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a b s t r a c t

We rigorously prove the existence of chaotic dynamics for a triopoly game model.
In the model considered, the three firms are heterogeneous and in fact each of them
adopts a different decisional mechanism, i.e., linear approximation, best response
and gradient mechanisms, respectively.

The method we employ is the so-called “Stretching Along the Paths” (SAP)
technique, based on the Poincar

∧
é–Miranda Theorem and on the properties of the

cutting surfaces.
© 2015 Published by Elsevier Ltd.

1

1. Introduction2

In the economic literature, due to the complexity of the models considered, an analytical study of the3

associated dynamical features turns out often to be too difficult or simply impossible to perform. That4

is why many dynamical systems are studied mainly from a numerical viewpoint (see, for instance, [1–4]).5

Sometimes, however, even such kind of study turns out to be problematic, especially with high-dimensional6

systems, where several variables are involved [5].7

In particular, as observed in Naimzada and Tramontana’s working paper [6], this may be the reason for8

the relatively low number of works on triopoly games (see, for instance, [7–9]), where the context is given9

by an oligopoly composed by three firms. In such framework, a local analysis can generally be performed in10

the special case of homogeneous triopoly models, i.e., those in which the equations describing the dynamics11

are symmetric (see, for instance, [10–12]).12

A more difficult task is that of studying heterogeneous triopolies, where the three firms considered behave13

according to different strategies. In fact, in the absence of complete information, both in regard to the shape14

of the demand function and with respect to the competitors’ future output choices, in those models it is15
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assumed that at each time period firms decide how much to produce in the following period according to 1

different behavioral mechanisms. See [13–15] for some works on oligopolies with boundedly rational players, 2

while the study of heterogeneous triopolies has been performed, for instance, in [16,17], as well as in the 3

above mentioned paper by Naimzada and Tramontana [6]. In this latter work, in addition to the classical 4

heterogeneity with interacting agents adopting gradient and best response mechanisms, it is assumed that 5

one of the firms adopts a linear approximation mechanism, which means that the firm does not know the 6

shape of the demand function and thus builds a conjectured demand function through the local knowledge 7

of the true demand function. In regard to such model, those authors perform a stability analysis of the Nash 8

equilibrium and show numerically that, according to the choice of the parameter values, it undergoes a flip 9

bifurcation or a Neimark–Sacker bifurcation leading to chaos. 10

What we then aim to do in the present paper is complementing that analysis, by proving the existence 11

of chaotic sets for the model in [6] only via topological arguments. This task will be performed using the 12

“Stretching Along the Paths” (from now on, SAP) technique, already employed in [18] to rigorously prove 13

the presence of chaos for some discrete-time one- and bi-dimensional economic models of the classes of 14

overlapping generations and duopoly game models. Notice however that, to the best of our knowledge, this 15

is the first three-dimensional discrete-time application of the SAP technique, called in this way because 16

it concerns maps that expand the arcs along one direction and are instead compressive in the remaining 17

directions. We stress that, differently from other methods for the search of fixed points and the detection 18

of chaotic dynamics based on more sophisticated algebraic or geometric tools, such as the Conley index or 19

the Lefschetz number (see, for instance, [19–21]), the SAP method relies on relatively elementary arguments 20

and it is easy to apply in practical contexts, without the need of ad-hoc constructions. No differentiability 21

conditions are required for the map describing the dynamical system under analysis and even continuity is 22

needed only on particular subsets of its domain. Moreover, the SAP technique can be used to rigorously 23

prove the presence of chaos also for continuous-time dynamical systems. In fact, in such framework it suf- 24

fices to apply the results in Section 2, suitably modified, to the Poincaré map associated to the considered 25

system1 and thus one is led back to work with a discrete-time dynamical system. However, the geome- 26

try required to apply the SAP method turns out to be quite different in the two contexts: in the case of 27

discrete-time dynamical systems we look for “topological horseshoes” (see, for instance, [24–26]), that is, a 28

weaker version of the celebrated Smale horseshoe in [27], while in the case of continuous-time dynamical 29

systems one has to consider the case of switching systems and the needed geometry is usually that of the 30

so-called “Linked Twist Maps” (LTMs) (see [28–30]), as shown for the planar case in [22,23]. We also stress 31

that the Poincaré map is a homeomorphism onto its image, while in the discrete-time framework the func- 32

tion describing the considered dynamical system need not be one-to-one, like in our example in Section 3. 33

Hence, in the latter context, it is in general not be possible to apply the results for the Smale horse- 34

shoe, where one deals with homeomorphisms or diffeomorphisms. As regards three-dimensional continuous- 35

time applications of the SAP method, those have recently been performed in [31], in a higher-dimensional 36

counterpart of the LTMs framework, and in [32], where a system switching between different regimes is
∧

37

considered. 38

For the reader’s convenience, we are going to recall in Section 2 what are the basic mathematical 39

ingredients behind the SAP method, as well as the main conclusions it allows to draw about the chaotic 40

features of the model under analysis. It will then be shown in Section 3 how it can be applied to the triopoly 41

game model taken from [6]. Some further considerations and comments can be found in Section 4, which 42

concludes the paper. 43

1 We stress that, in order to apply the SAP method to continuous-time systems, as done in [22,23], it is not required to know
the analytic formulation of the corresponding Poincaré map, but in general it suffices to know the geometry of the orbits in the
phase-plane.
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2. The “stretching along the paths” method1

In this section we briefly recall what the “Stretching along the paths” (SAP) technique consists in,2

referring the reader interested in further mathematical details to [33], where the original planar theory by3

Papini and Zanolin in [34,35] has been extended to the N -dimensional setting, with N ≥ 2.4

In the bi-dimensional setting, elementary theorems from plane topology suffice, while in the higher-5

dimensional framework some results from degree theory are needed, leading to the study of the so-called6

“cutting surfaces”. In fact, the proofs of the main results in [33] (and in particular of Theorem 2.1
∧
), we do7

not recall here, are based on the properties of the cutting surfaces and on the Poincar
∧́
e–Miranda Theorem,8

that is, an N -dimensional version of the Intermediate Value Theorem.9

Since in Section 3 we will deal with the three-dimensional setting only, we directly present the theoretical10

results in the special case in which N = 3.11

We start with some basic definitions.12

A path in a metric space X is a continuous map γ : [t0, t1]→ X. We also set γ := γ([t0, t1]). Without loss13

of generality, we usually take the unit interval [0, 1] as the domain of γ. A sub-path σ of γ is the restriction14

of γ to a compact sub-interval of its domain. By a generalized parallelepiped we mean a set P ⊆ X which15

is homeomorphic to the unit cube I3 := [0, 1]3, through a homeomorphism h : R3 ⊇ I3 → P ⊆ X. We also16

set17

P−` := h([x3 = 0]), P−r := h([x3 = 1])18

and call them the left and the right faces of P, respectively, where2
19

[x3 = 0] := {(x1, x2, x3) ∈ I3 : x3 = 0} and [x3 = 1] := {(x1, x2, x3) ∈ I3 : x3 = 1}.20

Setting21

P− := P−` ∪ P
−
r ,22

we call the pair23

P̃ := (P,P−)24

an oriented parallelepiped of X.25

Although in the application discussed in the present paper the space X is simply R3 and the generalized26

parallelepipeds are standard parallelepipeds, so that the similarity with the classical Smale horseshoe is27

even more apparent (see Figs. 2 and 3), the generality of our definitions makes them applicable in different Q228

contexts (see Fig. 1). Q329

We are now ready to introduce the stretching along the paths property for maps between oriented30

parallelepipeds.31

Definition 2.1 (SAP). Let Ã := (A,A−) and B̃ := (B,B−) be oriented parallelepipeds of a metric space X.32

Let also ψ : A → X be a function and K ⊆ A be a compact set. We say that (K, ψ) stretches Ã to B̃ along33

the paths, and write34

(K, ψ) : Ã B̃,35

2 Notice that the choice of privileging the third coordinate is purely conventional. In fact, any other choice would give the same
results, as it is possible to compose the homeomorphism h with a suitable permutation on three elements, without modifying its
image set.

Marina
Nota
Color statements added to the caption of Figs. 2 and 3 are correct.

Marina
Nota
The color figures chosen are the correct ones for the web version. The monochrome figures are instead right for the print version.



4 M. Pireddu / Nonlinear Analysis: Real World Applications xx (xxxx) xxx–xxx

Fig. 1. The tubular sets A and B in the picture are two generalized parallelepipeds, for which we have put in evidence the compact
set K and the boundary sets A−

`
and A−r , as well as B−

`
and B−r . Since ψ(A) = B, ψ(A−

`
) = B−

`
and ψ(A−r ) = B−r , it holds that

(A, ψ) : Ã B̃. On the other hand, given the (generic) path γ joining in A the sides A−
`

and A−r , the ψ-image of its sub-path σ
in K joins again A−

`
and A−r in A and thus we also have that (K, ψ) : Ã Ã. The existence of a fixed point for ψ in K is then

ensured by Theorem 2.1.

if the following conditions hold: 1

• ψ is continuous on K; 2

• for every path γ : [0, 1]→ A with γ(0) and γ(1) belonging to different components of A−, there exists a 3

sub-path σ := γ|[t′,t′′] : [0, 1] ⊇ [t′, t′′] → K, such that ψ(σ(t)) ∈ B, ∀ t ∈ [t′, t′′], and, moreover, ψ(σ(t′)) 4

and ψ(σ(t′′)) belong to different components of B−. 5

A brief description of the relationship between the SAP relation and other “covering relations” in the 6

literature on
∧
expansive–contractive maps can be found at the end of the present section. 7

A first crucial feature of the SAP relation is that, when it is satisfied with Ã = B̃,3 it ensures the existence 8

of a fixed point localized in the compact set K. In fact the following result does hold true. 9

Theorem 2.1. Let P̃ := (P,P−) be an oriented parallelepiped of a metric space X and let ψ : P → X be a 10

function. If K ⊆ P is a compact set such that 11

(K, ψ) : P̃ P̃, 12

then there exists at least a point z ∈ K with ψ(z) = z. 13

For a proof, see [33, pp. 307–308]. Notice that the arguments employed therein are different from the ones 14

used to prove the same result in the planar context (see, for instance, [18, pp. 3301–3302]), which are in fact 15

much more elementary. 16

A graphical illustration of Theorem 2.1 can be found in Fig. 1, where it looks evident that, differently 17

from the classical Rothe and Brouwer Theorems, we do not require that ψ(∂A) ⊆ A (or ψ(A) ⊆ A). 18

The most interesting case in view of detecting chaotic dynamics is when there exist pairwise disjoint 19

compact sets playing the role of K in Definition 2.1. Indeed, applying Theorem 2.1 with respect to each of 20

them, we get a multiplicity of fixed points localized in those compact sets. Another crucial property of the 21

SAP relation is that it is preserved under composition of maps, and thus, when dealing with the iterates of 22

the function under consideration, it allows to detect the presence of periodic points of any period (for the 23

precise statements, see Lemma A.1, Theorems A.1 and A.2 in [18], which can be directly transposed to the 24

three-dimensional setting, with the same proofs). 25

3 Note that this means both that A and B coincide as subsets of X and that they have the same orientation. In fact, it is easy
to find counterexamples to Theorem 2.1 if the latter property is violated (see, for instance, [36, p. 11]).
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We now describe in Definition 2.2 what we mean when we talk about “chaos” and we explain in1

Theorem 2.2
∧
which is the relationship between Definition 2.2 and some well known concepts in the chaos2

literature. The proof of Theorem 2.2 follows by the same arguments in [18, Theorem 2.2]. Finally, we describe3

in Theorem 2.3 which is the connection between Definition 2.2 and the stretching relation in Definition 2.1.4

We stress that Theorem 2.3 is the main theoretical result we are going to apply in Section 3 and that it can5

be shown exploiting the two properties of the SAP relation mentioned above. In fact, its proof follows by6

the same arguments in [18, Theorem 2.3].7

Definition 2.2. Let X be a metric space and let ψ : X ⊇ D → X be a function. Let also m ≥ 2 be an8

integer. We say that ψ induces chaotic dynamics on m symbols on the set D if there exist m nonempty9

pairwise disjoint compact subsets K0, . . . ,Km−1 of D such that, for each two-sided sequence on m symbols10

(si)i∈Z ∈ {0, . . . ,m− 1}Z, there exists a corresponding sequence (wi)i∈Z ∈ DZ such that11

wi ∈ Ksi and wi+1 = ψ(wi), ∀ i ∈ Z, (2.1)12

and, whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si,∀i ∈ Z) for some k ≥ 1, there exists a13

k-periodic sequence (wi)i∈Z ∈ DZ satisfying (2.1). To put the emphasis on the sets Kj ’s, we will also say14

that ψ induces chaotic dynamics on m symbols on the set D relatively to K0, . . . ,Km−1.15

The above definition of chaos is similar to the one of chaos in the coin-tossing sense in [37]. The main16

difference between the two definitions concerns the fact that in Definition 2.2 we have in addition the final17

requirement that the periodic sequences of symbols get realized by periodic ψ-orbits. We refer the interested18

reader to [18] for a more detailed discussion on the topic.19

Let us now see in Theorem 2.2 which are the main consequences of Definition 2.2.20

Theorem 2.2. Let ψ be a map that induces chaotic dynamics on m symbols on a set D relatively to21

K0, . . . ,Km−1 and that is continuous on22

K :=
m−1⋃
i=0
Ki ⊆ D,23

where K0, . . . ,Km−1 and D are like in Definition 2.2. Introducing the nonempty compact set24

I∞ :=
∞⋂
n=0

ψ−n(K),25

then there exists a nonempty compact set26

I ⊆ I∞ ⊆ K,27

on which the following are fulfilled:28

(i) ψ(I) = I;29

(ii) ψ|I is semi-conjugate to the Bernoulli shift on m symbols, that is, there exists a continuous map30

π : I → Σ+
m, where Σ+

m := {0, . . . ,m− 1}N is endowed with the distance31

d̂(s′, s′′) :=
∑
i∈N

d(s′i, s′′i )
mi+1 , for s′ = (s′i)i∈N, s′′ = (s′′i )i∈N ∈ Σ+

m32
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(d(·, ·) is the discrete distance on {0, . . . ,m − 1}, i.e., d(s′i, s′′i ) = 0 for s′i = s′′i and d(s′i, s′′i ) = 1 for 1

s′i 6= s′′i ), such that the diagram 2

I I

Σ+
m Σ+

m

-ψ

?

π

?

π

-
σ

3

commutes, where σ : Σ+
m → Σ+

m is the Bernoulli shift defined by σ((si)i) := (si+1)i, ∀i ∈ N; 4

(iii) the set of the periodic points of ψ|I∞ is dense in I and the pre-image π−1(s) ⊆ I of every k-periodic 5

sequence s = (si)i∈N ∈ Σ+
m contains at least one k-periodic point. 6

Remark 2.1. According to [18, Theorem 2.2], from (ii) in Theorem 2.2
∧
it follows that: 7

– htop(ψ) ≥ htop(ψ|I) ≥ htop(σ) = log(m), where htop is the topological entropy; 8

– there exists a compact invariant set Λ ⊆ I such that ψ|Λ is semi-conjugate to the Bernoulli shift on m 9

symbols, topologically transitive and displays sensitive dependence on initial conditions. 10

As previously mentioned, in Theorem 2.3 we explain which is the relationship between Definitions 2.1 11

and 2.2. 12

Theorem 2.3. Let P̃ := (P,P−) be an oriented parallelepiped of a metric space X and let ψ : P → X be a 13

function. If K0, . . . ,Km−1 are m ≥ 2 pairwise disjoint compact subsets of P such that 14

(Ki, ψ) : P̃ P̃, for i = 0, . . . ,m− 1, (2.2) 15

then ψ induces chaotic dynamics on m symbols on P relatively to K0, . . . ,Km−1. 16

Notice that if the function ψ in the above statement is also one-to-one on K :=
⋃m−1
i=0 Ki, then it is 17

additionally possible to prove that ψ restricted to a suitable invariant subset ofK is semi-conjugate to the two- 18

sided Bernoulli shift on m symbols σ : Σm → Σm, σ((si)i) := (si+1)i, ∀i ∈ Z, where Σm := {0, . . . ,m− 1}Z 19

(see [23, Lemma 3.2]).4 20

We are now in position to explain what the SAP method consists in. Given a dynamical system generated 21

by a map ψ, our technique consists in finding a subset P of the domain of ψ homeomorphic to the unit cube 22

and at least two disjoint compact subsets of P for which the stretching property in (2.2) is satisfied (when 23

P is suitably oriented). In this way, Theorem 2.3 ensures the existence of chaotic dynamics in the sense of 24

Definition 2.2 for the system under consideration. In particular, Theorem 2.2 then guarantees the positivity 25

of the topological entropy for ψ, fact which is generally considered as one of the trademark features of chaos. 26

Notice that the number of compact sets for which the SAP property is satisfied coincides with the number 27

of symbols in the conjugate Bernoulli shift, as well as with the number of crossings between P and its 28

ψ-image. The description of the stretching relation in Definition 2.1 using paths is indeed a mathematical 29

formulation of the
∧
expansive–contractive behavior typical of the maps presenting topological horseshoes. 30

The main difference with respect to other approaches in the related literature (see, for instance, [24–26]) 31

is that the SAP method focuses, instead that on the image of generic sets, on how paths are transformed, 32

and the compact sets Ki’s play a crucial role in view of localizing fixed points and chaotic dynamics. The 33

paper with the approach bearing more resemblances to the SAP method is [25], where connections and 34

4 This is not the case in our application in Section 3. Indeed, as it looks clear from Fig. 2, the map F in (3.2) is not injective on
the set K0 ∪ K1 introduced in Theorem 3.1.
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Fig. 2. A possible choice of the parallelepiped R for system (3.1), according to conditions (H1)–(H5). It has been oriented by taking
as [ · ]−-set the union of the two horizontal faces R−

`
and R−r defined in (3.4). In addition to F (R−

`
) and F (R−r ), we also represent

the image set of two vertical faces of R. Notice that we used the same color to depict a set and its F -image set. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

pre-connections play the role of our paths and sub-paths. However, the technique in [25], also due to the1

generality of the spaces considered, does not guarantee the existence of fixed points and periodic points, as2

shown in [25, Example 10].3

3. The triopoly game model4

In this section we apply the SAP method to an economic model belonging to the class of triopoly games,5

taken from [6].6

By oligopoly, economists denote a market form characterized by the presence of a small number of firms.7

Triopoly is a special case of oligopoly where the firms are three. The term game refers to the fact that8

the players – in our case the firms – make their decisions reacting to each other actual or expected moves,9

following a suitable strategy. In particular, we will deal with a dynamic game where moves are repeated in10

time, at discrete, uniform intervals.11

More precisely, the model analyzed can be described as follows.12

The economy consists of three firms producing an identical commodity at a constant unit cost, not13

necessarily equal for the three firms. The commodity is sold in a single market at a price which depends14

on total output through a given inverse demand function, known to one firm (say, Firm 2) globally and to15

another firm (say, Firm 1) locally. In fact, Firm 1 linearly approximates the demand function around the16

latest realized pair of quantity and market price. Finally, Firm 3 does not know anything about the demand17

function and adopts a myopic adjustment mechanism, i.e., it increases or decreases its output according to18

the sign of the marginal profit from the last period. The goal of each firm is the maximization of profits,19

i.e., the difference between revenue and costs. The problem of each firm is to decide at the beginning of every20

time period t how much to produce in the same period on the basis of the limited information available and,21

in particular, on the expectations about its competitors’ future decisions.22

In what follows, we introduce the needed notation and the postulated assumptions:23

1. Notation24

xt: output of Firm 1 at time t;25

yt: output of Firm 2 at time t;
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zt: output of Firm 3 at time t; 1

p: unit price of the single commodity. 2

2. Inverse demand function 3

p := 1
x+ y + z

. 4

3. Technology 5

The unit cost of production for firm i is equal to ci, i = 1, 2, 3, where c1, c2, c3 are (possibly different) 6

positive constants. 7

4. Price approximation 8

Firm 1 observes the current market price pt and the corresponding total supplied quantity Qt = xt+yt+zt. 9

By using market experiments, that player obtains the slope of the demand function at the point (Qt, pt) 10

and, in the absence of other information, it conjectures that the demand function, which has to pass through 11

that point, is linear. 12

5. Expectations 13

In the presence of incomplete information concerning their competitors’ future decisions (and therefore 14

about future prices), Firms 1 and 2 are assumed to use naive expectations. This means that at each time t 15

both
∧
Firms 1 and 2 expect that the other two firms will keep output unchanged w.r.t. the previous period. 16

As shown in [6], the assumptions above lead to the following system of three difference equations in the 17

variables x, y and z: 18



xt+1 = 2xt + yt + zt − c1(xt + yt + zt)2

2

yt+1 =
√
xt + zt
c2

− xt − zt

zt+1 = zt + αzt

(
−c3 + xt + yt

(xt + yt + zt)2

) (3.1) 19

where α is a positive parameter denoting the speed of Firm 3’s adjustment to changes in profit and c1, c2, c3 20

are the marginal costs. 21

We refer the interested reader to [6] for a more detailed explanation of the model, as well as for the 22

derivation of (3.1). 23

As mentioned in the Introduction, in [6] Naimzada and Tramontana discuss the equilibrium solution of 24

system (3.1) along with its stability and provide numerical evidence of the presence of chaotic dynamics. In 25

particular, it is shown the existence of a double route to chaos: according to the parameter values, the Nash 26

equilibrium can undergo a flip bifurcation or a Neimark–Sacker bifurcation. Moreover, in [6] the authors 27

numerically find multistability of different coexisting attractors and identify their basins of attraction through 28

a global analysis. 29

Hereinafter we will integrate that study rigorously proving that, for certain parameter configurations, 30

system (3.1) exhibits chaotic behavior in the precise sense discussed in Section 2.5 31

5 Notice that, as we shall stress in Section 4, we only prove existence of an invariant, chaotic set, not its attractiveness.
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In order to apply the SAP method to analyze system (3.1), it is expedient to represent it in the form of1

a continuous map F = (F1, F2, F3) : R3
+ → R3, with components2

F1(x, y, z) := 2x+ y + z − c1(x+ y + z)2

2 ,

F2(x, y, z) :=
√
x+ z

c2
− x− z,

F3(x, y, z) := z + αz

(
−c3 + x+ y

(x+ y + z)2

)
.

(3.2)3

We prove that the SAP property for the map F is satisfied when choosing a generalized rectangle in the4

family of parallelepipeds of the first quadrant described analytically by5

R = R(xi, yi, zi) :=
{

(x, y, z) ∈ R3 : x` ≤ x ≤ xr, y` ≤ y ≤ yr, z` ≤ z ≤ zr
}
, (3.3)6

with x` < xr, y` < yr, z` < zr and xi, yi, zi, i ∈ {`, r}, satisfying the conditions in Theorem 3.1.7

The parallelepiped R can be oriented by setting8

R−` := [x`, xr]× [y`, yr]× {z`} and R−r := [x`, xr]× [y`, yr]× {zr}. (3.4)9

Consistently with [6], we choose the marginal costs as c1 = 0.4, c2 = 0.55 and c3 = 0.6. On the other10

hand, in order to easily apply the SAP method we need the parameter α to be close to 17, while in [6]11

the presence of chaos is numerically proven for α around 8.6 The implications of this discrepancy will be12

discussed in Section 4.13

Our result on system (3.1) can be stated as follows:14

Theorem 3.1. If the parameters of the map F defined in (3.2) assume the following values15

c1 = 0.4, c2 = 0.55, c3 = 0.6, α = 17, (3.5)16

then, for any parallelepiped R = R(xi, yi, zi) belonging to the family described in (3.3), with xi, yi, zi, i ∈17

{`, r}, satisfying the conditions:18

(H1) z` = 0;19

(H2) x` + y` > zr ≥
√

α

αc3 − 1(x` + y`)− (x` + y`) > 0;20

(H3) 2
(√

α

αc3 + 1(xr + yr)− (xr + yr)
)
> zr;21

(H4) 1
c1
− xr > yr + zr >

1
2c1
− x` > 0, 1

2c1
− xr > y` + z`, xr ≥

1
4c1

,22

1
2c1

(1− c1(y` + yr + z` + zr)) ≥ x` > 0,
√
y` + z`
c1

− (y` + z`) ≥ x`;23

(H5) x` + z` >
1

4c2
, yr ≥

√
x` + z`
c2

− (x` + z`) > 0,
√
xr + zr
c2

− (xr + zr) ≥ y` > 0,24

and oriented as in (3.4), there exist two disjoint compact subsets K0 = K0(R) and K1 = K1(R) of R such25

that26

(Ki, F ) : R̃ R̃, for i = 0, 1. (3.6)27

6 As explained below, it would be possible to apply our technique with a lower value for α, at the cost of changing the parameter
conditions in Theorem 3.1 and of making the computations in the proof much more complicated. However, it seems not possible to
apply the SAP method to the first iterate of F when α is close to 8, which is the largest value considered in [6].
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Fig. 3. This picture complements the previous one, by showing how the two vertical faces ofR not considered in Fig. 2 are transformed
by the map F . Notice that we changed orientation with respect to Fig. 2, in order to better show the shape of the image sets. Again,
the same color is used to depict a set and its F -image set. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Hence, the map F induces chaotic dynamics on two symbols on R relatively to K0 and K1 and displays all 1

the properties listed in Theorem 2.3. 2

Before proving Theorem 3.1, we make some comments on the conditions in (H1)–(H5). First of all, notice 3

that those conditions imply that x`+z` > 0 and x`+y`+z` > 0 and thus there are no issues with the definition 4

of F on R.7 We also remark that we chose to split (H1)–(H5) according to the corresponding conditions 5

(C1)–(C5) in the next proof they allow to verify. Moreover we stress that the assumptions in (H1)–(H5) 6

are consistent, i.e., there exist parameter configurations satisfying them all. For instance, we checked that 7

they are fulfilled for c1 = 0.4, c2 = 0.55, c3 = 0.6, α = 17, x` = 0.5766666668, xr = 0.6316666668, y` = 8

0.3366666668, yr = 0.4516666668, z` = 0, zr = 0.3951779684. These are the same parameter values we used 9

to draw Figs. 2–6, with the only exception of z` that in those pictures is slightly negative. Although this 10

makes no sense from an economic viewpoint, as the variables x, y and z represent the output of the three 11

firms, we made such choice in order to make the pictures easier to read. In fact, choosing z` = 0, then 12

F (R−` ) ⊆ R−` and thus the crucial set F (R−` ) would have been not visible in Figs. 2–4. With this respect, 13

we also remark that in Fig. 3 the x-axis has been reversed in order to make the double folding of F (R) more 14

evident. 15

In regard to the choice of the parameter values in (3.5), as mentioned above, they are the same as in [6], 16

except for α, which is larger here. In fact, numerical exercises we performed show that when α increases 17

it becomes easier to find a domain where to apply the SAP technique. On the other hand, it seems not 18

possible to apply our method for a sensibly smaller value of α. The impossibility of reducing α much below 19

17 comes from the fact that, as it is immediate to verify, when such parameter decreases it becomes more 20

and more difficult to have all conditions in (H2) and (H3) fulfilled and with α = 10 it seems just impossible. 21

The situation would slightly improve dealing with (C2) and (C3) below, instead of (C2) and (C3′) as we 22

actually do in order to simplify our argument, but still computer plots suggest it is not possible to have 23

both conditions satisfied when α = 8, that is the largest value considered in [6]. 24

7 Notice that, with our conditions on the parameters, it is immediate to check that also the functions we will introduce in the
proof of Theorem 3.1 will be well defined, even when not explicitly remarked.
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Fig. 4. With reference to the parallelepiped R in Figs. 2 and 3, reproduced here at a different scale, we show that the F -image set
of an arbitrary path γ joining in R the two components of the boundary set R− intersects R twice. In particular, this is due to
the fact that the horizontal faces R−

`
and R−r are mapped by F below R−

`
, in conformity with conditions (C1) and (C2), and that

the flat surface S of the middle points w.r.t. the z-coordinate in R is mapped by F above R−r , in agreement with condition (C3′)
in the proof of Theorem 3.1.

Fig. 5. Since F (S) ∩ R = ∅ (see Fig. 4), then R ∩ F (R) is the union of two disjoint compact sets, we call K0 and K1. In fact, as
shown in the proof of Theorem 3.1, with such a choice it holds that (Ki, F ) : R̃ R̃, for i = 0, 1.

Proof of Theorem 3.1. We show that, for the parameter values in (3.5), any choice of xi, yi, zi, i ∈ {`, r},1

fulfilling (H1)–(H5) guarantees that the image under the map F of any path γ = (γ1, γ2, γ2) : [0, 1]→ R =2

R(xi, yi, zi) joining the sets R−` and R−r defined in (3.4) satisfies the following conditions:3

(C1) F3(γ(0)) ≤ z`;4

(C2) F3(γ(1)) ≤ z`;5
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Fig. 6. Given the arbitrary path γ in Fig. 5 joining in R the two components of R−, we show that the F -image sets of γ ∩ K0 and
of γ ∩ K1 join R−

`
with R−r , as required by the SAP property.

(C3) ∃ t∗ ∈ (0, 1) : F3(γ(t∗)) > zr; 1

(C4) F1(γ(t)) ⊆ [x`, xr], ∀t ∈ [0, 1]; 2

(C5) F2(γ(t)) ⊆ [y`, yr], ∀t ∈ [0, 1]. 3

Broadly speaking, conditions (C1)–(C3) describe an expansion with folding along the z-coordinate. In fact, 4

the image F ◦ γ of any path γ joining in R the sides R−` and R−r crosses a first time the parallelepiped 5

R for t ∈ (0, t∗) and then crosses R back again for t ∈ (t∗, 1). Conditions (C4) and (C5) imply instead a 6

contraction along the x-coordinate and the y-coordinate, respectively. 7

Actually, in order to simplify the exposition, instead of the necessary condition (C3), we will check that the 8

stronger and more specific requirement 9

(C3′) F3
(
x, y, z`+zr2

)
> zr, ∀(x, y) ∈ [x`, xr]× [y`, yr], 10

is satisfied, which means that the inequality in (C3) holds for any t∗ ∈ (0, 1) such that γ(t∗) =
(
x, y, x`+xr2

)
, 11

for some (x, y) ∈ [x`, xr]× [y`, yr]. Notice that 12

S :=
{(
x, y,

z` + zr
2

)
: (x, y) ∈ [x`, xr]× [y`, yr]

}
⊆ R (3.7) 13

is the flat surface of middle points w.r.t. the z-coordinate in R depicted in Fig. 4. 14

Setting 15

R0 :=
{

(x, y, z) ∈ R3 : (x, y) ∈ [x`, xr]× [y`, yr], z ∈
[
z`,

z` + zr
2

]}
, 16

R1 :=
{

(x, y, z) ∈ R3 : (x, y) ∈ [x`, xr]× [y`, yr], z ∈
[z` + zr

2 , zr

]}
, 17

and 18

K0 := R0 ∩ F (R) and K1 := R1 ∩ F (R) 19

(see Fig. 5), we claim that (C1), (C2), (C3′), (C4) and (C5) together imply (3.6). Notice at first that K0 20

and K1 are disjoint because, thanks to condition (C3′), the set S in (3.7) is mapped by F outside R (see 21

Fig. 4), and that F is continuous on K0 ∪ K1, because it is continuous on R. Furthermore, by (C1), (C2) 22
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and (C3′), for every path γ : [0, 1]→ R such that γ(0) and γ(1) belong to different components of R−, there1

exist two disjoint sub-intervals [t′0, t′′0 ], [t′1, t′′1 ] ⊆ [0, 1] such that, setting σ0 := γ|[t′0,t′′0 ] : [t′0, t′′0 ] → K0 and2

σ1 := γ|[t′1,t′′1 ] : [t′1, t′′1 ] → K1, it holds that F (σ0(t′0)) and F (σ0(t′′0)) belong to different components of R−,3

as well as F (σ1(t′1)) and F (σ1(t′′1)). Moreover, from (C4) and (C5) it follows that F (σ0(t)) ∈ R, ∀ t ∈ [t′0, t′′0 ]4

and F (σ1(t)) ∈ R, ∀ t ∈ [t′1, t′′1 ].5

This means that (Ki, F ) : R̃ R̃, i = 0, 1, and our claim is thus proved.6

Once that the stretching condition in (3.6) is achieved, the conclusion of the theorem follows by7

Theorem 2.3.88

In order to complete the proof, let us verify that any choice of the parameters as in (3.5) and of the9

domain R = R(xi, yi, zi) in agreement with (H1)–(H5) implies that conditions (C1), (C2), (C3′), (C4) and10

(C5) are fulfilled for any path γ : [0, 1] → R joining R−` and R−r .9 In so doing, we will prove that the11

inequality in (C1) is indeed an equality.12

Let us start with the verification of (C1). Since F3(x, y, z) = z
(

1− αc3 + α(x+y)
(x+y+z)2

)
and γ(0) ∈ R−` =13

[x`, xr] × [y`, yr] × {z`} = [x`, xr] × [y`, yr] × {0} by (H1), it then follows that γ3(0) = 0 and thus14

0 = F3(γ(0)) ≤ z` = 0, as desired.15

In regard to (C2), we have to verify that F3|R−r ≤ 0, that is, F3(x, y, zr) ≤ 0, ∀(x, y) ∈ [x`, xr]× [y`, yr].16

Setting A := x+ y, we consider, instead of F3|R−r , the one-dimensional function10
17

φ : [x` + y`, xr + yr]→ R, φ(A) := zr

(
1− αc3 + αA

(A+ zr)2

)
.18

Computing the first derivative of φ, we get φ′(A) = zr α
(
−A+zr
(A+zr)3

)
, which vanishes at A = zr. However,19

since by (H2) we have x` + y` > zr, then φ ′(A) < 0, ∀A ∈ [x` + y`, xr + yr]. Hence, F3|R−r ≤ F3(x`, y`, zr)20

and thus, in order to have (C2) satisfied, it suffices that F3(x`, y`, zr) ≤ 0. Imposing such condition, we find21

zr

(
1− αc3 + α(x`+y`)

(x`+y`+zr)2

)
≤ 0, which is fulfilled when αc3−1

α ≥ x`+y`
(x`+y`+zr)2 . Making zr explicit, this holds22

when zr ≥
√

α
αc3−1 (x` + y`) − (x` + y`), that is, when (H2) is fulfilled. Notice that the latter is a “true”23

restriction, since, still by (H2), the right hand side of the above inequality is positive. The verification of24

(C2) is complete.25

As regards (C3′), we need to check that F3
(
x, y, z`+zr2

)
> zr, ∀(x, y) ∈ [x`, xr]× [y`, yr], that is, recalling26

the definition of S in (3.7), F3|S > zr. Notice that, by (H1), z`+zr
2 = zr

2 . Analogously to what done above,27

instead of F3|S , let us consider the one-dimensional function28

ϕ : [x` + y`, xr + yr]→ R, ϕ(A) := zr
2

(
1− αc3 + αA(

A+ zr
2
)2
)
.29

Since x` + y` > zr >
zr
2 , by the previous analysis we know that ϕ(A) ≥ ϕ(xr + yr) = F3

(
xr, yr,

zr
2
)
. Hence,30

in order to have F3|S > zr, it suffices that F3
(
xr, yr,

zr
2
)
> zr, that is,31

zr
2

(
1− αc3 + α(xr + yr)(

xr + yr + zr
2
)2
)
> zr.32

8 Notice that, by the choice of K0 and K1, the invariant chaotic set I ⊆ K0∪K1 in Definition 2.2 lies entirely in the first quadrant
and therefore makes economic sense for the application in question.

9 Just to fix the ideas, in what follows we will assume that γ(0) ∈ R−
`

and γ(1) ∈ R−r .
10 In several steps of the proof, instead of studying the original problem, through a substitution we will be lead to consider a

lower-dimensional one. Alternatively, we could use the Kuhn–Tucker Theorem for constrained maximization problems. We decided
to follow the former approach because it is more elementary and requires less computations. However, we stress that the two
approaches require to impose the same conditions (H1)–(H5) on the parameters.
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Since zr > 0, making zr explicit, we find 1

zr < 2
(√

α

αc3 + 1(xr + yr)− (xr + yr)
)

2

and this condition is satisfied thanks to (H3). Hence (C3) is verified. 3

In order to check (C4), we need to show the two inequalities F1(x, y, z) ≤ xr, ∀(x, y, z) ∈ R and 4

F1(x, y, z) ≥ x`, ∀(x, y, z) ∈ R, which are satisfied if 5

max
(x,y,z)∈R

F1(x, y, z) ≤ xr and min
(x,y,z)∈R

F1(x, y, z) ≥ x`, 6

respectively.11
7

Instead of considering F1|R, setting B := y + z and T := [x`, xr] × [y` + z`, yr + zr], we deal with the 8

bi-dimensional function 9

Φ : T → R, Φ(x,B) := 2x+B − c1(x+B)2

2 , 10

whose partial derivatives are 11

∂Φ
∂x

= 1− c1(x+B) and ∂Φ
∂B

= 1
2 − c1(x+B). 12

Since they do not vanish contemporaneously, there are no critical points in the interior of T . We then study 13

Φ on the boundary of its domain. 14

As concerns Φ1(B) := Φ|{x`}×[y`+z`,yr+zr](x,B) = Φ(x`, B), we have that Φ′1(B) = 1
2 − c1(x`+B), which 15

vanishes at B = 1
2c1
− x`. This is the maximum point of Φ1 if B ∈ [y` + z`, yr + zr]. But that is guaranteed 16

by the conditions in (H4). 17

Similarly, setting Φ2(B) := Φ|{xr}×[y`+z`,yr+zr](x,B) = Φ(xr, B), we find that its maximum point, still 18

by (H4), is given by B̂ = 1
2c1
− xr ∈ [y` + z`, yr + zr]. 19

In regard to Φ3(x) := Φ|[x`,xr]×{y`+z`}(x,B) = Φ(x, y` + z`), we have Φ′3(x) = 1 − c1(x + y` + z`), 20

which vanishes at x = 1
c1
− (y` + z`). By the conditions in (H4), x > xr and thus Φ3(x) is increasing 21

on [x`, xr]. Analogously, since x̂ = 1
c1
− (yr + zr) > xr, it holds that Φ4(x) := Φ|[x`,xr]×{yr+zr}(x,B) = 22

Φ(x, yr + zr) is increasing on [x`, xr]. Summarizing, the two candidates for the maximum point of Φ on T 23

are
(
x`,

1
2c1
− x`

)
and

(
xr,

1
2c1
− xr

)
. A direct computation shows that Φ

(
x`,

1
2c1
− x`

)
< Φ

(
xr,

1
2c1
− xr

)
, 24

and thus max(x,y,z)∈R F1(x, y, z) = Φ
(
xr,

1
2c1
− xr

)
. Hence, it is now easy to verify that the inequality 25

max(x,y,z)∈R F1(x, y, z) ≤ xr is satisfied when xr ≥ 1
4c1

, the latter being among the assumptions in (H4). 26

The analysis above also suggests that the two candidates for the minimum point of Φ on T are (x`, y`+z`) 27

and (x`, yr + zr). Straightforward calculations show that, if x` ≤ 1
2c1

(1− c1(y` + yr + z` + zr)), then 28

Φ(x`, y`+z`) ≤ Φ(x`, yr+zr). Hence, again by (H4), min(x,y,z)∈R F1(x, y, z) = Φ
(
x`, y`+z`

)
. The inequality 29

min(x,y,z)∈R F1(x, y, z) ≥ x` is thus satisfied when
√

y`+z`
c1
− (y` + z`) ≥ x`, which is among the conditions 30

in (H4). 31

This concludes the verification of (C4). 32

Let us finally turn to (C5). In order to check it, we have to show that 33

max
(x,y,z)∈R

F2(x, y, z) ≤ yr and min
(x,y,z)∈R

F2(x, y, z) ≥ y`. (3.8) 34

11 Notice that such maximum and minimum values exist by the Weierstrass Theorem.

Marina
Evidenziato

Marina
Nota
Please insert a comma here.
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Instead of F2|R, setting D := x+ z, we deal with the one-dimensional function1

ψ : [x` + z`, xr + zr]→ R, ψ(D) :=
√
D

c2
−D,2

whose derivative is ψ′(D) = 1
2
√
c2D
− 1. It vanishes at D = 1

4c2
, which by (H5) is smaller than x` + z`. Thus3

max(x,y,z)∈R F2(x, y, z) = ψ(x` + z`) and min(x,y,z)∈R F2(x, y, z) = ψ(xr + zr). Hence, the first condition in4

(3.8) is satisfied if ψ(x` + z`) ≤ yr and the second condition is fulfilled if ψ(xr + zr) ≥ y`. It is easy to see5

that both inequalities are fulfilled thanks to (H5) and this concludes the verification of (C5).6

The proof is complete. �7

Remark 3.1. We stress that, slightly modifying the conditions for the construction of the parallelepiped8

R in the statement of Theorem 3.1, it is possible to obtain a robust result on the existence of chaotic9

dynamics, i.e., a result stable with respect to small changes in the value of the model parameters c1, c2, c310

and α in (3.5). To this aim, it suffices to replace the weak inequalities in (H2), (H4) and (H5) with strict11

inequalities (and, correspondingly, set strict inequalities and inclusions in (C2), (C4) and (C5)) and exploit12

the continuity of the map F . Notice that the parameter values in (3.5) satisfy even those stricter conditions.13

The only exception12 in such procedure is given by (H1) (and, correspondingly, (C1)) that, in the specific14

example considered, cannot be written with strict inequalities. This is due to the fact that, since the variable15

z represents an output, we cannot take z` < 0, while, as it is easy to verify, with z` > 0 condition (C1) would16

not hold and the geometry required to apply the SAP method would be missing. On the other hand, (x, y, 0)17

is a fixed point for the map F3, for every (x, y) ∈ R2
+, and thus, under condition (H1), F3(R−` ) = 0 = z`,18

independently of the choice of the model parameters. This means that, even if it is not possible to modify19

condition (H1), the above suggested changes suffice to make Theorem 3.1 stable with respect to small20

perturbations in the parameter values. However, in the particular context considered in the present section,21

it seems not possible to obtain a result stable with respect to more general perturbations on F , because22

our proof heavily relies on the expression of F3 and its fixed points. For a precise formulation of a related23

perturbative result in the bi-dimensional setting, see [38, Corollary 2.1].24

4. Conclusions25

In this paper we have recalled what the SAP method consists in and we have applied that topological26

technique to rigorously prove the existence of robust chaotic sets for the triopoly game model in [6]. By27

“chaotic sets” we mean invariant domains on which the map describing the system under consideration is28

semiconjugate to the Bernoulli shift (implying the features in Remark 2.1) and where periodic points are29

dense. By “robustness” we mean that our result is stable with respect to small parameter perturbations.30

However, we stress that we did not say anything about the attractivity of those chaotic sets. In fact, in31

general, the SAP method does not allow to draw any conclusion in such direction. For instance, when32

performing numeric simulations for the parameter values in (3.5), no attractor appears on the computer33

screen. The same issue emerged with the bi-dimensional models considered in [18]. The fact that the chaotic34

set is repulsive can be a good signal as regards the overlapping generations model therein, for which we35

studied a backward moving system, since the forward moving one was defined only implicitly and it was36

not possible to invert it. Indeed, as argued in [18], a repulsive chaotic set for the backward moving system37

possibly gets transformed into an attractive one for a related forward moving system through Inverse Limit38

Theory (ILT). In general, however, one just deals with a forward moving dynamical system and this kind39

of argument cannot be employed. For instance, both in the duopoly game model in [18] and in the triopoly40

12 Condition (H3), and correspondingly (C3), do not need any intervention, as they are already written in the “stricter” form.
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game model analyzed in the present paper, we are able to prove the presence of chaos for the same parameter 1

values considered in the literature, except for a bit larger speed of adjustment α. It makes economic sense 2

that complex dynamics arise when firms are more reactive, but unfortunately for such parameter values no 3

chaotic attractors can be found via numerical simulations. 4

What we want to stress is that this is not a limit of the SAP method: such issue is instead related to the 5

possibility of performing computations by hands. To see what is the point, let us consider the well-known 6

case of the logistic map f : [0, 1]→ R, f(x) = µx(1−x), with µ > 0. As observed in [18], if we want to show 7

the presence of chaos for it via the SAP method13 by looking at the first iterate, then we need µ > 4. In this 8

case, however, the interval [0, 1] is not mapped into itself and for almost all initial points in [0, 1] forward 9

iterates limit to −∞. If we consider instead the second iterate, the SAP method may be applied for values 10

less than 4, for which chaotic attractors do exist. See [18] for further details. 11

This simple example aims to suggest that working with higher iterates may allow to reach an agreement 12

between the conditions needed to employ the SAP method and those to find chaotic attractors via numerical 13

simulations. 14

A possible direction of future study can then be the study of economically interesting but simple enough 15

models, so that it is possible to deal with higher iterates, in the attempt of rigorously proving the presence 16

of chaos via the SAP technique for parameter values for which also computer simulations indicate the same 17

kind of behavior. 18

Still in regard to chaotic attractors, we have observed that the SAP method works well for models 19

presenting Hénon-like attractors, due to the presence of a double folding, in turn related to the geometry 20

required to apply our technique. On the other hand, a preliminary analysis seems to suggest that the SAP 21

method is not easily applicable to models presenting a Neimark–Sacker bifurcation leading to chaos. A more 22

detailed investigation of such kind of framework will be pursued, as well. 23

A further possible direction of future study is the analysis of continuous-time economic models with our 24

technique, maybe in the context of LTMs, for systems switching between two different regimes, such as gross 25

complements and gross substitutes. 26
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[21] R. Srzednicki, K. Wójcik, A geometric method for detecting chaotic dynamics, J. Differential Equations 135 (1997) 66–82.15

[22] A. Pascoletti, M. Pireddu, F. Zanolin, Multiple periodic solutions and complex dynamics for second order ODEs via linked
twist maps, Electron. J. Qual. Theory Differ. Equ. 14 (2008) 1–32. Proc. 8’th Coll. Qualitative Theory of Diff. Equ.

16

[23] M. Pireddu, F. Zanolin, Chaotic dynamics in the Volterra predator–prey model via linked twist maps, Opuscula Math. 28
(2008) 567–592.

17

[24] K. Burns, H. Weiss, A geometric criterion for positive topological entropy, Comm. Math. Phys. 172 (1995) 95–118.18

[25] J. Kennedy, J.A. Yorke, Topological horseshoes, Trans. Amer. Math. Soc. 353 (2001) 2513–2530.19
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