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Abstract— For the class of Ito-type nonlinear Stochastic
Differential Equations (SDE), where the drift and the diffusion
are σπ-functions (σπ-SDE), we prove that the (infinite) set
of all moments of the solution satisfies a system of infinite
ordinary differential equations (ODEs), which is always linear.
The result is proven by showing first that a σπ-SDE can be
cubified, i.e. reduced to a system of SDE of larger (but still finite)
dimension in general, where drifts and diffusions are at most
third-degree polynomial functions. Our motivation for deriving
a moment equation in closed form comes from systems biology,
where second-order moments are exploited to quantify the
stochastic variability around the steady-state average amount
of the molecular players involved in a bio-chemical reaction
framework. Indeed, the proposed methodology allows to write
the moment equations in the presence of non-polynomial
nonlinarities, when exploiting the Chemical Langevin Equations
(which are SDE) as a model abstraction. An example is given,
associated to a protein-gene production model, where non-
polynomial nonlinearities are known to occur.

I. INTRODUCTION

The problem of describing through an ODE the moments
evolution of the distribution associated to a nonlinear SDE, is
up to now solved for a very restricted class of systems only
(essentially: for polynomial systems). Of course, ’equations
of moments’ can be found in the literature, even as far
as conditional moments (with respect to some observed
process) are concerned, but they are not given in general
as a closed system of SDEs. In regard to this, an equation
– which is called the general equation of optimal nonlinear
filtering (OFE) – can be found in the §8 of [1] (in particular:
eq. (8.10)). Such equation is the result of showing that, for
a very general class of partially observable processes (those
given by a sum of an increasing process plus a martingale)
an any-order conditional-moment can be written as an Ito
process, but not as the strong solution of a SDE, which
is shown to be possible only for the class of conditionally
linear systems (CLS i.e. nonlinear SDEs which are linear
for fixed values of the observed variables). In the latter case,
it can be shown that the OFE for the i-th order conditional
moment, depends on the i + 1-th order one, and thus the
OFE is equivalent to an infinite dimensional SDE. A further
step is showing that for CLS the process distribution is
conditionally Gaussian, which implies that any moment of
such a distribution can be written as a function of the first
two moments, and this allows to obtain a closed system of
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SDEs for the first two conditional moments1. For systems
with non-stochastic coefficients, taking the expectation of the
above equations leads directly to a closed system of ODEs
for the unconditional moments, but in this way the class of
systems reduces to just the linear ones.

In this paper we are concerned with the sub-problem
of calculating unconditional moments for nonlinear SDEs,
which is by itself an important problem in many areas of
science and engineering where the quantity of interest is
the probability distribution of a random process. We will
show that a wide class of nonlinear SDE – namely those
whose drift and/or diffusion is expressed through ratios of
σπ-functions2 – can be exactly cubified (i.e. polynomialized
as a third degree polynomial). This will allow us to write the
exact moment equation for the same class of SDE, which
results to be a (deterministic) linear system, even though
infinite dimensional, and in particular, a kind of infinite-
dimensional system given by an infinite set of ODE’s.

Our seeking of a general moment equations for nonlinear
SDE’s is motivated, in particular, by the applications in
systems biology, where the steady-state of the second order
moments of the chemical players involved in biochemical
reaction networks allow to quantify the stochastic variability
around the steady-state average solutions and have been
recently investigated in the synthetic biology framework
with the aim of quantifying noise reduction in presence of
feedbacks [6], [7], [14]. When approaching the problem by
means of Chemical Master Equations, it is known how to
write the moment equations when involved nonlinearities
are polynomials [15]. It is known as well that, even when
nonlinearities are polynomials, the solution cannot be written
in closed form, and approximations are required to achieve a
solution; among this framework, a widely adopted possibility
is based on moment closure techniques [10]. Coherently with
our theory developed for SDE’s, here we adopt the Chemical
Langevin Equations (CLE) to model a chemical reaction
network. It is known that CLE dramatically reduce the com-
plexity of the underlining Chemical Master Equations, at the
expense of the approximation that the amount of the species
under investigation is modeled continuously rather than in the
proper discrete fashion as for CME [9], [12]. Unfortunately,
the use of CLE does not solve the problem to write the
moment equations for non-polynomial systems. It worths
noticing that non-polynomial nonlinearities are not so seldom

1Which is a conditionally Gaussian Kalman Filter.
2A quite large class of nonlinear functions which has been studied in

[2], in regard to the problem of the exact quadratization for nonlinear
deterministic control systems.



to find: for instance, sigmoidal functions (like logistic, or
more complex Hill functions) are widely exploited to model
saturations naturally arising in biological frameworks [4].
Instead, it can be shown that such nonlinearities can be
modeled as σπ-functions, thus providing the natural ground
to apply our proposed methodology. Even with the proposed
approach, moment equations can be exactly written, but they
are not in closed form, thus we require as well some moment
closure technique to obtain a solution.

The paper is organized into two sections. In §II the
class of σπ-systems is defined, and the first main result is
presented (exact cubification) showing that any σπ-system
can be transformed into an equivalent cubic SDE, evolving,
in general, in a larger dimensional state space. Then the
general (linear, and infinite-dimensional) moments equation
is written down (which is the second main result of the
paper). In §II we present an example of application: a very
common and simple model taken from system biology, a
typical network motif in gene transcription networks, for
which we show how to jointly apply our moments equation
and the moment closure method in order to compute the
first two moments of the associated distribution.

II. CUBIFICATION OF σπ-SDE’S.

A. Notation

Throughout the paper we adopt the following convention:
If a scalar quantity has been defined through a multi-indexed
symbol, for instance ξi1,...,ip ∈ IR, (ij = 1, . . . , νj ∈ IN) then
the omission of the rightmost index shall denote the column
vector which collects the related entries, the omission of the
two rightmost indices will denote the stack of the vectors
ξi1,...,ip−1

∈ IRνp , for ip−1 = 1, . . . , ν∗p−1, and so on (up
to the vector ξ ∈ IRν1···νp ). and so on. We also sometimes
denote by a single index, say k, a double index (i, j), by
writing ξk = ξi,j , where k runs as follows:

k = (1, 1), . . . , (1, nj), (2, 1), . . . , (ni, nj).

We denote by c the linear map (a matrix) swapping the first
two indices of its argument, i.e.3:

(cξ)i2,i1,i3,...,ip = ξi1,...,ip . (1)

Moreover, we define ci2 as the matrix extracting the i2-
th subvector of cξ (or, in other words, the vector obtained
aggregating ξi1,i2 with respect to i1):

ci2ξ = (cξ)i2 . (2)

If ξ ∈ IRα is a random vector, E{ξ} shall denote the
expectation. The symbol Iα will denote the identity in IRα.

3Note that c is a commutation matrix, for the Kronecker (tensor) product
between vectors, i.e. for any couple x, y of vectors (even of different
dimension), c is the matrix such that x⊗ y = c(y ⊗ x).

B. Problem Setting

We consider a stochastic system in IRn, whose state
variable x(t) ∈ IRn is supposed to be a diffusion process
well defined in some time interval [0, T ] ⊂ IR as the unique
strong solution of an Ito-type SDE

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), (3)

where f (resp. g) is a suitable vector function in IRn (resp.
a suitable matrix function in IRn×d), and W (t) ∈ IRd

is the standard Wiener process with incremental covari-
ance dE{WWT } = Iddt. Let us consider equation (3)
written component-wise, and omit the time-dependencies
hereinafter:

dxi = fi(x)dt+

d∑
s=1

gi,s(x)dWs. (4)

We consider the case of fi and gi,s being σπ-functions, that
is to say formal polynomials in the variable x, accordingly
to the following formulas:

fi(x) =

νi∑
l=1

αi,lXi,l; Xi,l =

n∏
j=1

x
pli,j
j , (5)

gi,s(x) =

ν∗i,s∑
l=1

α∗
i,s,lX

∗
i,s,l; X∗

i,s,l =

n∏
j=1

x
p∗,s,li,j

j , (6)

where pli,j and p∗,s,li,j are real exponents, and αi,l, α∗
i,s,l real

parameters, time-varying in general. A stochastic system (4)
with drift and diffusion given by σπ-functions, as in (5), (6),
is said a σπ-stochastic system. We call the functions Xi,l

given in (5) drift-monomials, and the functions X∗
i,s,l given

in (6) diffusion-monomials. By substituting (5), (6) into (4),
and introducing the compound double index k = (s, l) =
(1, 1), . . . (1, ν∗i,1), . . . (d, ν∗i,d), we obtain:

dxi =

νi∑
l=1

αi,lXi,ldt+

(d,ν∗i,d)∑
k=(1,1)

α∗
i,kX

∗
i,kdW

∗
k . (7)

W ∗
k = W ∗

s,l = Ws, ∀l = 1, . . . , ν∗i,s. (8)

Let us define ν∗i = ν∗i,1 + . . . + ν∗i,d, which is the number
of values that the double index k takes on, and let ι an
enumeration of these values, i.e. a function (invertible) such
that, for any k there is an l = 1, . . . , µi = νi + ν∗i such that
k = ι(l). Equation (7) can be written in a compact form by
introducing the formal coefficients vi,l defined as:

vi,l = αi,ldt, for l = 1, . . . , νi, (9)
vi,l = α∗

i,ι(l−νi)dW
∗
ι(l−νi), l = νi + 1, . . . , µi, (10)

and extending the definition of αi,l, Xi,l as

αi,l = α∗
i,ι(l−νi), Xi,l = X∗

i,ι(l−νi), for l = νi+1, . . . , µi,
(11)

from which eq. (7) turns into the short form:

dxi =

µi∑
l=1

vi,lXi,l = vTi Xi. (12)



Note that X∗
i is a subvector of Xi – indeed, the vector

including the last µi − νi entries of Xi – and thus we have:

X∗
i = εiXi, (13)

for a suitable 0−1 matrix εi. Moreover, X ∈ IRr, X∗ ∈ IRr∗ ,
with r = µ1 + . . .+ µn, r∗ = ν∗1 + . . . , ν∗n, and we have

X∗ = εX, with ε = diag{ε1, . . . , εn}. (14)

The short form (12) is a SDE where the drift and diffusion
are hidden into the formal coefficients vi,l. Another short
form, which does not hide the drift and the diffusion, can be
in fact obtained by directly applying the convention on the
indices to the coefficients α, and α∗. Thus fi and gi,s in (5),
(6) rewrites

fi(x) = αTi Xi, (15)

gi,s(x) = α∗T
i,sX

∗
i,s, (16)

and (4) becomes:

dxi = αTi Xidt+

d∑
s=1

α∗T
i,sX

∗
i,sdWs. (17)

In the following we use both the representations (12) and
(17). The reader is to be aware that X∗

i,s in (17) is a vector,
while X∗

i,k is a scalar, and indeed the latter is a quantity
with three indices (remind that k in (7) is a double index)
and X∗

i,s is the vector aggregating the X∗
i,k (= X∗

i,s,l), by
saturating the index l, accordingly with the convention on
indices.

C. Cubification of σπ SDE’s.

Recall that the Ito formula, for a general (scalar) function
φ(x), and an Ito process x satisfying (4), writes as follows:

dφ(x) =

n∑
j=1

∂φ

∂xj
dxj +

1

2

n,n,d∑
j,j′,s

gj,s(x)gj′,s(x)
∂2φ

∂xj∂xj′
dt.

(18)
The main theoretical result of the paper is stated in the
following Theorem.

Theorem 1 Let us consider the Ito-type σπ stochastic
system described (in short form) by eq. (12). Let us define
the functions Zi,l(x), (l = . . . , µi):

Zi,l = Xi,lx
−1
i , l = 1, . . . , νi (19)

Zi,l = Z∗
i,ι(l−νi); l = νi + 1 + . . . , µi, (20)

Z∗
i,k = X∗

i,kx
−1
i , k ( = (s, l)) = (1, 1), . . . , (d, ν∗i,d)(21)

and the exponents πli,j as (δi,j Kronecker symbol):

πli,j = pli,j − δi,j l = 1, . . . , νi (22)

πli,j = π
∗,ι(l−νi)
i,j ; l = νi + 1 + . . . , µi, (23)

π∗,k
i,j =p∗,ki,j − δi,j k ( = (s, l)) = (1, 1), . . . , (d, ν∗i,d).(24)

π̃li,j,j′ = πli,j(π
l
i,j′ − δj,j′) (25)

Then, the processes xi and Zi,l satisfy the (Ito type) SDEs:

dxi = (αTi Zi)xidt+

d∑
s=1

(α∗T
i,sZ

∗
i,s)xidWs, (26)

dZi,l =

n∑
j=1

πli,j(α
T
j Zj)Zi,ldt

+
1

2

n,n,d∑
j,j′,s

π̃li,j,j′(α
∗T
j,sZ

∗
j,s)(α

∗T
j′,sZ

∗
j′,s)Zi,ldt

+

n,d∑
j,s

πli,j(α
∗T
j,sZ

∗
j,s)Zi,ldWs, (27)

for i = 1, . . . , n, and l = 1, . . . , µi.

Proof. (Omitted).

Similarly as in [2], we name the SDE (27) the stochastic
driver, and the bilinear SDE (26), the stochastic final
stage, associated to the SDE (4). We name the system
of SDE’s constituted by the stochastic driver and final
stage an exact cubification of the SDE (4). Note that
(27) is an autonomous SDE (in Z), since Z∗ just collects
a part of the entries of Z, as one can read out from (19), (21).

D. Vector form

Let us consider the vectors αi, α
∗
i,s in the final stage

equation (26) and define

βi,l,j,l′ = πli,jαj,l′ . (28)

γs,i,l,j,m = πli,j(cα
∗)s,j,m (29)

hs,i,l,j,m,j′,m′= π̃li,j,j′(cα
∗)s,j,m(cα∗)s,j′,m′ . (30)

Moreover let us build up the matrices

A = diag{αT1 . . . . , αTn}, (31)
A∗
s = diag{(cα∗)Ts,1. . . . , (cα

∗)Ts,n}, (32)

A = diag{AT1 , . . . , ATn}, (33)
A∗
s = diag{(A∗

s)
T
1 , . . . , (A

∗
s)
T
n}, (34)

F = diag{βT1,1, . . . , βTn,µn
}, (35)

H∗
s = diag{hTs,1,1, . . . , hTs,n,νn}, (36)

G∗
s = diag{γTs,1,1, . . . , γTs,n,µn

}, (37)

where MT
i denotes the i-th row of M = A,A∗

s .

Theorem 2 (Exact cubification in vector form): let us define

Bs = A∗
s(In ⊗ cs)(In ⊗ ε), (38)

H =
1

2

d∑
s=1

H∗
s(Ir ⊗ c[2]s )(Ir ⊗ ε[2]), (39)

Gs = G∗
s(Ir ⊗ cs)(Ir ⊗ ε), (40)



where ε is the matrix defined through (13), (14). Then the
final stage and driver are given, in vector form, by:

dx = A(x⊗ Z)dt+

d∑
s=1

Bs(x⊗ Z)dWs, (41)

dZ =
(
FZ [2] + HZ [3]

)
dt+

d∑
s

GsZ
[2]dWs. (42)

by defining the aggregate process Z ∈ IRq, q = n+ r:

ZT = [xT , ZT ], (43)

we can write the exact cubification (41), (42), as a single
vector SDE:

dZ = (ΦZ[2] + ΨZ[3])dt+

d∑
s=1

ΓsZ
[2]dWs. (44)

where Φ,Ψ,Γs are easily calculated matrices.

Proof. (Omitted)

E. Equation of the moments

Theorem 3 (Equation of the moments). The set of all
moments E{Z[m](t)}, for m ∈ IN\{0} of the random process
Z(t) defined in (43), is given by the following infinite set of
ODEs:

d

dt
E{Z[m]} = ΦmE{Z[m+1]}+ ΨmE{Z[m+2]}, (45)

where

Φm = Umq (Φ⊗ Iqm−1), (46)

Ψm = Umq (Ψ⊗ Iqm−1) +
∑
s,s′

Omq (Γs ⊗ Γs′ ⊗ Iqm−2)(47)

Γms = Umq (Γs ⊗ Iqm−1). (48)

where U ·
· , O

·
· are suitably defined matrices whose formula

can be found in Lemma 5.1 of [3].
Proof. (Omitted)

III. APPLICATION TO A BASIC NETWORK MOTIF IN
SYSTEMS BIOLOGY

Consider the case of gene Z encoding for a protein which
is a transcription factor for itself, which means Z auto-
regulates its own level of transcription. This is a typical
network motif in gene transcription networks, i.e. a sub-
network pattern emerging in a high level of occurrences
with respect to the occurrences of other patterns in random
networks (see [4] for more details). We will consider the
case of negative autoregulation and, according to a common
simplifying assumption [4], [13], [11], will confuse the tran-
script (i.e. mRNA) with the corresponding protein. The copy
number of transcript will be denoted by z and the following
reactions of degradation (of 1 molecule) and production (of
b molecules) will be considered:
r0) z 7→ z − 1 a0(z) = k0z,
r1b) z 7→ z + b a1b(z) = k1f(z)pb,

where:
• a0 = k0z is the linear propensity for degradation (with
k0 ∈ R+), which is a common assumption in the
literature (see, e.g., [6], [7], [8]);

• f(z) is an inhibitory Hill function typically exploited
to model negative regulation in gene transcription net-
works [4], [13], [11]:

f(z) =
θν

zν + θν
, (49)

with θ (repression threshold) denoting the copy number
of z according to which the propensity is reduced by
one half, and with the Hill coefficient ν (promoter
sensitivity) denoting the sensitivity of the promoter to
changes in z around θ;

• {pb}Bmax

b=1 is the probability mass function (
∑Bmax

b=1 pb =
1) of the discrete random variable B denoting the burst
size associated to the production reaction. We assume
Bmax ≤ +∞, so possibly including the case of arbi-
trarily large bursts. We denote by 〈B〉 =

∑Bmax

b=1 b · pb
the mean value of the burst size.

By defining the stoichiometric matrix N = [−1 1 2 · · · ]
and aggregating the propensities in the reaction rates vector
V (z) = [a0(z) a11(z) a12(z) · · · ]T , a popular stochastic
formulation of a reaction network is given by the Chemical
Langevin Equation (CLE, see e.g. [9], [12]), which is a
stochastic differential equation describing the evolution in
time of the copy number zt, as follows:

dzt = NV (zt)dt+N
√

(diag(V (zt)))dWt, (50)

with {Wt} being a vector of mutually independent standard
Wiener processes {Wbt}, for b = 0, 1, . . . , Bmax. CLE dra-
matically reduces the complexity of the underlying Chemical
Master Equation, at the expense of the approximation that
the amount of the species under investigation is continuous
rather than discrete.

Neglecting the diffusion part of the CLE and exploiting
the approximation 〈V (zt)〉 = V (〈zt〉), which holds only
for linear propensities (where 〈·〉 denotes the expectation
operator E{·}), the well known deterministic Reaction Rate
Equations (RRE) are obtained:

˙〈zt〉 = N · V (〈zt〉) = −k0 〈zt〉+ k1f(〈zt〉)
Bmax∑
b=1

b · pb

= −k0 〈zt〉+ k1 〈B〉 f(〈zt〉).
(51)

Let us focus our attention on the moment equations for zt,
according to the SDE mathematical model coming from the
CLE. In particular, we are interested in the second order
moments of the involved chemical players: their steady-
state computation allows to quantify the stochastic variability
around the steady-state average solution and have been
recently investigated in the synthetic biology framework
with the aim of quantifying noise reduction in presence
of feedbacks [6], [7], [14]. In general nonlinear cases, to
properly write the dynamics of moments equations it is
required to constraint nonlinear terms (propensities in our



case) to polynomial functions [15]. However, even in case
of polynomial systems, moment equations can be written but
they do not provide a closed form expression, because the
right-hand side of lower order moment equations depends on
higher-order moments. There can be found in the literature
different approaches aiming at providing an approximate
solution, at least for the second-order moments at steady-
state. One of this is Van Kampen’s Linear Noise Approxi-
mation [9]. Recent approaches are based on moment closure
techniques [10] enabling the computation of higher-order
moments by means of nonlinear functions of the lower-order
ones. In general, moment closure techniques can be applied
only if the propensities are polynomial functions of the state,
accordingly to what previously stated.

In the following, we will show a practical application of
the SDE cubification techniques illustrated in the previous
section, where, at first, the CLE in (50) is turned into a σπ-
SDE by means of a proper coordinate change, and then the
moment equation (45) is applied at the equilibrium. We focus
on the first part of the procedure, which requires analytical
computation, while numerical results on the actual computa-
tion of (45) (depending on the number of moments consid-
ered) and comparisons with existing approximate methods
will be object of future work. Note that, according to [10],
the accuracy of the moment closure scheme applied to the
σπ-SDE can be arbitrarily increased by enlarging the number
of moments considered in (45).

By expanding the CLE in (50), one obtains:

dzt = (−k0zt + k1 〈B〉 f(zt)) dt−
√
k0ztdW0t

+
√
k1f(zt)

Bmax∑
b=1

b
√
pbdWbt.

(52)

Note that the equation (52) is not in the form (7), due
to the presence of the non-polynomial nonlinearity f(z). In
order to turn the system (52) into a σπ-stochastic system,
we define an additional state variable ωt as follows:

ωt := g(zt) = zνt + θν (53)

such that f(zt) = θνω−1
t . Hence the evolution of zt in

(52) can be rewritten as:

dzt =
(
−k0zt + k1 〈B〉 θνω−1

t

)
dt

−
√
k0ztdW0t +

√
k1θνω

−1
t

Bmax∑
b=1

b
√
pbdWbt

=
(
−k0zt + k1 〈B〉 θνω−1

t

)
dt

−
√
k0z

1
2
t dW0t +

Bmax∑
b=1

b
√
k1pbθνω

− 1
2

t dWbt

(54)

while the evolution of ωt is given by:

dωt = dg(zt)
dzt

dzt = νzν−1
t ((−k0zt + k1 〈B〉 f(zt)) dt)

+νzν−1
t

(
−
√
k0ztdW0t +

√
k1f(zt)

Bmax∑
b=1

b
√
pbdWbt

)
=
(
−k0νzνt + k1ν 〈B〉 θνzν−1

t ω−1
t

)
dt

+

(
−ν
√
k0z

ν− 1
2

t dW0t +

Bmax∑
b=1

νb
√
k1pbθνz

ν−1
t ω

− 1
2

t dWbt

)
(55)

By defining the augmented state x(t) = [zt ωt]
T and the

noise vector W (t) = [W0t W1t · · · WBmaxt]
T , and

omitting the time-dependencies hereinfter, it is readily seen
that the system is now σπ, namely can be rewritten in the
form (5)–(8), where:

• n = 2 (state dimension)
• d = Bmax + 1 (dimension of the Wiener process)
• νi = 2 for i = 1, 2 (number of drift monomials for each

state equation i)
• ν∗i,s = 1, for i = 1, 2, for s = 1, . . . , d (number of

diffusion monomials for each state equation i and for
each noise component s)

• α1,1 = −k0 α1,2 = k1 〈B〉 θν
α2,1 = −k0ν α2,2 = k1ν 〈B〉 θν

(drift coefficients)
• X1,1 = x1, X1,2 = x−1

2

X2,1 = xν1 , X2,2 = xν−1
1 x−1

2

(drift monomials)
• p11,1 = 1 p11,2 = 0 p21,1 = 0 p21,2 = −1
p12,1 = ν p12,2 = 0 p22,1 = ν − 1 p22,2 = −1

(drift exponents)
• α∗

1,1,1 = −
√
k0 α∗

1,s,1 = (s− 1)
√
k1ps−1θν

for s = 2, ..., d
α∗
2,1,1 = −ν

√
k0 α∗

2,s,1 = ν(s− 1)
√
k1ps−1θν

for s = 2, ..., d
(diffusion coefficients)

• X∗
1,1,1 = x

1
2
1 X∗

1,s,1 = x
− 1

2
2 for s = 2, ..., d

X∗
2,1,1 = x

ν− 1
2

1 X∗
2,s,1 = xν−1

1 x
− 1

2
2 for s = 2, ..., d

(diffusion monomials)
• p∗,1,11,1 = 1

2 p∗,1,11,2 = 0 p∗,s,11,1 = 0 p∗,s,11,2 = − 1
2

for s = 2, ..., d
p∗,1,12,1 =ν− 1

2 p∗,1,12,2 =0 p∗,s,12,1 = ν−1 p∗,s,12,2 =− 1
2

for s = 2, ..., d
(diffusion exponents)

Note that, since d = Bmax + 1 and ν∗i,s = 1, for i = 1, 2,
for s = 1, . . . , d, one gets:

• ν∗i =
∑d
s=1 ν

∗
i,s = d = Bmax + 1 for i = 1, 2,

• µi = νi + ν∗i = d+ 2 = Bmax + 3 for i = 1, 2.
From (8) one can equivalently define, for all i, the com-

pound double index k = (s, l), with s = 1, ..., d, l = ν∗i,s =
1, from which we can extend the definition of αi,l and Xi,l,
in agreement with (11). Such quantities are included in the
vectors αi and Xi:

• αi = [αi,1 αi,2 α∗
i,1,1 · · ·α∗

i,d,1]T ∈ Rµi , for i = 1, 2,
• Xi = [Xi,1 Xi,2 X

∗
i,1,1 · · ·X∗

i,d,1]T ∈ Rµi , for i = 1, 2,



which are useful, in turn, to define the vector Z in (19)–
(21) as follows:

Z = [XT
1 x

−1
1 XT

2 x
−1
2 ]T ∈ Rr

with r = µ1 + µ2 = 2(d + 2) = 2(Bmax + 3). Finally, the
aggregate process Z in (43) is defined as:

Z = [xT ZT ]T ∈ Rq

with q = n+ r = 2 + 2(d+ 2) = 2Bmax + 8.

The previous definitions allow to compute all the matrices
required to explicitly write the moment equation (45). Since
we are interested in the second-order moments, we consider
the following system of

(
q + q2

)
differential equations:

d〈Z[1]〉
dt = Φ1

〈
Z[2]

〉
+ Ψ1

〈
Z[3]

〉
,

d〈Z[2]〉
dt = Φ2

〈
Z[3]

〉
+ Ψ2

〈
Z[4]

〉
,

(56)

where we used the shortcut
〈
Z[i]
〉

= E{Z[i]}. Since the
aforementioned system depends, in general, on the

(
q3 + q4

)
third-order and fourth-order moments, it is possible to apply
the Separable Derivative-Matching (SDM) moment closure
technique in [10] to formally define two nonlinear approx-
imating functions ϕ̄3 : Rq × Rq2 → Rq3 and ϕ̄4 : Rq ×
Rq2 → Rq4 (depending just on the lower-order moments but
matching the time derivative of the higher-order moments at
some initial time), such that we can set:〈

Z[3]
〉
' ϕ̄3

(〈
Z1]
〉
,
〈
Z[2]

〉)
,〈

Z[4]
〉
' ϕ̄4

(〈
Z1]
〉
,
〈
Z[2]

〉)
,

(57)

implying that the system in (56) can be rewritten and
solved with respect to the

(
q + q2

)
first-order and second-

order moments:
d〈Z[1]〉
dt = Φ1

〈
Z[2]

〉
+ Ψ1ϕ̄3

(〈
Z1]
〉
,
〈
Z[2]

〉)
,

d〈Z[2]〉
dt = Φ2ϕ̄3

(〈
Z1]
〉
,
〈
Z[2]

〉)
+ Ψ2ϕ̄4

(〈
Z1]
〉
,
〈
Z[2]

〉)
,

(58)
from which the dynamics of the second-order moment

of the CLE in (50) can be obtained by extracting the first
component of

〈
Z[2]

〉
, which is equal to

〈
z2t
〉
.

At the steady state, eq. (58) turns into a system of
(
q + q2

)
algebraic equationsΦ1

〈
Z

[2]
ss

〉
+ Ψ1ϕ̄3

(〈
Z

1]
ss

〉
,
〈
Z

[2]
ss

〉)
= 0q,

Φ2ϕ̄3

(〈
Z

1]
ss

〉
,
〈
Z

[2]
ss

〉)
+ Ψ2ϕ̄4

(〈
Z

1]
ss

〉
,
〈
Z

[2]
ss

〉)
= 0q2 ,

(59)
where the subscripts ss indicate the equilibrium moments

and 0q and 0q2 denote the q-dimensional and q2-dimensional
zero vectors, respectively. Similarly to the transient equation
(58), the approximate steady-state second-order moment of
the CLE in (50) is obtained by extracting the first component
of
〈
Z

[2]
ss

〉
, which is equal to

〈
z2ss
〉
.

IV. CONCLUSION

Theorems 1 and 3 include the two main results of the
paper: Theorem 1 states that every σπ-SDE can be cubified
into a larger state-space, which amounts to say that there
exists a cubic-SDE, given component-wise by eqs. (26)-
(27), which generates the same process x, solution of the
σπ-SDE (7) through the bilinear eq. (26) only. Theorem 3
uses an aggregate of eqs (26)-(27), built up in Theorem 2
(cubification in vector form), and a vector version of the Ito
formula (??) (which is taken from the paper [3]), and builds
up a (infinite) sequence of SDE’s for the Kronecker powers
of the state (x, Z) of eq. (44). Then, taking the expectations,
the general (infinite-dimensional) moments equation (45) is
obtained. An application in the systems biology framework
is proposed, aiming at calculating the second-order moments
for the Langevin equation associated to a very common
reaction network motif, for which moment equations cannot
be written according to the reference literature, because of
the non-polynomial nonlinearities involved.
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