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Abstract— Impulsive systems model continuous-time frame-
works with control actions occurring at discrete time instants.
Among the others, such models assume relevance in medical
situations, where the physical system under control evolves con-
tinuously in time, whilst the control therapy is instantaneously
administered, e.g. by means of intra-venous injections. This note
proposes a discretization algorithm for an impulsive system,
whose methods relies on the Carleman embedding techinique.
The discretization times are given by the impulsive control
action and do not require to have a fixed discretization period.
On the ground of the resulting discrete-time system (which can
be computed with arbitrary level of accuracy) we propose an
optimal control algorithm on a finite horizon. Simulations are
carried out on a model exploited for anti-angiogenic tumor
therapies and show the effectiveness of the theoretical results.

I. INTRODUCTION

Impulsive systems are continuous-time systems charac-
terized by instantaneous variations of the state at given
time instants [?], [?]. These systems have been exploited
in many different frameworks, such as mechanical systems
[?], sampled-data systems [?], chaotic secure communication
systems [?] and biochemistry [?]. They have recently gained
an increasing interest in physiologically-based pharmacoki-
netic models, where the instantaneous jumps model the kind
of drug delivery in the proper compartment (subcutaneous
or intravenous injections, oral ingestion, etc.) [?].

Several researchers have studied the control problem of
impulsive systems by means of Lyapunov functions [?],
[?], [?], [?], [?]. In [?] some sufficient conditions for the
impulsive control of a class of nonlinear systems are derived
by using the results in [?]. Less conservative conditions have
been derived in [?], [?] by using similar approaches.

Necessary conditions for the existence of a solution of the
optimal control problem for systems with impulsive control
as well as the characterization of these solutions has been
studied, among the others, by [?], [?], [?], [?], [?], [?], [?],
[?].

Differently from these approaches, in this paper we aim at
reducing the optimal control problem of an impulsive system
to the corresponding problem for discrete-time systems by
means of a discretization procedure for the continuous part of
the impulsive system. The discretization times are given by
the impulsive control action and do not require to have a fixed
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discretization period. The resulting discrete-time system is,
then, exploited to design an optimal control strategy on a
finite horizon. To the aim of discretization, the Carleman
embedding technique is exploited [?]. Based on the Taylor
expansion of the nonlinear map of the system, the algorithm
provides the exact solution to the discretization problem,
whose implementation is based on a suitable truncation of
the involved series expansion. The Carleman technique is
exploited as well to compute the gradient (with respect to
the state variables) of the nonlinear map associated to the
discretized system, which is required in the computation of
the optimal control. Though the Carleman technique relies
in the embedding of the original system into an infinite-
dimensional one, each term of the series can be computed
from a finite number of block matrices, thus allowing to
achieve an arbitrary chosen level of accuracy.

The second part of the note is dedicated to carry out
simulations of the proposed optimal control strategy for
an anti-angiogenic tumor therapy. The reference model for
tumor growth is [?], already exploited in the literature to
validate open- and closed-loop control laws [?], [?], [?].
Coherently with the provided methodology, crucial parame-
ters to validate the proposed control strategy are the interval
between any two impulses of drug administration and the
order of truncation of the involved Taylor series. Numerical
results show the effectiveness of the proposed algorithm with
respect to three different targets such as the closeness to a
desired reference level of the tumor volume, the total and
the average daily amount of the delivered drug.

A. Notation

The symbol ⊗ denotes the Kronecker product. M [i] is the
i-th Kronecker power of the matrix M , recursively defined by
M [i] = M ⊗M [i−1] and M [0] = 1. Given f ∈ C∞(Ra;Rb),
and x1, . . . , xc, c ≤ a, some of the variables in f , ∇x⊗f is
the function Ra → Rb×c defined by [∂f/∂x1 . . . ∂f/∂xc].
∇[i]
x ⊗ f denotes the same operation repeated i times and it

is a function Ra → Rb×ci .

II. DISCRETIZATION OF IMPULSIVE SYSTEMS

Consider a finite set of time instants T = {τk ≥ 0, τk+1 >
τk, k = 0, 1, . . . , N} and an impulsive differential system
[?], with impulses occurring at times τk ∈ T , k ∈ I =
{1, . . . , N}, defined by

ż(t) = f(z(t)), t ∈ [τk, τk+1), k ∈ I, (1)

z(τ+k ) = z(τ−k ) +Bvk (2)



where z(t) ∈ Rn, vk ∈ Rp and f : Rn → Rn is an
analytic map. Eq.(??) holds also in t ∈ [τ0, τ1), with the
initial condition z(τ0) = z0. In the sequel we will denote
with δk = τk+1 − τk intervals between any two impulses.

Let xk = z(τ+k ) and uk = vk+1. System (??)–(??) can be
written at the discrete times τk as

xk+1 = xk +

∫ τk+1

τk

f(z(t))dt+Buk. (3)

In the time interval [τk, τk+1), system (??) is autonomous
with initial condition xk. We can therefore represent the inte-
gral in (??) as a function Fk(xk). The analytical computation
of Fk(xk) may be hard or even not possible Therefore we
will use the Carleman discretization approach described in
[?] to obtain the series expansion of Fk(xk). We briefly
summarize this approach in order to derive some further
properties of (??).

III. CARLEMAN DISCRETIZATION OF AUTONOMOUS
SYSTEMS

Let ζk(t) : [0, δk]→ Rn be defined as

ζk(t) = z(τk + t)− xk =

∫ τk+t

τk

f(z(s)) ds. (4)

Consequently,

ζk(0) = 0, ζk(δk) = Fk(xk), ζ̇k(t) = f(z(τk+t)). (5)

Since f is analytic, we can write its Taylor expansion in the
neighborhood of xk as

ζ̇k(t) =

∞∑
j=0

(∇[j]
z ⊗ f)(xk)

j!
ζ
[j]
k (t) =

∞∑
j=0

A1
j (xk) ζ

[j]
k (t),

(6)
where A1

0 = f , A1
1 is the standard Jacobian of f , and, for

j > 1, A1
j : Rn → Rn×nj depends on the higher-order

Jacobian, A1
j (x) = (∇[j]

z ⊗ f)(x)/j!.
The Carleman linearization procedure consists in extend-

ing the system (??) with the time derivatives of the Kro-
necker powers ζ [i]k (t) expressed as

d

dt
ζ
[i]
k (t) =

∞∑
j=0

Aij(xk)ζ
[j+i−1]
k (t), (7)

where the coefficients Aij(x) ∈ Rni×nj+i−1

can be computed
from the A1

j (x) through the recursive expression

Aij = A1
j ⊗ I [i−1]n + In ⊗Ai−1j , (8)

and In is the identity matrix of dimension n (see [?] for the
details).

The infinite dimensional linear system associated to sys-
tem (??) in [τk, τk+1] defines the evolution of the extended
state Φk(t) = [ΦTk1(t),ΦTk2(t), . . . ]T , where Φki(t) = ζ

[i]
k (t).

From (??) we have

Φ̇k(t) = L(xk) +M(xk)Φk(t), t ∈ [0, δk),

Φ(0) = [0Tn×1, 0
T
n2×1, . . . ]

T .
(9)

where the infinite dimensional matrices L(xk) and M(xk)
have the following block structure

L =


A1

0

0n2×1
0n3×1
. . .

 , M =


A1

1 A1
2 A1

3 . . .
A2

0 A2
1 A2

2 . . .
0n3×1 A3

0 A3
1 . . .

0n4×1 0n3×n A4
0 . . .

. . . . . . . . . . . .

 .
(10)

The solution of (??) for t ∈ [0, δk] can be written as

Φk(t) =

∞∑
j=0

Pj(xk)
tj+1

(j + 1)!
, (11)

with Pj(xk) = M j(xk)L(xk). Notice that P0(xk) = L(xk)
and Pj+1(xk) = M(xk)Pj(xk). We are interested in

Fk(xk) = ζk(δk) = Φk1(δk) = ΠnΦk(δk), (12)

where Πn = [In 0n×n2 . . . ] is a linear operator that
selects the first n components of a vector. Then, (??) yields

Fk(xk) =

∞∑
j=0

ΠnPj(xk)
δj+1
k

(j + 1)!
=

∞∑
j=0

P 1
j (xk)

δj+1
k

(j + 1)!
,

(13)
where P 1

j (xk) are the first n elements of Pj(xk) and
P 1
0 (xk) = A1

0(xk) = f(xk). Since in the infinite dimensional
vector Pj(xk) only the first

∑j+1
i=1 n

i elements are non-null,
P 1
j (xk) ∈ Rn can be computed from a finite number of

blocks of M and L.
Notice that (??) corresponds to the Taylor series of the

solution of (??) in [τk, τk + δk) with initial point xk. Due
to the uniqueness of the Taylor series of a function, (??)
implies that

P 1
j (xk) = P 1

j (z(τk)) = (∇[j+1]
t ⊗ z)(τk). (14)

In order to compute the coefficients P 1
j (xk) of the series

expansion in (??), divide Pj into blocks P ij of size ni × 1,
i ≥ 1 as PTj = [P 1T

j , P 2T
j , . . .] where, as stated above, only

the first j+1 blocks are non-null. When j = 0, P 1
0 = A1

0 = f
and P i0 = 0, i ≥ 2. Then, because of property Pj+1 = MPj ,
the following recursive equation is readily achieved:

P 1
j =

j∑
l=1

A1
l P

l
j−1 (15)

Eq.(??) can indeed be generalized as follows:

P ij =

j∑
l=max{1,i−1}

Ail−i+1P
l
j−1 (16)

(??) will be exploited in the next section for further compu-
tations involved in the optimal control algorithm related to
the discretization of the impulsive system.



IV. ADDITIONAL PROPERTIES OF CARLEMAN
DISCRETIZATION

By exploiting expression (??), system (??) can be written
as:

xk+1 = Ψk(xk, uk) = xk +

∞∑
j=0

P 1
j (xk)

δj+1
k

(j + 1)!
+Buk.

(17)
In view of the application to optimal control, is of interest
to compute the derivatives of Ψk with respect to uk and xk.
The former is immediately obtained as ∇u ⊗Ψk = B. The
latter can be computed as

∇x ⊗Ψk = In +

∞∑
j=0

(∇x ⊗ P 1
j )

δj+1
k

(j + 1)!
. (18)

Notice that, due to the particular structure of the impulsive
system (??)–(??), ∇u ⊗Ψk does not depends on xk (it is a
constant) and ∇x ⊗Ψk does not depend on uk.

It is useful for the applications to have ∇x ⊗ Ψk in (??)
expressed as a recursive function of the blocks A1

j .
To this end, the following preliminary Lemma is required.

Lemma 1: For any j ≥ 0 and i > 0 it is:

∇x ⊗Aij =(j + 1)
(
A1
j+1 ⊗ I [i−1]n

)
+ [In ⊗A1, . . . In ⊗An] (19)

with

Al = ∇xl ⊗A
i−1
j =

∂Ai−1j

∂xl
(20)

and xl is the l-th component of vector x. In case of i = 1:

∇x ⊗A1
j = (j + 1)A1

j+1. (21)

Proof. For i = 1 the result descends from:

∇x ⊗A1
j =

∇[j+1]
z ⊗ f
j!

∣∣∣∣∣
z=x

= (j + 1)A1
j+1. (22)

For k > 1 (??) is obtained from (??) together with the
following property of the nabla operator for any matrix
function A : Rn → Rm×p and any matrix B,

∇x ⊗
(
A(x)⊗B

)
=
(
∇x ⊗A(x)

)
⊗B. (23)

Lemma 2: For j ≥ 1, then for i = 1 it is

∇x ⊗ P 1
j =

j∑
l=1

[
(l + 1)A1

l+1(In ⊗ P lj−1)

+A1
l (∇x ⊗ P lj−1)

]
(24)

(25)

and for i > 1 it is ...

∇x ⊗ P ij =

j−i+1∑
l=0

[
(∇⊗Ail)(In ⊗ P l+i−1j−1 )

+Ail(∇x ⊗ P l+i−1j−1 )
]

(26)

Proof. The thesis follows from (??) and (??) together with
the following property of the nabla operator for any matrix
functions A : Rn → Rm×p, D : Rn → Rp×q ,

∇x ⊗
(
A(x) ·D(x)

)
=
(
∇x ⊗A(x)

)(
In ⊗D(x)

)
+A(x) ·

(
∇x ⊗D(x)

)
. (27)

Remark 1: Since∇x⊗P 1
0 = ∇x⊗f = A1

1 is the Jacobian,
Lemma ?? allows to recursively compute all the remaining
(∇x ⊗ P 1

j ) in (??) as a function of the matrices A1
j .

V. OPTIMAL CONTROL PROBLEM

Consider the impulsive system (??)-(??) and its discretized
version:

xk+1 = Ψk(xk, uk), x0 = z0, k = 0, 1, . . . , N − 1
(28)

where
Ψk(xk, uk) = xk + Fk(xk) +Buk (29)

and Fk(xk) can be written according to the Carleman dis-
cretization as in (??) with P 1

j recursively computed accord-
ing to (??).

In view to the application to the control of therapies, we
formulate a finite horizon optimal control with respect to
the input and the final state. The extension to more general
situations can be accomplished by using the same technique.
Let N be the time horizon for the control problem, xr be a
reference final value of the state, x denote the sequence of
states x1, . . . , xN , u be the sequence of inputs u0, . . . , uN−1.
Recall that uk = vk+1, so that control action occurs from
time instant t1 up to the final time instant tN .

The optimal control problem is to minimize the quadratic
index

J(xN ,u) = (xN−xr)TQN (xN−xr)+

N−1∑
k=0

uTkRkuk (30)

where QN ≥ 0, Rk > 0, are weight matrices. The
Lagrangian associated to the cost function is:

L(x, λ,u) = J(xN ,u) +

N−1∑
k=0

λTk+1

(
Ψk(xk, uk)− xk+1

)
(31)

where λ is the sequence of multipliers λ1, . . . , λN , λk ∈ Rn.
Let I0 = [0, . . . , N − 1] and I1 = [1, . . . , N − 1]. The
following constraints are obtained from (??)

k ∈ I0 : ∇uk ⊗ L = 2uTkRk + λTk+1B = 0, (32)
k ∈ I0 : ∇λk ⊗ L = Ψk(xk, uk)− xk+1 = 0, (33)

k ∈ I1 : ∇xk ⊗ L = λTk+1

(
∇x ⊗Ψk(xk, uk)

)
− λTk = 0,

(34)

∇xN ⊗ L = 2(xN − xr)TQN − λTN = 0. (35)

Eq.(??) allows to write the control law as a function of λ:

uk =
1

2
R−1k BTλk+1 (36)



and eqs.(??)–(??) are a system of 2nN nonlinear equations
with x and λ as unknowns. Following the Carleman dis-
cretization procedure the functions Ψk(xk, uk) and ∇x ⊗
Ψk(xk, uk) that are needed for the numerical solution of the
problem can be computed as in (??) and (??), by means of
Lemma ??.

A. Receding horizon approach

As it usually happens in nonlinear optimal control prob-
lems, the forward/backward expression of (??)–(??) prevents
to have recursive analytical solution like in the linear case. As
a matter of fact, numerical solutions are sought. In practice,
a compromise to obtain an approximate solution to (??)–
(??) with a reasonable computational effort is to resort to a
receding horizon approach in which a solution is computed
on the first N ′ < N steps, but only the first input of the
computed solution is applied before iterating the procedure
on the new state. This is well suited to a discretization
scheme, that may introduce errors on a large time horizon
but is arbitrarily precise on a shorter one.

B. Backward discretization

Another computational scheme exploits the possibility of
inverting the system evolution, provided by the Carleman
discretization method. From (??) and (??) it is clear that the
evolution of the autonomous part of the system trajectory can
be discretized backward by using as initial point xk+1−Buk.
The “final” value xk can be expressed as

xk =xk+1 −Buk +

∞∑
j=0

P 1
j (xk+1 −Buk)

(−δk)j+1

(j + 1)!

=xk+1 −Buk + F
(−)
k (xk+1 −Buk). (37)

The system of equations for the solution of the optimal
control problem becomes then

xk =xk+1 −Buk + F
(−)
k (xk+1 −Buk), (38)

λk =
(
∇x ⊗Ψk(xk, uk)

)T
λk+1, (39)

λN =2QN (xN − xr). (40)

where uk is obtained from (??). Notice that the variables in
(??)–(??) can now be computed starting from xN , since (??)
specifies λN , (??) allows to compute xN−1, (??) provides
λN−1 and so on. Eq. (??) for k = 0 is the constraint that
the initial value of the sequence provides the parameter x0.
Therefore, (??)–(??) is a system of equations in the unknown
xN only.

VI. APPLICATION TO ANTI-ANGIOGENIC TUMOR
THERAPIES

As mentioned before, impulsive control systems arise quite
naturally when modeling therapies, due to the different time
scales of therapy administration (the control) and of the
patient response to it (the controlled system). We chose to
apply the proposed algorithm to a model of tumor growth
in presence of anti-angiogenic treatment [?]. The aim of
the treatment is to control the tumor size by reducing the

vascular network on which it depends. In [?], Hahnfeld and
coworkers, in addition to introducing the concept of vascular
carrying capacity, propose a comparison between the model
and experimental data concerning anti-angiogenically treated
and untreated Lewis lung tumors in mice.

The Hahnfeldt model is a nonlinear model accounting
for angiogenic stimulation and inhibition. It is composed
by three ordinary differential equations which describe the
evolution of the tumor volume (x1, mm3), the carrying
capacity (x2, mm3) and the drug amount of the administered
angiogenic inhibitor (x3, mg/kg).

ẋ1(t) = −λx1(t) ln
(
x1(t)
x2(t)

)
ẋ2(t) = bx1(t)− (µ+ dx1(t)2/3)x2(t)− cx2(t)x3(t)
ẋ3(t) = −ηx3(t) + u(t)

(41)
In particular, the parameters in (??) describe: the carcinoma
growth rate λ, the vascular birth rate b, the endothelial
cell death d, the spontaneous vascular inactivation rate µ,
the sensitivity to the drug c and the diffusion rate into
serum η. The values are referred to an estimation based
on experimental data of Lewis lung carcinoma implanted in
C57BL/6 mice under angiostatin drug and are reported in
Table I. Note that, according to the original model, µ was
set to 0 because this parameter was found to be negligible,
i.e., vascular inactivation rate does not play a major role in
this system.

TABLE I
ANGIOSTATIN MODEL PARAMETERS

λ b d c η
day−1 day−1 day−1 mm−2 day−1 (mg/kg)−1 day−1

0.192 5.85 0.00873 0.15 0.38

The drug administration is modeled as an impulsive pro-
cess taking place at uniform intervals. The choice of uniform
administration intervals is not mandatory, the algorithm can
use any sequence of such intervals as remarked in Section
??.

The first step of the method is to represent the continuous-
time system (??) with impulsive input as the discrete-time
system (??)–(??) where, in our case, B = [0, 0, 1]T . This
step requires to derive the series expansion of Fk(xk) in
(??) and, in particular, to calculate the elements P 1

j (xk) in
(??). Table ?? shows the terms P 1

j for j ∈ {1, 2, 3, 4},
whose computation is reported in Appendix. Of course Table
II is general and holds for any system undergoing Carleman
discretization. Obviously a larger number of terms in (??)
guarantees a better approximation of Fk(xk).

After representing the controlled system (??) as a discrete-
time system (the notation adopted for component i of the
discretized state vector at time τk is (xk)i), the optimal
control problem can be formulated in order to compute the
optimal control law. Here the aim is to reduce the tumor
size to a target dimension in a fixed time interval while
minimizing the total amount of anti-angiogenic drug. An
additional constraint is that each administration (the control
impulse) should not exceed a given threshold.



TABLE II
TAYLOR SERIE COEFFICIENTS

j P 1
j (xk)

0 A1
0 = f(x)

1 A1
1A

1
0 = J(x)f(x)

2
(
A1

1

)2
A1

0 + 2A1
2

(
A1

0

)[2]
3

(
A1

1

)3
A1

0 + (2A1
1A

1
2 + 3A1

2A
2
1)

(
A1

0

)[2]
+ 6A1

3

(
A1

0

)[3]

In our case we set the initial condition to x0 =
[200, 630, 0]T , in order to compare the outcome with
the experimental outcomes of the therapies described in [?].
For the same reason, the reference final value of the tumor
volume is xr = 100 mm3 and the simulation total time
T = 13 days.

The goal is to find the optimal control that satisfy the
following targets:

1) to bring the final value of the tumor volume within
15% of variation of the reference level (xr):

(xN )1 ∈ [0.85, 1.15] · xr

2) to keep the average daily amount of the administered
drug smaller than 20 mg/kg/day. If δ is the interval
between any two drug administrations, ν = d1/δe is
the maximum number of daily administrations and the
constrained can be expressed as Ui < 25 mg/kg/day
for i = 1, . . . , T , where

Ui =

iν∑
k=(i−1)ν+1

uk−1

3) to minimize the total amount UT of administered drug,

UT =

N∑
k=0

uk =

T∑
i=1

Ui, N = bT/δc (42)

The problem is formulated as the minimization of the
index (??) with Q =diag[5, 3.5, 0] and Rk = 250.

The algorithm was tested in a wide range of situations by
varying:
• the interval between two inputs δ = [0.1, 0.3] day, and

the corresponding discrete-time horizon for the control
problem N = bT/δc,

• the receding horizon N ′ = [4, 10] (as described in ??),
• the Taylor order jmax ∈ {4, 5, 6}.
In these scenarios the method shows excellent results

both in terms of the final tumor volume and minimization
of the administered drug. The algorithm is sensitive to
the choice of the parameters. A smaller δ as well as a
higher order of the Carleman approximation leads to a more
precise discretization and consequently to a better control
performance. For a given N , a decrease of J is obtained
with a larger N ′ at the expense of a larger computational
time.

Figs. ??–?? illustrate the results obtained with δ = 0.25
day, N = 52, N ′ = 10 and jmax = 4.

Fig. ?? shows the evolution of the continuous state (??)
using the input calculated by the algorithm and in particular
that the tumor volume arrives to the desired value, (xN )1 =
111, 79 with respect to the reference value xr = 100, while
in Fig. ?? the comparison between the continuous state and
the model discretized with Carleman is reported.

Fig. 1. Continuous Hahnfeldt model evolution

Fig. 2. Comparison between continuous and discrete Hahnfeldt model
evolution

Figure ?? shows the input computed by the optimization
algorithm uk and the daily amount Ui.

VII. CONCLUSION

APPENDIX

In this section the explicit expression of the first (and only)
nonzero block of L(xk) and of the blocks A1

j , j = 1, 2, 3, 4
of matrix M(xk) (see (??)), required to compute Taylor
series coefficients reported in Table II are reported.

A1
0 =

[
−λx1 ln

(
x1
x2

)
bx1−dx2/3

1 x2−cx2x3

−ηx3

]

A1
1 =

−λ(1+ln(
x1
x2

))
λx1
x2

0

b− 2dx2

3x
(1/3)
1

−cx3−dx(2/3)
1 −cx2

0 0 −η



A1
2 =

 −λ
x1

λ
x2

0 λ
x2

−λx1
x22

0 0 0 0

2dx2

9x
(4/3)
1

−2d

3x
(1/3)
1

0 −2d

3x
(1/3)
1

0 −c 0 −c 0

0 0 0 0 0 0 0 0 0





fig3_n.png

Fig. 3. Optimal control input

In particular, according (??), the block-element M2,1 is
calculated from previous terms as

A2
0 = A1

0 ⊗ I3 + I3 ⊗A1
0

and its explicit form is

A2
0 =



2A1
0(1) 0 0

A1
0(2) A1

0(1) 0

A1
0(3) 0 A1

0(1)

A1
0(2) A1

0(1) 0

0 2A1
0(2) 0

0 A1
0(3) A1

0(2)

A1
0(3) 0 A1

0(1)

0 A1
0(3) A1

0(2)

0 0 2A1
0(3)




