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Analysis and control of time-delay systems has gained increasing interest in the last decades,

due to the effectiveness of delay-differential equations in modeling a wide range of physical and

engineering frameworks, such as ecological systems, industrial processes, telerobotic systems,

earth controlled satellite devices and biomedical engineering. A further great impulse has been

recently given by networked and distributed control, which may naturally induce non-negligible

and possibly time-varying delays in the input/output channels. As in the case of systems described

by ordinary differential equations, a crucial point in most advanced control approaches, such as

optimal and robust control, is the possibility to solve the so-called observer problem, that is

the design of algorithms that provide full information on the state of the system by real-time

processing of few measurements. The reader can refer to the recent edited book on nonlinear

delay systems and references therein [1].

Nonlinear time-delay systems are characterized by the presence of one or multiple delays

in the input, state, or measurement equations. In particular, delays in the state equations occur
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in the modeling of many physical systems, whereas output delays account for both actual

measurement lags and sampled observations. In the first part of this article, the most important

results in the area of observers for nonlinear systems with state and output delays are reviewed.

Although this topic has been extensively investigated in the literature, from both a theoretical

and a practical perspective (see the papers [19]–[25] and [28]–[32]), only the most important

results provided by the authors in the last 20 years are reported here, based on the so-called

Luenberger-like observers, in praise of Luenberger seminal work [2]. The delay free case was

originally proposed in [3], [4] and it has been subsequently extended to the case of large constant

output delays [5], bounded [6] or unbounded [7] time-varying output delays, and also to systems

with state delays [8], [9].

Tools based on differential geometry, as developed in [10], [11], are widely exploited,

and it is also considered the control problem of using the real-time estimates provided by the

observer to implement a control law, which is common in the applications.

The second half of the work is devoted to investigate the applicability of the proposed

observer results to a time-delay model of the glucose-insulin system, within the framework

of the Artificial Pancreas (AP), a term referring to the set of glucose control strategies

required for diabetic people and delivered by means of exogenous insulin administration,

usually via subcutaneous or intravenous infusions. From a control engineering perspective, real-

time predictions of both glucose and insulin blood concentrations (glycemia and insulinemia,

respectively) are of great importance for the AP, since they could be required in closed-

loop algorithms whenever the complete knowledge of the state of the system is needed to

implement the control law. Differently from insulinemia, plasma glucose measurements are

currently affordable with relatively low cost devices and effective algorithms, thus the control
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problem of designing suitable closed-loop regulators by means of only glucose measurements

is well posed, and the use of a state observer to compensate for the lack of direct insulin

measurements deserves interest in the AP community [14].

As shown in [12], [13], Delay-Differential Equations (DDE) provide a better represen-

tation of the pancreatic insulin delivery rate, with respect to Ordinary Differential Equations

(ODE), both for healthy subjects and for patients affected by Type 1 or Type 2 Diabetes

Mellitus (denoted T1DM and T2DM patients, respectively, throughout the paper). In [17] and

[18] effective observer-based glucose control strategies have been developed using DDE models

for both T1DM and T2DM patients.

The aim of this paper is to show the good performances of the state-observer applied to a

DDE model of the glucose-insulin system recently exploited in the AP framework. Validation is

carried out on the ground of real clinical measurements available from 20 healthy subjects who

underwent an Intra-Venous Glucose Tolerance Test (IVGTT). Results show that the observer

behavior is robust with respect to the initial conditions, that have been set according to a pair

of very critical cases of under- and over-estimation. Also the robustness of the observer with

respect to some model parameters, such as the delay in the pancreatic insulin production, is

discussed.

Like most of clinical/medical applications, the AP usually faces the problem of dealing

with continuous-time models and discrete-time measurements, whose sampling rate depends on

the device used. It is shown that a state-observer for systems with output delays can be effectively

used in this case, by exploiting the artifice of modeling the discrete-time measurements as a

continuous output affected by a piecewise-linear time-varying delay.
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This note is ideally divided in 2 parts. The first part is devoted to review most important

results on Luenberger-like observers over the last 20 years: besides a preliminary Section

involving delayless nonlinear systems, the following two Sections deal with the extension of the

observers theory to nonlinear systems with state or output delays. The second part is inspired by

recent results in the application of observer-based control laws in the AP biomedical applications,

and aims at evaluating the efficacy of the Luenberger-like observers if applied to DDE models of

the glucose-insulin system. Validation is carried out on the ground of real clinical measurements

available from 20 healthy subjects who underwent an IVGTT.

A Luenberger-like observer for nonlinear systems

In this section the Luenberger-like observer proposed in [3] for single-input-single-output

(SISO) delayless systems is presented as a starting point for the development of observers for

multi-input-multi-output systems (MIMO) [4], and of observers for delay systems [8], [9] or for

systems with delayed measurements [5],[6],[7]. The presentation has been limited to the SISO

case in order to have simpler notations. Indeed, the required notations (additional subscripts and

block structure of vectors and matrices involved), necessary for the presentation of the results for

the MIMO case, is rather complicated and may distract the reader from the essential concepts

(see “Observer for MIMO systems”).

Consider a smooth nonlinear system described by the equations

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0, (1)

y(t) = h(x(t)), t ≥ 0, (2)

where x(t) ∈ IRn is the state, u(t) ∈ IR is the input function , y(t) ∈ IR is the measured output,
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x0 ∈ IRn is the initial state. g(x) and f(x) are C∞ vector fields and h(x) is a C∞ function.

The term f(x) of the differential equation (1) that governs the state transition when u(t) ≡ 0 is

called is called drift.

The problem of asymptotic state observation consists in finding a causal system, denoted

asymptotic observer, that, when driven by the pair (u(t), y(t)), produces a vector variable x̂(t)

(observed state) that asymptotically converges to the state x(t), that is ∥x(t)− x̂(t)∥ → 0.

For the theoretical definition of the state-observability property of a system (1)–(2) and

for the construction of an asymptotic state-observer, a square map ϕ : IRn → IRn, denoted drift-

observability map, is needed. Such map is constructed by stacking the first n Lie derivatives

(from 0 to n− 1) of the output function h(x) along the drift vector field f(x):

ϕ(x)
∆
=


h(x)

Lfh(x)

· · ·
Ln−1
f h(x)

 . (3)

For more details on Lie derivatives and their use see “Lie-derivatives, relative degree, and

observability”.

Denoting with Yn the vector of the first n output derivatives (from 0 to n− 1) of system

(1)–(2)

Yn(t) =
[
y(t) ẏ(t) . . . y(n−1)(t)

]T
, (4)

it is easy to verify by means of the chain rule that, when u(t) ≡ 0,

Yn(t) = ϕ
(
x(t)

)
. (5)
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Thus, if the map Yn = ϕ(x) is invertible, then the computation of the state x(t) as a function

of the output y(t) and of its first n − 1 derivatives is theoretically possible as a simple map

inversion: x(t) = ϕ−1 (Yn(t)). This property justifies the following definition.

Definition 1: If the drift-observability map ϕ(x) is a diffeomorphism from an open set

Ω ⊆ IRn in ϕ(Ω), then the system (1)–(2) is said to be drift-observable in Ω. If Ω ≡ IRn, then

the system (1)–(2) is said to be globally drift-observable.

Note that the formula x(t) = ϕ−1 (Yn(t)) cannot be used in practice for the state

reconstruction from measurements, even in the case u(t) ≡ 0, because only the first component

of Yn(t) is the available output measurement and, in addition, in most cases nonlinear maps do

not have a closed form inverse ϕ−1(·).

A consequence of the drift-observability property of Definition 1 is that the Jacobian of

the map z = ϕ(x), denoted Q(x) and defined as

Q(x)
∆
=
dϕ(x)

dx
, (6)

is nonsingular in Ω, and the inverse map of z = ϕ(x) exists in ϕ(Ω). Even if the inverse map is

not known in closed form, its Jacobian can be easily computed at z = ϕ(x) as

dϕ−1(z)

dz

∣∣∣
z=ϕ(x)

= Q−1(x). (7)

Definition 2: A system is said to be Uniformly Lipschitz Drift-Observable (ULDO) in a

set Ω ⊆ IRn if it is drift-observable in Ω and the maps ϕ(·) and ϕ−1(·) are uniformly Lipschitz

in Ω and ϕ(Ω), respectively. If Ω ≡ IRn the system is said Globally Uniformly Lipschitz Drift-

Observable (GULDO).
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When a nonzero input u(t) is present in (1)–(2), it is useful to define Uσ, the vector of

the first σ time-derivatives of the input (from 0 to σ − 1), when existing:

Uσ
∆
=

[
u u̇ . . . u(σ−1)

]T
. (8)

It can be easily proven that taking σ = n− r, where r is the relative degree of system (1)–(2)

(see “Lie-derivatives, relative degree, and observability”) a vector function Ψ(x, Uσ) exists such

that

Yn(t) = ϕ
(
x(t)

)
+Ψ

(
x(t), Uσ(t)

)
, (9)

with the property Ψ(x, 0) = 0 for any x ∈ IRn. In general, the drift-observability of the system

(1)–(2) does not imply that (9) can be solved for x(t), because the invertibility of (9) for x

may depend on the input, through the vector Uσ. However, when r = n, that implies σ = 0,

then Ψ ≡ 0 (see “Canonical Observable form of systems” for details) and drift-observability is

sufficient to guarantee state reconstructability for any bounded input.

The Luenberger-like observer proposed in [3] is the following dynamic system

˙̂x(t) = f(x̂(t)) + g(x̂(t))u(t) +Q−1(x̂(t))K
(
y(t)− h(x̂(t))

)
. (10)

(10) is said to be a global exponential observer for the system (1)–(2) if, for some gain vector

K there exist µ > 0 and α > 0 such that

∥x(t)− x̂(t)∥ ≤ µ e−αt∥x(0)− x̂(0)∥, (11)

for any x(0) and x̂(0) in IRn and input u in some class U (as it will be seen below, some

conditions on the input must be satisfied in order to have global exponential convergence).
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The following theorem merges the results in [3] with those of [4]:

Theorem 1: For the system (1)–(2) assume that the following hypotheses hold:

1) The system is GULDO (see Definition 2) (γϕ and γϕ−1 denote the Lipschitz coefficients of

ϕ and ϕ−1, respectively);

2) the functions H(z) and Γ(z) defined in (S11), are uniformly Lipschitz in IRn, with Lipschitz

coefficients γH and γΓ respectively;

3) there exists a uniform bound uM > 0 on the input function: |u(t)| ≤ uM , ∀t ≥ 0.

Then, the following statements are true:

• if r = n (full relative degree), then for any given bound uM on the input function and for

any chosen α > 0 there exists a gain vector K ∈ IRn such that (11) holds true for some

µ > 0;

• if r < n (non-full relative degree), then for any chosen α > 0 there exist a bound uM > 0

on the input function, and a gain vector K ∈ IRn such that (11) holds true for some µ > 0.

Note that in the case of r = n the bound uM on the input can be any, that means

arbitrarily large, and the choice of the gain vector K that ensures converence strongly depends

on the size of uM . On the contrary, when r < n the convergence of the observation error to zero

at the desired rate α can be achieved only if the bound uM is sufficiently small.

The proof of Theorem 1, available in [4], takes advantage of the form of the observer

equation after the change of coordinates z = ϕ(x), that is the form (S14). From this, together

with the system representation (S10), the error dynamics in z-coordinates (ez = z−ẑ) is obtained

ėz(t) = (A−KC)ez(t) +B
(
Γ
(
z(t)

)
− Γ

(
ẑ(t)

))
+ Fr

(
H
(
z(t)

)
−H

(
ẑ(t)

))
u(t), (12)
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which is a linear system with nonlinear Lipschitz perturbations. The convergence proof consists in

showing that for any given α, an observer gain K can be found such to guarantee the exponential

convergence of ez(t) in spite of the Lipschitz perturbations.

Remark 1: The constant µ in (11) depends on the bound uM on the input function, on

the desired exponential rate α and on the Lipschitz constants γϕ, γϕ−1 , γH , γΓ.

Remark 2: The GULDO and the global uniformly Lipschitz assumption for the functions

Γ and H in many applications is too strong and not necessary. When the ULDO and the uniform

Lipschitz property for Γ and H are verified only locally, that means in bounded subsets of

IRn, semiglobal convergence results can be proved for the observer (10) under the additional

assumption of Bounded-Input Bounded-State (BIBS) stability of system (1)–(2). To be more

specific, if for any open bounded set Ω ⊂ IRn, where the state of a BIBS system is confined

(invariant set), a gain K can be found that ensures the convergence to zero of the observation

error, then (10) is called a semiglobal observer. For further details see [4], where the semiglobal

version of Theorem 1 is reported.

Luenberger-like observers for nonlinear systems with state delays

It is a fact that the state space of systems with delays involving the internal variables has

infinite dimension, and this leads to difficulties not only in the system analysis and in the synthesis

of controllers and/or observers, but also on their physical implementation. In the case of linear

delay systems, the state observation problem has been extensively studied (see, for instance, [20],

[21], [22], [23] and the references therein). Further difficulties arise in dealing with nonlinear

time-delay systems, due to the nonlinear differential description of the dynamics, in an infinite
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dimensional space. The observation problem in the nonlinear case has been addressed for classes

of systems and with different approaches in [24], [8], [9],[25], [28], [29], [30], [31], [32]. In

this section the results in [9], based on tools of differential geometry, are briefly summarized,

providing nonlinear observer algorithms for a significant class of nonlinear time-delay systems.

The observer in [9] has been successfully used in artificial pancreas and other general glucose

control frameworks, such as the clinical experiment of CLAMP (see [17], [18]).

An observer for a class of nonlinear systems affected by multiple discrete and distributed

delays

Consider the following system

ẋ(t) = f(x(t)) + g(x(t)) · p(xt, u(t)),

y(t) = h(x(t)), t ≥ 0, xt(τ) = x(t+ τ), τ ∈ [−∆, 0],
(13)

where x, u, f, g, and h are as in (1)–(2), xt ∈ PC([−∆, 0]; IRn) (here PC denotes the set of

bounded, piecewise continuous functions), ∆ > 0 is the maximum delay, p is a functional from

PC([−∆, 0]; IRn)× IR to IR, and the initial conditions x0 ∈ PC([−∆, 0]; IRn).

Assumption 1: The triple (f, g, h) has full observation relative degree (see Definition 3)

in all IRn, and the map (3) z = ϕ(x) is a diffeomorphism in IRn.

Considering the vector Yn(t) of output derivatives defined in (4) and the drift-observability map

defined in (3), let

z(t) = Yn(t), t ≥ 0, z(τ) = ϕ(x0(τ)), τ ∈ [−∆, 0]. (14)
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Following the same steps that led to (S10), and noting that in the case of full relative degree

Fn = B, the system (13) can be rewritten as

ż(t) = Az(t) +B
(
Γ(z(t)) +H(z(t))p(Φ−1(zt), u(t))

)
,

y(t) = Cz(t), t ≥ 0,

z(τ) = ϕ(x0(τ)), τ ∈ [−∆, 0],

(15)

where: zt : [−∆, 0] → Rn is defined as zt(τ) = z(t + τ), τ ∈ [−∆, 0], t ≥ 0; (A,B,C) have

the Brunowsky canonical form (S5), the maps Φ and Φ−1 from PC([−∆, 0]; IRn) to itself are

defined as

Φ(ψ)(τ) = ϕ(ψ(τ)),

Φ−1(ψ)(τ) = ϕ−1(ψ(τ)),
ψ ∈ PC([−∆, 0]; IRn), τ ∈ [−∆, 0]. (16)

Note that by the Assumption 1 the Jacobian Q defined in (6) is invertible in all IRn.

The observer presented in [9] for nonlinear delay systems with structure (13) is the

following

˙̂x(t) = f(x̂(t)) + g(x̂(t)) · p(x̂t, u(t)) +Q−1(x̂(t))K(y(t)− h(x̂(t)), t ≥ 0, (17)

with initial conditions x̂0 ∈ PC([−∆, 0]; IRn). As usual, x̂t(τ) = x̂(t+ τ), τ ∈ [−∆, 0].

Theorem 2: Let the system (13) satisfy the Assumption 1, and suppose there exists uM

such that |u(t)| ≤ uM ∀t ≥ 0. Moreover assume the following Lipschitz hypotheses:

H1) there exist positive constants γ1, γ2, γ3 such that, for all v1, v2 ∈ IRn and for all ψ1, ψ2 ∈

PC([−∆, 0]; IRn),

|Γ(v1)− Γ(v2)| ≤ γ1∥v1 − v2∥, (18)

sup
∥u∥≤uM

|H(v1) p(Φ
−1(ψ1), u)−H(v2) p(Φ

−1(ψ2), u)| ≤ γ2∥v1−v2∥+γ3∥ψ1−ψ2∥∞; (19)
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H2) the maps ϕ(·) and ϕ−1(·) are Lipschitz in all IRn with Lipschitz constants γϕ and γϕ−1 .

Then, given any α > 0, there exists a gain K for the observer (17), such that

∥x(t)− x̂(t)∥ ≤ e−α t γϕγϕ−1∥V −1(λ)∥∥V (λ)∥∥x0 − x̂0∥∞, (20)

where λ is the set of distinct eigenvalues of A − KC, and V (λ) is the Vandermonde Matrix

(S13).

The proof of this Theorem can be found in [9].

Remark 3: As in the case of observer for delay-free systems of the previous section, if

the Lipschitz conditions do not hold globally, then semiglobal convergence can be proved by

assuming BIBS stability of the system. The relevant convergence Theorem can be found in [9].

Remark 4: As far as the selection of the gain vector K ∈ IRn is concerned, a longstanding

experience on many practical systems including chemical reactors, electrical machines and

biological systems, suggests to simply make the choice on the basis of trials by simulations

on the system at hand, always guaranteeing the Hurwitz property of the matrix A − KC (see

(S5)). A mathematical procedure for the selection of the gain vector K which guarantees the

result of Theorem 2 is given below, inspired by the convergence proof reported in [9], on the

basis of results provided in [3]. For a given positive real ρ, let λ(ρ) = [−ρ − ρ2 · · · − ρn]
T

be a parametrized set of eigenvalues. Then, it is easily proved that, for a chosen converge rate

α, there exists ρ∗ > 0 such that the following inequality holds

√
nγ

(
1 + eα∆

)
∥V −1(λ(ρ))∥ ≤ ρ− α, ∀ρ ≥ ρ∗, (21)

where γ = max{γ1+γ2, γ3}. This results holds simply because limρ→+∞ ∥V −1(λ(ρ))∥ = 1 (see
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[3]). Then, a gain K that guarantees the convergence (20) of Theorem 2 is any one that assigns

the eigenvalues λ(ρ) to the matrix A−KC, with ρ ≥ ρ∗. Note that in practical applications it

can be difficult to evaluate the coefficient γ in (21). However, the structure of the eigenvalues

set λ(ρ) gives a precise guideline for the choice of eigenvalues by performing trials by means of

computer simulations, gradually increasing ρ until the convergence is reached. Other procedures

of gain selection, including one similar to the procedure described above, also based on Linear

Matrix Inequalities, are discussed in [17] for the construction of a local observer-based controller

for the glucose-insulin system.

A Luenberger-like observer for nonlinear systems

with delayed measurements

The problem of state estimation when output measurements are available after some

delay arises frequently in engineering applications, for example when the system is controlled

or monitored by a remote device through a communication channel, or when the measurement

process intrinsically causes a non negligible time delay, for example in biochemical reactors.

Time-varying delays in the output are a tool to model also other situations occurring in

the measurement process, such as sampling, buffering, and data loss (see “Modeling the

measurements through time-varying delays”) For this reason the issue of state reconstruction

in the presence of output time-delays has been widely investigated in recent years.

A nonlinear system affine in the input and affected by output delays is represented as

ẋ(t) =f(x(t)) + g(x)u(t), t ≥ 0, x(0) = x̄ ∈ IRn, (22)

y(t) =h(x(t− δ(t))), t ≥ ∆, (23)
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where x, u, f, g, h are as in (1)–(2), y(t) is the scalar measurement available at time t, and

δ(t) ∈ [0,∆] is the known time-varying measurement delay of the output. System (22) is an

ordinary finite-dimensional system without delay, but the corresponding observer contains y(t)

that refers to a past state value. Consequently, the dynamics of the observer and of the estimation

error is ruled by a DDE.

The Luenberger-like observer for (22) must rely on past observations in the correction

term and it is defined for t ≥ δ by

˙̂x(t) =f(x̂(t)) + g(x̂(t))u(t) +Q−1(x̂(t))K(δ(t))
{
y(t)− h(x̂(t− δ(t)))

}
, (24)

x̂(τ) =ϕ(τ), τ ∈ [0, ∆], (25)

K(δ(t)) = e−ηδ(t)K0. (26)

where K0 is chosen as in the delay-free case to assign eigenvalues to (A−K0C), and η > 0 is

a further design parameter, whose function is to give more weight to recent measurements than

to the old ones. Note that when δ(t) = 0, (24) reduces to the Luenberger-like observer (10) for

the delay-free case.

The introduction of a delay-dependent gain guarantees, under the same hypotheses of the

delay-free case, the exponential convergence to 0 with rate η of the estimation error when the

output delays are time-varying [7].

Theorem 3: Consider system (22)-(23), with δ(t) ∈ [0,∆], under the same assumptions

of Theorem 1. Then, for any assigned η > 0, there exists K0 and a positive ∆̄ such that, if

∆ < ∆̄, then (24)–(26) is a global exponential observer for system (22)-(23) such that η is the

decay rate of the estimation error (that is, eq. (11) is verified for some µ > 0 and α = η).
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Remark 5: When the Lipschitz Assumptions of Theorem 1 are locally satisfied, and the

system is BIBS stable, so that open invariant sets Ω exists when the input u is bounded, on

which the drift-observability map is invertible, semiglobal convergence results can be proved, as

explained in Remark 2 for the case of delayless output [7].

It is worth noting that Theorem 3 states sufficient conditions for the convergence of the

observer (24)–(26) that depend only on the bound of the delay. No other restrictions are placed

over the delay function δ(t), that can be non-differentiable or even discontinuous. Consequently,

the observer (24) can be used also in the case of sampled measurements, as long as the

sampling interval is less than ∆̄, because sampled measurements can be easily modeled using a

discontinuous time-varying delay δ(t) (piecewice linear function of t). The bound ∆̄ in Theorem

3 depends on the Lipschitz constants of system (22) and on the desired convergence rate η. In the

general case, this dependency is complicated to express but it can nevertheless be approximated

to derive sufficient conditions for the delay bound [7]. Roughly speaking, the gain K0, as in

the delay-free case, should be large enough to overcome the system nonlinearities, represented

by the Lipschitz constants, and to achieve the desired convergence rate η. On the other hand a

large gain K0 reduces the maximal delay ∆̄, because K0 multiplies delayed error terms, and the

result is likely to destabilize the error system if the gain is too high and the delay too large. This

explains why a gain K0 too high reduces the maximal delay ∆̄. The delay dependent coefficient

e−ηδ(t) is beneficial in expanding the maximum delay ∆̄, but can not manage delays of any size.

When the output delay exceeds the bound ∆̄ it is possible to resort to a cascade of

observers (chain observer). The idea is to have an array of observers, each one in charge of a

fraction of the total delay. This approach was originally pursued for constant delays [5], [19].

The extension to time-varying delays [7] is not trivial and requires additional hypotheses on the
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delay function δ(t). Many results about chain observers in the case of large time-varying delays

can be found in [7].

Remark 6: All the variants of the Luenberger-like observer presented until this point

for the different types of dynamic systems considered (without delays, with delays in the state

variables or in the measurements, constant or time-varying delays) are strongly based on the

knowledge of the dynamic model of the measured process. It can be said that the task of the

observer is to compute in real-time a state trajectory that is in agreement with both the model and

the measurements. The observability assumption on the system (invertibility of the observability

map) ensures that there exists only one state trajectory that is in perfect agreement with a given

output trajectory, and therefore the observer asymptotically returns the true state. From these

considerations it is natural to ask what happens if the model used for the observer construction,

denoted the nominal model, is different from the true model, that is the model that generates

the measurements processed by the observer. In this case the task of the observer becomes

the one of computing a state trajectory that is consistent with both the nominal model and the

measurements. It is clear that the reconstructed state now is in agreement with the nominal

model, and not with the true model. As a general qualitative rule, it can be said that the closer

is the nominal model to the true model, the closer is the reconstructed state trajectory to the

true state. As a consequence, a good observer constructed exploiting a bad model (that means

significantly different from the true model) is expected to return a state trajectory significantly

different from the true state.
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Observers as real-time estimators for the Artificial Pancreas

The Artificial Pancreas (AP) refers to the set of glucose control strategies required

for diabetic people and delivered by means of exogenous insulin administration, usually via

subcutaneous or intravenous infusions. The increasing number of diabetic patients, along with

the rising costs of care treatments, has gathered efforts from many diverse areas ranging from

medicine to mathematical modeling of the glucose-insulin system, including computer science

and control engineering, aiming at containing the disease and improving the wellness according

to wearable and as little invasive as possible devices (see for instance [33] and references therein).

From a control engineering perspective, glucose and insulin real-time predictions are of

great importance for the AP, since they could be required in closed-loop algorithms whenever the

complete knowledge of the state of the system is needed to design the control law [14]. Differently

from plasma glycemia, which can be straightforwardly measured with relatively low cost devices

and affordable algorithms, plasma insulinemia is slower and more cumbersome to obtain, more

expensive and also less accurate. This fact has stimulated the investigation of algorithms capable

of providing in real-time the plasma insulin concentration by processing a stream of glycemia

measurements, that with the current technology are available with a sampling period of 5min or

less [33]. The importance of state-estimation algorithms is due to the great variety of observer-

based control laws applicable, at least in theory, to the glucose control problem, with exogenous

insulin administration playing the role of control input. Observer-based control laws belong to

the field of model-based strategies, when the regulator is synthesized by explicitly exploiting the

structure of the model equations. To this aim, small-scale minimal models are usually preferred

since they allow to provide the analytical solution to the control problem under investigation

17



[37].

In this framework, the DDE minimal model exploited in [17] to track plasma glycemia

down to a safe euglycemic level for a Type 2 diabetic patient is considered. It is a short-

term glucose-insulin model, originally exploited to investigate Intra-Venous Glucose Tolerance

Tests (IVGTT), see the sidebar “The IVGTT clinical protocol”. Its applicability to the Artificial

Pancreas is clearly limited to a short time period, during which the only perturbation is provided

by the exogenous insulin infusion (the control input): short-term models allow to investigate the

transient of closed-loop glucose control strategies, pointing out criteria for safety and efficacy

related to the feedback control [18].

Differently from Type 1 diabetic patients (they will be denoted by T1DM and T2DM

shortly), for whom there is no endogenous insulin release at all, in T2DM exogenous insulin

administration complements the endogenous insulin production, thus making unavoidable the

modeling of the pancreatic Insulin Delivery Rate (IDR). This fact motivates the use of DDE

models when seeking model-based glucose control laws applicable not only to T1DM, but also

to T2DM (the great majority of people suffering from Diabetes Mellitus) as well as to healthy

subjects undergoing clinical experiments where glucose control is presently manually regulated

by a physician (this is the case of the Euglycemic Hyperinsulinemic Clamp, [34]). Indeed,

DDE models have been shown to properly (and better than standard ODE models) account for

irregularly varying pancreatic IDR (see for instance [12], [13] and references therein).

The DDE model here investigated has been employed in the recent literature to desgn a

model-based glucose control law, which properly exploits insulin estimates achieved by means

of a state observer for DDE nonlinear systems. Besides theoretical results highlighted in [17], the

validity of the observer-based glucose control strategies has been recently evaluated by closing the

18



loop on a population of virtual patients, generated by a different, “maximal”, multi-compartmental

model accepted by the Food and Drug Administration (FDA) as an alternative to animal trials for

the preclinical testing of control strategies in AP [18]. In [18] exogenous insulin was supposed to

be administered intravenously, thus accounting for AP strategies directly applicable to problems

of glycemia stabilization in critically ill subjects, such as in surgical Intensive Care Units after

major procedures [35]. Analogous results have been also obtained for the Clamp experiment,

[26], [27], with the same DDE model exploited in a completely different clinical framework. In

both cases pancreatic IDR could not be neglected.

In the following, the performances of the observer for the aforementioned DDE model

of the glucose-insulin system are analyzed and further evaluated in open-loop, on the ground

of real measurements available from 20 healthy subjects who underwent an IVGTT. These data

have already been acquired and used in [15] for a different purpose. The model equations are

reported below, with G(t), [mM], and I(t), [pM], denoting plasma glycemia and insulinemia,

respectively:

dG(t)

dt
= −KxgiG(t)I(t) +

Tgh
VG

,

dI(t)

dt
= −KxiI(t) +

TiGmax

VI
ξ
(
G(t− τg)

)
, (27)

where ξ(·) is a nonlinear map of the type

ξ(G) =
(G/G∗)γ

1 + (G/G∗)γ
, (28)

that models the endogenous pancreatic IDR. In [16] it has been proven that the system is invariant

in R2
+, the open positive orthant of R2, that means that the time-evolution of glucose and insulin

concentrations are proven to be greater than a strictly positive value for any positive initial
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condition (see the sidebar “DDE glucose-insulin model parameters” for further details on the

model parameters, their physiological meaning and measurement units, and see [16] for further

details on the model mathematical coherence and [15] for identification issues and statistical

robustness).

To formalize the problem to estimate plasma insulin concentration from only glucose

measurements, define the state x = (G, I) ∈ R2. Then, model (27)-(28) endowed with the

measurement equation y(t) = G(t) can be restated according to (13) where u(t) ≡ 0 (because

no glucose or insulin inputs are modeled for the open-loop system) and functions f(·), g(·), p(·)

and h(·) are defined as follows:

f(x) =

−Kxgix1x2 +
Tgh

VG

−Kxix2

 g(x) =

 0

TiGmax

VI

 p(xt, 0) =

 0

ξ(x1t)

 h(x) = x1.

(29)

The full observation relative degree is readily verified by the triple (f, g, h), with the observability

map

ϕ(x) =

 h(x)

Lfh(x)

 =

 x1

−Kxgix1x2 +
Tgh

VG

 (30)

being a diffeomorphism in R2
+, therefore the diffeomorphism holds true for all meaningful cases.

The observer equations for model (27) are: dĜ(t)
dt

dÎ(t)
dt

 =

 −KxgiĜ(t)Î(t) +
Tgh

VG

−KxiÎ(t) +
TiGmax

VI
ξ
(
Ĝ(t− τg)

)
+Q

(
Ĝ(t), Î(t)

)−1
K(G(t)− Ĝ(t)) (31)

where Q is the Jacobian of the observability map ϕ defined in (30), invertible in R2
+. Assumption

1 and hypotheses H1 and H2 of Theorem 2 are locally (not globally) satisfied, therefore

semiglobal results are ensured, by virtue of Remark 3, since the system is BIBS (for the open
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loop case under investigation it is stable with null input). The selection of the gain vector K

determines the observer convergence. Though a mathematical procedure is available (Remark 4)

the choice of the eigenvalues, and thus of the gain vector K, has been set by simulation trials,

according to a tradeoff providing the Hurwitz property of matrix A−KC with a not too large

gain K, which may arise numerical problems in the observer implementation.

The procedure to evaluate the quality of the observer performances is based on a twofold

use of the IVGTT protocol: the IVGTT will be first exploited in vivo to identify the DDE model

parameters by means of real data (glucose and insulin measurements) previously collected by

the 20 healthy subjects; then, the IVGTT will be exploited in silico to simulate a perturbation

of the initial state and then apply the observer methodology (properly tuned on the individual

parameter estimates) to infer plasma insulin concentration from glucose measurements. A couple

of indexes will be as well introduced to measure and compare each other the individual observer

error.

According to the IVGTT procedure, see the sidebar “The IVGTT clinical protocol”,

the bolus Dg is fixed to 1.83 mg/kgBW for the in vivo experiments. The identification task

is performed by Generalized Least Square method [15]. The basal values of glycemia and

insulinemia, Gb and Ib, enter the identification scheme as covariates, and are measured before

the experiments. Regarding the other model parameters, VI = 0.25L/kgBW and G⋆ = 9mM are

fixed by the investigator and kept constant, VG, τg, Kxgi, Kxi, γ, I∆ are free model parameters

to be estimated and TiGmax, Tgh are determined from the other parameters according to the

algebraic steady-state conditions.

This way the 20 sets of data (both glucose and insulin measurements) allow to identify the

parameters of the DDE models associated to each real subject. Successively, each of the 20 DDE
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models will be exploited to design the observer: in other words the observer is synthesized by

means of a DDE model tailored to the subject, in the spirit of personalized medicine. Simulations

will be carried out by implementing in silico a different IVGTT experiment, according to a double

amount of the glucose bolus Dg = 3.66 instead of 1.83 mg/kgBW. As previously stated, the

observer equations are reported in (31), with the observer gain K designed to provide the same

eigenvalues (set equal to {−0.2,−0.3}) to matrix A−KC, (S12), for all subjects. The fact that

a unique value of the gain K is able to cope with the different subjects under investigation may

be interpreted as a sign of a rather homogeneity in the population of 20 individuals. As far as

the observer initial conditions are concerned, a pair of critical worst cases are considered. One

case refers to an underestimate that completely neglects the insulin first phase in (S15), thus

Î(0) = Ib; the other case refers to an overestimate of the first phase corresponding to 1000 times

as much as the basal insulinemia: Î(0) = 1000Ib.

To assess the goodness of the observer-based insulin estimate Î a pair of indexes related

to the accuracy of the observed insulin and efficacy of the method are defined. The former is

evaluated in terms of the Normalized Integral Error, NIE over the 180 minutes of the simulated

experiment

NIE =

√
1

Tfin

∫ Tfin

0

∣∣∣I(t)− Î(t)
∣∣∣2 dt∣∣∣I(0)− Î(0)

∣∣∣ , Tfin = 180min; (32)

the latter is evaluated in terms of the time instant tmin according to which the observer error is

definitely below a given fraction of insulinemia

|I(t)− Î(t)| < pI(t) ∀t ≥ tmin p ∈ (0, 1) (33)

Index NIE will be exploited to compare the performances of different observers, whilst
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index tmin allows to evaluate the efficacy of any single observer run. In the spirit of observer-

based control laws, in absence of a separation principle for nonlinear systems, the faster the

observer matches the real state, the better performances are expected from the closed-loop system.

It has to be stressed that the time an AP takes to track a desired glucose level cannot be

excessively short (say, smaller than 5 minutes) because this might involve excessively high (and

potentially dangerous) serum insulin concentrations. Instead, AP algorithms use to take 2–3

hours to make a smooth variation from a hyperglycemic level down to a safe euglycemic one

[17]. In this framework, an observer that provides an almost exact insulin estimate within 20–30

minutes (which is 10–25% of the whole expected control period) should be considered a good

observer.

Figure 1 reports the performances of the observer with tmin computed according to

p = 0.15 and p = 0.05 respectively. We point out that both choices are nontrivially demanding,

if compared to standard insulin sensors providing plasma insulinemia (for example for IVGTT,

and not in real-time) with a coefficient of variation of about 7% [15]. It is apparent that an

underestimation (at least such a coarse under-estimation) provides a worse accuracy in terms of

a larger average NIE with a larger variability. As far as the efficacy, both cases of p = 0.15

and p = 0.05 provide very good results with tmin easily below 30min (and in case of p = 0.15

also below 20min). In other words, no matter how bad is the initial estimate, no matter if it is

an over- or an under-estimate: the observer is able to track successfully the correct insulinemia

within 20/30 minutes. Fig. 3 shows the time course of one of the subjects’ insulinemia (left

panel) and observer error (right panel) to better appreciate the goodness of fit of the observer

curve to real insulinemia.

As previously stressed in Remark 6, the knowledge of the dynamic model is unavoidable
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Figure 1: Accuracy/efficacy performance grid for p = 0.15 (full circles) and p = 0.05 (empty
circles). Each circle refers to a pair of (NIE, tmin). Blue color refers to the underestimated case,
red color refers to the overestimated case.

Figure 2: Left panel: time course of observed insulin concentration (blue line) of one of the 20
Subjects compared to the real insulinemia (black line). The cyan zone around real insulinemia
highlights the region on to which the estimation must be definitely constrained to define tmin

for p = 0.15. Right panel: time course of observed insulin error (absolute value).

to guarantee the coherence of the observer. This fact clearly holds true also for medical

applications like the one under investigation, where the model identification usually requires

nontrivial (and sometimes invasive) perturbation experiments, carried out under the supervision

of a physician. A robustness analysis of the observer performances has been done in closed-

loop frameworks like the ones investigated in [17] where the designed observer was applied

in closed-loop on a model whose parameters had been allowed to change according to given
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coefficients of variations; or in [18] where a different dynamical model was exploited to validate

the observer-based control law. In both cases the aim of the robustness analysis was focused on

the safety (“is plasma glycemia always greater than a safe hypoglycemic level?”) and on the

efficacy of the therapy (“does the closed-loop insulin administration track a euglycemic level of

glycemia within a limited time from the beginning of the therapy?”).

Here the aim is to exploit the available data to investigate the open-loop performances

of the observer. For instance, it can be thought to construct a mean model, that is a model

with the structure of (27), whose parameters are calibrated on data coming from the whole

population of 20 individuals, and to exploit it to design the observer on a subject supposed

to be consistent with (but not belonging to) the population used for the observer calibration.

No perturbation experiments are designed to properly identify the DDE model associated to

the observed subject. In the spirit of Remark 6, by assuming that the observer is successfully

designed to track the trajectory associated to the mean model, the goodness of the state estimate

is all a matter of how representative the mean model is for the population (or, in particular,

how close the observed subject is to the mean model). For instance, consider as the observed

subject the one reported in Fig. 2 and exploit the other 19 sets of data to infer the mean model

according to the following procedure: (i) normalize the other 19 subjects streams of glucose-

insulin data with respect to the observed subject basal values (this fact guarantees at least the

convergence to zero of the estimation error, since the observed subject and the mean model

share the same unique equilibrium point given by the basal values; unfortunately, it does not

guarantee the correct transient); (ii) identify the mean model by averaging the normalized set of

data. Fig. 3 shows the performances of the observer designed by means of the mean model, and

applied to the observed subject. Both the initial under- and over-estimate are considered: it can
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Figure 3: Observer applied to one of the subject individuals, synthesized according to the mean
model associated to the population.

be appreciated how these curves confuse each other after about 20 minutes (the same average

error transient emerging from Fig. 1); they both converge to the mean model trajectory, which is,

unfortunately, markedly different from the one related to the observed subject (though sharing

the same qualitative behavior).

A different kind of simulations is set up in order to evaluate the robustness of the observer

performances with respect to a single parameter uncertainty. To this end we have chosen the most

representative parameter for a DDE model, that is the state delay τg. This would create some sort

of systematic error in the transient, but not in the asymptotic behavior, since a different delay

would not change the basal values of glycemia and insulinemia. The observer performances

will be evaluated according to the tmin index, to best represent how fast the insulin estimate

is sufficiently close to the real one, in spite of the uncertainty on the delay. The following

campaign of simulations has been run: for each individual, and for both the initial critical

worst cases (under- and overestimate of initial insulinemia) simulations have been run with the
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Figure 4: tmin mean curve (over the considered population of 20 individuals) for different percent
errors of the observer delay with respect to the model delay.

observer synthesized according to a delay whose value varies within 0% of uncertainties (that

means that the observer is synthesized according to the correct value of the delay) and ±100%

of uncertainties (-100% meaning τg = 0 and +100% meaning a double value for τg) with a step

of 1% variation. According to results reported in Fig. 4 it is apparent that, according to a looser

target observer performance (p = 0.15), we can still trust the observer performances, at least

for underestimates of the delay, since even a total neglection of the delay does not produce a

tmin greater, in average, than 30min; instead, an overestimate of the delay would provide a tmin

greater than 30min for delays overestimated more than 50%. As far as a tighter target observer

performance (p = 0.05), the tmin curve is more pronounced (tmin becomes greater than 30min

for delay underestimates greater than 30% and overestimates greater than 20%), though it keeps

the same qualitative behavior of the case p = 0.15.
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Observer in case of sampled measurements

Like most of clinical/medical applications, the AP usually faces the problem of dealing

with continuous-time models and discrete available measurements, whose sampling rate strongly

depends on the kind of the exploited device. In this framework, observers will be considered,

whose correction terms only exploit glucose discrete samples. Though measurements are acquired

at discrete sampling times, the output can be modeled by the time-delay continuous function

reported in (23), with δ(t) defined within any two consecutive sampling instants ti, ti+1 as

δ(t) = t− ti, t ∈ [ti, ti+1) (see also the sidebar “Output delays as tool to model features of the

measurement process”).

Unfortunately the observer equations reported in (24)-(26) do not straightforwardly apply

to the present case, since they hold true for ODE systems with delayed outputs. For these reasons,

only those subjects will be considered, for whom the apparent delay is negligible. It comes out

to have 3 of such subjects with an estimated τg < 1 min, whose model parameters have been

re-calibrated by imposing τg = 0min in the identification procedure. As a matter of fact the

glucose-insulin system (27) is reformulated with τg = 0min in the shape of equations (22)-(23)

with u(t) ≡ 0 and

f(G, I) =

 −KxgiGI +
Tgh

Vg

−KxiI +
TiGmax

Vi
ξ(G)

 h
(
G(t− δ(t))

)
= G(t− δ(t)) (34)

It readily comes that the system shares the same observability map of (30), thus locally satisfying

the ULDO hypotheses in Definition 1. As a matter of fact, according to uniformly bounded delays

δ ∈ [0 ∆], Theorem 3 holds true (in its weaker form stressed by Remark 5), therefore there

exists an observer gain K0 such that local convergence of the state observer (24)-(26) is ensured
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with a rate η compatible with the choice of the bound ∆ given by the sampling time of the

measurements acquiring system. Similarly to the previous subsection, the observer gain K0 has

been set (by simulations) to obtain eigenvalues λ = {−0.2,−0.3} for A − K0C, whilst the

choice of η = 5 revealed to be (by simulations) compatible with a sampling period smaller than

10 minutes.

Simulations have been carried out by designing the observer for each of the three

subjects by properly exploiting the correct model parameters. The same accuracy/efficacy indexes

defined in (32)-(33) are here exploited. Different constant sampling periods ∆ are investigated

in simulation, with ∆ ∈ {2, 5, 10} min. Results are reported in Fig. 5, where different symbols

(circles, squares and diamonds) refer to different sampling periods. Each line refers to a subject

with different sampling period: the continuous and dotted lines refer to tmin computed according

to p = 0.15 and p = 0.05 respectively. The same grid of the previous picture is exploited. This

time colored zones have been added to improve the readability: the green zone refers to very

good results for tmin, that means below 30 min; the yellow zone refers to satisfactory results, with

tmin below 60 min; the other colors refer to an observer that takes too time to converge. From

the grid it is apparent that the case of ∆ = 10 min and p = 0.05 provides the greatest increase

in tmin, thus worsening the observer performances: this is intuitive, since (i) ∆ = 10 min refers

to the largest sampling time considered in simulations, therefore the observer benefits of a less

frequent correction term, and (ii) p = 0.05 requires a tighter convergence of the state estimate

(with respect to the case of p = 0.15). On the other hand, simulations highlight a trend which

is not foreseeable in principle: underestimating the initial insulinemia provides better results;

for instance, considering such initialization and a tmin computed with p = 0.15 always leads to

satisfactory performances for the observer, with two (out of three) subjects in the green zone.
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Figure 5: Accuracy/efficacy performance grid: the case of discrete glucose measurements. Three
subjects with negligible delay τg are considered. Circles, squares and diamonds are referred
to different sampling periods ∆ ∈ {2, 5, 10} min, respectively. Full (resp. empty) symbols
represent the case p = 0.15 (resp. p = 0.05). Red (resp. blue) symbols denote the case of
initial overestimation (resp. underestimation). Solid/dashed lines link the full/empty symbols
referred to the same patient.

Conclusion

In this article a review of results concerning Luenberger-like observers for nonlinear

dynamical systems with state and output delays is reported, and their application to the problem

of the real-time reconstruction of the insulinemia in humans from plasma glucose measurements

is presented. The problem of obtaining the insulinemia by processing glycemia measurements is

very important for the development of the Artificial Pancreas (AP), a device aimed at supporting

or replacing the pancreatic activity of insulin production in diabetic individuals. Indeed, glycemia

can be accurately, easily, and quickly measured by small, portable, and cheap devices, while

insulinemia measurements require large and costly laboratory equipments. Asymptotic state

observers can solve the problem of obtaining insulinemia from glycemia by suitably exploiting

the mathematical model of insuline-glucose dynamics. A simple and accurate model available
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in the literature is in the form of Delay-Differential-Equation (DDE), and has already been

successfully used for the construction of insulin observers, and also for designing an insulin

infusion therapy for both Type 1 and Type 2 patients.

In this work only aspects of observed-based insulin reconstruction have been presented.

First, it has been shown how observers can be constructed exploiting the DDE model of glucose-

insuline dynamics, by assuming continuous time glucose measurements. Then, an observer has

been presented that processes discrete-time glucose measurements and returns, in real-time,

the insulinemia in continuous-time. The performances of the observers have been evaluated

by considering a set of real measurements coming from 20 healthy subjects who underwent

an Intra-Venous Glucose Tolerance Test (IVGTT). The parameters of the DDE model of each

individual have been identified and on the basis of the obtained model a personalized observer

has been constructed for each subject. The performances of the observers have been evaluated

and displayed using two quality indicators: one for the average size of the observation error and

one for the convergence time. The campaign of simulations has demonstrated the robustness

of the observers with respect to the initialization (that is, with respect to the unknown initial

value of insulinemia). Some caveats have been addressed concerning the use in the observer

design of models whose parameters are significantly different from those of the single subjects.

As an example, the 20 IVGTT insulin and glucose data available have been used to identify a

kind of mean model, that has been exploited for the construction of an observer. It comes out

that for those subjects whose personalized model is significantly different from the mean model,

the insulinemia values returned by the observer can be far from the true insulinemia profile

of the subject. The last campaign of simulations presented in this work concerns the observer

that processes discrete-time (sampled) glycemia measurements and returns a continuous-time
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insulinemia profile. For this case there not exists in the literature an observer design technique that

deals with DDE, and therefore a subpopulation of individuals with negligible delay in the model

has been used in the simulation campaign. The performances of the observers have been evaluated

and displayed using the previously defined quality indicators in correspondence to different

sampling intervals (2, 5 and 10 min). It turns out that in this case an initial underestimation of

the insulin plasma concentration level has to be preferred in order to have acceptable convergence

times.

As a conclusion, the use of observers as a subsystem in Artificial Pancreas appears to be

a promising technique, although some work has still to be done, in particular for the development

of observers that deals with DDE models and sampled measurements.
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Lie-derivatives, relative degree and observability

The Lie derivative of a smooth function h(x) along a smooth vector field f(x) is the
directional derivative defined as

Lfh(x)
∆
=
dh(x)

dx
f(x). (S1)

Lk
fh(x) denotes the k-th order Lie derivative, recursively defined

Lk
fh(x)

∆
= LfL

k−1
f h(x) =

dLk−1
f h(x)

dx
f(x), k ∈ N, (S2)

with L0
fh(x) = h(x). Note that if both h(x) and f(x) are linear, say h(x) = Cx and f(x) = Ax,

it results Lk
fh(x) = CAkx, and the jacobian Q(x) of the observability map ϕ(x) defined in (3)

becomes the standard observability matrix for linear systems, and the drift-observability property
given in Definition 1 is equivalent to nonsingularity of the observability matrix.

In the state observation problem the following concept is needed:

Definition 3: The system (1)–(2) (or, the triple (f, g, h)) is said to have observation
relative degree r ∈ N in a set Ω ∈ IRn if

∀x ∈ Ω, LgL
s
fh(x) = 0, s = 0, 1, . . . , r − 2,

∃x ∈ Ω, : LgL
r−1
f h(x) ̸= 0.

(S3)

If r = n the system (1)–(2) is said to have full relative degree.

This is a weaker version of the concept of relative degree (see [36]) used for control
purposes: if Ω is an open set and LgL

r−1
f h(x) ̸= 0 ∀x ∈ Ω, then the triple (f, g, h) has

relative degree r. For linear systems, where (f, g, h) = (Ax,B,Cx), it is readily seen that
LgL

s
fh(x) = CAsB, so that the relative degree r is the lowest integer such that CAr−1B ̸= 0,

and it coincides with the observation relative degree.
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Canonical Observable form of systems

A drift-observable system (1)–(2) can be put in a canonical observable form by using
the drift-observability map z = ϕ(x) defined in (3) as a change of coordinates. Differentiating
both sides of z(t) = ϕ

(
x(t)

)
, and omitting time dependencies, we get ż = Q(x)ẋ and

ż = Q(x)f(x) +Q(x)g(x)u. (S4)

Defining the matrices A ∈ IRn×n, B ∈ IRn, C ∈ IRn as

A
∆
=

[
0(n−1)×1 I(n−1)×(n−1)

0 01×(n−1)

]
, B

∆
=

[
0(n−1)×1

1

]
C

∆
=

[
1 01×(n−1)

]
,

(S5)

which make up a Brunowsky triple of order n, and the function

Γ(x)
∆
= Ln

fh(x). (S6)

we easily get

Q(x)f(x) =

[
Lfh(x)...Ln
fhj(x)

]
= Aϕ(x) +BΓ(x), h(x) = Cϕ(x). (S7)

Moreover, defining Fr ∈ IRn×n−r+1 and H : IRn → IRn−r+1 as

Fr
∆
=

[
0(r−1)×(n−r+1)

In−r+1

]
, H(x)

∆
=

LgL
r−1
f h(x)

...
LgL

n−1
f h(x)

 , (S8)

and considering that, by definition of observation relative degree in Ω, so that the first r − 1
rows of vector Q(x)g(x) are identically zero in Ω, we get

Q(x)g(x) =

 Lgh(x)
...

LgL
n−1
f hj(x)

 = F H(x). (S9)

Taking into account (S7) and (S9), equation (S4) takes the form

ż(t) = Az(t) + BΓ
(
z(t)

)
+ FrH

(
z(t)

)
u(t),

y(t) = Cz(t),
(S10)

where
Γ(z) = Γ

(
ϕ−1(z)

)
, H(z) = H

(
ϕ−1(z)

)
. (S11)

System (S10) is the canonical observable form of system (1)–(2) and, in the case of linear
systems, it coincides with the standard observable canonical form.

The pair (A,C) is observable, and it is an easy matter to assign any set λ = (λ1, . . . , λn)
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of eigenvalues to the matrix A−KC, that has the companion structure

A−KC =


−k1 1 · · · 0

...
... . . . ...

−kn−1 0 · · · 1
−kn 0 · · · 0

 . (S12)

The gain associated to the set of eigenvalues λ will be denoted by K(λ), and its components are
the coefficients of the monic polynomial whose set of roots is λ. If the eigenvalues are distinct,
matrix A−K(λ)C can be diagonalized by the Vandermonde matrix

V (λ) =

λn−1
1 · · · λ1 1
... . . . ...

...
λn−1
n · · · λn 1

 , (S13)

since it is easily verified that V (λ)
(
A−K(λ)C

)
= diag{λ}V (λ).

An observer for the system (S10) is achived by adding a linear output feedback

˙̂z(t) = Az(t) +BΓ
(
z(t)

)
+ FrH

(
z(t)

)
u(t) +K

(
y(t)− Cẑ(t)

)
. (S14)

Note that in the case of full relative degree, that is r = n, then Fr = B and H(x) = LgL
n−1
f h(x)

is scalar.
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Observer for MIMO systems

The observer construction described in the main text and the global and semiglobal
convergence theorems can be extended to the case of Multi-Input-Multi-Output (MIMO) systems
[4]. When the output y of system (1)–(2) is a vector in IRq and the input u is in IRp, then the
observation relative degree is defined as a multiindex r̄ = {r1, . . . , rq}, where each rj is the
lowest among all relative degrees of the output component yj with respect to each scalar input
uk, k = 1, . . . , p. For each output function hj(x) a map zj = ϕsj(x) is constructed as in (3),
stacking in a vector the Lie derivatives Lk

fhj(x) for k = 0, . . . , sj − 1, where the q integers
sj ≤ rj must sum up to n. Thus, in general, many choices of drift-observability maps exist, and
the invertibility and Lipschitz properties of the map ϕs̄(x) = colqj=1

{
ϕsj(x)

}
strongly depend on

the choice of the multiindex s̄ = {s1, · · · , sq}. The convergence Theorem 1 is stated in [4] for
the MIMO case. It is worth noting that the strong convergence result given in Theorem 1 for
the case of full relative degree (that is, r = n) of SISO systems, extends to MIMO systems in
the case of

∑q
j=1 rj = n.
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Modeling the measurements through time-varying delays

The features of different measurement acquisition or transmission processes, such as
buffering, sampling, data shuffling and data loss, can be modeled through a suitable choice of
time-varying output delays. For instance, the case in which during some intervals no measurement
is being received by the observer can be modeled by means of an output delay function δ(t)
that increases with time with δ̇(t) = 1. When δ(t) is not continuous, or |δ̇(t)| > 1, then t− δ(t)
is not necessarily monotone and increasing. In other words, measurements can be received in a
different order than the time they have been taken. In this case the observer can either use the
most recent measurement available, discarding older measurements, or use the measurements
according to their arrival time without discarding anything. In Figure 1 the second option is
assumed to illustrate how buffering, sampling, data shuffling and data loss can be uniformly
modeled by means of appropriate delay functions. The first alternative can be studied similarly.

In the case of buffering the function δ(t) is continuous. The vertical segment models the
arrival of a packet of output data previously stored in the buffer, thus in reality it has some large
but finite slope. In the case of sampling the measurement is received only at discrete time points
and the corresponding delay function is δ(t) = mod(t, T ), where T is the sampling period. The
case of shuffling corresponds to a piece-wise constant delay, which in the plot switches among
the values 1 and 4. In practical situations this may happen when the data are contained into
packets that are sent through a communication channel and received in the wrong order. In the
case of data loss, t− δ(t) becomes flat during the loss periods, that in the plot start at t = 2 and
t = 6. In the loss period the last available measurement is used.

It may be noticed that in the first and third case all the measurements are eventually
received, but in the second and fourth they are not. When δ(t) is continuous no output
measurement is lost, and it is easy to prove that all data taken at τ ≤ t − δ(t) are available at
time t. The third plot illustrates how the absence of losses is compatible with a discontinuous
δ(t). Since the output is lost when it is generated at some time τ which is not included in the
image of [∆, +∞) under the function t− δ(t), loss-less delay functions are those for which for
any time τ > ∆ it exists t ≥ τ such that τ = t − δ(t). For a loss-less delay function all data
previous to t−∆ are available at time t.
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Figure S1: Buffering (a), sampling (b), data shuffling (c) and data loss (d) with the correspondent
functions t− δ(t). The horizontal axis is the time t of the observer. The vertical axis represents
the time instant t−δ(t) at which the output processed at time t has been generated. The situation
without delay is represented by the dotted line.

The IVGTT clinical protocol

From a clinical viewpoint, the IVGTT is a perturbation experiment that consists in
administering intra-venously a glucose bolus Dg after an overnight fasting period and then
sampling plasma glucose and serum insulin concentration during the following 3 hours. The
bolus administration at time t = 0 produces an instantaneous increase of both plasma glucose
and insulin concentration (first phase of insulin release), so that:

G(0) = Gb +
Dg

VG
I(0) = Ib + I∆

Dg

VG
(S15)

with I∆ a further parameter to be estimated. Blood samples are acquired every 2 min for the
first 10-min interval, every 5 min for the next 30-min interval, every 10 min for the next 20-
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min interval and finally every 20 min for the last 120-min interval (an overall sampling period
of 3 hours). These blood samples are exploited to measure (not in real time) glycemia and
insulinemia. Glucose and insulin measurements are used to identify the parameters of the model
under investigation. The delay τg in the glucose action on pancreatic IDR (27) is necessary to
reproduce the second-phase insulin response, showing an evident insulin concentration hump,
[15].
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DDE model parameters

The glucose-insulin model parameters referring to the DDE (27)-(28) are defined as
follows, with measurement units chosen as in [15], [16]:

• Kxgi [min
−1pM−1] is the rate of glucose uptake by tissues (insulin-dependent) per pM of

plasma insulin concentration;
• Tgh [min−1(mmol/kgBW )] is the net balance between hepatic glucose output and insulin-

independent zero-order glucose tissue uptake (mainly by the brain, supposed constant
throughout the experiment);

• VG [L/kgBW ] is the apparent distribution volume for glucose;
• Kxi [min

−1] is the apparent first-order disappearance rate constant for insulin;
• TiGmax [min−1(pmol/kgBW )] is the maximal rate of second-phase insulin release;
• VI [L/kgBW ] is the apparent distribution volume for insulin;
• τg [min] is the apparent delay with which the pancreas varies secondary insulin release in

response to varying plasma glucose concentrations;
• γ [−] is the progressivity with which the pancreas reacts to circulating glucose concentra-

tions. If γ were zero, the pancreas would not react to circulating glucose at all; if γ were
1, the pancreas would respond according to a Michaelis-Menten dynamics, where G̃ is the
glucose concentration of half-maximal insulin secretion; when γ is greater than 1 (as is
usually the case), the pancreas responds according to a sigmoidal function;

• G̃ [mM ] is the glycemia at which the insulin release is the half of its maximal rate; at a
glycemia equal to G̃ corresponds an insulin secretion equal to TiGmax/2.
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