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Abstract— A basic (though rather general) enzymatic reaction
scheme is investigated here, with a substrate that transforms
into a product by means of the catalytic action of an enzyme.
The aim is of quantifying the effects of feedback in noise
propagation. Noise sources are twofold: one affects the enzyme
production, assuming to happen according to finite bursts of
molecules; the other concerns the product clearance, with the
classical linear elimination rate affected by a Bernoulli random
variable that can switch ‘on’ or ‘off’ the clearance. Two distinct
feedback control schemes on enzyme production are considered
here: one from the final product of the pathway activity, the
other from the enzyme accumulation (negative autoregulation).
Metabolic noise is defined in terms of the square of the
coefficient of variation of the product, and computations are
carried out by means of moment equations. Results show that,
according to the type of the feedback parameter chosen to
tune the feedback action, one of the two feedback schemes is
preferable to the other with respect to noise reduction.

Index Terms— Enzymatic reactions, Moment Equations, Neg-
ative Feedback

I. INTRODUCTION

Mathematical control theory has recently gained more and
more interest in the synthetic biology community, aiming at
merging molecular biological techniques with mathematical
modeling and forward engineering in order to design syn-
thetic biological circuits, able to replicate emergent prop-
erties potentially useful for biotechnology industry, human
health and environment (see [1], [2], [3], [4] and references
therein). In this framework, recent attention has been focused
on understanding how circuit design may affect metabolic
performances, and a pivotal role seems to be played by
feedback mechanisms regulating the enzymatic activity. The
role of the feedback in systems and synthetic biology has
been widely investigated, especially in transcriptional and
metabolic regulation where gene products are required to
control their homeostatic levels robustly with respect to
parameter or environmental fluctuations [5], [6], [7], [8], [9],
[10], [11], [12], [13].

The framework investigated here is that of a basic (though
rather general) metabolic pathway, involving the classical
substrate/enzyme binding/unbinding forming a complex that
eventually provides a final product (with the release of the
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enzyme). Differently from closed frameworks where total
substrate and enzyme are conserved, here productions and
clearance processes are considered. Two sources of noise
are envisioned. One affects the enzyme production and is
modeled by means of finite bursts of molecules, the amount
of which follows a geometric distribution; the other source
of noise affects the product elimination, which can be active
(or inactive) according to the state equal to 1 (or equal to 0)
of a Bernoulli random variable [14], [15], [16]. The aim is to
evaluate the effect of a feedback in the enzymatic production
rate on the product noise propagation. The feedback on the
enzyme may be exerted via a transcriptional repression from
the product or from the enzyme itself.

Moment equations are exploited to compute the metabolic
noise in terms of the square of the coefficient of variation
of the product around the steady-state solution. To this end
a Stochastic Hybrid System (SHS) model is adopted with
the deterministic part of the SHS made of Reaction Rate
Equations (RRE) and the only two sources of stochasticity
accounted for the bursty enzyme production and product
elimination. Similarly to [11], substrate is not supposed to
vary, thus accounting for scenarios in which the substrate is
an extracellular nutrient pool consumed by a low-density cell
population. Such an assumption excludes complete depletion
of the substrate, eventually providing a nil equilibrium. A
similar study has been proposed in [11] where enzyme
production was not modeled by bursts and in [12], [13],
where substrate was allowed to vary. A further difference
with respect to [11] and [12], [13] is the presence of a noisy
product elimination.

Despite the presence of a second order dynamics for the
product elimination, moment equations can be written in
closed form, because of the choice of the Bernoulli variable.
Computations are carried out by properly exploiting the
Quasi Steady-State Approximation, a widespread approach
employed to reduce the computational complexity in the
presence of a typical fast/slow time-scale of enzymatic
reactions: see e.g. [17], [18] and references therein for an
exhaustive review of advantages and limitations of such
approach, which substantially exploits the faster dynamics
of the complex, supposed to be negligible with respect to
the other players’ dynamics.

Similarly to [11], solutions focus on a pair of feedback
parameters (promoter and repression strength) and suggest
which of the two feedback schemes should be preferred to the
other in terms of a greater sensitivity to the chosen feedback
parameter and of a better improvement in noise reduction.
Analytical solutions for the scheme involving the feedback
from the enzyme are as well provided.



II. CHEMICAL REACTION SCHEMES

The chemical reaction schemes under investigation are
reported in Figs. 1 and 2.

Fig. 1. Metabolic reaction framework: feedback from the product P

Fig. 2. Metabolic reaction framework: feedback from the enzyme E

The common part consists of a substrate S binding to
an enzyme E in order to form a complex C (reaction 1),
which in turn can reverse the binding (reaction 2) or can be
transformed into a product P with the release of the enzyme
E (reaction 3). The reaction schemes account for enzyme
production (reaction 4), enzyme degradation (reaction 5) and
product elimination (for instance due to its final utilization,
reaction 6). The substrate is not supposed to vary.

Product clearance is supposed to be regulated by a stochas-
tic switch, modeled by a Bernoulli random variable X . If
X = 1 the product is eliminated according to a typical linear
clearance rate; if X = 0 product elimination is inhibited. The
switch of X is independent of the other random processes.
The use of a Bernoulli random variable assuming values
in {0, 1} allows to reduce moment computations because
moments involving higher order powers of X trivially reduce
as follows〈

Xk
〉

= 〈X〉 ,
〈
Y jXk

〉
=
〈
Y jX

〉
, (1)

for any other random variable Y and any integers j, k.
Enzyme production is affected by a second noise source,

since it occurs in bursts of Be copy numbers, with the
random variable Be indicating the size (in terms of number of
copies) of the bursts, occurring with probabilities P(Be = j)
with j ∈ {0, 1, . . .}. As in [15], [19] we assume a geometric
probability distribution:

P(Be = j) = (1− λ)jλ, λ ∈ (0, 1], j = 0, 1, . . .
(2)

TABLE I
TRANSITIONS AND ASSOCIATED PROPENSITIES FOR THE DISCRETE

STOCHASTIC EVENTS

Event Reset Propensities
Enzyme production
non-feedback case ne 7→ ne + j, j = 0, 1, . . . k4P(Be = j)
Enzyme production
feedback from P ne 7→ ne + j, j = 0, 1, . . . fp(np)P(Be = j)

Enzyme production
feedback from E ne 7→ ne + j, j = 0, 1, . . . fe(ne)P(Be = j)
X activation X 7→ X + 1 k8(1−X)
X deactivation X 7→ X − 1 k7X

providing an average burst size 〈Be〉 = (1− λ)/λ.
Two kinds of feedbacks are considered, both working on

the enzyme production: one from the product P (scheme in
Fig.1), the other from the enzyme E itself (scheme in Fig.2).
According to the feedback schemes, the propensities associ-
ated to the noisy bursts are proportional to the following
sigmoidal Hill functions, [11]:

fi(ni) =
k4

1 + (ni/θi)hi
, i = p, e. (3)

with np, ne denoting the product and enzyme copy number.
Parameter k4 is the promoter strength, providing the maximal
propensity k4P(Be = j) associated to the production of
Be = j copy number of enzyme, obtainable for negli-
gible values of the entries np, ne: when ni � θi the
two feedback schemes collapse to the not-regulated case.
Half of the maximal value of the propensity is reached in
correspondence of the repression thresholds, θi. Parameters
hi are the promoter sensitivities, providing the steepness of
the sigmoidal functions.

Discrete stochastic events and associated propensities are
resumed in Table I.

A. Metabolic noise computation
Referring to the product P , we define the corresponding

metabolic noise by means of the square of the coefficient of
variation CV 2

P computed by the ratio:

η2P,i = σ2
P /(n

?
p)2, i = p, e (4)

where σ2
P and n?p are the steady-state values for variance

and mean of the marginal distribution of the product P copy
number. The suffix i indicates the case of the feedback from
the product (i = p) or from the enzyme (i = e). Since
by varying the feedback parameters, the steady-state average
solutions vary as well, similarly to [11], comparison is made
with respect to the relative noise

η̃2P,i = η2P,i/η
2
P (5)

with η2P denoting the metabolic noise for the non-feedback
case.

In order to evaluate the metabolic noise, we consider
a Stochastic Hybris Systems (SHS) modeling framework,
where a Reaction Rate Equation (RRE) system is associated
to the reaction schemes evolving between any two discrete



stochastic events given by burst enzyme production or X
switch (Table I). By identifying the state of the system by
the copy number of each involved species ne(t), nc(t), np(t),
plus the state of X regulating the product elimination (X = 1
for active and X = 0 for non-active elimination of P ), the
RRE is:

ṅe(t) = −k1nsne(t) + (k2 + k3)nc(t)− k5ne(t)
ṅc(t) = k1nsne(t)− (k2 + k3)nc(t)

ṅp(t) = k3nc(t)− k6X(t)np(t)

(6)

According to our assumptions, ns is the substrate copy
number and is kept constant.

In the following, unless differently specified, the expected
value of a random variable x is denoted by 〈x〉, while
the steady-state of the average of a stochastic process x(t)
or of a second order moment 〈x(t)y(t)〉 are denoted by
x? = limt 7→+∞ 〈x(t)〉 and 〈xy〉? = limt 7→+∞ 〈x(t)y(t)〉,
respectively.

III. AVERAGE STEADY-STATE SOLUTIONS

The first-order moment equations associated to the SHS
modeling the reaction schemes are derived from [20]. Unfor-
tunately, the nonlinearities involved in the enzyme production
for the feedback schemes do not allow to achieve closed-
form solutions. Indeed, the nonlinear terms provided by
the negative feedback schemes even prevent to use the
moment closure techniques [21]. Therefore, computations are
carried out according to the linearization of the nonlinear
propensities around the stationary average values n?e , n?p:

fp
(
np(t)

)
' fp(n?p) + f ′p(n?p)

(
np(t)− n?p

)
fe
(
ne(t)

)
' fe(n?e) + f ′e(n

?
e)
(
ne(t)− n?e

)
.

(7)

Clearly, such an approximation is valid as long as the
stochastic fluctuations do not leave the region in which the
Hill function is approximately linear.

According to [20], the first order moment equations can
be written in a unified fashion for the two feedback schemes,
with the steady-state solutions obeying to the following
system:

−k1nsn?e + (k2 + k3)n?c − k5n?e + χ(n?p, n
?
e) = 0

k1nsn
?
e − (k2 + k3)n?c = 0

k3n
?
c − k6 〈Xnp〉? = 0

k8 − (k7 + k8)X? = 0

(8)

with

χ(np, ne) =

 k4 〈Be〉 , non feedback case,
fp(np) 〈Be〉 , feedback from P,
fe(ne) 〈Be〉 , feedback from E.

(9)
Differently from previous frameworks [11], [12], [13] the

presence of X correlating to the other state variables prevents
a trivial computation of the first order moments, except for

X? =
k8

k7 + k8
(10)

Indeed, from standard computations, we have:

n?e =
χ(n?p, n

?
e)

k5
, n?c =

k1ns
k2 + k3

n?e, (11)

〈Xnp〉? =
k3n

?
c

k6
=

k1k3ns
(k2 + k3)k6

n?e (12)

In the following the constant parameter k1k3ns/(k2 + k3)
will be shortly denoted by ks. It is apparent that even the
non-feedback case (with χ(n?p, n

?
e) = k4 〈Be〉) requires some

of the second order moment equations for the computation
of the average steady-states, due to the second order mo-
ment 〈Xnp〉?. Nevertheless, both feedback schemes allow
to exactly compute in closed form the steady-state solutions.
Indeed the computation of 〈Xne〉 and 〈Xnp〉 dynamics
provides at steady-state:

d 〈Xne〉
dt

= 0 =⇒ 〈Xne〉? = X?n?e (13)

d 〈Xnp〉
dt

= 0

=⇒ k8n
?
p = (k6 + k7 + k8) 〈Xnp〉? − ks 〈Xne〉?

= ks

(
k6+k7+k8

k6
−X?

)
n?e =

ks

(
(1−X?)k6+k7+k8

)
k6

n?e
(14)

It worths noticing that (13)-(14) hold for both feedback
schemes, with the steady-state average product n?p propor-
tional to the steady-state average enzyme n?e , if the switch
parameters are kept constant. In summary, the first of (11)
and (14) provide a unique solution for the pair (n?e, n

?
p)

according to which n?c is straightforwardly computed. Such
a computation is trivial for the non-feedback case, since the
two equations can be easily decoupled and solutions are
analytical. On the other hand, in case of a feedback (from
the enzyme or the product) we need to find numerically the
solution.

A. Qualitative behavior for varying parameters k4 and θp
Qualitative analysis of first order steady-state solutions

helps us to infer information on the feedback action. For
instance, the following behavior is shared by both the feed-
back schemes:

i) feedback actions reduce the steady-state averages with
respect to the non-feedback case; this is because, ac-
cording (3), it is k4 > fi(n

?
i ) for any value of n?i and

any i = e, p;
ii) by increasing the promoter strength k4, then function

χ(n?p, n
?
e) indefinitely increases, and so does n?e because

of the first of (11) and, consequently, so does n?p because
of (14); analogously, by reducing k4 7→ 0+, n?e, n

?
p 7→

0+;
iii) by increasing the feedback threshold both feedback

schemes reduce to the constitutive case with n?e =
k4 〈Be〉 /k5, whilst by reducing θe, θp 7→ 0+, the
inhibitory action of the feedback becomes more and
more effective, so that n?e, n

?
p 7→ 0.

In case of a feedback from the product, when n?p = θp, then
fp(n?p = θp) = k4/2 whatever hp. Such a position allows



to immediately find n?e = k4 〈Be〉 /(2k5) and, consequently
from (14), it provides the following constraint among the
parameters:

k8θp =
k4ks 〈Be〉

(
(1−X?)k6 + k7 + k8

)
2k5k6

(15)

Analogously, in case of a feedback from the enzyme we have
fe(n

?
e = θe) = k4/2 whatever he. In this case, the straight-

forward constraint involves only the first of (11), providing
θe = k4 〈Be〉 /(2k5), according to which thresholds for k4
(given θe) or for θe (given k4) are readily computed.

B. Qualitative behavior for varying parameter 〈Be〉
If we investigate the role of the two noise sources in the

steady-state solutions we find that the noisy bursts directly
influence n?e and, as a matter of fact, also n?p: in both
feedback schemes, as well as in the non-feedback case, the
average burst size 〈Be〉 plays the same role of the promoter
strength k4.

C. Qualitative behavior for varying parameter k8
On the other hand, regards to the noise in the product

elimination, in case of a feedback from the enzyme, X
does not affect n?e . Instead, it clearly modifies n?p. Indeed,
according to (14), if we suppose to arbitrarily vary k8 and,
correspondingly, to vary k7 in order to keep fixed X?, we
have the following limits:

lim
k8 7→0+

n?p = +∞ lim
k8 7→+∞

n?p =
ks

k6X?
n?e (16)

Instead, regards to the feedback from the product, the
stochastic switch X affects both n?e and n?p. In this feedback
scheme, if we vary k7 and k8 in order to keep X? fixed, we
find that for lower and lower values of k8 then n?e and n?p
have an opposite behavior, the former definitely decreasing
to 0, the latter definitely increasing to +∞. Indeed, when
k8 7→ 0+, equation (14) becomes the horizontal line ne = 0
in the (n?p, n

?
e)-phase space, intersecting the Hill function

given by the first equation of (11) in n?p = +∞ and
n?e = 0. On the other hand, for k8 7→ +∞, equation
(14) becomes n?e = (k6/ks)X

?n?p thus providing a finite,
nontrivial solution for the pair (n?e, n

?
p).

In summary, whatever is the chosen feedback scheme,
a low frequency of switch (k8 7→ 0+), keeping fixed
the average value X?, provides an increase of the steady-
state average product (with a corresponding decrease of the
steady-state average enzyme only according to the feedback
from product); instead, a high frequency of switch (k8 7→
+∞), keeping fixed X?, provides the asymptotic decrease
of the steady-state average product to a limit point.

IV. SECOND ORDER MOMENTS

Computations are carried out by properly applying the
Quasi Steady-State Approximation (QSSA) to the RRE of
the SHS, deterministically evolving between any two discrete
events. The QSSA substantially exploits the faster dynamics
of complex C, supposed to be negligible (i.e. ṅc = 0) with
respect to the other players’ dynamics. By setting ṅc = 0

TABLE II
MODEL PARAMETERS. MEASUREMENT UNITS: k1 , [S−1MOLECULE−1];

kx , x = 2, 3, . . . , 7, 8, [S−1].

Parameter k1 k2 k3 k5 k6 k7 k8 λ
Value 1 28300 3.2 0.02 0.02 0.3 0.9 0.25

and substituting the expression of the complex nc in terms
of the other two players (plus X), the RRE system reduces
to:

ṅe(t) = −k5ne(t)
ṅp(t) = ksne(t)− k6X(t)np(t).

(17)

Clearly, the QSSA does not affect steady-state results
achieved by (10)-(14).

Despite the presence of the nonlinear term in the product
clearance rate, second-order moments can be written in a
closed form without moment closure. This is because the
nonlinearity involves a Bernoulli random variable assuming
values in {0, 1}, so that third order terms of the type

〈
X2ni

〉
,

i = e, p can be reduced to second order terms 〈Xni〉. In
summary, accounting for the fact that first-order moments
are achieved in (10)-(14) together with the second order mo-
ments 〈Xne〉?, 〈Xnp〉?, in order to compute

〈
n2p
〉

(necessary
to estimate the relative noise η̃2P,i, i = p, e) the following
second and third order moments are required:

〈
n2e
〉
,
〈
n2p
〉
,

〈nenp〉,
〈
Xn2

e

〉
,
〈
Xn2

p

〉
, 〈Xnenp〉. By properly writing

these moment equations, when looking for the steady-state
solutions, because of the properties of X , we obtain a closed
linear system of 6 unknowns.

A. Feedback from the product
Regards to the feedback from the product, analytical so-

lutions are somehow cumbersome and are not reported here;
instead exact solutions are readily numerically provided.
Solutions for varying values of the promoter strength k4
and of the repression strength 1/θp are reported in the
upper panels of Figs.3 and 4, respectively, with not-varying
parameter values reported in Table II.

It is apparent that low values of the promoter strength k4 or
of the repression strength 1/θp do not provide any effect of
the feedback in terms of noise attenuation since the relative
noise η̃2P,p ' 1. Such a framework is that described at the
end of Subsection III-A. On the other hand, by increasing
k4 or 1/θp the relative noise varies. In both cases we have a
non-monotonic behavior. Regards to the case of varying k4,
when the feedback sensitivity is > 1, η̃2P,p first decreases to
a minimum, then increases to a maximum > 1 and finally
asymptotically approaches a steady-state value < 1; instead,
when hp = 1 the initial minimum is lost. On the other
hand, when the repression strength increases we find first
a minimum and, then, η̃2P,p diverges to +∞. Also in this
case, if hp = 1 the initial minimum is lost and the feedback
does not provide any noise attenuation.

B. Feedback from the enzyme
Regards to the feedback from the enzyme, an analytical

solution is easier to achieve, since
〈
n2e
〉

and
〈
Xn2

e

〉
equations



Fig. 3. Relative noise according to varying values of the promoter strength
k4: feedback from the product (upper panel, θp = 500) and from the
enzyme (lower panel, θe = 500). ns = 3000.

Fig. 4. Relative noise according to varying values of the repression strength
1/θ: feedback from the product (upper panel) and from the enzyme (lower
panel). k4 = 0.16, ns = 3000.

are decoupled from the others and provide the following
steady-state solutions:

〈
n2e
〉?

= (n?e)2

(
1 +

k5

2 〈Be〉n?e
(
k5 − 〈Be〉 f ′e(n?e)

) 〈B2
e

〉)
(18)〈

Xn2
e

〉?
=
〈
n2e
〉? ·X? (19)

Thus, the moments system reduces to a 4-th order system,
whose solution for

〈
n2p
〉?

provides the following metabolic

noise:

η2P,e =
Ξ1

Ξ2
+

Ξ3

Ξ4
· k5k6X

?

2 〈Be〉n?e
[
kF5 (n?e)

]2 · 〈B2
e

〉
(20)

where

Ξ1 = k6X
?(1−X?)

(
k8 + k6X

?(1 +X?)
)

(21)

Ξ2 =
(
k8 + k6X

?(1−X?)
)2

(22)

Ξ3 = 3k6k8X
?(1−X?) + kF5 (n?e)k8X

? + k28

+2k6(X?)2(1−X?)(kF5 (n?e) + k6)
(23)

Ξ4 = Ξ2

(
1 +

k6X
?(kF5 (n?e) + k8)

kF5 (n?e)k8
+
kF5 (n?e)X?

k8

)
(24)

and
kF5 (n?e) = k5 − 〈Be〉 f ′e(n?e). (25)

What is apparent from (20) is that the two noise sources
do not contribute to metabolic noise in a separable fashion.
Solutions for varying values of the promoter strength k4 and
of the repression strength 1/θe are reported in the lower
panels of Figs.3 and 4, respectively. There are analogies and
differences with the behavior of the other feedback, which
are below resumed:

i) like the feedback from the product, by increasing the
promoter strength k4 we find a minimum of relative
noise for promoter sensitivities he > 1; however, such
a minimum provides a smaller reduction in the relative
noise making so preferable the choice of a feedback
from the product by using k4 as a tuning parameter;

ii) the range of variation of the relative noise is smaller
(than the one occurring for the feedback from the
product) and occurs on a smaller range of values of k4:
again, this makes preferable the use of a feedback from
the product, more sensitive to the promoter strength k4;

iii) by varying the repression strength 1/θe we find a
relative noise behavior which is very similar to the anal-
ogous case of the feedback from the product; however,
the feedback from the enzyme provides a larger range
of variation (in terms of reduction) of the relative noise
on a larger range of values of the repression strength:
in this case, the use of a feedback from the enzyme
provides an effect more sensitive to 1/θe.

C. The role of the switch X

The frequency and the average steady-state value of the
switch X do seem to play an active role in metabolic
noise propagation. Indeed, regards to the feedback from the
product, by decreasing the value of k8 to zero a substantial
reduction of the relative noise occurs (Fig.5, upper panel).
Instead, by increasing k8 we weaken the improvements in
metabolic noise reduction. In case of hp > 1 we can
even have a relative noise > 1. These effects are turned
upside down in the feedback from the enzyme (Fig.5, lower
panel), since low values of k8 make the feedback ineffective
(η̃2P,e ' 1), whilst high values of k8 provide a reduction in
the relative noise, at least for promoter sensitivity he > 1.



Fig. 5. Relative noise for varying values of k8: feedback from the product
(upper panel, θp = 500) and from the enzyme (lower panel, θe = 5).
k4 = 0.16, ns = 3000.

V. CONCLUSIONS

Moment equations have been computed (and steady-state
solutions have been discussed) for a basic enzymatic scheme
with the aim of investigate the role of feedback in noise
reduction. The model accounts for two noise sources: one in
the enzyme production, the other in product elimination. The
comparison of the solutions for the two different feedbacks
suggests the following conclusions. First, by varying the
promoter strength k4 a minimum of the relative noise is
achieved (with η̃2P < 1) in both the feedback schemes,
with the scheme involving the feedback from the product
to be preferable because more sensitive to k4 and providing
a better improvement in noise reduction. Second, by varying
the repression strength we have a minimum of relative noise
as well (with η̃2P < 1) in both feedback schemes, but in
this case the scheme with the feedback from the enzyme has
to be preferred for a greater sensitivity to 1/θ and a better
improvement in noise reduction. Both feedback schemes
share the fact that a greater promoter sensitivity improves
the performances in terms of noise reduction. Finally, the
frequency and the steady-state value of the stochastic switch
that activates/inhibits the product clearance plays an impor-
tant role in assessing noise reduction. Further investigation is
expected to analyze in more details these preliminary results,
possibly exploiting the analytical solution provided in this
note for the feedback from the enzyme.
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