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Abstract To achieve accurate and affordable predictions of glucose and insulin
plasma concentrations is of paramount importance, especially in the field of the
artificial pancreas, where real-time measurements could be properly exploited in
model-based glucose control algorithms. This note focuses on a recently developed
research line that makes use of a state observer to estimate insulin in real-time from
glucose measurements, since it is known that insulin measurements are slower and
more cumbersome to obtain, more expensive and also less accurate. Based on these
predictions, glucose control algorithms can be designed, and can be exploited for
both intra-venous and subcutaneous insulin infusions. The safety, robustness and
efficacy of the observer-based control algorithms have been validated on a popula-
tion of rather heterogenous virtual patients, modeled by a different, comprehensive
model of the glucose-insulin system, recently accepted by the Food and Drug Ad-
ministration as a substitute of animal trials.

1 Introduction

Diabetes Mellitus (DM) is a worldwide disease with an alarming increase, espe-
cially in the developing countries: the diabetic population, estimated to be around
171 million people in 2000, has been predicted to double within 2030, [38]. To di-
agnose and contain the spread of DM disease, glucose and insulin predictions are of
great importance, especially when required in closed-loop, real-time algorithms for
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the artificial pancreas. Differently from plasma glycemia, which can be straightfor-
wardly measured with relative low-cost devices and affordable algorithms, plasma
insulinemia is slower and more cumbersome to obtain, more expensive and also
less accurate. This fact stimulates the study of algorithms capable of providing the
plasma insulin concentration by processing a stream of glycemia measurements.
When these algorithms exploit the available measurements as coming from a known
deterministic dynamical model generating them, we deal with state observers. The
importance of these powerful tools is due to the great variety of observer-based
control law applicable, at least in theory, to the glucose control problem, with ex-
ogenous insulin administration playing the role of the control input. Observer-based
closed-loop control laws belong to the field of model-based strategies, that means
the regulator is synthesized by explicitly exploiting the structure of the model equa-
tions [4].

Differently from the great majority of model-based approaches, which use non-
linear Ordinary Differential Equation (ODE) models, a nonlinear discrete-Delay
Differential Equation (DDE) model of the glucose/insulin system is considered
[20, 32]. Motivation to use DDE models is that they provide a better representa-
tion of the pancreatic Insulin Delivery Rate (IDR) (e.g., [17, 12] and references
therein), therefore allowing to treat in a unified fashion both Type 1 and Type 2 di-
abetic patients, these latter with a not negligible IDR. More in details, the adopted
glucose/insulin DDE model has been shown to exhibit a number of desirable charac-
teristics, such as to conform to established physiological concepts (e.g., pancreatic
insulin secretion rate is limited), to exhibit satisfactory properties of the solutions
(e.g., positivity and boundedness of solutions, local attractivity of a single positive
equilibrium, [20]), and to be statistically robust, in that its parameters are identifiable
with very good precision, fitting the model onto observations from standard per-
turbation experiments, such as the Intra-Venous Glucose Tolerance Test (IVGTT),
[32, 31].

Different results are here reported, dealing with theoretical design (feedback lin-
earization with delay cancelation, state observers, asymptotic convergence, local
Input-to-State Stability) and practical issues (discretization of the control algorithm,
measurement uncertainties, insulin pump malfunctioning, intra-patient variability)
according to both intravenous [22, 23, 25, 26] and subcutaneous [24, 21, 28] insulin
delivery. Although the proposed control laws require the knowledge of the whole
state of the system (i.e. both glycemia and insulinemia, possibly also at retarded in-
stants) only glucose measurements have been exploited, leaving the task to provide
real-time insulin estimates to an observer for nonlinear time-delay systems. Safety,
efficacy and robustness have been recently validated [30] on a population of Virtual
Patients (VP) generated by a different, comprehensive model of the glucose-insulin
system, recently accepted by the Food and Drug Administration as a substitute of
animal trials, [15].

The chapter continues as follows. Next Section is devoted to introduce the DDE
model of the glucose-insulin system adopted for the state prediction task and, con-
sequently, for the synthesis of the closed-loop control. Sections 3 and 4 deal with



Title Suppressed Due to Excessive Length 3

the intravenous and subcutaneous insulin delivery modes, detailing with the most
important results achieved. Conclusions follow.

2 The DDE model of the glucose-insulin system

The model-based algorithms here reported for the artificial pancreas have been
synthesized according to the following DDE model of the glucose-insulin system
[20, 32]. Symbols ‘mmol’ and ‘pmol’ stand for millimoles and picomoles, with
‘mM’ and ‘pM’ denoting mmoles/liter and pmol/liter, respectively. The equations
are written with respect to plasma glycemia, G(t), [mM], and insulinemia, I(t),
[pM]:

dG(t)
dt

=−KxgiG(t)I(t)+
Tgh

VG
+

d(t)
VG

,

dI(t)
dt

=−KxiI(t)+
TiGmax

VI
f
(
G(t− τg)

)
+

u(t)
VI

, (1)

with Kxgi, [min−1 pM−1], the rate of (insulin-dependent) glucose uptake by tissues
per pM of plasma insulin concentration; Tgh, [(mmol/kgBW)/min], the net balance
between hepatic glucose output and insulin-independent zero-order glucose tissue
uptake; VG, VI , [L/kgBW], the apparent distribution volumes for glucose and insulin,
respectively; Kxi, [min−1], the apparent first-order disappearance rate constant for
insulin; TiGmax, [(pmol/kgBW)/min], the maximum rate of second-phase insulin re-
lease; τg, [min], the apparent delay with which the pancreas varies secondary insulin
release in response to varying plasma glucose concentrations.

The following Hill function is chosen for the nonlinear map f (·), modeling the
endogenous pancreatic insulin delivery rate:

f (G) =
(G/G∗)γ

1+(G/G∗)γ , (2)

with γ the Hill coefficient and G∗, [mM], the glycemia at which the insulin release
is half of its maximum rate.

The exogenous signals u(t), [(pmol/kgBW)/min], and d(t), [(mmol/kgBW)/min],
are the control input (i.e. the external insulin delivery rate) and a disturbance in the
glucose dynamics (e.g. the glucose intake from a meal). As a matter of fact, model
(1) does not consider the subcutaneous depot assuming that insulin is straightfor-
wardly delivered intravenously. On the other hand, in case of subcutaneous insulin
administration, equations (1) are modified as follows:

dG
dt

=−KxgiG(t)I(t)+
Tgh

VG
+

d(t)
VG

,

dI
dt

=−KxiI(t)+
TiGmax

VI
f
(
G(t− τg)

)
+

S2(t)
VItmax,I

,
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dS2

dt
=

1
tmax,I

S1(t)−
1

tmax,I
S2(t),

dS1

dt
=− 1

tmax,I
S1(t)+u(t), (3)

with S1, S2 [pmol/kgBW] the insulin mass in the accessible and not-accessible sub-
cutaneous depot, respectively, and tmax,I , [min], the time-to-maximum insulin ab-
sorption. In this framework the control input u(t), [pmol/kgBW/min], is the exoge-
nous insulin infusion rate, delivered subcutaneously. The model of insulin absorp-
tion here adopted (third and fourth equations in (3)) refers to [35] with no insulin
degradation at the injection site. It has been recently analyzed in [39], and it has
been exploited with the aim of glucose control in [11], according to which, here we
assume the same notation.

As far as the initial conditions, the subject is supposed to be at rest before the
insulin therapy starts, so that plasma glycemia and insulinemia are equal to the con-
stant (hyperglycemic for uncontrolled diabetic patients) basal levels (Gb, Ib):

G(τ) = Gb, I(τ) = Ib, τ ∈ [−τg,0]. (4)

In case of model (3), besides (4) we have that the subcutaneous depots are empty,
therefore:

S1(τ) = 0, S2(τ) = 0, τ ∈ [−τg,0]. (5)

It has to be stressed that models (1-3) may represent equally well healthy subjects
and insulin-resistant or severely insulin-deficient diabetic patients, by appropriately
changing the parameter values. Moreover, it does belong to the class of “minimal
models”, in the sense that according to a “minimal” set of independent parameters,
it allows to very well resemble the physiology of the glucose/insulin kinetics, and
it is identifiable from data with very good precision, according to IVGTT standard
perturbation experiments (see [32, 31]).

3 Observer-based control by means of intravenous insulin
infusion

Exogenous insulin administration is the basic procedure to cope with diabetes: for
Type 1 patients only exogenous insulin is available, while for Type 2 exogenous
insulin complements pancreatic production. The use of intravenous insulin admin-
istration, delivered by automatic, variable speed pumps under the direct supervision
of a physician, provides a wide range of possible strategies and ensures a rapid
delivery with negligible delays. As a matter of fact, control algorithms based on in-
travenous infusions (we can cite, among the others, [33, 36, 5, 7, 14, 13, 25]) are
directly applicable so far only to problems of glycemia stabilization in critically ill
subjects, such as in surgical Intensive Care Units after major procedures, [37].
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The aim of the proposed control law therapies is to reduce a high basal plasma
glucose concentration to a lower level, according to a smooth reference glucose
trajectory Gref(t). The equations of model (1) will be taken into account. The con-
trol law is synthesized disregarding any disturbances in the glucose dynamics, like
meals. The ability of the controller to reject these disturbances will play a crucial
role in the evaluation of the artificial pancreas.

3.1 Synthesis of the glucose control law

Define the tracking error as follows:

e(t) =
[

e1(t)
e2(t)

]
= Z(t)−Zref(t) (6)

with:

Z(t) =
[

z1(t)
z2(t)

]
=

[
G(t)

−KxgiG(t)I(t)+ Tgh
VG

]
, Zref(t) =

[
Gref(t)
Ġref(t)

]
, (7)

where Gref(t) is the glucose reference signal to be tracked. It is supposed to be
bounded (with lower bound strictly positive), twice continuously differentiable, with
bounded first and second derivatives. Since Gref(t) provides the desired plasma glu-
cose concentration, it clearly comes that these constraints readily match with a
physiologically meaningful choice. Examples of suitable Gref(t) can be found in
[22, 25, 30], where a function exponentially decreasing from the hyperglycemic
basal state down to a safe euglycemic level is chosen.

In [22], according to the theory of input-output feedback linearization with delay
cancellation (see [8, 10, 19]), with respect to the output y(t) = G(t) and the input
u(t), it is shown that, by applying the control input

u(t)
VI

=
S
(
G(t), I(t),G(t− τg)

)
− v(t)

KxgiG(t)
, t ≥ 0, (8)

with

S
(
G(t), I(t),G(t− τg)

)
=−KxgiI(t)

(
−KxgiI(t)G(t)+

Tgh

VG

)
−KxgiG(t)

(
−KxiI(t)+

TiGmax

VI
f
(
G(t− τg)

))
(9)

and
v(t) = G̈ref(t)+Re(t), (10)

the tracking error dynamics can be written as:
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ė(t) = He(t), H =
[

0 1
0 0

]
+
[

0
1

]
R. (11)

Because of the structure of H, the control matrix R∈ IR1×2 can be designed such that
matrix H has pescribed eigenvalues in the left half complex plane, thus ensuring the
exponential convergence to zero of the tracking error, that implies G(t) 7→ Gref(t).

Such a control law (8-10) requires both glucose and insulin measurements: on
the other hand, insulin measurements are slower and more cumbersome to obtain,
more expensive, and also less accurate than glucose measurements: a need exists,
therefore, to construct a control law avoiding the measurements of insulin serum.
For these reasons, a state observer for system (1) has been considered in [25], in
order to estimate the plasma insulin concentration and design a feedback control
law based on only glucose measurements. To this end, denote with Ĝ(t), Î(t) the
glucose and insulin estimates and consider the following equations for the observer:[

dĜ/dt

dÎ/dt

]
=

[
−KxgiĜ(t)Î(t)+ Tgh

VG

−Kxi Î(t)+ TiGmax
VI

f
(
Ĝ(t− τg)

)
+ u(t)

VI

]
+Q−1(Ĝ(t), Î(t)

)
W (G(t)− Ĝ(t)), (12)

where Q−1 is the inverse matrix of the matrix function Q(x1,x2) ∈ IR2×2 defined as:

Q(x1,x2) =
[

1 0
−Kxgix2 −Kxgix1

]
, (13)

and the observer gain matrix W ∈ IR2×1 is designed to ensure that

Ĥ =
[

0 1
0 0

]
−W

[
1 0
]

(14)

is Hurwitz with prescribed eigenvalues in the left half complex plane. The initial
conditions for (12) are formally given by:

Ĝ(τ) = Ĝ0(τ), Î(τ) = Î0(τ), τ ∈ [−τg,0]. (15)

According to [25] and references therein, it comes that the observer can be designed
such that, if the estimation error at zero is sufficiently small and the input signal is
suitably bounded, the estimation error converges exponentially to zero, with arbi-
trary decay rate fixed by means of a suitable choice of W . Moreover, substitute the
real glucose and insulin values in (8-9) with the estimates coming from the observer:

u(t)
VI

=
S
(
Ĝ(t), Î(t), Ĝ(t− τg)

)
− v(t)

KxgiĜ(t)
, t ≥ 0, (16)

and consider
v(t) = G̈ref(t)+Rê(t) (17)
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with the target error ê(t) defined by ê(t) = Ẑ(t)−Zref(t), with:

Ẑ(t) =
[

ẑ1(t)
ẑ2(t)

]
=

[
Ĝ(t)

−KxgiĜ(t)Î(t)+ Tgh
VG

]
. (18)

It is proven in [25] that there exist gain matrices R, W such that the closed-loop
system given by (1) with d(t) = 0, (12), (16-17) ensures that the plasma glycemia
is controlled to track the reference trajectory, with the error tracking asymptoti-
cally converging to zero, provided that the initial tracking and observer errors are
suitably small. It worths noticing that such a result is ensured by exploiting both
the estimated glucose and insulin concentrations in the control law. To use the real
(and available) glucose measurements, instead of the estimated glycemia, would
not ensure improvements nor (and more important) would it ensure to maintain the
aforementioned theoretical results.

Remark 1. Since the theory does not explicitly take into account the impossibility
to release negative insulin, in this cases the regulator would temporarily switch off,
leaving the patient without control for an unpredictable period. This is clearly an
undesirable situation, to be avoided. Another important requirement is to prevent
glucose oscillations, possibly determining dangerous hypoglycemia. Both these is-
sues need to be addressed in the setting of the control parameters (i.e. matrices R
and W ), as well as in the setting of the reference glucose trajectory, realizing a
tradeoff between closed-loop fast asymptotic stability (suitably negative real part
eigenvalues) and transient behavior (possibly smooth trajectories without oscilla-
tions). Simulations reported in [30] (see Figs. 2 and 3) show that the issue to prevent
the switching off of the regulator cannot be ensured, at least when implementing
the control law on a virtual environment, accounting for uncertainties affecting sen-
sors and actuators devices as well as model parameter uncertainties; nevertheless,
undesired oscillations can successfully be avoided.

3.2 Evaluation criteria and validation

Numerical simulations run by closing the control loop on (1) allowed to set the con-
trol parameters in order to track safely the desired glycemia within a couple of hour
of insulin administration (see [25] for the details). Of course a realistic validation
requires to build up an environmental framework which comprises measurement
uncertainties, insulin pump malfunctioning, intra-patient variability as well as the
discretization of the algorithm, because of real-time devices involving digital glu-
cose sensors and insulin pumps: the former provide quite reliable measurements
of plasma glycemia at given sample times, whose frequency is limited by the time
needed to analyze plasma glucose on a bed-side analyzer, [3]; the latter are used
to administer insulin by means of piecewise-constant infusions. To this end simu-
lations have been carried out by discretizing the proposed control law at suitable
sampling period ∆ , according to the following scheme (k = 0,1, . . .):



8 Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi, Andrea De Gaetano

1. at time k∆ the measurement of G(k∆) is delivered by the sensor;
2. at time k∆ the control input is computed by means of the available state estimates

Ĝ(k∆), Ĝ(k∆ − τg), Î(k∆), see (16):

u(k∆)
VI

=
S
(

Ĝ(k∆), Î(k∆), Ĝ(k∆ − τg)
)
− v(k∆)

KxgiĜ(k∆)
; (19)

if u(k∆) < 0, then u(k∆) is forced to be 0;
3. the constant infusion u(k∆) is administered to the patient in the time interval

[k∆ ,(k +1)∆);
4. simultaneously with item [3.], the controller device integrates numerically the

following equation, see (12), in the time interval [k∆ ,(k +1)∆), using the avail-
able measurement G(k∆) and past estimations:[

dĜ/dt

dÎ/dt

]
=

[
−KxgiĜ(t)Î(t)+ Tgh

VG

−Kxi Î(t)+ TiGmax
VI

f
(
Ĝ(t− τg)

)
+ u(k∆)

VI

]

+Q−1
(
Ĝ(t), Î(t)

)
W
(
G(k∆)− Ĝ(k∆)

)
;

(20)

5. the value of k is incremented by 1.

Notice that (20) provides the state estimation in the prediction interval [k∆ ,(k +
1)∆). A crucial point in validating the synthesized control law has been to ex-
ploit two distinct models of the glucose-insulin system [30]. The minimal model
(1), easy-to-handle from the control perspective, though physiologically meaning-
ful and mathematically coherent, is exploited to synthesize the control law. A dif-
ferent model, more comprehensive, multi-compartmental, is exploited to simulate a
Virtual Patient onto close the artificial pancreas. To this end, the model published
in [6], recently accepted by the Food and Drug Administration as a substitute of
animal trials [15], has been considered. The idea is sketched in Fig.1. The Virtual
Patient stands for the chosen model for validation (and, in a hopefully not too far
future, could be replaced by a real patient). The model identification dashed arrow
pointing to the DDE model-based controller from the Virtual Patient block refers
to a methodology to identify the DDE model parameters on the basis of a chosen
virtual procedure (for instance, in [30] we considered a virtual IVGTT). The control
parameter setting dashed arrow working on the DDE model-based controller block
stands for the setting of the control parameters (i.e. matrices R and W ), a procedure
achieved by means of trial and error simulations run on the DDE model without
assuming failures or malfunctioning. The solid arrows refer to the closed loop sys-
tem, which is implemented once the aforementioned preliminary two tasks have
been properly fulfilled: the Virtual Patient provides sampled glucose measurements
to the controller, and the DDE model-based controller provides the proper insulin
infusion rate to be applied in the time interval [k∆ ,(k +1)∆).

Moreover, in [30] the control parameters have been set once and for all the sub-
jects of a population generated by sampling the many parameters of the virtual pa-
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Fig. 1 Sketch of the virtual environment built up to validate the model-based control law.

tient provided by [6], each with a 5% of Coefficient of Variation (CV). Moreover,
glucose measurements are supposed to be affected by a 5% of CV as well as the
insulin infusion is supposed to be affected by a 15% of CV.

Safety and efficacy criteria have been set according to the ones reported in [3].
The application of these criteria to a population of VPs, with an average basal
glycemia of 9mM, provides very interesting results. In case of absence of meals,
no disturbance signal d(t) in (1), on a population of 10,000 VPs, no hypoglycemia
cases are reported (glycemia never reduces below 3.3mM), in favor of very good
efficacy results: more than 99.8% of diabetic VPs definitely reduce glycemia below
7mM within the first 3 hours of simulated experiments. These results are shown
to be robust with respect to a discretization period ∆ ∈ [5,15]min. Analogous very
good results are obtained by applying the same control law on a 24h temporal pe-
riod, accounting for the administration of three meals (treated as unknown distur-
bances). Indeed, besides the complete absence of hypoglycemia cases, glycemia is
constrained below 11mM within the 2 hours from the meal administration and dur-
ing the period before the successive meal, for a set of diabetic VPs which exceeds
95% of the population (see [30] for the details).

Remark 2. It is well known that disturbances like meals are hard to anticipate in
timing, in amount and in the rate of effective absorption of the nutrient. By treating
the meal d(t) in (1) as a completely unknown disturbance, it is shown in [26] that the
aforementioned closed-loop system (1), (12), (16-18) enjoys the local Input-to-State
Stability property with respect to the unknown disturbance d(t).

Remark 3. Copying with the need of an implementable discrete-time control law,
a different philosophy would be to work on a discretized glucose-insulin system
and then synthesize the control law according to the discrete framework. In [23] the
DDE model in (1) has been discretized according to [1] and the digital control law is
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designed according to [34] where the dummy output proposed in [1] is used, in order
to preserve under sampling the full relative degree of the continuous time model,
up to an approximation of order 3 in the sampling period. The digital control law
proposed in [23] guarantees the asymptotic stability of the suitably approximated
sampled glucose insulin system.

4 Observer-based control by means of subcutaneous insulin
infusion

Glucose control strategies actuated by means of subcutaneous insulin administra-
tion (see [2] and references therein) are easier to realize and, indeed, they can be
managed nowadays by the patients themselves. However, in order to design closed-
loop control strategies, the insulin absorption from the subcutaneous depot needs
also to be considered (see, among the others [11, 16, 21]). An excellent review of
the available models presently adopted for blood glucose regulation as well as the
closed-loop control methodologies and technical devices (blood glucose sensors and
insulin pumps) may be found in [4] and references therein.

In order to synthesize a subcutaneously delivered insulin therapy, the model-
based approach requires to endow the glucose-insulin DDE model (1) with the sub-
cutaneous insulin absorption compartment, see the complete model (3). The goal
is to achieve a desired euglycemic glucose level for patients with a basal hyper-
glycemic state. No exogenous glucose disturbances are here considered (i.e. d(t) = 0
in (3)).

According to [24, 28], by applying the theory of exact input-output feedback
linearization with delay cancellation (see [8, 10, 18, 19]), with respect to the input
u(t) and the output G(t)−Gd (Gd is the desired level of glycemia), the following
control law is found:

u(t) = VIt2
max,I

α(·)− v(t)
KxgiG(t)

, (21)

where α(·) is a function of the system variables at the present time G(t), I(t), S1(t),
S2(t), and of some of them at delayed times (namely of G(t− τg), I(t− τg), S2(t−
τg) and G(t− 2τg)), see [24] for the explicit formulation. By applying (21) to (3),
it comes that the closed-loop system may be written by using the new variables
z(t) = [G(t) G(1)(t) G(2)(t) G(3)(t)]T as:

ż(t) = Abz(t)+Bbv(t), t ≥ 0, (22)

with Ab, Bb the fourth-order Brunowski pair and the brackets (i) denoting the i-th
time derivative. By setting the outer input v(t) = Γ e(t), with

e(t) = z(t)− zd , zd = [Gd 0 0 0]T , (23)

the error dynamics becomes:
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ė(t) = He(t), H = Ab +BbΓ . (24)

Since the Brunowski pair is controllable, we design the gain matrix Γ ∈ IR1×4 in
order to make Hurwitz H and, therefore, the tracking error between plasma glycemia
and its reference signal (the first component of e(t)) converges exponentially to zero.

Besides the drawback of real-time insulin measurements involved in the afore-
mentioned glucose control law (shared also by the intra-venous insulin delivery ther-
apies dealts with in Section 3), here also subcutaneous insulin measurements are
required, which are quite impossible to obtain, especially in a real-time closed-loop
framework. In order to overcome such problems, in [21] a state observer for system
(3) is considered, with the aim of estimating the insulin on the basis of continuous
time glucose measurements.

In order to design the state observer for (3), define X(t)= [G(t) I(t) S2(t) S1(t)]T ∈
IR4 such that the DDE system (3) with d(t) = 0 can be formally written in the more
compact form:

Ẋ(t) = F
(
X(t),X(t− τg)

)
+Bbu(t), (25)

where F : IR4×IR4 7→ IR4 is defined for X = [X1 X2 X3 X4]T , Y = [Y1 Y2 Y3 Y4]T ∈ IR4

as:

F (X ,Y )=


−KxgiX1X2 + Tgh

VG

−KxiX2 + TiGmax
VI

f (Y1)+ 1
tmax,I

X3,
1

tmax,I
X4− 1

tmax,I
X3

− 1
tmax,I

X4

 (26)

The measured output is, then, given by y(t) = G(t) = CbX(t), where Cb =
[1 0 0 0].

The observer for system (25-26) adopted in [21] is the one developed in [9], given
by the following neutral system, with X̂(t),w(t) ∈ IR4:

˙̂X(t) = F
(
X̂(t), X̂(t− τg)

)
+Bbu(t)+w(t), t ≥ 0, (27)

with

w(t) = Q−1(X̂(t), X̂(t− τg)
)(

W
(
y(t)−CbX̂(t)

)
−Q1

(
X̂(t), X̂(t− τg)

)
w(t− τg)

)
.

(28)
Matrices

Q
(
X̂(t), X̂(t− τg)

)
=

∂Θ

(
X̂(t),X̂(t−τg)

)
∂ X̂(t)

Q1
(
X̂(t), X̂(t− τg)

)
=

∂Θ

(
X̂(t),X̂(t−τg)

)
∂ X̂(t−τg)

(29)

are obtained from the partial derivatives of the function Θ(·, ·) (see [9]), which is
formally defined as the aggregate of the output G(t) and its first 3 time deriva-
tives, obtained according to (3). Θ(·, ·) is a function of the system variables at the
present time (i.e. G(t), I(t), S1(t), S2(t)) and of some of them at the delayed time
(namely G(t − τg) and I(t − τg)) (see [21] for the explicit expression of Θ(·, ·)).
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When the function Θ is used for computations in (29), X̂(t) takes the place of
[G(t) I(t) S2(t) S1(t)]T , for any required time t. The gain matrix W ∈ IR4×1 is chosen
such that the matrix Ĥ = Ab−WCb is Hurwitz.

It has been shown in [9] that the gain matrix W can be properly designed to
ensure the global asymptotic convergence to zero of the observation error, provided
that proper conditions are satisfied. Such conditions are not completely satisfied
by the system at hand (for instance, the functions involved in (3) are not globally
Lipschitz). However, we are not interested in the convergence of the observation
error to zero for any initial state and input signal in bounded sets, as in [9], but only
in the convergence, at least locally, of the state variables of the closed-loop system
to the desired equilibrium. To this end, we exploit the observer equations to close
the loop from the observed state X̂(t), so that the state variables in (21) are replaced
by their estimates. Then, the control law becomes:

u(t) = VIt2
max,I

α(·̂)− v(t)
KxgiCbX̂(t)

, v(t) = Γ
(
ẑ(t)− zd

)
, (30)

with ẑ(t) = Θ(X̂(t), X̂(t− τg) and α(·̂) denoting the function α(·) computed in the
observed state variables X̂(t), X̂(t− τg), X̂(t− 2τg), instead of the real ones X(t),
X(t− τg), X(t−2τg).

The main result provided by [21] is that there exist matrices W and Γ such that,
as long as the initial estimation error and the initial tracking error are sufficiently
small, the evolution of the closed-loop system (25)-(30) asymptotically converges
to XE = [XT

E XT
E ] ∈ IR8, where XE = [Gd Id S2,d S1,d ]T is the equilibrium point of

(3) when the control input u(t) = ud = S1,d/tmax,I (see next remark) is provided.

Remark 4. The constant terms Gd , Id , S2,d , S1,d are such that, if at a given time
instant t̄ ≥ 0, it is G(τ) = Gd , I(τ) = Id , S2(τ) = S2,d , S1(τ) = S1,d , for τ ∈ [t̄−2τg, t̄],
and the control law u(t) designed as in (21) is applied, then the solution of (3) with
d(t) = 0 is G(t) = Gd , I(t) = Id , S2(t) = S2,d , S1(t) = S1,d , for t ≥ t̄, and the control
law becomes u(t) = ud , t ≥ t̄. In other words, once Gd has been chosen, we may
compute Id , S2,d , S1,d and ud as the reference levels of the system variables and of
the control input that asymptotically correspond to a perfect tracking of Gd . As a
matter of fact, the state XE = [Gd Id S2,d S1,d ]T ∈ IR4 is the equilibrium point of
the closed loop system (3)-(21).

5 Conclusions

The common denominator of the proposed insulin administration therapies are given
by (i) the model-based approach, (ii) the use of a state observer to predict real-time
insulin measurements. Indeed, only glucose measurements have been considered,
with insulin administered both intravenously and subcutaneously. The resulting con-
trol laws are theoretically appealing and, at least for the intravenous case, robust
with respect to many sources of uncertainties, measurements errors and actuator
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malfunctioning, according to a virtual environment making use of a different and
more comprehensive model of the glucose-insulin system. The same philosophy
has been recently applied also to a different clinical framework such as the one of
the Euglycemic Hyperinsulinemic Clamp (EHC) [27, 29], a nontrivial perturbation
experiment during which large amounts of insulin are administered intra-venously
to the subject, and exogenous glucose is administered, according to given protocols,
in order to keep glycemia constant. In this chapter we have briefly surveyed the re-
cent results about estimation methods for the glucose-insulin system by means of
state observers for time-delay systems, in perspective with the control problem.
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