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Abstract We propose a discrete-time exchange economy evolutionary model
with two groups of agents. In our setting the definition of equilibrium depends
also on agents’ population shares, which affect the market clearing conditions.
We prove that, despite such difference with the classical Walrasian frame-
work, for all economies and population shares there exists at least one equilib-
rium and we show that, for all population shares, generically in the set of the
economies, equilibria are finite and regular. We then introduce the dynamic
law governing the evolution of the population shares, and we investigate the
existence and the stability of the resulting stationary equilibria. We assume
that the reproduction level of a group is related to its attractiveness degree,
which depends on the social visibility level, determined by the consumption
choices of the agents in that group. The attractiveness of a group is described
via a generic bell-shaped map, increasing for low visibility levels, but decreas-
ing when the visibility of the group exceeds a given threshold value, due to a
congestion effect. The model is able to reproduce the recurrent dynamic be-
havior typical of the fashion cycle, presenting booms and busts in the agents’
consumption choices, and in the groups’ attractiveness and population shares.
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1 Introduction

In the present paper we propose a discrete-time exchange economy evolution-
ary model in view of providing a formal representation of the fashion cycle, i.e.,
the oscillatory behavior of the variable describing the consumed or purchased
amount of a certain good, characterized by booms and busts.
Although in the mainstream economic theory of consumption it is usually sup-
posed that preferences are exogenously fixed, two research strands removed
such modeling assumption. While in the former (see e.g. Day 1970; Benhabib
and Day 1981) the endogenous change in preferences is described as a conse-
quence of the past choices made by the consumer itself, in the latter the change
in preferences is due to social interaction with other agents, in agreement with
Veblen (1899), Simmel (1904) and Leibenstein (1950). The second, more mul-
tidisciplinary, viewpoint has led to many economic contributions, such as the
works by Gaertner (1974, 1987), by Gaertner and Jungeilges (1988, 1993, 1994)
and by Ekaterinchuk et al. (2017, 2018).
In particular, Simmel (1904) argues that the fashion cycle is driven by two
opposite forces: imitation and distinction. Following such idea, thanks to our
evolutive general equilibrium setting we may view the fashion cycle as the com-
bined result of three ingredients: the price formation mechanism, the popula-
tion share updating rule, and the social interaction of two groups of agents ex-
hibiting both bandwagon and snob behaviors. Namely, according to Vigneron
and Johnson (1999), on the basis of the empirical literature, too, in the con-
text, e.g., of luxury and prestige-seeking consumption agents may oscillate
between imitative and snob attitudes.
Looking more closely at the three building blocks of our model, each of them
plays an important role. The general equilibrium approach allows us to give
a rigorous microfoundation to the agents’ consumption activity and to the
price formation mechanism. An updating rule is needed in order to investigate
the evolution of agents’ shares over time. Finally, the bandwagon and snob
behaviors arise from an analytical description of the social interaction pro-
cess through bell-shaped attractiveness functions associated to the different
lifestyles.
In the past decades, some models have been proposed to give a formal rep-
resentation of the fashion cycle, in which one of the three above mentioned
ingredients was privileged.1 More precisely, in Frijters (1998) just the price
formation mechanism operates and the fashion cycle may occur according to
the relative values of the current and of the future price. Matsuyama (1991),
in a continuous-time setting, and Gardini et al. (2018), in a discrete-time
framework involving discontinuous piecewise linear maps, deal with evolutive
aspects, only. Finally, Caulkins et al. (2007), Coelho and McClure (1993),
Corneo and Jeanne (1999), Di Giovinazzo and Naimzada (2015), Karni and
Schmeidler (1990), Pesendorfer (1995) and Zhang (2016, 2017) propose mod-

1 Oscillatory dynamics in the consumption activities are found, in different contexts, also
in Antoci et al. (2004), Bischi and Radi (2012), Matsumoto (2003) and Naimzada et al.
(2013).
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els in which the fashion cycle originates from some form of social interaction
occurring between consumers or firms.
On the other hand, we aim to give a comprehensive description of the fash-
ion cycle. In more detail, our approach is based on some of the modeling
choices made in Chang and Stauber (2009) and in Naimzada and Pireddu
(2016), where continuous-time evolutive general equilibrium models were pro-
posed. However, in those contributions, agents’ preferences were represented
via Cobb-Douglas utility functions only, and the share updating mechanism
was based on biological aspects concerning the calorie intakes by the agents
belonging to the two groups. Moreover, we recall that in Chang and Stauber
(2009) and in Naimzada and Pireddu (2016) just trivial dynamic behaviors
could arise. Hence, such frameworks were not suitable to describe the fashion
cycle, neither for their modeling features, nor for the resulting dynamic out-
comes. In fact, the two papers that bear more resemblance to the setting we
present are Naimzada and Pireddu (2018, 2019a), where, starting from Chang
and Stauber (2009) and Naimzada and Pireddu (2016), we dealt with a share
updating rule based on sociological aspects. In more detail, the evolutionary
mechanism was described via the discrete exponential replicator rule (see e.g.
Branch and McGough 2008; Cabrales and Sobel 1992; Hofbauer and Weibull
1996; Nachbar 1990; Sandholm 2010; Taylor and Jonker 1978), in which the
reproduction level of a group is based on a comparison between the attrac-
tiveness degree of the two groups of agents. The attractiveness of a group
depends on its social visibility level, which is determined as a linear combina-
tion of the amount of the two goods consumed in equilibrium by the agents in
that group, multiplied by commodity-specific visibility factors. Such social pa-
rameters measure the capability of consumption to convey ideas and transmit
information about the status of the agents who consume that commodity (see
Heffetz 2011, 2012 for an explanation about how those parameters can be esti-
mated). The attractiveness of a group is initially increasing with its visibility
level, and this describes the bandwagon regime, characterized by an imitative
behavior. However, when the visibility of a group exceeds a given threshold
value, a congestion effect is produced. The attractiveness of that group then
becomes a decreasing function of its visibility level, and this describes the
snob regime, characterized by a predominating wish for distinction. While in
Naimzada and Pireddu (2018) just one particular formulation for the attrac-
tiveness was considered, in Naimzada and Pireddu (2019a) generic bell-shaped
attractiveness functions for the two groups of agents were taken into account.
The functioning of both frameworks, which can generate interesting dynamics
and also the fashion cycle, is described in what follows. As mentioned above,
the share updating mechanism is based on a comparison between the attrac-
tiveness of the two groups of agents. In such process, the social interaction
affects the visibility levels, that are also influenced by the commodity-specific
visibility factors. The evolutive rule determines the new population shares,
whose values in turn affect the equilibrium price and the equilibrium con-
sumption choices. The latter quantities enter the visibility expression, which
is involved in the share updating rule, and the process repeats again.
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The main weakness in Naimzada and Pireddu (2018, 2019a) lies in the fact that
agents’ preferences were described by Cobb-Douglas utility functions only. In
order to fix such issue, in the present contribution we keep the generality con-
cerning the formulation of the attractiveness functions achieved in Naimzada
and Pireddu (2019a), adding to this an increased generality in regard to the
description of agents’ preferences. Namely, we here suppose that agents’ util-
ity functions are free to vary in a suitable set of maps. Such new assumption
urges us to investigate not only the dynamic features of our model, but also to
study the existence and the generic regularity of the market equilibria, which
link the equilibrium price and the optimal consumption choices to population
shares. Namely, due to the presence of the agents’ population shares inside the
market clearing conditions, the validity of the standard results about exchange
economies has to be carefully verified. We perform such task by adopting the
extended approach illustrated in Villanacci et al. (2002). More precisely, using
the homotopy invariance property of the topological degree (see Lloyd 1978 for
this and related topological degree results),2 we show that for all economies
and population shares there exists at least a market equilibrium and, em-
ploying a tranvsersality argument, we prove that, for all population shares,
generically in the set of the economies, equilibria are finite and regular. In
particular, due to the need of dealing with function spaces, we have to employ
the infinite-dimensional version of the Implicit Function Theorem by Gloeck-
ner (2006), used in the restricted participation frameworks in Carosi et al.
(2009), Gori et al. (2013) and Hoelle et al. (2015), too. Furthermore, in order
to avoid indeterminacy issues, we check that a unique equilibrium exists when
considering utility functions that yield individual demand functions with the
gross substitute property. We then introduce the concept of market stationary
equilibrium, that is a market equilibrium which does not vary with time and
that solves in any period the dynamic equation describing the share updating
rule, where the latter, as explained above, maintains the generality reached in
Naimzada and Pireddu (2019a), encompassing generic bell-shaped attractive-
ness functions for the two groups of agents. After deriving the expression of
the market stationary equilibria, we investigate their local stability.
In order to illustrate the general results that we obtain on existence and local
stability of the stationary equilibria, as well as to analyze the emergence of
fashion cycle dynamics, we add a simulative section where we focus on Stone-
Geary utility functions (see Geary 1950 and Stone 1954), which generalize the
Cobb-Douglas utility functions, and where we consider the formulation of the
attractiveness map dealt with in Naimzada and Pireddu (2018).3 Perform-
ing a bifurcation analysis on varying the parameter representing a suitable
sensitivity measure, we find that the nontrivial equilibrium, characterized by
the coexistence between the agents of the two groups, loses stability via a

2 Cf. also Gori et al. (2014), where an homotopy method is employed to prove existence
of equilibria in a model with real assets and restricted participation.

3 We refer the reader to Naimzada and Pireddu (2019b) for a more detailed bifurcation
analysis, conducted for several parameter configurations and for the formulations of the
attractiveness maps introduced in Naimzada and Pireddu (2019a), too.
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flip bifurcation in favor of a stable period-two cycle. Like in Naimzada and
Pireddu (2018, 2019a), also in this work we detect interesting multistability
phenomena, involving equilibria, as well as periodic or chaotic attractors, and
oscillatory behaviors both for the population shares and the consumed quan-
tities are allowed. In particular, the dynamic coexistence between groups and
the oscillatory nature of the consumption activities display the recurrent dy-
namic behavior typical of the fashion cycle, with booms and busts. In view of
better understanding the functioning of the model dynamics, we also provide
an interpretation of the main scenarios we found in our bifurcation analysis
from a sociological and economic viewpoint, in terms of visibility and attrac-
tiveness.
The remainder of the paper is organized as follows. In Section 2 we present
and study our model. In particular in Subsection 2.1 we analyze the existence,
generic regularity and uniqueness of Walrasian equilibria with agents’ popu-
lation shares under suitable conditions on the economies, while in Subsection
2.2 we illustrate the dynamic equation describing the share updating rule and,
after introducing the concept of stationary equilibria, we investigate their ex-
istence and local stability. In Section 3 we show the emergence of fashion cycle
dynamics for our system when considering Stone-Geary utility functions, pro-
viding a sociological and economic interpretation of the main scenarios we
find. In Section 4 we briefly discuss our results and describe some variants and
extensions of the model. The Appendix contains the proofs.

2 The model

2.1 The Walrasian equilibria with shares

Let us consider an exchange economy with a continuum of agents, which may
be of type α or of type β. 4 There are two consumption goods, x and y,
and agents’ preferences, as in most literature on smooth economies (see e.g.
Villanacci et al. 2002), are described by the class of utility functions introduced
in the following definition.

Definition 1 For i ∈ {α, β}, we define Ui as the set of utility functions
ui : (0,+∞)2 → R such that

(A1) ui ∈ C2((0,+∞)2);
(A2) ui is differentiably strictly increasing, i.e.,

Dui(x, y) >> 0, ∀(x, y) ∈ (0,+∞)2;
(A3) ui is differentiably strictly quasiconcave, i.e., Dui(x, y)v = 0 implies

vD2ui(x, y)v < 0, ∀(x, y) ∈ (0,+∞)2, v ∈ R
2 \ {(0, 0)};

(A4) ∀(x, y) ∈ (0,+∞)2, {(x, y) ∈ (0,+∞)2 : ui(x, y) ≥ ui(x, y)} is closed in
the topology of R2.

4 We keep the notation used in Chang and Stauber (2009) and in Naimzada and Pireddu
(2016, 2018, 2019a), where i ∈ {α, β} was the weight assigned to good x in the Cobb-Douglas
utility functions by agents in group i, with 0 < α < β < 1.
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Assumption (A1) allows to perform computations and to employ tools from
Calculus such as the implicit function theorem. Assumption (A2) says that
households always prefer a bundle with slightly more of anything, no matter
what they are consuming. Assumption (A3) says that households prefer bun-
dles in which commodities are fairly distributed and ensures the existence of a
unique solution to the household maximization problem. Assumption (A4) im-
plies that indifference curves of utility functions do not touch the axes and thus
that the solution is interior. By the implicit function theorem, it is possible
to show that such solution depends in a smooth manner on endowments and
on prices (see Theorem 8.3.397 in Villanacci et al. 2002). Actually, employing
an extension of the implicit function theorem valid for maps from topological
vector spaces to Banach spaces by Gloeckner (2006) (see Theorem 2 below), it
can be easily shown that the solution to the household maximization problem
depends in a smooth manner also on utility functions.
We notice that, by Definition 1, we have Uα = Uβ . Hence, we will denote the
set of utility functions simply by U .
In our model we assume that time is discrete, i.e., that t ∈ N. The quantity of
good x (y) consumed by an agent of type i ∈ {α, β} at time t is denoted by
xi,t (yi,t). Both kinds of agents have the same positive endowments of the two
goods, denoted respectively by wx and wy. We define the set of economies as
E = U2 × (0,+∞)2, containing the elements E = (uα, uβ , wx, wy).

5 In view
of the result on generic regularity of market equilibria (cf. Proposition 2), we
assume that E ⊆ E is endowed with the topology induced by the Hausdorff
topological vector space

E =
[
C2((0,+∞)2)

]2
× R

2, (1)

where E is endowed with the product topology of the natural topologies on
each of the spaces in the Cartesian product. In particular, on the C2 function
space we consider the C2 compact-open topology.
We denote by px,t > 0 and py,t > 0 the prices at time t for goods x and y,
respectively. The size of the population of kind α (β) at time t is denoted
by At (Bt). The normalized variable at = At/(At + Bt) ∈ [0, 1] represents
the population fraction composed by the agents of type α and bt = 1 − at =
Bt/(At+Bt) ∈ [0, 1] represents the population fraction composed by the agents
of type β.
We are now ready to provide the definition of market equilibrium.

Definition 2 Given the economy E ∈ E and the population share at ∈ [0, 1],
a market equilibrium at time t is a vector (p∗x,t, p

∗
y,t, x

∗
i,t, y

∗
i,t), with i ∈ {α, β},

such that:

5 We notice that if uα = uβ then agents are homogeneous since endowments of both
goods coincide between groups. In order not to overburden notation and not to excessively
complicate the analysis, we will here focus on the case with wx,α = wx,β = wx and wy,α =
wy,β = wy , implicitly assuming that uα 6= uβ , like it happens in the example considered in
Section 3.
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− every kind of agent i chooses a utility-maximizing consumption bundle
(x∗

i,t, y
∗
i,t), given (p∗x,t, p

∗
y,t), i.e., the agents of group i ∈ {α, β} at time t

solve

max
(xi,t,yi,t)∈(0,+∞)2

ui(xi,t, yi,t) s.t.

px,t xi,t + py,t yi,t ≤ px,t wx + py,t wy

(2)

− the markets for the two goods clear, i.e., at time t for good j ∈ {x, y} it
holds that

at jα,t + (1− at) jβ,t = at wj + (1− at)wj = wj (3)

where we denote by jα,t and jβ,t the consumption at time t of good j ∈ {x, y}
by agents of type α and β, respectively.
We notice that, since utility functions are differentiably strictly increasing,
problem (2) may be rewritten as

max
(xi,t,yi,t)∈(0,+∞)2

ui(xi,t, yi,t) s.t.

px,t xi,t + py,t yi,t = px,t wx + py,t wy

(4)

and from the budget constraint we obtain xi,t = wx + ptwy − pt yi,t, where we
set pt = py,t/px,t. Hence, (4) simply becomes

max
yi,t∈(0,+∞)

ui(wx + ptwy − pt yi,t, yi,t).

From here, thanks to the fact that ui is differentiably strictly quasiconcave,
there exists a unique optimal consumption choice for good y, depending on
pt, that we call y∗i,t(pt). Hence, the optimal consumption choice for agent
i of good x, depending on pt, that we call x∗

i,t(pt), is given by x∗
i,t(pt) =

wx + pt wy − pt y
∗
i,t(pt). The equilibrium price p∗t can then be determined by

using one of the two market clearing conditions in (3), since by Walras’ law
the other market clearing condition is redundant. In this manner p∗t will be
influenced by the population share at, so that we can write p∗t (at). Inserting
p∗t (at) into x∗

i,t(pt) and y∗i,t(pt), we find the equilibrium consumption choices
x∗
i,t and y∗i,t for agent i, which will depend on at, as well. Indeed, using the

extended approach based on first order conditions and market clearing con-
ditions to characterize equilibria (cf. Paragraph 8.4 in Villanacci et al. 2002),
it is possible to prove that, in any time period, for all E ∈ E and at ∈ (0, 1),
there exists at least a market equilibrium6 (see Proposition 1) and that, for all
population shares, generically in the set of economies, market equilibria are

6 We remark that the argument above suggests that market equilibria exist for any econ-
omy even when a = 0 and a = 1, although such extreme cases are not encompassed in
Proposition 1 due to the need to deal with open sets because of the differential topology
kind of proof. We also notice that considering an open interval of the form (−ε, 1+ ε), with
ε > 0 arbitrarily small, would not solve the issue, as some steps in the proof of Proposition
1 would not work anymore.
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finite and regular, i.e., they depend in a smooth manner on economies and
population shares (cf. Proposition 2 where, like in Carosi et al. 2009, Gori et
al. 2013, and Hoelle et al. 2015, we complement the finite-dimensional analysis
performed in Villanacci et al. 2002 using the infinite-dimensional version of the
Implicit Function Theorem by Gloeckner 2006). Moreover, in order to avoid
indeterminacy issues, we check in Proposition 3 that a unique equilibrium ex-
ists when dealing with utility functions that yield individual demand functions
with the gross substitute property. We recall that a characterization of such
class of utility functions has been provided in Fisher (1972). The need to re-
strict our attention to utility functions which imply the existence of a unique
equilibrium for every economy and for all population shares comes from the
fact that, as we shall see in Subsection 2.2, in our model the attractiveness
of a group depends on its social visibility level, which is obtained as a linear
combination of the amount of the two goods consumed in equilibrium by the
agents in that group. Hence, the existence of a unique equilibrium prevents
indeterminacy issues, in which different attractiveness levels correspond to the
same economy.
We stress that, although by now no dynamic aspects have been introduced
in the model, and thus we are just considering a variation of the classical ex-
change economy setting with two consumers, in which we take into account
population shares in the market clearing conditions, we need to check that all
the steps in the original proofs of existence, generic regularity and uniqueness
of equilibria still hold true in our framework. In particular, such verification
cannot be performed on the Edgeworth box because the two groups of agents
in general do not have the same numerosity. We also remark that, in order
to show the existence of equilibria, we could use continuity arguments applied
to the excess demand function (cf. pages 584-585 in Mas-Colell et al. 1995).
However, for the homogeneity’s sake with the proof of generic regularity of
equilibria, we prefer to employ the extended approach to show that equilibria
exist, too. The corresponding results read as follows:

Proposition 1 For every economy E ∈ E , for every t ∈ N and for every
population share at ∈ (0, 1), there exists at least a market equilibrium at time
t.

Proposition 2 For every t ∈ N and for every population share at ∈ (0, 1),
there exists an open and full measure7 subset D(at) of E such that, for any

7 Actually, along the proof we show the validity of a stronger result, i.e., that in any
time period and for every population share, for each choice of the utility functions in U ,
there exists an open and full measure subset of the space of endowments where the generic
regularity property holds. In particular, the fact that the smooth dependence of equilibria
holds for all share values - for all utility functions in U and for almost all endowment
combinations - is crucial, as we will characterize market stationary equilibria in terms of
population shares. Indeed, for our purposes a result more in line with the approach in
Chapter 8 in Villanacci et al. (2002), where economies are identified with endowments and
the utility function vector is taken as given (see in particular Paragraph 8.7 therein), would
suffice. Nonetheless, the smooth dependence of equilibria on utility functions comes as a
byproduct of the proof of Proposition 2, which is in line with some recent generic regularity



A general equilibrium evolutionary model, generating fashion cycle dynamics 9

E ∈ D(at), there is a (positive) finite number of associated market equilibria
which locally smoothly depend on the elements (E, a) of E × (0, 1).

In relation to Proposition 2, we assume that E × (0, 1) is endowed with the
topology induced by the Hausdorff topological vector space E × R, where E

has been introduced in (1) and E × R is endowed with the product topology.
In the proofs of Propositions 1 and 2 (provided in the Appendix) we will use
the two following results (cf. Theorem 7.5.368 in Villanacci et al. 2002 for
the former, and for the latter see Theorem 2.3 in Gloeckner 2006, of which
Theorem 2 is a simplified version).

Theorem 1 Let M, N be C2 boundaryless manifolds of the same dimension,
y ∈ N and Φ, Γ : M → N be continuous functions. Assume that Γ is C1 in
an open neighborhood U of Γ−1(y), y is a regular value for Γ restricted to
U, the cardinality of Γ−1(y) is finite and odd, and there exists a continuous
homotopy Ψ : M × [0, 1] → N from Φ to Γ such that Ψ−1(y) is compact. Then
Φ−1(y) 6= ∅.

Theorem 2 Let us consider f : O × B → R
n, where O is an open subset of

R
n and B is an open subset of a topological Hausdorff vector space B. Assume

that f ∈ C1(O × B,Rn) and let (x0, b0) ∈ O × B be such that f(x0, b0) = 0
and Dxf(x0, b0) is invertible. Then there exist O(x0) ⊆ O open neighborhood
of x0, B(b0) ⊆ B open neighborhood of b0 and ϕ : B(b0) → O(x0) such that

1. ϕ ∈ C1(B(b0), O(x0)),
2. ϕ(b0) = x0,
3. {(x, b) ∈ O(x0)×B(b0) : f(x, b) = 0} = {(x, b) ∈ O(x0)×B(b0) : x = ϕ(b)}.

In regard to Theorem 2, we report some definitions related to its statement.
Given a topological Hausdorff vector space S containing an open set S and
a function g : S → R

n, we say that g ∈ C0(S,Rn) if g is continuous, while we
say that g ∈ C1(S,Rn) if it is continuous, the limit

dg(s, σ) = lim
ε→0

g(s+ εσ)− g(s)

ε
, (5)

exists for all s ∈ S , σ ∈ S , and the function dg : S × S → R
n is continuous.

For further mathematical details, see Hoelle et al. (2015). In particular, as ex-
plained therein, the need to use the Gloeckner implicit function theorem comes
from the fact that the C2 compact-open topology, the set of twice continuously
differentiable utility functions is commonly endowed with, is not generated by
a norm (see page 35 in Hirsch 1976) and thus the standard implicit function
theorem cannot be applied in our framework. On the other hand, since E in
(1) is a topological Hausdorff vector space, Theorem 2 can be used instead.

results in the general equilibrium literature (see e.g. Carosi et al. 2009 and Hoelle et al.
2013). We chose to present such version of the proposition, since we believe that a more
general result about generic regularity can be of independent interest.
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In view of the introduction in Subsection 2.2 of the concepts of visibility and
attractiveness of a group (cf. (6) and Definition 4), based on the equilibrium
consumption choices, in order to avoid indeterminacy issues, we check in the
next result that a unique equilibrium exists, even in the case of groups of
agents with a different numerosity, when dealing with utility functions that
yield individual demand functions with the gross substitute property. Omitting
the (now irrelevant) dependence on time, we recall that, in the case of an ex-
change economy with two goods, the Walrasian demand function for a certain
consumer of good j ∈ {x, y}, that we denote by j∗(px, py), satisfies the gross
substitute property if whenever p̃j = pj and p̃k > pk, for k ∈ {x, y}, k 6= j, it
holds that j∗(p̃x, p̃y) > j∗(px, py).

Proposition 3 Assume that, given E ∈ E , the individual demand functions,
for agents α and β, of goods x and y satisfy the gross substitute property. Then,
for all E ∈ E , t ∈ N and at ∈ (0, 1), there exists a unique market equilibrium
at time t.

2.2 The share updating rule and the stationary equilibria

In Subsection 2.1 we introduced the notion of market equilibrium in Definition
2, which encompasses both the agents’ choice of utility-maximizing consump-
tion bundles and the market clearing conditions. We stress that such concept
differs from the dynamic notion of equilibrium, i.e., of market stationary equi-
librium. Indeed, by the latter we mean a market equilibrium in which popu-
lation shares, and consequently prices and optimal consumption choices, are
constant over time. In particular, shares are constant because in any period
t they solve the dynamic equation governing the share updating mechanism
(see (8)). If shares are constant, the equilibrium price determined through the
market clearing condition is constant, too, and consequently also the equilib-
rium consumption choices are constant.
Accordingly, we introduce the following definition of market stationary equi-
librium:

Definition 3 Given the economy E ∈ E , the vector (a∗, p∗, x∗
i , y

∗
i ), i ∈ {α, β},

is a market stationary equilibrium if a∗ ∈ [0, 1] is constant and if, given a∗,
(p∗, x∗

i , y
∗
i ), i ∈ {α, β}, is a market equilibrium in every time t.

We remark that, in order not to overburden notation and terminology, al-
though a∗ is not part of the market equilibrium vector introduced in Definition
2, we call the objects described in Definition 3 (market stationary) equilibria,
and we use the symbol ∗ even for the shares. We also notice that in Definition
2 there are time subscripts, missing in Definition 3, as the latter describes a
stationary, time-unvarying, situation.
For the sake of brevity, when each economy admits a unique market equilib-
rium for all population shares, we shall identify market stationary equilibria
just with the population share a∗, since it determines all other equilibrium
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components. Namely, according to what explained in Subsection 2.2, when
dealing e.g. with utility functions that yield individual demand functions with
the gross substitute property, it holds that, for every economy, a∗ determines
a unique equilibrium price p∗, which in turns determines a unique equilibrium
allocation (x∗

i , y
∗
i )i∈{α,β}. In fact, in what follows we will focus on the subset

Ẽ of E in which utility functions yield individual demand functions with the
gross substitute property, so that we will identify market stationary equilibria
for the economies in Ẽ with the corresponding population share.
The market stationary equilibria will be called trivial if they are not charac-
terized by the coexistence between the two groups of agents, and nontrivial
otherwise.

Let us now illustrate the population share evolutionary mechanism, based
on a sociological payoff.
According to Heffetz (2011, 2012) some consumption activities are socially
visible, where visibility is meant as the capability of the consumption of a
good to convey ideas and transmit information to the other members of a
social group about the status of the agents who consume that commodity. We
stress that the study in Heffetz (2011, 2012) is motivated by the observation
that many social phenomena, such as peer effects, social comparisons and
fashion, are grounded on visibility. Since the various goods induce different
visibility levels, we introduce the positive parameters vx and vy describing the
degree of visibility that each agent derives from the consumption of a unit
of commodity x and of commodity y, respectively. Given such assumptions,
we define the social visibility level Vi,t of an agent of type i ∈ {α, β} at
time t as a linear combination of the units xi,t and yi,t of goods x and y he
consumes, weighted respectively with the positive parameters vx and vy, i.e.,
Vi,t = vxxi,t+ vyyi,t. In particular, at the market equilibrium, which is unique
under the maintained assumption that our utility functions yield individual
demand functions with the gross substitute property, it holds that

V ∗
i,t = vxx

∗
i,t + vyy

∗
i,t, for i ∈ {α, β} . (6)

For ease of notation, since we will consider visibility values just in correspon-
dence to the market equilibrium, we will denote V ∗

i,t simply by Vi,t. The same
remark applies to the attractiveness functions we shall introduce in Definition
4 below, which we will denote by Ai,t, rather than by A ∗

i,t.
We stress that, although we assume that the parameters vx and vy cannot
vanish, the case of polarized values for vx and vy, in which both of them are
positive but one is much larger than the other, is allowed and well approxi-
mates those frameworks in which visibility and attractiveness are produced by
the consumption of a single good.
Agents’ consumption choices, deriving by the underlying preference structures,
give rise to different attractiveness degrees, when the preference structures of
the two groups do not coincide. Indeed, in a social interaction setting, the
attractiveness of a preference structure depends on its visibility in a non-
monotone manner: the social attractiveness of a preference structure is in-
creasing in its visibility as long as the latter is not excessive, and then such
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dependence becomes decreasing.
Introducing the attractiveness Ai,t of group i as a function of Vi,t, i ∈ {α, β},
suitable hypotheses on such map are that it is bell-shaped, increasing with the
visibility level up to a certain threshold value V , above which it becomes de-
creasing in a symmetric manner with respect to V , due to a congestion effect.
Hence, Ai,t will be for us any differentiable and strictly decreasing function of
d(V , Vi,t) = |V − Vi,t|, where d denotes the Euclidean distance. In particular,
in order to avoid differentiability issues, we will actually consider functions
depending on d2(V , Vi,t) = (V − Vi,t)

2. For simplicity, in what follows we will
sometimes denote d2(V , Vi,t) just by d2i . We stress that it would be possible to
view the attractiveness as an index, normalizing such variable and assuming
that Ai,t varies in the interval (−1, 1), so that negative values of the attractive-
ness could be interpreted as a repulsion, positive values of Ai,t would describe
an attraction, and a null attractiveness would represent indifference toward a
certain lifestyle. However, since such normalization would complicate the ex-
pression of attractiveness, we do not impose any restriction on the values that
Ai,t may assume.

Definition 4 Given a map f : [0,+∞) → (−∞, f(0)], differentiable and
strictly decreasing, and σ > 0, V > 0, recalling the definition of Vi,t in (6), for
i ∈ {α, β}, any function

Ai,t : (0,+∞)3 → (−∞,Ai,t(V )], Ai,t(Vi,t;σ, V ) = f(σ d2(V , Vi,t)), (7)

will be called attractiveness of group i at time t. The set of the admissible
attractiveness functions of group i at time t will be denoted by Ai,t.

We notice that, by definition, we have Aα,t = Aβ,t, for every t, and that, for
i ∈ {α, β}, it holds that Aα,t′ = Aα,t′′ , for all t

′, t′′ ∈ N. Hence, we will denote
the set of the admissible attractiveness functions simply by A. In particular,
in order to simplify computations and, most importantly, in view of making
the share updating rule depending just on a comparison between the distance
of the visibility levels for the two groups from the threshold value V , we will
assume that the same map f in (7) describes the attractiveness of both groups
α and β. Nonetheless, we will specify after the main results we obtain what it
would be possible to infer when allowing for different attractiveness formula-
tions between groups.
As concerns the parameters, we remark that, by (7), the attractiveness depends
in an explicit manner only on σ. The dependence of Ai,t on the other model
parameters is indirect, and occurs due to the presence of Vi,t. The parameter
σ in (7) describes the sensitivity of the attractiveness Ai,t, for i ∈ {α, β}, with
respect to the distance between the visibility level Vi,t and the threshold level
V . In particular, a visibility level coinciding with V allows maximizing the
attractiveness degree. We stress that when σ → 0 agents are insensitive even
to a large distance between Vi,t and V , and Ai,t tends towards its maximum
value Ai,t(V ). When instead σ → +∞, even a small, but still positive, dis-
tance between Vi,t and V leads to a very low attractiveness level because of
an excessive sensitivity to such distance.
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The attractiveness functions satisfying the assumptions in Definition 4 are
suitable to describe, in relation to group i ∈ {α, β}, both the bandwagon be-
havior, which occurs as long as Vi,t < V , and the snob behavior, which occurs
when Vi,t > V . Indeed, according to Simmel (1904), two contrasting tendencies
operate in determining people behavior towards fashion. On the one hand, to
follow fashion makes people feel accepted and socially integrated, answering to
their innate tendency for conformity. This generates imitation of others, i.e.,
the so called bandwagon behavior. Such phenomenon is reproduced by Ai,t as
long as Vi,t is smaller than V , when increasing values for Vi,t imply higher and
higher attractiveness degrees Ai,t. On the other hand, when the visibility of
a group becomes excessive, a congestion effect arises and the people wish for
distinction predominates. That phenomenon is known as snob behavior and
it is reproduced by Ai,t when Vi,t is larger than V , because in this regime an
increase in the visibility level Vi,t leads to a decrease in Ai,t. Namely, according
to Vigneron and Johnson (1999), on the basis of the empirical literature, too,
in the context of luxury and prestige-seeking consumption agents may oscillate
between snob and bandwagon behaviors. Those two opposite forces, imitation
and distinction, drive the fashion cycle, which for us emerges at the aggre-
gate level as a continuous oscillation of the attractiveness and of the shares of
the two groups, while on the individual level it is characterized by oscillatory
consumption choices, presenting booms and busts, over the two goods for the
agents belonging to the two groups. We shall find evidence of such phenomenon
in Section 3 (cf. Figures 1 and 3 therein), when considering Stone-Geary utility
functions and for the formulation of the attractiveness map already dealt with
in Naimzada and Pireddu (2018).8

The share of agents which choose to belong to a given group in the next
period depends on the present attractiveness levels of the two groups. More
precisely, following Branch and McGough (2008), Cabrales and Sobel (1992),
Hofbauer and Weibull (1996), Nachbar (1990), Sandholm (2010), Taylor and
Jonker (1978), we do consider the discrete exponential replicator mechanism
to formalize the population share updating rule, so that the evolution of the
fraction at of agents of type α is described by the discrete choice model

at+1 =
at exp(µAα,t)

at exp(µAα,t)+(1−at) exp(µAβ,t)

= at

at+(1−at) exp(µ(Aβ,t−Aα,t))
,

(8)

where µ is a positive parameter measuring the sensitivity of the share for-
mation mechanism to the difference in the groups attractiveness levels. When
we will need to underline the dependence, for i ∈ {α, β}, of Ai,t and of Vi,t

on at, we will also write Ai,t(at) and Vi,t(at), respectively, or, at the mar-
ket stationary equilibria, simply Ai(a) and Vi(a) (see for instance the map g

8 A more detailed bifurcation analysis, performed for several parameter configurations
and for the formulations of the attractiveness maps introduced in Naimzada and Pireddu
(2019a), too, can be found in the Appendix of Naimzada and Pireddu (2019b).
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in (10), whose fixed points are the system market stationary equilibria).9 In
particular, recalling the definition of visibility in (6) and that, by Proposition
2 and Footnote 7, the equilibrium consumption choices depend smoothly on
at ∈ (0, 1), we have that also Vi,t, i ∈ {α, β}, depend smoothly on at ∈ (0, 1),
for every t, and that, in correspondence to a market stationary equilibrium,
Vi(a), i ∈ {α, β}, depend in a smooth way on a ∈ (0, 1).
By (7) and (8), we obtain

at+1 = g(at), (9)

where the one-dimensional map g : [0, 1] → R is defined as

g(a) =
a

a+ (1− a) exp
(
µ
(
f(σd2(V , Vβ(a)))− f(σd2(V , Vα(a)))

)) . (10)

We stress that if µ → 0, independently of Vα and Vβ , then at+1 = at, for all t,
and thus there is no evolution, the population shares remain unchanged with
respect to the initial ones, as agents are insensitive to the attractiveness degrees
of the two groups; when instead µ → +∞, agents are extremely sensitive to
the social attractiveness of the groups and they instantaneously move towards
the “best” one, i.e., the one which gave a visibility level closer to V .

Let us start our analysis by deriving the expressions of the market station-
ary equilibria for (9).

Proposition 4 Given the economy E ∈ Ẽ and the attractiveness Ai,t(Vi,t;σ, V )
= f(σ d2(V , Vi,t)) ∈ A, for i ∈ {α, β}, equation (9) admits as market station-
ary equilibria, in addition to the trivial a = 0, a = 1, also all solutions in (0, 1)
to the equation Vα(a) = Vβ(a), if any, as well as all solutions in (0, 1) to the
equation (Vα(a) + Vβ(a))/2 = V , if any.

We remark that the condition (Vα+Vβ)/2 = V in Proposition 4 means that V
is the midpoint between Vα and Vβ . Hence, at the nontrivial market stationary
equilibria, the population share of group α has to make Vα and Vβ coincide or
Vα and Vβ have to lie at the same distance from V , but on its opposite sides.
We also notice that assuming in Proposition 4 that Aα = fα(σ d2(V , Vα)) and
Aβ = fβ(σ d2(V , Vβ)), for some fα 6= fβ , with fα, fβ differentiable and strictly
decreasing maps, we then find that, in addition to the trivial a = 0, a = 1,
the market stationary equilibria are the solutions in (0, 1) to the equation
fα(σ d2(V , Vα)) = fβ(σ d2(V , Vβ)), if any. We finally stress that if both Aα

and Aβ were described by the same map f, but if Aα = f(σα d2(V , Vα)) and
Aβ = f(σβ d

2(V , Vβ)), for some σα 6= σβ , then the nontrivial market stationary
equilibria would be given by all solutions in (0, 1) to the equation d(V , Vα) =

d(V , Vβ)
√

σβ

σα
, i.e., to the equations Vα −

√
σβ

σα
Vβ = V

(
1−

√
σβ

σα

)
and Vα +

√
σβ

σα
Vβ = V

(
1 +

√
σβ

σα

)
. Namely, setting σα = σβ in such expressions, we

find again the results obtained in Proposition 4.

9 We remark that Vi, and consequently Ai, also depend on the economy Ẽ, which together
with a determines the market equilibrium. However, in order not to overburden notation,
we will not make such dependence explicit.
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In the next result we analytically investigate the local stability of the mar-
ket stationary equilibria for the map g in (10).

Proposition 5 The equilibrium a = 0 is locally asymptotically stable for the
map g in (10) if (Vβ(0)− V )2 < (Vα(0)− V )2.
The equilibrium a = 1 is locally asymptotically stable for map g if (Vα(1) −
V )2 < (Vβ(1)− V )2.
When Ai, i ∈ {α, β}, do not depend on µ, calling â any solution to the equation
Vα(a) = Vβ(a), if it exists in (0, 1), the equilibrium a = â is locally asymptoti-
cally stable for map g if (Vβ(â)− V )(V ′

β(â)− V ′
α(â)) < 0 and

µ < µ̂ =
1

σâ(1− â)
∂Aβ(a)

∂(σd2
β
)
|a=â(Vβ(â)− V )(V ′

β(â)− V ′
α(â))

. (11)

In particular, a flip bifurcation occurs at a = â if µ = µ̂.
If (Vβ(â)− V )(V ′

β(â)− V ′
α(â)) > 0, then â ∈ (0, 1) is unstable.

When Ai, i ∈ {α, β}, do not depend on µ, calling ã any solution to the equation
(Vα(a) + Vβ(a))/2 = V , if it exists in (0, 1), the equilibrium a = ã is locally
asymptotically stable for map g if (V − Vα(ã))(V

′
α(ã) + V ′

β(ã)) < 0 and

µ < µ̃ =
1

σã(1− ã)
∂Aβ(a)

∂(σd2
β
)
|a=ã(V − Vα(ã))(V ′

α(ã) + V ′
β(ã))

. (12)

In particular, a flip bifurcation occurs at a = ã if µ = µ̃.
If (V − Vα(ã))(V

′
α(ã) + V ′

β(ã)) > 0, then ã ∈ (0, 1) is unstable.

We notice that if we assumed Aα = fα(σ d2(V , Vα)) and Aβ = fβ(σ d2(V , Vβ)),
for some fα 6= fβ , with fα, fβ differentiable and strictly decreasing maps,
we would find that a = 0 is locally asymptotically stable for the map g in
(10) if Aβ(0) > Aα(0) and that a = 1 is locally asymptotically stable if
Aβ(1) < Aα(1). However, in such more general setting, those conditions on
attractiveness could not be translated into conditions on visibility and thus
they would remain more vague. Moreover, if fα, fβ do not depend on µ, calling

ā any solution to the equation fα(σ d2(V , Vα)) = fβ(σ d2(V , Vβ)), if it exists
in (0, 1), we find that a = ā is locally asymptotically stable for the map g in

(10) if
∂Aβ(a)

∂(σd2
β
)
|a=ā

(
Vβ(ā)− V

)
V ′
β(ā)−

∂Aα(a)
∂(σd2

α) |a=ā

(
Vα(ā)− V

)
V ′
α(ā) > 0 and

µ < µ̄ =
1

σā(1− ā)

(
∂Aβ(a)

∂(σd2
β
)
|a=ā

(
Vβ(ā)− V

)
V ′
β
(ā)− ∂Aα(a)

∂(σd2α)
|a=ā

(
Vα(ā)− V

)
V ′
α(ā)

) .

In particular, a flip bifurcation occurs at a = ā if µ = µ̄.

If
∂Aβ(a)

∂(σd2
β
)
|a=ā

(
Vβ(ā)− V

)
V ′
β(ā)−

∂Aα(a)
∂(σd2

α) |a=ā

(
Vα(ā)− V

)
V ′
α(ā) < 0, then a =

ā is unstable for all positive values of µ.
We also stress that it is not possible to derive general conditions similar to (11)
and (12) when investigating the local stability of the nontrivial equilibria with
respect to σ. Namely, even if Vi, i ∈ {α, β}, do not depend on σ, such parameter
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is usually present in the expression of
∂Aβ(a)

∂(σd2
β
)
|a=â and of

∂Aβ(a)

∂(σd2
β
)
|a=ã, as it is

easy to check, for instance, with the formulations for attractiveness in (16) and
in (17). In fact, with the Gaussian formulation in (17), for suitable parameter
configurations, there may not exist threshold stability values analogous to
those in (11) and (12) with respect to σ, since e.g. a = â ∈ (0, 1) may be stable
for any σ > 0.10

In agreement with Proposition 5, in Section 3 we will consider µ as bifurcation
parameter, so that the theoretical investigation performed so far will serve as
a guideline for the qualitative bifurcation analysis we shall conduct below.

3 Bifurcation analysis and illustration of the fashion cycle in the

case of Stone-Geary utility functions

In the present section we perform a qualitative bifurcation analysis, investigat-
ing the stability gain/loss of stationary equilibria and the emergence/disap-
pearance of periodic and chaotic attractors on varying the sensitivity parame-
ter µ. Indeed, assuming a constitutive heterogeneity between groups in terms
of the structure of preferences, our aim is that of investigating the model
asymptotic heterogeneity, i.e., we discuss the possible dynamics arising when
choosing initial conditions characterized by the coexistence between heteroge-
neous agents in view of understanding whether the initial heterogeneity even-
tually disappears and, in case it persists, if it is stationary or oscillatory in
nature, of periodic or chaotic kind. In order to make the heterogeneity between
groups explicit in our setting, we need to specify an analytical formulation for
the utility functions.
Recalling that in Naimzada and Pireddu (2018, 2019a) agents’ preferences were
described by Cobb-Douglas utility functions, we will now deal with Stone-
Geary utility functions11, which generalize the previously considered maps,
still yielding, for suitable parameter values, to individual demand functions
with the gross substitute property.12 In this manner, since Stone-Geary util-
ity functions satisfy Assumptions (A1) − (A4) in Definition 1, according to
Proposition 3 for all endowments and population shares there exists a unique
equilibrium as described in (14) and thus no indeterminacy issues on visibility
and attractiveness arise.
The formulation of the Stone-Geary utility functions over the two consumption

10 This happens for instance with the parameter configuration considered in Section 3,
when fixing ci = di = 0, for i ∈ {α, β}, µ = 2 and letting σ > 0 free to vary. See Scenario A
in Naimzada and Pireddu (2019b) for the corresponding details.
11 The Stone-Geary utility functions were derived by Geary (1950) in a comment on an
earlier work, while Stone (1954) estimated the Linear Expenditure System, arising from the
utility functions in (13).
12 Although such feature is mentioned in Fisher (1972) for Stone-Geary utility functions
when the coefficients ci, di are non-negative, for i ∈ {α, β}, a direct proof using the expres-
sion for the individual demand functions in (14) shows that the gross substitute property
holds also in the case of negative coefficients, as long as their value is not excessively large
in absolute value. See the discussion after (14) for more details.
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goods x and y is given by

Ui(x, y) = (x+ ci)
i(y + di)

1−i, for i ∈ {α, β}, with 0 < β < α < 1. (13)

Such maps are certainly well defined when ci ≥ 0 and di ≥ 0, case considered
in Fisher (1972), and indeed for ci = di = 0 we obtain the Cobb-Douglas
utility functions. However, as we shall see below, in order to ensure that the
equilibrium consumption levels in (14) are positive, ci and di can not assume
excessively large positive values. As concerns the negativity of ci and di, albeit
not affecting the positivity of the equilibrium consumption levels in (14), it
may prevent the individual demand functions from having the gross substitute
property. Both features, i.e., the positivity of the equilibrium consumption lev-
els and individual demand functions with the gross substitute property, are
ensured for values of ci and di not too large in absolute value (cf. (15)). We
stress that allowing for negative values of ci and di is important from an inter-
pretative viewpoint. Namely, Stone-Geary functions are often used to model
problems involving subsistence levels of consumption. In these cases, a certain
minimal level of some good has to be consumed, irrespective of its price or of
the consumer’s income.
The next analysis is performed in terms of the relative price pt = py,t/px,t,
where px,t > 0 and py,t > 0 are the prices at time t for goods x and y, re-
spectively. Solving the consumer maximization problem in (4) with the Stone-
Geary utility functions and using one market clearing condition in (3), as
optimal equilibrium price we find

p∗t =
at(1− α)(wx + cα) + (1− at)(1− β)(wx + cβ)

at(αwy + dα) + (1− at)(βwy + dβ)

and the consumption equilibrium quantities of the two goods for agents of
type α or β are given by

x∗

α,t=αwx − (1 − α)cα + p∗

t (αwy + dα) =

=
atwx(αwy+dα)+(1−at)

[

(1−β)dαwx+(1−β)cβdα−cαβwy−cαdβ+wxαdβ+αcαβwy+αcαdβ+αwxwy+αwycβ−αβcβwy

]

at(αwy+dα)+(1−at)(βwy+dβ)
,

x∗

β,t=αwx − (1 − α)cβ + p∗

t (αwy + dβ) =

=
at

[

(1−α)dβwx+(1−α)dβcα−αcβwy−dαcβ+βdαwx+αβcβwy+βdαcβ+βwxwy+βcαwy−αβcαwy

]

+(1−at)wx(βwy+dβ)

at(αwy+dα)+(1−at)(βwy+dβ)
,

y∗

α,t=(1 − α)
(

wx+cα
p∗
t

+ wy

)

− dα =

=
at(1−α)wy(wx+cα)+(1−at)

[

(1−α)(wxdβ+βcαwy+cαdβ+wxwy+cβwy−βcβwy)−(1−β)dα(wx+cβ)
]

at(1−α)(wx+cα)+(1−at)(1−β)(wx+cβ)
,

y∗

β,t =(1 − α)
(

wx+cβ

p∗
t

+ wy

)

− dβ =

=
at

[

(1−β)(wxdα+αcβwy+dαcβ+wxwy+cαwy−αcαwy)−(1−α)dβ(wx+cα)
]

+(1−at)(1−β)(wx+cβ)

at(1−α)(wx+cα)+(1−at)(1−β)(wx+cβ)
.

(14)

Recalling (6), in such context the social visibility level Vi,t of an agent of type
i ∈ {α, β} at time t is given by Vi,t = vxx

∗
i,t + vyy

∗
i,t, with the expressions for

x∗
i,t and y∗i,t just derived and for values of the visibility weight parameters vx

and vy to be fixed below.
From (14) we immediately find that a sufficient condition for the positivity
of x∗

i,t, i ∈ {α, β}, is ci <
αwx

1−α
, while a sufficient condition for the positivity

of y∗i,t, i ∈ {α, β}, is di < (1 − α)wy. On the other hand, recalling that pt =
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py,t/px,t, from (14) we obtain αwy + di > 0 as sufficient condition for x∗
i,t, i ∈

{α, β}, to display the gross substitute property, and wx + ci > 0 as sufficient
condition for y∗i,t, i ∈ {α, β}, to display the gross substitute property. Hence,
the positivity of the equilibrium consumption levels and individual demand
functions with the gross substitute property are simultaneously guaranteed
for

−wx < ci <
αwx

1− α
, −αwy < di < (1− α)wy, i ∈ {α, β}. (15)

As regards the attractiveness function, we will deal with the bell-shaped for-
mulation considered in Naimzada and Pireddu (2018), i.e.,

A
′
i,t(Vi,t;σ, V ) =

1

1 + σ(V − Vi,t)2
, (16)

while we refer the interested reader to Naimzada and Pireddu (2019b), where
we also work with the formulations for the attractiveness functions considered
in Naimzada and Pireddu (2019a), i.e., the Gaussian map

A
′′
i,t(Vi,t;σ, V ) = exp(−σ(V − Vi,t)

2), (17)

and the parabolic function

A
′′′
i,t (Vi,t;σ, V ) = 1− σ(V − Vi,t)

2. (18)

The choice of dealing, here or in Naimzada and Pireddu (2019b), with the
above attractiveness maps comes from a simple observation. In Naimzada and
Pireddu (2018, 2019a) we considered Cobb-Douglas utility functions and the
bifurcation analysis was performed in terms of the heterogeneity degree be-
tween groups of agents ∆ = α − β. Since the Stone-Geary utility functions
are a generalization of the Cobb-Douglas utility functions, when considering
in (13) ci = di = 0, i ∈ {α, β}, and using the sensitivity measure µ as bifurca-
tion parameter, we can complement the investigation performed in Naimzada
and Pireddu (2018, 2019a) as a byproduct of the bifurcation analysis we are
going to sketch below, and which is fully developed in Naimzada and Pireddu
(2019b) for the case ci = di = 0, i ∈ {α, β}.
We stress that the attractiveness functions in (16)–(18) satisfy the conditions
in Definition 4. Namely, they are differentiable, bell-shaped, increasing with
the visibility level Vi,t, i ∈ {α, β}, up to the threshold value V , after which
they become decreasing in Vi,t in a symmetric manner with respect to V , due
to their dependence on d2(V , Vi,t). We recall that σ is a positive parameter
describing the sensitivity of the attractiveness with respect to the distance
between the visibility level Vi,t and the threshold visibility level V , while µ,
that we shall employ as bifurcation parameter, measures the sensitivity of the
share formation mechanism to the difference in the preference structures at-
tractiveness levels (see also the discussion after (10)).
In view of the qualitative bifurcation analysis that we will briefly outline be-
low, referring to Naimzada and Pireddu (2019b) for further details, we explain
which are the stationary equilibria of our system and we illustrate some of
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their features.
As concerns the trivial equilibria, according to Proposition 5, a = 0 is locally
asymptotically stable for the map g in (10) if (Vβ(0)−V )2 < (Vα(0)−V )2 and
a = 1 is locally asymptotically stable for map g if (Vα(1)−V )2 < (Vβ(1)−V )2.
Hence, the stability of the trivial equilibria is influenced neither by the value of
µ, nor by the formulation of the map describing attractiveness. In particular,
a = 0 and a = 1 are locally asymptotically stable for every positive value of µ,
both for the configuration considered below and in the frameworks analyzed
in Naimzada and Pireddu (2019b).
In regard to the nontrivial stationary equilibria of (9), according to Propo-
sition 4, they are given by the solutions belonging to the interval (0, 1) to
Vα(a) = Vβ(a), as well as by the solutions in (0, 1) to the equation (Vα(a) +
Vβ(a))/2 = V . Hence, their number and expression are independent of the cho-
sen formulation for attractiveness and of the value of µ. On the other hand,
recalling (11) and (12), the stability of the nontrivial stationary equilibria is
influenced by the value of µ and by the formulation of the map describing
attractiveness. Indeed, the latter affects the stability threshold value of non-
trivial equilibria when considering µ as bifurcation parameter. Moreover, in
analogy with the findings in Naimzada and Pireddu (2018, 2019a), we expect
that varying µ the global dynamics may differ according to the formulation
for attractiveness, e.g. due to the occurrence of subcritical or supercritical flip
bifurcations at the nontrivial equilibria. We find a confirmation of such con-
jecture in Naimzada and Pireddu (2019b).
The parameter configuration we will deal with is given by vx = 0.9, wx =
0.2, vy = 0.15, wy = 2, β = 0.1, α = 0.9, σ = 8, V = 0.8, while we let µ free
to vary.13 We stress that such parameter values coincide with those considered
in Naimzada and Pireddu (2018, 2019a), even if, as explained above, in those
works we used ∆ = α− β as bifurcation parameter, while setting µ = 6.5. As
concerns the new parameters ci and di characterizing the Stone-Geary utility
functions, from (15) we obtain the following bounds:14

−0.2 < ci < 1.8, −1.8 < di < 0.2, i ∈ {α, β} .

Hence, in regard to the values of ci and di many different choices are possible.
The simplest one is characterized by ci = di = 0, for i ∈ {α, β}, so that the
Stone-Geary utility functions reduce to Cobb-Douglas utility functions. Such
scenario may be treated as a benchmark context, which allows for a comparison
between the bifurcation analysis performed in Naimzada and Pireddu (2018,
2019a) in terms of ∆ = α−β and here in terms of µ. A second possible choice

13 We here consider polarized values for vx and vy , as both of them are positive but one
is much larger than the other. As observed in Section 2, such case approximates those
frameworks in which visibility and attractiveness are produced by the consumption of a
single good. However, our results hold true also for more balanced values of vx and vy .
14 We remark that the symmetry between the bounds of ci and di is caused by the fact
that, for the parameter configuration we deal with, it holds that wx = (1−α)wy . Of course,
such peculiarity does not affect the outcomes. Indeed, in the scenario that we will consider
below the parameters ci and di will not bear any symmetry.
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Fig. 1 The bifurcation diagram of g for cα = −0.19, cβ = −0.14, dα = −0.3, dβ =
−0.16, µ ∈ (0, 8) and the attractiveness A ′ in (16). We denote in magenta a = 0, in red
a = 1, in blue (green) the points generated by the initial condition a0 = 0.3437 (a0 = 0.8)
and in orange a = â when it is no more stable, as well as the unstable equilibria a = ã1 and
a = ã2. Solid (dashed) lines refer to stable (unstable) equilibria and cycles

is characterized by positive values for all parameters in the Stone-Geary utility
functions, while a third possible framework is characterized by negative values
for all parameters in the Stone-Geary utility functions. For the brevity’s sake,
we here discuss just the third framework, which is both the best grounded
from an interpretative viewpoint, as well as the most interesting in terms of the
arising dynamics. In particular, we will consider cα = −0.19, cβ = −0.14, dα =
−0.3, dβ = −0.16, introducing only those aspects needed to illustrate the
emergence of the fashion cycle in our model for the attractiveness formulation
in (16). The analysis of the first two scenarios, as well as the remaining details
regarding the third scenario, in correspondence to each of the attractiveness
formulations in (16)–(18) can be found in Naimzada and Pireddu (2019b).15

In Figure 1 we report the bifurcation diagram of g for µ ∈ (0, 8). In addition
to the trivial equilibria, which are locally asymptotically stable for all positive
values of µ, we notice that for small values of µ just a = â is stable. When
µ increases, an external attractor, born via a fold bifurcation of the second
iterate of the map g as a period-two cycle and then undergoing a sequence of
period-doubling bifurcations leading to chaos, coexists first with a = â and
next with the period-two cycle following the supercritical flip bifurcation oc-
curring at a = â for µ = µ̂ = 5.549. For still larger values of µ, the latter
period-two cycle disappears through a reverse fold bifurcation of the second
iterate of g. Moreover, the external attractor, which for increasing values of
parameter µ from being a two-piece chaotic attractor becomes a one-piece
chaotic attractor, disappears for µ = 6.228 due to a contact bifurcation with

15 In regard to the second scenario, in Naimzada and Pireddu (2019b) we deal with cα =
0.3, cβ = 0.12, dα = 0.1, dβ = 0.15.
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Fig. 2 An enlargement of the bifurcation diagram in Figure 1 for µ ∈ (5.5, 6.3), where we
denote in blue the points generated by the initial condition a0 = 0.159, in magenta the
points generated by the initial condition a0 = 0.161 and in green the points generated by
the initial condition a0 = 0.8.

a = ã1. See also Figure 2, where we provide an enlargement, for µ ∈ (5.5, 6.3),
of the bifurcation diagram in Figure 1, in which we do not report the un-
stable equilibria and the trivial ones. After the contact bifurcation occurring
between the chaotic attractor and a = ã1, the only attractors are given by
a = 0 and a = 1. We stress that, due to the disappearance of the internal
period-two cycle, suddenly oscillations in the agents’ consumption choices and
in the population shares become strong. We recall that this kind of framework
is a mixture between the outcomes found in Naimzada and Pireddu (2018,
2019a). Namely, like in Figure 5 in Naimzada and Pireddu (2019a), in Figure
1 above the nontrivial equilibrium a = â undergoes a supercritical flip bifur-
cation. However, the period-two cycle following it, rather than undergoing a
classical cascade of flip bifurcations to chaos, disappears, and this suddenly
leads to wide oscillations, similar to those which follow the subcritical flip
bifurcation in Figure 5 in Naimzada and Pireddu (2018) and in Figure 1 in
Naimzada and Pireddu (2019a). As in such settings, we here find interesting
multistability phenomena, involving equilibria, as well as periodic or chaotic
attractors, suitable to represent the variety of historical experiences across dif-
ferent countries in relation to the approach they adopt towards consumption
choices and fashion.
Summarizing, Figure 1 highlights that in our model fashion cycle dynam-
ics may be generated by intermediate values of the sensitivity parameter µ.
Indeed, when µ is too small, the only attractors are steady states and this
excludes the possibility of any sort of non-convergent dynamics. When µ in-
creases, the nontrivial equilibrium a = â loses stability and the period-two
cycle following it coexists with an external attractor which, contrarily to the
internal period-two cycle, persists, giving rise to periodic and chaotic dynam-
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ics. However, when the sensitivity measure becomes excessive, no oscillatory
behaviors occur anymore, as the main chaotic attractor disappears due to a
contact bifurcation with one of the nontrivial equilibria, and thus the system,
according to the chosen initial condition, asymptotically converges toward one
or the other of the trivial steady states, characterized by the presence of a
unique group of agents. In fact, even for lower values of the sensitivity pa-
rameter µ, trajectories will tend toward one of the three or four coexisting
attractors according to the chosen initial datum. In particular, when the ini-
tial conditions, which represent a summary of the past history, are excessively
close to the extreme values a = 0 and a = 1, trajectories are attracted by
one of the two trivial equilibria, and a preference structure totally prevails
over the other. However, when the initial datum is not too close to a = 0 and
a = 1, for intermediate values of µ, our dynamical system may lead to out-
comes characterized by the coexistence among heterogeneous agents. Due to
the combined effect of the price formation mechanism, of the social interaction
mechanism, according to which consumption choices produce visibility, and of
the evolutionary mechanism, based on the relative attractiveness of the differ-
ent lifestyles, the group coexistence may be stationary or oscillatory in nature,
both periodic, in a neighborhood of the flip bifurcation, and erratic, due to the
presence of the chaotic attractor. When the group coexistence is oscillatory, it
displays the recurrent behavior typical of the fashion cycle, characterized by
booms and busts. We report in Figure 3, for the same parameter configuration
considered in Figure 1 with µ = 6.1 and for the periods t ∈ [200, 300], the time
series for all the relevant variables. Namely, the fashion cycle for us emerges at
the aggregate level as a continual oscillation of the attractiveness and of the
shares of the two groups, while on the individual level it is characterized by
oscillatory consumption choices over the two goods for the agents of the two
groups.

(a) (b) (c) (d)

Fig. 3 The time series corresponding to the periods t ∈ [200, 300] for A ′
α,t (in blue) and

A ′
β,t

(in green) in (a), for at (in blue) and bt = 1−at (in green) in (b), for x∗
α,t (in blue) and

x∗
β,t

(in green) in (c), for y∗α,t (in blue) and y∗
β,t

(in green) in (d), for the same parameter

configuration considered in Figure 1, with µ = 6.1 and a0 = 0.4

We stress that, although the proof of chaos performed in Naimzada and
Pireddu (2018) using the method of the turbulent maps in Block and Cop-
pel (1992), working with homoclinic orbits, can be directly transposed to the
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present setting, the social and economic interpretation of the main scenarios
provided in Naimzada and Pireddu (2018, 2019a) cannot be precisely repeated
here. For such reason, we conclude the present section by briefly reporting the
interpretation of the most important phenomena we found, in view of better
understanding the functioning of the model dynamics. The main scenarios in
Figure 1 are: the convergence towards a trivial steady state, so that the agents’
original heterogeneity contained in the initial condition does not persist; the
convergence towards a nontrivial steady state, that is a static form of het-
erogeneity; the convergence towards a period-two cycle, which represents the
simplest case of oscillatory behavior, that encompasses agents’ heterogeneity
and in which population shares, prices and consumption bundles vary over
time. We notice that the other possible scenarios may be explained combining
the arguments that we shall employ below.
As concerns the convergence towards a trivial steady state, let us consider for
instance µ = 2 and a0 = 0.85 and let us clarify why the system converges
towards a = 1. Since Vα < V < Vβ , with (Vα − V )2 < (Vβ − V )2, we expect
an increase in the share of the agents of group α and, consequently, a raise
in the aggregate demand of commodity x, agents of group α have a stronger
preference for. Indeed, we do observe a decrease in the relative price p. The
optimal consumption quantities for the two goods are determined and, since
the value of x∗

α decreases more than x∗
β and vx is much larger than vy, the

value of Vα raises less than the value of Vβ , so that the ordering among Vα, V
and Vβ is maintained but the distance (Vβ − V )2 increases, while the distance
(Vα−V )2 decreases. The repetition of such process eventually leads to the ex-
tinction of the agents of group β. The explanation of the scenario which leads
to the convergence towards a = 0 is omitted, as it is completely symmetric.
In regard to the convergence towards a nontrivial steady state, let us consider
for instance µ = 2 and a0 = 0.7 and let us clarify why the system tends to
a = â = 0.160. Since Vα < V < Vβ , with (Vα − V )2 > (Vβ − V )2, we expect
a decrease in the share of the agents of group α and, consequently, a fall in
the aggregate demand of commodity x. Indeed, we do observe a raise in the
relative price p. The optimal consumption quantities for the two goods are
determined and, since the value of x∗

α increases more than x∗
β and vx is much

larger than vy, the value of Vα increases while the value of Vβ decreases, so
that the new ordering among Vα, V and Vβ is given by Vα < Vβ < V . Since
Vβ is closer than Vα to V , the share of agents of type α falls. The repetition
of such process leads to visibility values which satisfy Vα < Vβ < V , with Vα

that increases and Vβ that decreases, so that the share of agents of type α is
progressively reduced, as long as it holds that Vα = Vβ = 0.48 in correspon-
dence to the nontrivial steady state a = â = 0.160.
Let us finally provide the explanation of a framework which leads to the con-
vergence towards a period-two cycle. Considering e.g. µ = 5.5 and starting
from a0 = 0.06, we have that the agents of type α are few and thus we expect
that the aggregate demand for commodity x is low. Indeed, we do observe a
high value for the relative price p. The optimal consumption quantities for the
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two goods are determined and, since p is high, the value of x∗
α is high, too. Due

to the fact that vx is much larger than vy, we find that Vβ < Vα < V̂ . Since

the distance between Vα and V̂ is smaller than the distance between Vβ and

V̂ , the share of agents of type α raises and exceeds a = 0.47. We then expect
that the aggregate demand for commodity x is higher than before. Indeed, we
observe a lower value for the relative price p. The optimal consumption quan-
tities for the two goods are determined and, since p is lower now, the value of
x∗
α decreases. As vx is still much larger than vy, we find that Vα < Vβ < V̂ .

Since Vβ is closer to V̂ than Vα, the share of agents of type α decreases and
is again near a = 0.06, giving rise to the period-two cycle, whose values are
a = 0.062 and a = 0.476.

4 Conclusions

In the present work, in order to represent the fashion cycle, we proposed a
discrete-time exchange economy evolutionary model with two groups of agents,
in which the reproduction level of a group is related to its attractiveness de-
gree, that depends on the social visibility level, determined by the consumption
choices of the agents in that group. In particular, in agreement with the empiri-
cal literature (see Vigneron and Johnson 1999) we assumed that agents exhibit
both bandwagon and snob attitudes. Namely, according to Simmel (1904), im-
itation and distinction drive the fashion cycle. Like in Naimzada and Pireddu
(2019a), we encompassed such behavioral assumption in our model dealing
with generic bell-shaped attractiveness functions for the two groups of agents,
that are increasing for low visibility levels and decreasing when the visibility of
the group exceeds a given threshold value, due to a congestion effect. However,
differently from that paper, rather than considering just Cobb-Douglas utility
functions, we let utility functions free to vary in a suitable set of maps. This
increased generality in the class of considered utility functions urged us to
investigate not only the dynamic features of our setting, but also to study the
existence and the generic regularity of the market equilibria, which link the
equilibrium price and the optimal consumption choices to population shares.
In order to illustrate the general results we obtained on equilibria, as well as
to investigate the model dynamics, we added a simulative section where we
considered Stone-Geary utility functions, which generalize the Cobb-Douglas
utility functions, and where we opted for the formulation of the attractiveness
map dealt with in Naimzada and Pireddu (2018). Like in that setting, also
in the present framework we observed interesting multistability phenomena,
involving equilibria, as well as periodic or chaotic attractors. In particular,
thanks to the combined action of the price formation mechanism, of the share
updating rule and of the agents’ social interaction, with the alternation be-
tween the bandwagon and snob behaviors, the dynamic coexistence between
groups and the oscillatory nature of the agents’ consumption activities display
the recurrent dynamic behavior typical of the fashion cycle, characterized by
booms and busts.
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As concerns future study directions, our setting could be employed to repre-
sent the fashion cycle in frameworks with capital accumulation, such as the
OLG model by Diamond (1965).
A further extension of our setting would consist in assuming two different time
scales for consumption choices and for the evolutionary mechanism. Indeed,
since the consumption activities require less time than the updating process
of the population shares, it would be suitable to deal with a continuous-time
formulation for the consumption choices and a discrete-time formulation for
the share updating rule. This would lead to the study of a hybrid dynamical
system, like those analyzed e.g. in Cavalli and Naimzada (2016) and in Cavalli
et al. (2018).
Alternatively, we could suppose that the utility of some consumers depends
also on the attractiveness level of their own group, in order to investigate
whether the more “rational” agents, which are aware of the functioning of the
share updating mechanism, perform better from an evolutionary viewpoint.
Finally, modifying the argument of agents’ utility functions so as to enter a
setting with strategic interaction, like those considered in Heifetz et al. (2007a,
2007b), and displaying strategic complementarity and/or substitutability, we
could investigate the possible dynamical effects produced by two groups en-
dowed with heterogeneous structures of preferences in those contexts, too.
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A Proof of the analytical results

Proof of Proposition 1: Since the arguments we shall employ are independent of the consid-
ered time period, in order not to overburden notation, we will omit the subscript t, as well
as the stars, which will refer to the Pareto Optimal allocation16 only.

We define θ =
(
px, py , (xi, yi)i∈{α,β}

)
∈ Θ = (0,+∞)6 and, according to Definition 2, we

say that θ ∈ Θ is a market equilibrium given E ∈ E and a ∈ (0, 1) if, for every i ∈ {α, β},
(xi, yi) solves problem (4) at (px, py , E) and (xi, yi)i∈{α,β} satisfies market clearing condi-

tions (3) at (E, a).
We denote by Θ(E, a) the set of market equilibria for E and a, and we introduce

Θn(E, a) = {θ ∈ Θ(E, a) : px = 1} ,

that is, the set of normalized17 market equilibria for E and a. We will show that Θn(E, a) 6=
∅, for every (E, a) ∈ E × (0, 1).
As one Walras’ law holds true in our model, just one market clearing condition in Definition
2 is significant. To fix ideas, we will focus on the equation for commodity y, i.e., on

a yα + (1− a) yβ = wy .

The extended system for our economy with two groups of agents, whose numerosity may
not coincide, reads as





∂uα
∂xα

(xα, yα)− λαpx = 0
∂uα
∂yα

(xα, yα)− λαpy = 0

−px xα − py yα + px wx + py wy = 0
∂uβ

∂xβ
(xβ , yβ)− λβpx = 0

∂uβ

∂yβ
(xβ , yβ)− λβpy = 0

−px xβ − py yβ + px wx + py wy = 0
a yα + (1− a) yβ − wy = 0
px − 1 = 0

(19)

Since we are going to study market equilibria in terms of first-order conditions associated
with households’ maximization problems and (significant) market clearing conditions, we
define

ξ =
(
px, py , (xi, yi, λi)i∈{α,β}

)
∈ (0,+∞)8,

and the function

F : (0,+∞)8 × E × (0, 1) → R
8, F(ξ, E, a) = lhs of (19). (20)

Given (E, a) ∈ E × (0, 1), it is immediate to prove that if θ =
(
px, py , (xi, yi)i∈{α,β}

)

belongs to Θn(E, a), then there exists the vector (λα, λβ) ∈ (0,+∞)2 such that ξ =(
px, py , (xi, yi, λi)i∈{α,β}

)
∈ (0,+∞)8 solves the system F(ξ, E, a) = 0. Vice versa, if ξ =

(
px, py , (xi, yi, λi)i∈{α,β}

)
∈ (0,+∞)8 solves F (ξ, E, a) = 0, then

(
px, py , (xi, yi)i∈{α,β}

)
∈

Θn(E).

16 See Naimzada and Pireddu (2019c) for the corresponding definition and for the proof,
in our framework, of the first fundamental theorem of welfare economics, according to which
every (stationary) equilibrium allocation is Pareto Optimal.
Since the employed concept of Pareto Optimality concerns one single period at a time, we
will use the expression “instantaneous Pareto Optimal allocation” in the present work.
17 We stress that, differently from what done in Villanacci et al. (2002), we normalize the
price of the first commodity, rather than of the last one. Of course, this change does not
affect the validity of the results.
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Let us then show that for all (E, a) ∈ E × (0, 1) there exists ξ ∈ (0,+∞)8 which solves
system F(ξ, E, a) = 0. Fixing (E, a) ∈ E × (0, 1), we define

F : (0,+∞)8 → R
8, F (ξ) = F(ξ, E, a).

Let us also introduce the homotopy

H : (0,+∞)8 × [0, 1] → R
8, H(ξ, τ) = lhs of (21),

with 



∂uα
∂xα

(xα, yα)− λαpx = 0
∂uα
∂yα

(xα, yα)− λαpy = 0

−px xα − py yα + px ((1− τ)wx + τx∗
α) + py ((1− τ)wy + τy∗α) = 0

∂uβ

∂xβ
(xβ , yβ)− λβpx = 0

∂uβ

∂yβ
(xβ , yβ)− λβpy = 0

−px xβ − py yβ + px ((1− τ)wx + τx∗
β
) + py ((1− τ)wy + τy∗

β
) = 0

a yα + (1− a) yβ −
(
(1− τ)wy + τ(ay∗α + (1− a)y∗

β
)
)
= 0

px − 1 = 0,

(21)

where
(
x∗
i , y

∗
i

)
i∈{α,β}

∈ (0,+∞)4 is an instantaneous Pareto Optimal allocation, whose

existence can be proven as in Section 8.5 in Villanacci et al. (2002). In particular, denoting by
r the vector of the total resources associated with E, we have r = (wx, wy) ∈ (0,+∞)2 and,
denoting by Ur the set of utility level vectors attainable with resources r in correspondence
to E ∈ E and a ∈ (0, 1), we have

Ur =

{
(uα, uβ) ∈ R

2 : ∃(xα, xβ , yα, yβ) ∈ (0,+∞)4 s.t.
a jα + (1− a) jβ = wj , for j ∈ {x, y},
and ui(xi, yi)− ui = 0, for i ∈ {α, β}

}
.

We notice that H(ξ, 0) = F (ξ), ∀ξ ∈ (0,+∞)8. Setting

G : (0,+∞)8 → R
8, G(ξ) = H(ξ, 1),

it holds that F, H and G are continuous functions. If we prove that, for some ξ̂ ∈ (0,+∞)8,

G−1(0) = {ξ̂} and G is C1 in an open neighborhood of ξ̂, (22)

DξG(ξ̂) is not singular, (23)

H−1(0) is compact, (24)

then Theorem 1 can be applied with the identifications M = (0,+∞)8, N = R
8, y = 0 ∈

R
8, Φ = F, Γ = G, Ψ = H, to get F−1(0) 6= ∅, so that a market equilibrium exists in

correspondence to the fixed (E, a) ∈ E × (0, 1).
The proof of conditions (22), (23) and (24) follows by standard arguments and it is omitted.
�

Proof of Proposition 2: Since the arguments we shall employ are independent of the consid-
ered time period, like in the proof of Proposition 1, in order not to overburden notation, we
will omit the subscript t.
Recalling the definition of the map F in (20), it is evident that F is continuous. In order to ap-
ply Theorem 2 with the identifications f = F , Rn = R

8, O = (0,+∞)8, B = E×(0, 1), B =
E × R, with E as in (1), we have to check that F ∈ C1((0,+∞)8 × E × (0, 1),R8) according
to the definition in (5), i.e., that

dF :
(
(0,+∞)8 × E × (0, 1)

)
×

(
R
8 × E × R

)
→ R

8

is well defined and continuous. Considering any (ξ, E, a) ∈ (0,+∞)8×E×(0, 1) and (ν, η, κ) ∈
R
8 × E × R, it holds indeed that the limit

dF(ξ, E, a) = lim
ε→0

F(ξ + εν, E + εη, a+ εκ)−F(ξ, E, a)

ε
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exists, and it is easy to check that the map dF is continuous.
Next, we want to show that for every a ∈ (0, 1) the set

D(a) =
{
E ∈ E : F (ξ, E, a) = 0 ⇒ detDξF (ξ, E, a) 6= 0

}

is an open and full measure subset of E. Namely, applying Theorem 2, we obtain the smooth
dependence of the market equilibria associated to all population shares a ∈ (0, 1) and to
any economy E ∈ D(a) on the elements (E, a) ∈ E × (0, 1).
Let us then sketch the proof that, for every a ∈ (0, 1), D(a) is an open and full measure
subset of E.
The openness of D(a) follows by the closedness of the complement set E \ D(a), due to the
continuity of the involved functions. In order to show that D(a) is a full measure subset of
E, it suffices to show that for every (uα, uβ , a) ∈ U2 × (0, 1) the set

D(uα, uβ , a) =
{
(wx, wy) ∈ (0,+∞)2 : F

(
ξ, uα, uβ , wx, wy , a

)
= 0 ⇒ detDξF (ξ, E, a) 6= 0

}

is a full measure subset of (0,+∞)2. Since it can be proven that 0 is a regular value for the
map

F̃ : (0,+∞)8 × (0,+∞)2 → R
8, F̃(ξ, wx, wy) = F(ξ, uα, uβ , wx, wy , a),

then, by a transversality result (cf. Theorem 6.3.294 in Villanacci et al. 2002), there exists

a full measure subset D̃(uα, uβ , a) of (0,+∞)2 such that, for all (wx, wy) ∈ D̃(uα, uβ , a), 0

is a regular value for the map F̃( · , wx, wy). As D̃(uα, uβ , a) ⊆ D(uα, uβ , a), it follows that
D(uα, uβ , a) is a full measure subset of (0,+∞)2. Consequently, for every a ∈ (0, 1), D(a)
is a full measure subset of E.
The finiteness of the number of market equilibria associated to an element (a,E), with
a ∈ (0, 1) and E ∈ D(a), comes now from the fact that, as it is easy to check, the projection

π : F−1(0) → E × (0, 1), π (ξ, E, a) = (E, a),

is proper, i.e., the inverse image through π of a compact subset of E × (0, 1) is compact, too.
The proof is complete. �

Proof of Proposition 3: By Theorem 1 we know that, for any E ∈ E, t ∈ N and at ∈ (0, 1),
there exists at least a market equilibrium at time t. Let us then check that the equilibrium
is unique, omitting as usual the dependence on t, in order not to overburden notation.
Recalling Definition 2 and the formulation of the market clearing conditions with shares
in (3), we have to prove that if the gross substitute property holds for all the individual
demand functions there exists one solution (p̂x, p̂y) ∈ (0,+∞)2 to the system

a x∗
α(px, py) + (1− a)x∗

β(px, py)− wx = 0 = a y∗α(px, py) + (1− a) y∗β(px, py)− wy . (25)

Since we can normalize one price, to show the uniqueness of the solution, we may focus
on the price vectors (1, p) ∈ (0,+∞)2, with p = py/px, Assuming that a x∗

α(1, p̂) + (1 −
a)x∗

β
(1, p̂) − wx = 0 = a y∗α(1, p̂) + (1 − a) y∗

β
(1, p̂) − wy , let us prove that no (1, p̃), with

p̃ 6= p̂, may solve (25). Namely, if p̃ < p̂, by the gross substitute property it would hold that
x∗
i (1, p̃) < x∗

i (1, p̂), i ∈ {α, β}, and thus, since a ∈ (0, 1), we would have

a x∗
α(1, p̃) + (1− a)x∗

β(1, p̃)− wx < ax∗
α(1, p̂) + (1− a)x∗

β(1, p̂)− wx = 0,

so that (1, p̃) would not be a solution to (25). Similarly, if p̃ > p̂, by the gross substitute
property it would hold that x∗

i (1, p̃) > x∗
i (1, p̂), i ∈ {α, β}, and thus, since a ∈ (0, 1), it

would follow that

a x∗
α(1, p̃) + (1− a)x∗

β(1, p̃)− wx > ax∗
α(1, p̂) + (1− a)x∗

β(1, p̂)− wx = 0,

so that (1, p̃) would not solve (25).
This completes the proof. �

Proof of Proposition 4: The conclusion immediately follows by observing that the solutions
to the fixed-point equation g(a) = a, with g as in (10), are given by a = 0, a = 1, as well
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as by all solutions to the equation Vα(a) = Vβ(a), if any, and by all the solutions to the

equation (Vα(a) + Vβ(a))/2 = V , if any. Namely, the nontrivial equilibria for equation (9)

are found as solutions to the equation Aα = f(σ d2(V , Vα)) = f(σ d2(V , Vβ)) = Aβ . Since

f is strictly decreasing, all solutions have to satisfy d(V , Vα) = d(V , Vβ), i.e., Vα = Vβ or

(Vα + Vβ)/2 = V , as desired. This concludes the proof. �

Proof of Proposition 5: Since g′(0) = 1/(exp
(
µ
(
Aβ(0)− Aα(0)

))
), the condition g′(0) >

−1 is always fulfilled, while g′(0) < 1 is fulfilled for Aβ(0) > Aα(0). Independently of f,

exploiting the strictly decreasing behavior of Ai with respect to d2(V , Vi), we then find
(Vα(0)− V )2 > (Vβ(0)− V )2, as desired.
As concerns the local stability of a = 1 for map g, we find that g′(1) =
exp

(
µ
(
Aβ(1)− Aα(1)

))
. Hence, the condition g′(1) > −1 is always fulfilled, while g′(1) < 1

is fulfilled for Aβ(1) < Aα(1). Independently of f, exploiting again the strictly decreasing

behavior of Ai with respect to d2(V , Vi), we find (Vα(1)− V )2 < (Vβ(1)− V )2.
In regard to a = â, recalling that Vα(â) = Vβ(â), we find that g′(â) = 1 − 2µσâ(1 −

â)
∂Aβ(a)

∂(σd2
β
)
|a=â(Vβ(â)−V )(V ′

β
(â)−V ′

α(â)). Since
∂Aβ(a)

∂(σd2
β
)
|a=â is negative, then a = â ∈ (0, 1)

is unstable for map g for all positive values of µ if (Vβ(â)−V )(V ′
β
(â)−V ′

α(â)) > 0. If instead

(Vβ(â) − V )(V ′
β
(â) − V ′

α(â)) < 0, then g′(â) < 1 is always fulfilled, while, if Aβ does not

depend on µ, g′(â) > −1 is fulfilled for µ < µ̂, with µ̂ as in (11), obtaining the desired
conclusion about the local stability of a = â ∈ (0, 1) for map g, too. The condition for the
flip bifurcation follows by setting g′(â) = −1.
Finally, in regard to a = ã, recalling that Vβ(ã) − V = V − Vα(ã), we find that g′(ã) =

1− 2µσã(1− ã)
∂Aβ(a)

∂(σd2
β
)
|a=ã(V −Vα(ã))(V ′

α(ã)+V ′
β
(ã)). Since

∂Aβ(a)

∂(σd2
β
)
|a=ã is negative, then

a = ã ∈ (0, 1) is unstable for map g for all positive values of µ if (V −Vα(ã))(V ′
α(ã)+V ′

β
(ã)) >

0. If instead (V − Vα(ã))(V ′
α(ã) + V ′

β
(ã)) < 0, then g′(ã) < 1 is always fulfilled, while, if Aβ

does not depend on µ, g′(ã) > −1 is fulfilled for µ < µ̃, with µ̃ as in (12). The condition for
the flip bifurcation follows by setting g′(ã) = −1. This concludes the proof. �


