C λδ
∫
∂Ω∩BR

|x|δ−1 u2
λ(x) dH n−1

x

6 CR λ
δ

∫
Ω∩BR

(
|∇uλ(x)|2 +

u2
λ(x)

|x|2−δ

)
dx.

Hence, using Corollary 2.4 as before, we obtain that∣∣∣∣∫
∂Ω∩BR

fλ(x, uλ(x))uλ(x) dH n−1
x

∣∣∣∣ 6 CR λ
δ,

which implies the second claim in (5.12). This completes the proof of (5.12).
Now we claim that

(5.13)

∆ũ = 0 in Ω,
∂ũ

∂ν
= 0 on ∂Ω.

To this end, we exploit (5.1) and (5.2) and, given ϕ ∈ C∞0 (Rn), we write that

0 =

∫
Ω

div
(
Aλ(x)∇uλ(x)

)
ϕ(x) dx−

∫
Ω

gλ(x, uλ(x))ϕ(x) dx

=

∫
∂Ω

Aλ(x)ϕ(x)∇uλ(x) · ν(x) dH n−1
x

−
∫

Ω

Aλ(x)∇uλ(x) · ∇ϕ(x) dx−
∫

Ω

gλ(x, uλ(x))ϕ(x) dx

=

∫
∂Ω

fλ(x, uλ(x))ϕ(x) dH n−1
x

−
∫

Ω

Aλ(x)∇uλ(x) · ∇ϕ(x) dx−
∫

Ω

gλ(x, uλ(x))ϕ(x) dx.

Hence, in light of (1.24), (5.10) and (5.11),∣∣∣∣∫
Ω

∇ũ(x) · ∇ϕ(x) dx

∣∣∣∣ = lim
λ↘0

∣∣∣∣∫
Ω

Aλ(x)∇uλ(x) · ∇ϕ(x) dx

∣∣∣∣
= lim

λ↘0

∣∣∣∣∫
∂Ω

fλ(x, uλ(x))ϕ(x) dH n−1
x −

∫
Ω

gλ(x, uλ(x))ϕ(x) dx

∣∣∣∣
6 C lim

λ↘0
λδ
(∫

∂Ω

|x|δ−1 |uλ(x)| |ϕ(x)| dH n−1
x +

∫
Ω

|x|δ−2 |uλ(x)| |ϕ(x)| dx
)

6 C lim
λ↘0

λδ
(∫

∂Ω∩BR
|x|δ−1 |uλ(x)|2 dH n−1

x +

∫
∂Ω∩BR

|x|δ−1 |ϕ(x)|2 dH n−1
x

+

∫
Ω∩BR

|x|δ−2 |uλ(x)|2 dx+

∫
Ω∩BR

|x|δ−2 |ϕ(x)|2 dx
)

6 C ′ lim
λ↘0

λδ
(

1 +

∫
∂Ω∩BR

|x|δ−1 |uλ(x)|2 dH n−1
x +

∫
Ω∩BR

|x|δ−2 |uλ(x)|2 dx
)
,

where C ′, R > 0 may also depend on ϕ. Consequently, using Corollary 2.4 and Lemma 2.5 as before, we
obtain ∣∣∣∣∫

Ω

∇ũ(x) · ∇ϕ(x) dx

∣∣∣∣ 6 C ′ lim
λ↘0

λδ,
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up to renaming C ′ > 0, that is ∫
Ω

∇ũ(x) · ∇ϕ(x) dx = 0.

Since this identity holds true for all ϕ ∈ C∞0 (Rn), we have completed the proof of (5.13).
We now show that

(5.14) uλ converges strongly to ũ in H1(Ω ∩B1), as λ↘ 0.

for some C > 0. To accomplish this, we will exploit elliptic regularity theory, see e.g. Theorem 8.13
in [Sal08] (with the notation in Example 6.2 on page 314 in [Sal08] for the definition of the norms)
or [ADN59, ADN64] and Theorem 5.1 in [LM72], considering a set Ω1 with smooth boundary and such
that Σ ⊂ Ω1 ⊂ Ω ∩ (B2 \B1/2). In this way, by (5.1) and (5.2),

(5.15) ‖uλ‖H2(Ω1) 6 C
(

1 + ‖uλ‖L2(Ω1) + ‖gλ(·, uλ)‖L2(Ω∩(B2\B1/2)) + ‖fλ(·, uλ)‖H1/2((∂Ω)∩(B2\B1/2))

)
.

Moreover, in light of (5.8) and (5.10),

‖gλ(·, uλ)‖2
L2(Ω∩(B2\B1/2)) =

∫
Ω∩(B2\B1/2)

|gλ(x, uλ(x))|2 dx

6 C λ2δ

∫
Ω∩(B2\B1/2)

|x|2(δ−2) |uλ(x)|2 dx

6 C λ2δ

∫
Ω∩B2

|uλ(x)|2 dx

6 C λ2δ.

(5.16)

Similarly, recalling (5.11) and (5.8),

‖fλ(·, uλ)‖2
L2(Ω∩(B2\B1/2)) =

∫
Ω∩(B2\B1/2)

|fλ(x, uλ(x))|2 dx

6 C λ2δ

∫
Ω∩(B2\B1/2)

|x|2(δ−1)|uλ(x)|2 dx

6 C λ2δ

∫
Ω∩B2

|uλ(x)|2 dx

6 C λ2δ.

Furthermore, from (1.10), (1.23), and (5.5) it follows that

‖∇(fλ(·, uλ))‖2
L2(Ω∩(B2\B1/2))

=

∫
Ω∩(B2\B1/2)

∣∣∣∣∣ λ√
H(λ)

(
λ∇xf

(
λx,
√
H(λ)uλ(x)

)
+ ft

(
λx,
√
H(λ)uλ(x)

)√
H(λ)∇uλ(x)

)∣∣∣∣∣
2

dx

6 Cλ2δ

∫
Ω∩B2

(|uλ(x)|2 + |∇uλ(x)|2) dx

6 Cλ2δ

Therefore

‖fλ(·, uλ)‖H1(Ω∩(B2\B1/2)) 6 Cλδ

which, in view of the continuous trace embedding H1(Ω ∩ (B2 \B1/2)) ↪→ H1/2(∂Ω ∩ (B2 \B1/2)), yields

‖fλ(·, uλ)‖H1/2(∂Ω∩(B2\B1/2)) 6 Cλδ

up to renaming C. From this, (5.8), (5.16) and (5.15), we conclude that

‖uλ‖H2(Ω1) 6 C,



24 SERENA DIPIERRO, VERONICA FELLI, AND ENRICO VALDINOCI

again up to renaming C > 0. Thus, using the trace embedding,

‖uλ‖H3/2(Σ) 6 C,

up to renaming C > 0, and consequently, up to a subsequence, we obtain that

(5.17) uλ converges to ũ in H1(Σ).

Now we notice that, exploiting (5.1) and (5.2),

0 =

∫
Ω∩B1

div
(
Aλ(x)∇uλ(x)

)
uλ(x) dx−

∫
Ω∩B1

gλ(x, uλ(x))uλ(x) dx

=

∫
∂(Ω∩B1)

Aλ(x)uλ(x)∇uλ(x) · ν(x) dH n−1
x

−
∫

Ω∩B1

Aλ(x) |∇uλ(x)|2 dx−
∫

Ω∩B1

gλ(x, uλ(x))uλ(x) dx

=

∫
Σ

Aλ(x)uλ(x)∇uλ(x) · ν(x) dH n−1
x +

∫
∂Ω∩B1

fλ(x, uλ(x))uλ(x) dH n−1
x

−
∫

Ω∩B1

Aλ(x) |∇uλ(x)|2 dx−
∫

Ω∩B1

gλ(x, uλ(x))uλ(x) dx.

Using this, (1.24), (5.12) and (5.17), we conclude that

lim
λ↘0

∫
Ω∩B1

|∇uλ(x)|2 dx

= lim
λ↘0

∫
Ω∩B1

Aλ(x) |∇uλ(x)|2 dx

= lim
λ↘0

∫
Σ

Aλ(x)uλ(x)∇uλ(x) · ν(x) dH n−1
x +

∫
∂Ω∩B1

fλ(x, uλ(x))uλ(x) dH n−1
x

−
∫

Ω∩B1

gλ(x, uλ(x))uλ(x) dx

= lim
λ↘0

∫
Σ

Aλ(x)uλ(x)∇uλ(x) · ν(x) dH n−1
x

=

∫
Σ

ũ(x)∇ũ(x) · ν(x) dH n−1
x .

Hence, recalling (5.13),

lim
λ↘0

∫
Ω∩B1

|∇uλ(x)|2 dx =

∫
∂(Ω∩B1)

ũ(x)∇ũ(x) · ν(x) dH n−1
x

=

∫
Ω∩B1

div
(
ũ(x)∇ũ(x)

)
dx

=

∫
Ω∩B1

|∇ũ(x)|2 dx.

Since the weak convergence and the convergence of the norm imply the strong convergence in L2(Ω∩B1),
we thereby conclude that ∇uλ converges to ∇ũ strongly in L2(Ω∩B1,Rn), and this gives (5.14), as desired.

From (5.14) and (5.12), recalling (5.13) and the notation in (5.3), we conclude that

lim
λ↘0

Nλ(r) = Nũ,1,0,0(r).

As a consequence, exploiting (5.4),

(5.18) Nũ,1,0,0(r) = γ.
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From this, we conclude that

(5.19) ũ is positively homogeneous of degree γ,

and hence we can write ũ as in (1.25).
For completeness, we give a self-contained proof of (5.19) by arguing as follows. By (5.18), we know

that N ′
ũ,1,0,0(r) = 0, and therefore, by (1.6),

D′ũ,1,0,0(r)Hũ,1(r)−H ′ũ,1(r)Dũ,1,0,0(r) = 0 for all r > 0.

Hence, exploiting (3.9) in this setting, and recalling (2.1), we see that

0 = r−nHũ,1(r)

∫
∂Br∩Ω

(∇ũ · x)2 − r3−2n

(∫
∂Br∩Ω

ũ∇ũ · ν
)2

= r3−2n

[∫
∂Br∩Ω

ũ2

∫
∂Br∩Ω

(∇ũ · ν)2 −
(∫

∂Br∩Ω

ũ∇ũ · ν
)2
]

for all r > 0.

By the Cauchy-Schwarz Inequality, the latter term is nonnegative, and consequently we find that ũ is
proportional to ∇ũ·ν. Accordingly, we have that ũ is a positively homogeneous function, of some degree γ′.

Then, using (5.18) once again

γ

∫
∂B1∩Ω

ũ(x)
∂ũ

∂ν
(x) dH n−1

x = γ γ′
∫
∂B1∩Ω

ũ2(x) dH n−1
x = γ γ′Hũ,1(1)

= γ′Dũ,1,0,0(1) = γ′
∫
B1∩Ω

|∇ũ(x)|2 dx.
(5.20)

On the other hand, by (5.13),∫
∂B1∩Ω

ũ(x)
∂ũ

∂ν
(x) dH n−1

x =

∫
∂(B1∩Ω)

ũ(x)
∂ũ

∂ν
(x) dH n−1

x =

∫
B1∩Ω

|∇ũ(x)|2 dx.

Plugging this information into (5.20), we thereby conclude that

γ

∫
B1∩Ω

|∇ũ(x)|2 dx = γ′
∫
B1∩Ω

|∇ũ(x)|2 dx,

and then γ′ = γ. This completes the proof of (5.19) (and thus of (1.25)).
We also remark that, by (1.25) and (5.13), using the notation ρ := |x| and ϑ := x/|x|,

0 = ∆ũ(x) = γ(γ − 1)ργ−2ψ(ϑ) + (n− 1)γργ−2ψ(ϑ) + ργ−2∆Sn−1ψ(ϑ),

and therefore ψ is an eigenfunction of te operator LΣ; the Neumann boundary condition of ψ also follows
from the one of ũ in (5.13).

Furthermore, by (5.9) and (1.25)

1 =

∫
∂B1∩Ω

ũ2(x) dH n−1
x

=

∫
∂B1∩Ω

|x|2γψ2

(
x

|x|

)
dH n−1

x

=

∫
∂B1∩Ω

ψ2(x) dH n−1
x ,

which gives (1.26). The proof of Theorem 1.3 is thereby complete.
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6. Proof of Theorem 1.4

First, we prove (1.28). We argue by contradiction, supposing that (1.28) does not hold, and there-
fore (1.14) is satisfied. Hence, we are in the position of using Theorem 1.3, and we let ũ and ψ as in (1.25).
We note that, by (5.13) and elliptic regularity theory, we have that ũ is smooth on Ω \ {0}.

We observe that the trace of ũ on B1 ∩ ∂Ω (which belongs to L2(B1 ∩ ∂Ω) by trace embeddings) cannot
vanish identically, i.e.

(6.1) ũ 6≡ 0 on B1 ∩ ∂Ω,

otherwise ũ would be a harmonic function with homogeneous Dirichlet and Neumann conditions on B1∩∂Ω,
and then necessarily ũ would vanish identically in B1 ∩ Ω (otherwise its trivial extension would violate
classical unique continuation principles), in contradiction with (1.26).

From assumption (1.27) it follows that, for all k ∈ N

(6.2) λ−ku(λ·)→ 0 in L2(B1 ∩ ∂Ω).

Since, in view of (1.22), √
H(λ)

λk
=
‖λ−ku(λ·)‖L2(B1∩∂Ω)

‖uλ‖L2(B1∩∂Ω)

and, by Theorem 1.3, uλ → ũ in L2(B1 ∩ ∂Ω) along a subsequence, from (6.1) and (6.2) we conclude that

lim
λ↘0

√
H(λ)

λk
= 0,

for all k ∈ N. Consequently, for all k ∈ N, there exists λ0(k) ∈ (0, r0/2) such that, for all λ ∈ (0, λ0(k)],

(6.3)

√
H(λ)

λk
6 1.

On the other hand, by (4.3),

H(2mλ) 6 CmH(λ)

for all m ∈ N and λ ∈ (0, 2−mr0), for a suitable C > 0 independent of λ and m. This and (6.3) give that,
for all k, m ∈ N and for all λ ∈ (0,min{λ0(k), 2−mr0}),

H(2mλ) 6 Cmλ2k.

As a consequence, recalling (1.5) and integrating,

1

2m

∫
B2mλ∩Ω

A(x)u2(x) dx =
1

2m

∫ 2mλ

0

[∫
∂Bρ∩Ω

A(x)u2(x) dH n−1
x

]
dρ

=

∫ λ

0

[∫
∂B2mr∩Ω

A(x)u2(x) dH n−1
x

]
dr =

∫ λ

0

(2mr)n−1H(2mr) dr

6 2m(n−1)Cm

∫ λ

0

rn−1+2k dr =
2m(n−1)Cm λn+2k

n+ 2k
,

for all k, m ∈ N and for all λ ∈ (0,min{λ0(k), 2−mr0}).
We choose mλ ∈ N such that

(6.4)

∣∣∣∣log2

(
2λ

r0

)∣∣∣∣ 6 mλ < 1 +

∣∣∣∣log2

(
2λ

r0

)∣∣∣∣ ,
so that λ < 2−mλr0 for all λ < r0

2
. Then we find that∫
B2mλ∩Ω

A(x)u2(x) dx 6
2mλn Cmλ λn+2k

n+ 2k
,

for all k ∈ N and for all λ ∈ (0, λ0(k)].
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Hence, since, by (6.4), we know that 2mλλ ∈
[
r0
2
, r0

]
,∫

B r0
2
∩Ω

A(x)u2(x) dx 6
(2nC)

1+| log2
2λ
r0
|
λn+2k

n+ 2k
6

(2nC)
−2 log2

2λ
r0 λn+2k

n+ 2k
= κ

λn+2k−θ

n+ 2k
,

for some suitable θ, κ > 0 depending only on n,C, r0 (but independent of k), for all k ∈ N and for
all λ ∈ (0,min{λ0(k), r0/4}).

Accordingly, choosing k ∈ N sufficiently large such that n+ 2k− θ > 0 and sending λ↘ 0, we conclude
that ∫

B r0
2
∩Ω

A(x)u2(x) dx = 0.

This gives that (1.28) holds true, in contradiction with our initial hypothesis.
This completes the proof of (1.28). Finally, the proof of (1.29) is identical to the proof of (1.21), hence

the proof of Theorem 1.4 is complete.
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