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physics studies. A particular case is the discrimination, or tagging, between a boosted jet

originated from an electroweak boson (signal), and a standard QCD parton (background).

A common way to achieve this is to cut on a measure of the radiation inside the jet, i.e.

a jet shape. Over the last few years, analytic calculations of jet substructure have allowed

for a deeper understanding of these tools and for the development of more efficient ones.

However, analytic calculations are often limited to the region where the jet shape is small.

In this paper we introduce a new approach in perturbative QCD to compute jet shapes

for a generic boosted jets, waiving the above limitation. We focus on an example common

in the substructure literature: the jet mass distribution after a cut on the N -subjettiness

τ21 ratio, extending previous works to the region relevant for phenomenology. We compare

our analytic predictions to Monte Carlo simulations for both plain and SoftDrop-groomed

jets. We use our results to construct analytically a decorrelated tagger.
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1 Introduction

The field of jet substructure, i.e. the use and study of the internal dynamic properties of

jets, has gained a sizeable importance at the LHC over the past few years, both theoret-

ically and experimentally (see e.g. [1] and [2] for recent reviews). The main application

of jet substructure is likely the tagging of highly boosted electroweak (H/W/Z) bosons or

top quarks, produced with transverse momenta much larger than their mass, a situation

which appears increasingly often at the LHC, in particular in searches for new physics

(e.g. [3–8]) and studies of the Higgs boson [9]. It has also seen many more recent devel-

opments, noticeably analytic studies of substructure observables (e.g. [10–19]), the use of

substructure techniques to probe the quark-gluon plasma in high-energy heavy-ion colli-

sions (e.g. [20–24]), the use of Machine Learning techniques (e.g. [25–35]), and standard

model measurements (e.g. [36, 37]) alongside precision calculations in QCD (e.g. [38–40]).
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When tagging boosted bosons, many jet substructure observables are based on two

basic observations: (i) electroweak bosons tend to have multiple high-energy cores/subjets

— two for an electroweak boson, 3 for a top quark, — and (ii) the QCD radiation patterns

is different in a boosted boson compared to a standard QCD jet. Modern substructure

taggers used by the LHC experiments combine both ideas. Several tools exploiting the first

idea have already been studied analytically [10, 11, 13, 16, 19], sometimes even targeting

precision [38–40]. Observables relying on radiation patterns, typically by imposing a cut

on a jet shape, are more complicated to study. As we discuss in this work, this is primarily

because they require at least 3 particles in the jet, meaning that they start one order

later in the perturbative QCD series expansion relative to tools of the first category and

usually involve additional scales. Currently, several jet shapes have been studied in the

limit where both the jet mass — more precisely the ratio of the jet mass over its transverse

momentum, m/pt — and the cut on the shape are small [15]. Recent calculations have been

performed in Soft-Collinear Effective Theory (SCET) for some energy correlation functions,

D2 [14, 17, 18], still imposing m� pt but not requiring specific conditions on D2.

The idea behind this paper is to push the level of our analytic understanding of another

jet shape, the N -subjettiness ratio [41–43], τ21 = τ2/τ1, in a purely perturbative QCD

approach. To do that, we extend the calculation of [15], done in the limit where both

m� pt and τ21 � 1, to the situation where we only require m� pt and allow τ21 to take

any value. We choose to focus on the τ21 ratio (with the β parameter set to 2) mainly

because the structure of the calculation greatly simplifies. However, we believe that the

same method can be applied to a series of other jet shapes, like τ21 with any value of β,

energy correlation functions, dichroic ratios or even shapes relevant for top tagging, which

are left for a future work. Additionally, the method presented below essentially amounts to

computing a three-jet observable in the two-jet limit, a notoriously complicated situation

to address in the context of resummation. We therefore hope that our results have an

impact beyond the field of jet substructure.

Besides the obvious interest in understanding the internal properties of jets from a first-

principles viewpoint, expanding our analytic knowledge of jet substructure observables has

two potential benefits: it can lead to the introduction of better tools (see e.g. [10, 16, 44, 45])

and it can lead to precision measurements in the context of standard-model studies. We

give an example of the former by constructing a decorrelated tagger [46] based on our

analytic results.

This paper is organised as follows in section 2 we briefly review the definitions of N -

subjettiness we use throughout this paper. In section 3 we summarise the findings from the

earlier study which are of relevance for this paper and discuss the improved accuracy which

we target in this paper. Our main findings are presented in section 4 first performing the

calculation for the double-differential distribution in both the jet mass and the τ21 ratio,

then addressing the case, more relevant for phenomenological applications, of the mass

distribution with a cut on τ21. Comparisons to numerical Monte Carlo simulations are

presented in section 5 before we conclude in section 6.
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2 N -subjettiness

For a given jet and a set of N axes a1, . . . , aN , N -subjettiness is defined as

τ
(β)
N =

1

ptRβ

∑
i∈jet

pti min(θβia1 , . . . , θ
β
iaN

), (2.1)

where the sum runs over all the constituents of the jet, of momentum pti and with an

angular distance θiaj to the axis aj . β is a parameter of N -subjettiness and in what follows

we will concentrate on the case β = 2. The main reason for this choice is that it simplifies

the calculation in the case of the jet mass. Also β = 2 shows better performance in Monte

Carlo studies than the more standard choice β = 1, with the main drawback that the

former is more sensitive to non-perturbative effects than the latter. This can be addressed

by lightly grooming the jet, e.g. with SoftDrop [13] before computing N -subjettiness (see

section 3.2 of [47] for a systematic study).

There are several ways to specify the axes. Common choices include using exclusive kt
axes or using “minimal” axes, i.e. the axes that minimise τN . Here, we will either consider

the minimal axes or the case of exclusive axes obtained after re-clustering the jet with

the generalised-kt algorithm with p = 1/2.1 The motivation behind this choice has been

explained in [15]: the ordering in ptiθ
2
i corresponding to β = 2 N -subjettiness in eq. (2.1)

is preserved by the clustering, at least in the strongly-ordered limit. To the accuracy we

target in this paper, the generalised-kt and minimal axes are equivalent.2 We discuss in

more detail the extent to which the two choices of axes are equivalent in section 5.1.

3 Targeted accuracy and hints from previous studies

Our calculation aims at including two regimes: the leading (τ21-dependent) logarithms of

the jet mass relevant in the boosted limit, ρ = m2/(ptR)2 � 1, and the leading (double) log-

arithms of τ21 in the limit where τ21 � 1. In the boosted limit, the dominant contribution

to jet mass distributions comes from double logarithms of ρ, corresponding to contributions

of the form αns logn(ρ). These terms arise from the constraints on the jet mass distribu-

tion and are independent of τ21. For τ21 � 1, the extra N -subjettiness constrain brings

new double-logarithmic terms of the form αs log(1/ρ) log(1/τ) and αs log2(1/τ) which have

to be resummed to all orders. This was done in [15] and we briefly review these results

later in this section. In this paper, we are instead interested in the region where the N -

subjettiness constraint is not necessarily small. In the logarithmic expansion in ρ, once

the τ21-independent double-logarithms of ρ have been extracted, the leading terms af-

fected by the N -subjettiness constraint are single-logarithmic terms in ρ, in the form of

1For a generic β, one could use the generalised kt algorithm with p = 1/β.
2Note however that the default implementation of the minimal axes (MultiPass Axes) in the

fjcontrib [48] N -subjettiness code starts with the kt axes as a seed. In cases where only a small number

of particles are present, the kt and generalised-kt(1/2) axes differ significantly — e.g. in cases with 2 soft

emissions with z1θ
2
1 � z2θ

2
2 and z1θ1 � 22θ2 — and the code sometimes fails to find the right minimum.

An easy workaround is to use instead the MultiPass Manual Axes, setting manually the seed axes to the

generalised-kt(1/2) axes. This is what we use in this paper.

– 3 –
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αns logn(1/ρ)fn(τ21) with fn to be determined. The main novelty of this paper is to com-

pute these contributions, i.e. the exact form of the fn(τ21) coefficients, while keeping the

full double-logarithmic structure (in both ρ and τ21) in the small τ21 limit. This last point

means that beyond the (single-logarithmic in ρ) contribution to fn(τ21) proportional to

logn(τ21), we also want to resum terms enhanced by double-logarithms of τ21, αns log2n(τ21).

In other words, our accuracy includes both the leading (single-logarithmic) terms in ρ at

any τ21 as well as the double-logarithmic in either ρ or τ21 relevant in the small τ21 limit.

Before turning to the full computation, let us first review the computation from [15],

in the limit ρ� 1, τ21 � 1. We focus on the jet mass distribution with a cut on τ21 < τ :3

H(ρ,< τ) ≡ ρ

σ

dσ

dρ

∣∣∣∣
τ21<τ

. (3.1)

In the double-logarithmic approximation (in both log(1/ρ) and log(1/τ)), emissions in the

jet can be considered strongly-ordered in ziθ
2
i , with zi the transverse momentum fraction

of emission i and θi its emission angle.4 We can therefore assume

z1θ
2
1 � z2θ

2
2 � · · · � znθ

2
n, (3.2)

as well as a strong angular ordering between the emissions. In that case, the jet mass is

dominated by the first emission. For τN , the N axes will align with the “leading” parton

and the N − 1 first emissions so that τN is dominated by the N th emission. In our case,

we therefore have

ρ ≈ τ1 ≈ z1θ
2
1 and τ2 ≈ z2θ

2
2. (3.3)

With this at hand, the leading-logarithmic mass distribution can be written as

HLL(ρ,< τ) =

∫ 1

0

dθ2
1

θ2
1

dz1 P (z1)
αs(z1θ1ptR)

2π
ρδ(z1θ

2
1 − ρ) e−Rplain(ρ)−Rτ (τ ;ρ,z1), (3.4)

with (the first expression below is introduced for later convenience)

R′plain(ρ) =

∫ 1

0

dθ2

θ2
dzP (z)

αs(zθptR)

2π
ρδ(zθ2−ρ)

f.c.
=
αsCR
π

[
log(1/ρ)+Bi

]
, (3.5)

Rplain(ρ) =

∫ 1

0

dθ2

θ2
dzP (z)

αs(zθptR)

2π
Θ(zθ2>ρ)

f.c.
=
αsCR

2π

[
log(1/ρ)+Bi

]2
, (3.6)

Rτ (τ ;ρ,z1) =Rplain(τρ)−Rplain(ρ)+

∫ θ21

0

dθ2
12

θ2
12

∫ 1

0
dzP (z)

αs(zz1θ12ptR)

2π
Θ(z(θ12/θ1)2>τ)

f.c.
=
αsCR

2π

[
2(log(1/ρ)+Bi) log(1/τ)+log2(1/τ)

]
+
αsCA

2π

[
log(1/τ)+Bg

]2
. (3.7)

Eq. (3.4) shows that H(ρ,< τ) receives 3 contributions: (i) a contribution from the real

emission “1” which dominates the jet mass, if it were not for the explicit dependence of

Rτ on z1, this integration would lead to an overall R′plain factor given by eq. (3.5); (ii) a

3Unless explicitly stated otherwise, τ21 will denote a specific N -subjettiness value and τ will refer to a

cut on τ21.
4From now on, we use a notation for which angles are normalised to R, i.e. the actual emission angle is θR.
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Sudakov factor exp[−Rplain(ρ)], given by eq. (3.6), associated with the jet mass vetoing real

emissions with zθ2 > z1θ
2
1; and (iii) a Sudakov factor exp(−Rτ ), eq. (3.7), associated with

the cut on τ21, imposing that there are no additional real emissions with z1θ
2
1 > zθ2 > z2θ

2
2.

The results indicated by “f.c.” in the expressions above have been obtained assuming a

fixed-coupling approximation to highlight the logarithms that arise in the various contribu-

tions to H(ρ,< τ). For completeness, results for the radiators used throughout this paper

are given in appendix A. Finally, unless explicitly mentioned otherwise, we use a modified

leading-logarithmic approximation to compute the radiators, i.e. include the dominant lead-

ing logarithms as well as the correction coming from hard collinear splittings, as explicit in

the fixed-coupling expressions above. In practice, we obtain this by replacing the splitting

function P (z) by 2CR
z Θ(log(z) < Bi), with CR the appropriate colour factor and Bi = Bq

(resp. Bg) introducing the contribution from hard-collinear splittings for quarks (resp. glu-

ons). Note that Rτ (τ ; ρ) also includes a contribution, proportional to CA, corresponding to

secondary emissions, i.e. to the situation where the emission which dominates τ2 is emitted

from emission “1” which dominates τ1. In the end, the physical interpretation of the above

result is that, on top of the plain jet mass distribution R′plain(ρ) exp[−Rplain(ρ)], we gain

an extra exponential suppression, exp[−Rτ (τ ; ρ)], due to the constraint on N -subjettiness.

Note that since Rτ (τ ; ρ) depends on z1 due to the running of αs, the integration over z1

in (3.4) — which would otherwise give a R′plain(ρ) factor — has to be kept explicit.

While eq. (3.4) captures the main physics ingredients observed in Monte Carlo sim-

ulations, it is not without limitations. First, one can show that the signal events would

also have a Sudakov suppression factor. This means that one does not want to take the

τ21 cut too small. This motivates the calculation of the finite τ21 corrections to (3.4), for

which we introduce a generic powerful method next section. Second, Monte Carlo studies

show — see also section 5 — that the τ21 and mass distributions are significantly affected

by initial-state radiation and non-perturbative effects. One can obtain much more robust

distributions by grooming the jet prior to imposing the constraint on τ21, albeit at a small

cost in performance. We will therefore also consider the case of jets groomed with the

modified MassDrop Tagger [10] or SoftDrop [13]. The above calculation remains valid, up

to a redefinition of its basic pieces:

HLL,SD(ρ,< τ) =

∫ 1

0

dθ2
1

θ2
1

dz1 P (z1)
αs(z1θ1ptR)

2π
Θ(z1 > zcutθ

β
1 )

× ρδ(z1θ
2
1 − ρ) e−RSD(ρ)−Rτ,SD(τ ;ρ,z1), (3.8)

with

R′SD(ρ) =

∫ 1

0

dθ2

θ2
dz P (z)

αs(zθptR)

2π
Θ(z > zcutθ

β) ρδ(zθ2 − ρ), (3.9)

RSD(ρ) =

∫ 1

0

dθ2

θ2
dz P (z)

αs(zθptR)

2π
Θ(z > zcutθ

β) Θ(zθ2 > ρ), (3.10)

RSD(τ ; ρ, z1) =

∫ 1

0

dθ2

θ2
dz P (z)

αs(zθptR)

2π
Θ(z > zcutθ

β or θ < θ1) Θ(ρ > zθ2 > ρτ)

+

∫ θ21

0

dθ2
12

θ2
12

∫ 1

0
dz P (z)

αs(zz1θ12ptR)

2π
Θ(z(θ12/θ1)2 > τ) (3.11)
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where the results are presented for SoftDrop with a generic zcut and β and one can obtain

expressions for the mMDT by setting β to 0. Compared to the plain-jet case this implies a

cut on z such that z > zcutθ
β . The only exception is the extra contribution θ < θ1 present

in the definition of Rτ,SD. This comes from the fact that if emission “1” is the first to

trigger the mMDT/SoftDrop condition, then the mMDT/SD declustering procedure stops

and all emission at angles smaller than θ1 are kept in the groomed jet.

4 Calculation for finite τ cut

We now turn to the main calculation of this paper: the inclusion of the finite-τ contributions

to H(ρ;< τ). Compared to the previous section where, in the strongly-ordered limit,

τ21 = (z2θ
2
2)/(z1θ

2
1), a finite τ21 implies z1θ

2
1 & z2θ

2
2. More generally, this means that to

perform a calculation at finite τ21 we need to lift the ordering assumption between the

emissions in a jet, i.e. we have5

ρ1 ∼ ρ2 ∼ · · · ∼ ρn, with ρi = ziθ
2
i . (4.1)

With no specific ordering in mass (i.e. in ρi), the dominant logarithmic behaviour will come

from a series of emissions strongly ordered in angle, so we can assume in what follows that

θ1 � θ2 � · · · � θn, (4.2)

or, equivalently, a strong ordering in momentum fraction

z1 � z2 � · · · � zn. (4.3)

This ordering yields a coefficient of the form αns logn(ρ)fn(τ) where the n powers of log(ρ)

come from the strong ordering in angle and the τ -dependent coefficient fn(τ) has to be

computed.

The situation with no mass ordering and the strong angular ordering is reminiscent

of what one considers when computing multiple-emission corrections to the jet mass, con-

tributing at NLL, single-logarithmic, accuracy. The main difference here is the addition

of a constraint on N -subjettiness. This analogy suggests that one can use CAESAR-like

techniques [49] to compute the distribution H(ρ,< τ). In what follows, we show how to do

this in three steps: first, we find a generic expression for τ21 based on a set of n emissions

satisfying the constraints (4.1) and (4.2); then in section 4.2 we show in details how to

derive an expression for the double-differential cross-section d2σ/dρdτ21 before considering

the case of H(ρ,< τ) in section 4.3. The reason to begin with the double-differential dis-

tribution is that it is technically a bit simpler than the cumulative distribution H allowing

us to focus on the generic ideas behind the calculation.

5Emissions with much smaller values of zθ2 do not significantly contribute to either τ1 or τ2 and are

therefore irrelevant.
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4.1 Computing N-subjettiness for a given set of emissions

The first thing we need is an expression for τ21 computed from a set of emissions satisfy-

ing (4.1) and (4.2). In our small ρ limit, the mass and τ1 coincide and are known to be

given by

ρ = τ1 =

n∑
i=1

ρi. (4.4)

As for the calculation of τ2, we start by investigating the case of minimal axes. For this,

we consider a given partition of the emissions into two subjets. The emissions at large angle

in a subjet are also the softest, meaning that, up to negligible recoil corrections,6 the axes

will be aligned with the hardest particle in each of the 2 subjets. It is therefore sufficient

to consider the cases where one of the axes is aligned with the parent hard particle and

the second axes is aligned with one of the other particles, say j. In that case, all particles

with i < j are clustered with the parent particle, and all particles with i > j are clustered

either with the parent particle or with particle j. That means that, assuming a second axis

aligned with emission j, we get

τ
(j)
2 '

j−1∑
i=1

ziθ
2
i +

n∑
i=j+1

zi min(θ2
ij , θ

2
i ) '

j−1∑
i=1

ρi +

n∑
i=j+1

ρi ' τ1 − ρj , (4.5)

where, for the second equality, we assume θi ' θij for i > j which follows from strong

angular ordering. By definition of the minimal axes, we still need to choose the j that

minimises τ
(j)
2 , and this is simply the j that gives the largest ρj , yielding to

τ2 ' τ1 −max
i
ρi, and τ21 ' 1− maxi ρi

ρ
. (4.6)

The same kind of arguments can be applied with generalised-kt(p = 1/2) clustering.

At each step of the clustering the minimal distance is either di0 = ziθ
2
i (with the index

“0” referring to the leading parton) or dij = ziθ
2
ij with i > j. Since in that case θij ∼ θi

and zj � zi one will simply cluster the particle i with the smallest ρi = ziθ
2
i either with

the parent particle or with a particle j with j < i, without affecting the kinematics of the

particle one clusters with. This is iterated until the last step where one clusters the particle

with the largest ρi. The expression for τ21 in the generalised-kt(p = 1/2) case is therefore

the same as in the minimal one.

Eq. (4.6) has an interesting structure: for a set of n emissions, the maximal value

of τ21 on can reach is τ21 = n−1
n , achieved when ρ1 = · · · = ρn = ρ

n , i.e. when all the

emissions contribute equally to the jet mass. One should therefore expect transition points

at τ21 = 1
2 ,

2
3 ,

3
4 , . . . . Also, since each additional emission comes with an extra factor of αs

— accompanied by a logarithm of the jet mass as we shall see below — crossing one of these

thresholds requires going further in the perturbative expansion, with a transition point at

τ21 = 1
2 at leading order, at τ21 = 2

3 at NLO, etc. . . The presence of transition points at

τ21 = n−1
n was already noticed in ref. [51] where similar conclusions to ours are obtained.

6For β = 1 N -subjettiness, the recoil would not be negligible unless one works with a recoil-free axis like

the one obtained with the winner-takes-all recombination scheme [50].
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Figure 1. Plots of the ratio of the τ21 obtained in different limits. A first emission is fixed at the

indicated point and the plots are done varying the second emission. On the left, we show the ratio

τ
(gen-kt)
21 /τ

(min)
21 and on the right the ratio τ

(soft+ang.-ordered)
21 /τ

(min)
21 .

Note that although the condition (4.1) that we use to derive our expression for τ21

differs from the strong ordering in mass, eq. (3.2), use in the small τ21 limit [15], the two

expressions coincide in the small τ21 limit. In other words, we can use eq. (4.6) for small τ21.

To check the validity of (4.6) we consider events with 3 particles defined as follows:

pt0 = (1− z1 − z2)pt, y0 = 0 φ0 = 0,

pt1 = z1pt, y1 = θ1, φ1 = 0,

pt2 = z2pt, y2 = θ2 cos(ϕ), φ2 = θ2 sin(ϕ). (4.7)

Fixing θ1 and z1, varying θ2 and z2, and averaging over ϕ, we compute the value of τ21

in three cases. The first one, which we use as reference in the following, is computed

using the minimisation procedure as implemented in fjcontrib [48]. A second case is

considered when we take the generalised-kt definition for the axes. The last one is given by

our approximation, which we dub “soft+ang.-ordered”, implying that it is obtained from

the previous ones by taking their soft limit and strong angular-ordering (cf. eq. (4.2)). In

order to check the level of agreement of these three different definitions, we plot in figure 1

ratios of the value of τ21 obtained in either the generalised-kt or the “soft+ang.-ordered”

cases over the minimal axes value, as a function of log(R/θ2) and log(z2θ2), keeping z2 <
1
2

and ρ2 = z2θ
2
2 < ρ1 = z1θ

2
1.

First, we see that the generalised-kt axes are in very good agreement with the minimal

axes. For ρ2 . ρ1, we see small deviations for large z2 or θ2 ≈ θ1 and we discuss this

further in section 5.1. Then, we see that our approximation, eq. (4.6) overestimates the

minimal τ21 in two regions: at large z2 and for θ2 ≈ θ1. Again, we discuss the influence

– 8 –
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of these regions in section 5.1 but the key point here is that they are both of finite width,

therefore not giving leading logarithmic contributions.

4.2 Differential τ21 distribution

We start the presentation of our results with the double differential distribution in ρ and

τ21:7

f(ρ, τ21) ≡ ρτ21

σ

d2σ

dρdτ21
. (4.8)

We do this, although our final goal is to compute the distribution H(ρ,< τ) with a cut on

τ21, as this hides some of the technical details in that case, while presenting all the main

steps needed for the method presented in this work. We also leave aside for the moment

secondary emissions, which contribute at the double-logarithmic accuracy in τ21 but are

not enhanced by logarithms of ρ. At the targeted accuracy, it is sufficient to consider any

number n of independent real gluon emissions, strongly ordered in angle (or in momentum

fraction, cf. eqs. (4.2) and (4.3)), dressed with virtual corrections. This can be written as

f(ρ, τ) = lim
ε→0

e−
∫ 1
ε dωv

∞∑
n=1

1

n!

∫ 1

ε

n∏
i=1

dωi ρδ

(
ρ−

n∑
i=1

ρi

)
τδ

(
τ − 1 +

maxi ρi
ρ

)
, (4.9)

with the shorthand notation∫
ε
dωi ≡

∫
ρi>ε

dθ2
i

θ2
i

dzi P (zi)
αs(ziθiptR)

2π
(4.10)

The exponential pre-factor corresponds to virtual corrections, as made explicit by the

subscript v, and the two δ correspond to the constraints on the jet mass and N -subjettiness

ratio. We use eq. (4.6) to compute the value of τ21, and we replace τ21 with τ , to keep the

notation more compact throughout this section, unless otherwise explicitly stated. Since

the constraints only involve ρi, we can simplify our phase-space integration and write∫
ε
dωi =

∫
ε

dρi
ρi
R′(ρi), (4.11)

with R′(ρi) ≡ R′plain(ρi) given by eq. (3.5), showing explicitly that each emission is enhanced

by a logarithm of the jet mass. The next step is to single out the emission with the largest ρi.

Calling this emission ρa and relabelling the remaining emissions ρ1, . . . , ρp, with p = n− 1,

one gets

f(ρ, τ) =

∫ 1

0

dρa
ρa

R′(ρa) lim
ε→0

e
−

∫ 1
ε
dρv
ρv

R′(ρv)
∞∑
p=1

1

p!

∫ ρa

ε

p∏
i=1

dρi
ρi
R′(ρi)

× ρδ
(
ρ− ρa −

p∑
i=1

ρi

)
τδ

(
τ − 1 +

ρa
ρ

)
.

7Throughout this paper, we compute distributions for a fixed jet mass ρ. The τ21 distribution with no

constraints on the jet mass is infrared unsafe. Nevertheless, it remains “Sudakov-safe” [52, 53].
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In the above equation, we explicitly impose that each of the ρi has to be smaller than ρa.

The constraint on τ can be used to perform the ρa integration,

f(ρ, τ) =
τ

1− τ
R′((1− τ)ρ) lim

ε→0
e
−

∫ 1
ε
dρv
ρv

R′(ρv)
∞∑
p=1

1

p!

∫ (1−τ)ρ

ε

p∏
i=1

dρi
ρi
R′(ρi) ρδ

(
ρτ −

p∑
i=1

ρi

)
.

(4.12)

At this stage, we have to distinguish two cases: τ < 1−τ (i.e. τ < 1
2) and τ > 1−τ (i.e.

τ > 1
2). When τ < 1

2 , the constraint
∑

i ρi = ρτ implies that each of the individual ρi is

smaller than ρτ hence the upper integration boundary (1−τ)ρ is irrelevant. Physically, this

means that the appropriate scale for all of the ρi is ρτ . We then define rescaled variables

ξi = ρi/(τρ) and ε = ε/(τρ). Within our accuracy, we replace R′(ρi) by R′(τρ) and rewrite

the virtual corrections as

e
−

∫ 1
ε
dρv
ρv

R′(ρv)
= e−R(ρτ)−R′(ρτ) log(1/ε), (4.13)

where we used R from eq. (3.6). Eq. (4.12) thus becomes

f(ρ, τ)
τ<1/2

=
R′((1− τ)ρ)

1− τ
e−R(ρτ) lim

ε→0

∞∑
p=1

R′p(ρτ)

p!

∫ 1

ε

p∏
i=1

dξi
ξi
e−R

′(ρτ) log(1/ε)δ

(
1−

p∑
i=1

ξi

)
,

τ<1/2
=

R′((1− τ)ρ)R′(ρτ)

1− τ
e−R(ρτ)−γER′(ρτ)

Γ(1 +R′(ρτ))
, (4.14)

with γE the Euler-Mascheroni constant.

This result is remarkably simple: the factor e−γER
′(ρτ)

Γ(1+R′(ρτ)) is the standard expectation for

the single-logarithmic multiple-emission contribution to additive observables, in the limit

of small ρτ . In particular, we note that eq. (4.14) includes the resummation of the terms

enhanced by a double-logarithm of τ , modulo the contribution from secondary emissions

that we discuss at the end of this section. We stress that the key point is to realise that

the appropriate scale for the ρi emissions in (4.12) is ρτ .8 Note that all finite τ effects are

captured by the pre-factor 1
1−τ .

The case of τ > 1
2 is a bit more delicate since one now has to enforce the constraint

ρi < (1− τ)ρ. In this case (1 − τ)ρ becomes the appropriate physical scale for the ρi and

we now define the rescaled variables ζi = ρi/((1 − τ)ρ). Using the same method as above

leads to

f(ρ, τ)
τ>1/2

= R′((1− τ)ρ)
τ

(1− τ)2
e−R((1−τ)ρ) (4.15)

× lim
ε→0

∞∑
p=1

R′p((1− τ)ρ)

p!

∫ 1

ε

p∏
i=1

dξi
ξi
e−R

′((1−τ)ρ) log(1/ε)δ

(
τ

1− τ
−

p∑
i=1

ζi

)
.

8On a technical side, we note the scale ε (after rescaling) should be taken to satisfy ρτ � ε � 1, i.e.

such that log(1/ε) � log(1/ρτ), cf. e.g. [49], which is allowed since our observable is recursively infrared-

and-collinear safe.
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Figure 2. Plot of fME(x,R′) as a function of x for several representative values of R′ in both

logarithmic (left) and linear (right) scales.

We have not been able to perform analytically the integration over the set of rescaled

emissions ζi for a generic value of τ
1−τ . We solve this problem by defining a multiple-

emission function

e−γER
′

Γ(R′)
fME(x;R′) = lim

ε→0

∞∑
n=1

R′n

n!

n∏
i=1

∫ 1

ε

dxi
xi

e−R
′ log(1/ε)δ

(
x−

n∑
i=1

xi

)
. (4.16)

so that the N -subjettiness distribution can then be written as

f(ρ, τ)
τ>1/2

= R′2((1− τ)ρ))
τ

(1− τ)2

e−R((1−τ)ρ)−γER′((1−τ)ρ)

Γ(1 +R′((1− τ)ρ))
fME

(
τ

1− τ
;R′((1− τ)ρ)

)
,

(4.17)

Some analytic results for fME are given in appendix B, although in general it can be

computed numerically for any value of x and R′. To picture the main features of eq. (4.17),

we plot fME in figure 2. Firstly, we can see that fME(1, R′) = 1, which means that f(ρ, τ),

eqs. (4.14) and (4.17), is continuous at τ = 1
2 . One then sees a relatively fast decreases

of fME with x. Furthermore, the plot shows that, especially for small R′, fME(x,R′) has

kinks at integer values of x. These directly correspond to the transition points at τ = n−1
n

mentioned at the end of section 4.1, as well as to the fact that fME(x ≥ n,R′) requires at

least n + 1 emissions in the jet. The transition point at x = 1 is particularly visible, and

it implies that we expect a shoulder in the τ21 distribution at τ = 1
2 .

Finally, we need to take into account the fact that, at small τ , one would get an addi-

tional double logarithmic contribution in τ coming from secondary emissions, i.e. emissions

from “ρa” which are enhanced by double logarithms of τ when ρi=1,...,p � ρa. This would

add an extra Sudakov suppression to the above result if it were not for running-coupling

corrections to secondary emissions (which explicitly depend on the kt scale zaθaptR of the

emission “ρa”) that dominates the mass (cf. (3.7)). The integration over za therefore has
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to be kept explicit by writing

R′((1− τ)ρ) =

∫ 1

(1−τ)ρ
dza P (za)

αs(
√
za(1− τ)ρptR)

2π
. (4.18)

One then has to add a CA contribution to R(ρτ) above which becomes (with θ2
a = (1 −

τ)ρ/za)

R(ρτ ; za) =

∫ 1

0

dθ2

θ2
dz P (z)

αs(zθptR)

2π
Θ(zθ2 > ρτ)

+

∫ θ2a

0

dθ2
12

θ2
12

∫ 1

0
dz P (z)

αs(zzaθ12ptR)

2π
Θ

(
z

(
θ12

θa

)2

>
τ

1− τ

)
(4.19)

and similar for R′(ρτ ; za).

Note that the integral of the distribution f(ρ, τ) over τ , only equals the expected

resummed differential mass distribution

ρ

σ

dσ

dρ
= R′(ρ)

e−R(ρ)−γER′(ρ)

Γ(1 +R′(ρ))

up to subleading αs corrections. This is expected given the approximations made in the

calculation, and has been explicitly checked numerically.

Finally, note that the factors of 1− τ appearing in the R and R′ factors go beyond our

accuracy and we could simply replace R′((1 − τ)ρ) by R′(ρ) and R((1 − τ)ρ) by R(ρ) −
log(1 − τ)R′(ρ). This however introduces a discontinuity at τ = 1

2 which, albeit beyond

our accuracy, may not be desired. Other options, all valid within our accuracy (while still

maintaining continuity) include replacing the scale (1 − τ)ρ by either ρ/2 or τρ for τ > 1
2 ,

or replacing the scale τρ by 2τρ for τ < 1
2 , or using τ

1−τ ρ for τ < 1
2 and simply ρ for τ > 1

2

(always including the appropriate single-logarithmic expansion for R).

4.3 Cumulative τ distribution

The calculation of the cumulative distribution H(ρ, τ21 < τ), which we use in all the

subsequent comparisons to Monte Carlo simulations, follows closely that presented in the

previous section for the double differential case, up to a few extra minor technicalities. The

first difference is that we now impose a cut on τ instead of taking it at a fixed value, i.e.

we replace

τδ

(
τ − 1 +

maxi ρi
ρ

)
by Θ

(
1− maxi ρi

ρ
< τ

)
.

As before, we single out the emission with the largest ρi to obtain

H(ρ,< τ) =

∫ 1

0

dρa
ρa

R′(ρa) lim
ε→0

e
−

∫ 1
ε
dρv
ρv

R′(ρv)
(4.20)

×
∞∑
p=1

1

p!

∫ ρa

ε

p∏
i=1

dρi
ρi
R′(ρi) ρδ

(
ρ− ρa −

p∑
i=1

ρi

)
Θ

(
ρa
ρ
> 1− τ

)
.

This expression is a little more complex than the corresponding one for the cumulative

distribution because the integration over ρa can no longer trivially be done and the sum
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over the other ρi now depends on ρa. Nevertheless, we see the same two regimes appearing:

ρ− ρa < ρa (i.e. ρa > ρ/2) and ρ− ρa > ρa (i.e. ρa < ρ/2). The former implies that each

ρi 6=a ≈ ρ−ρa automatically satisfying ρi 6=a < ρ−ρa, while the second implies that ρi ≈ ρa.
As in the double differential case, we rescale all the ρi by ρ−ρa, setting R′(ρi) ≈ R′(ρ−ρa),
in the first case and by ρa, setting R′(ρi) ≈ R′(ρa) in the second. After some algebraic

manipulation we find

H(ρ,< τ) =

∫ ρ

(1−τ)ρ

dρa
ρa

R′(ρa)

[
ρ

ρ− ρa
R′(ρ− ρa)

e−R(ρ−ρa)−γER′(ρ−ρa)

Γ(1 +R′(ρ− ρa))
Θ(ρa > ρ/2)

+
ρ

ρa
R′(ρa)

e−R(ρa)−γER′(ρa)

Γ(1 +R′(ρa))
fME

(
ρ− ρa
ρa

;R′(ρa)

)
Θ(ρa < ρ/2)

]
. (4.21)

Note that the second line, where ρa < ρ/2, only contributes for τ > 1
2 . We proceed by

making the following simplification:

R(ρa) ≈ R(ρ) +R′(ρ) log

(
ρ

ρa

)
, and R′(ρa) ≈ R′(ρ),

in the second line, valid within our accuracy. Correspondingly, for the first line, we expand

R′(ρ− ρa) around ρ τ
1−τ so to avoid introducing a discontinuity at τ = 1

2 ,9 i.e.

R(ρ− ρa) ≈ R
(
ρ

τ

1− τ

)
+R′

(
ρ

τ

1− τ

)
log

(
ρτ

(1− τ)(ρ− ρa)

)
,

and R′(ρ− ρa) ≈ R′
(
ρ

τ

1− τ

)
.

Finally, for the emission “ρa”, we replace the R′(ρa) factor in front of the square bracket by

R′(ρ). There is obviously some arbitrariness in choosing the scale for all these expansions

(see also the discussion at the end of section 4.2). We have checked explicitly that the

different choices are within the uncertainties described below. Introducing τ̃ = τ
1−τ , we

can write H(ρ,< τ) as

H(ρ,< τ) =

∫ ρ

(1−τ)ρ

dρa
ρa

R′(ρ)

×

[
R′(ρτ̃)

(
ρ− ρa
ρ

)R′(ρτ̃)−1(1− τ
τ

)R′(ρτ̃) e−R(ρτ̃)−γER′(ρτ̃)

Γ(1 +R′(ρτ̃))
Θ(ρa > ρ/2)

+R′(ρ)

(
ρa
ρ

)R′(ρ)−1 e−R(ρ)−γER′(ρ)

Γ(1 +R′(ρ))
fME

(
ρ− ρa
ρa

;R′(ρ)

)
Θ(ρa < ρ/2)

]
.

9Note that, in this paper, we are not interested the limit τ → 1 which is definitely outside the

phenomenologically-interesting region. This would require an additional resummation of logarithms of

1− τ . Practically, this would also mean exploring the region where a large number of emission significantly

contribute to ρ, which would probably require to go beyond the approximation R′(ζi(1−τ)ρ) ≈ R′((1−τ)ρ).
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The ρa integration can only be done explicitly for ρa > ρ/2, which gives

H(ρ,< τ)
τ<1/2

= R′(ρ)
e−R(ρτ̃)−γER′(ρτ̃)

Γ(1 +R′(ρτ̃))
(1− τ)R

′(ρτ̃)
2F1(1, R′(ρτ̃); 1 +R′(ρτ̃); τ)

τ>1/2
= R′(ρ)

e−R(ρ)−γER′(ρ)

Γ(1 +R′(ρ))
(4.22)

×
[
2−R

′(ρ)
2F1

(
1, R′(ρ); 1 +R′(ρ);

1

2

)
+R′(ρ)IME

(
τ

1− τ
;R′(ρ)

)]
,

with 2F1 the Gauss hypergeometric function and

IME(x;R′) =

∫ x

1

du

(1 + u)R′
fME(u;R′).

Eq. (4.22) is the main result of this paper. We note that, at least for τ < 1
2 , one mostly

recovers a simple resummed result, with finite τ effects present under the form of a hyper-

geometric factor.

As for the case of the double-differential distribution, the above expression does not

take into account the effect of secondary emissions. These contribute only when τ < 1
2 and

can be inserted by undoing the za integration that leads to the overall factor R′(ρ):10

R′(ρ) =

∫ 1

ρ
dza P (za)

αs(
√
zaρ ptR)

2π
. (4.23)

and redefining R and R′(ρτ̃):

R(ρτ̃ ; za) =

∫ 1

0

dθ2

θ2
dz P (z)

αs(zθptR)

2π
Θ(zθ2 > ρτ̃)

+

∫ θ21

0

dθ2
12

θ2
12

∫ 1

0
dz P (z)

αs(zzaθ12ptR)

2π
Θ

(
z

(
θ12

θa

)2

> τ̃

)
. (4.24)

In the rest of the paper we focus on studying the effect of the τ21 < τ cut itself. For

this reason, we define the normalised cumulative distribution

Hnorm(ρ,< τ) =
H(ρ,< τ)

H(ρ)
, (4.25)

where we use11

H(ρ) = R′(ρ)
e−R(ρ)−γER′(ρ)

Γ(1 +R′(ρ))
.

10These expression only differ from those used for the double-differential calculation by subleading factors

of 1− τ .
11Both H(ρ,< τ) and H(ρ) neglect single-logarithmic contributions from soft-and-large-angle gluon radi-

ation, including non-global logarithms. Although they would have to be included in a full NLL description

of H(ρ,< τ), they can be neglected when it comes to discussing the effects of a cut on τ . We will see in

the next section that they can also be avoided altogether at our accuracy by working with groomed jets.
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4.4 N-subjettiness for a SoftDropped jet

Practical applications of jet substructure techniques almost always use a groomed jet mass

instead of the plain jet mass. In this section, we discuss how our results can be adapted to

the case where both the mass and τ21 are calculated on a jet groomed with the SoftDrop

procedure.

The calculation done earlier in section 4 can be applied to the case of SoftDropped

jets by replacing the radiators for the plain jet (and their derivatives) by their SoftDrop

counterparts. One however has to be careful with our definition of these objects: since

the SoftDrop procedure stops its Cambridge/Aachen declustering once it has found two

subjets satisfying the SoftDrop criterion, z > zcutθ
β , all emissions at smaller angles are

kept, whether or not they satisfy the SoftDrop criterion, as already seen in eq. (3.11).

This suggests that in order to define the SoftDrop radiator, RSD, we need to isolate the

largest-angle emission that passes the SoftDrop condition. The key result is that, at our

accuracy, we can use the emission that dominates the (SoftDrop) mass. To see this, consider

the situation where we have an emission, say a, which dominates the (SoftDrop) mass,

together with another emission, say b, at larger angle and smaller mass passing the SoftDrop

condition. At some mass scale ρ0, one then defines the radiator with the constraints

Θ(z > zcutθ
β or θ < θb) Θ(zθ2 > ρ0). (4.26)

We want to show that we can replace θb by θa in the above constraint and forget about

emission b. According to our above calculation, we need RSD (and R′SD) down to a scale

ρ0, typically ρτ or ρ(1− τ), which is at least as large as the second most massive emission

in the jet (see for example eq. (4.6)). This scale is always at least ρb. Since emission b

passes the SoftDrop condition, the mass constrain in (4.26) implies zθ2 > ρb. Using this

and the fact that emission b passes the SoftDrop condition, we can easily see that the

SoftDrop constraint in (4.26) is fully given by z > zcutθ
β , and hence can be replaced by

the condition “z > zcutθ
β or θ < θa”, since θb > θa. Obviously, in the complementary

case where one emission, a, is both the largest-mass and largest-angle emission passing the

SoftDrop condition, the constraint (4.26) trivially has θb replaced by θa. Note that since

SoftDrop would stop at most when declustering emission a, secondary emissions remain

exactly as for the case of the plain jet mass.

In conclusion this means that the calculation of the cumulative distribution HSD(ρ,>

τ) for SoftDrop jets, proceeds in the same fashion as that presented in section 4.3, up to a

redefinition of the radiators (using θ2
a = ρ/za):

RSD(ρ) =

∫ 1

0

dθ2

θ2
dz P (z)

αs(zθptR)

2π
Θ(z > zcutθ

β) Θ(zθ2 > ρτ̃) (4.27)

RSD(ρτ̃ ; za) =

∫ 1

0

dθ2

θ2
dz P (z)

αs(zθptR)

2π
Θ(z > zcutθ

β or θ > θa) Θ(zθ2 > ρτ̃)

+

∫ θ2a

0

dθ2
12

θ2
12

∫ 1

0
dz P (z)

αs(zzaθ12ptR)

2π
Θ

(
z

(
θ12

θa

)2

> τ̃

)
, (4.28)
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Figure 3. Comparison of our analytic results (dotted black) with the Event2 generator for the τ21
distribution in a bin of ρ. For the Event2 simulations, we show results for both the minimal axes

(solid blue) and generalised-kt axes (dashed red). The left and right plots corresponds to different

bins in Lρ = log(1/ρ).

and correspondingly for R′SD. Additionally, when integrating over za, the lower bound of

integration should be set to the lowest value allowed by the SoftDrop condition, i.e.

za > (z2
cutρ

β)
1

2+β .

4.5 Scale uncertainties and matching to fixed order

Given the discussion above about the freedom in setting the scale entering the radiators

while keeping the same formal accuracy, it is interesting to consider adding a scale uncer-

tainty to our results. Here, we consider two possible source of uncertainty: the renormal-

isation and resummation scale uncertainties. The former is accounted for by varying the

“hard scale”, ptR, at which we compute the coupling by a factor µR = 1/2 or 2. To assess

the resummation scale uncertainty, we vary the reference scale ptR in the definition of the

logarithm of ρ by a factor µQ = 1/2 or 2. Since our calculation includes single-logarithmic

terms in ρ, we need to introduce an extra contribution to the exponentials in eq. (4.22) to

correct for the single-logarithmic term generated by the double-logarithmic radiator R(ρτ).

For ρ = µQ
m2

(ptR)2
, we make the replacement

R(ρτ)→ R(ρτ) +R′(ρτ) log(µQ), (4.29)

and a similar expression for R(ρ). Our final uncertainty is taken as the envelope of the µR
and µQ variations.
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5 Comparison to Monte Carlo simulations

5.1 Results at fixed order

We first compare our results with a fixed-order calculation at the first order where a non-

trivial τ dependence appears: O(α2
s). In this case, we consider the distribution

H(ρ,> τ) = H(ρ)−H(ρ,< τ), (5.1)

for a jet to have a given “mass” ρ and a τ21 ratio be above a cut τ . We do this as in this

case we are sensitive to the situation with two real emission in the jet. To compute in our

approximation eq. (5.1), we expand eq. (4.22) to order α2
s, which gives

H(ρ,> τ) = R′(ρ) [R(ρτ̃)−R(ρ)] Θ

(
τ <

1

2

)
. (5.2)

We can then proceed by expanding R and R′ in αs (equivalent to using a fixed-order

prescription), which gives the leading logarithmic contribution in ρ.

Hplain(ρ,> τ) =

(
αsCF
π

)2

log

(
1− τ
τ

)
log2(ρ) +O(log(ρ)), (5.3)

HSD(ρ,> τ) =

(
β

2 + β

αsCF
π

)2

log

(
1− τ
τ

)
log2(ρ) +O(log(ρ)), (5.4)

respectively for the plain jet and for a SoftDropped jet. Additionally, we take the derivative

of eq. (4.22) with respect to τ21, and perform a similar expansion, yielding the leading log(ρ)

contribution as well as the double logarithmic term in τ21

fplain(ρ, τ21) =

(
αsCF
π

)2 1

1− τ

(
log

(
1

ρ

)
+Bq

)
(5.5)

×
[(

log

(
1

ρ

)
+ log

(
1− τ
τ

)
+Bq

)
+
CA
CF

(
log

(
1− τ
τ

)
+Bg

)]
.

Note that we do not include in this case the similarly derived expressions in the SoftDrop

jet case, as they are more lengthy and complex due to the constraint (4.26).

To check our accuracy claim, we test to what extent our approximations, eqs. (5.3)

and (5.5), can reproduce a fixed-order prediction for the same observable. For this purpose,

we use the Event2 [54, 55] generator, by rotating events to align them along one of the axis

and proceed as if they were pp collisions.

Additionally, to simulate the leading behaviour we are interested in, we compute the

same quantities by integrating the triple collinear splitting function [56–58] without impos-

ing any ordering or soft approximation. In small-R limit this has the same α2
s log2(ρ) and

α2
s log(ρ) logarithmic dependence as an exact fixed-order calculation, for the plain jet (see

also section 3.2 of [19]). This validity extends to larger R in the SoftDrop case, which keeps

only emissions at angles that are suppressed by powers of ρ. The high level of agreement

between the two can be seen in the results presented in this section. We present this approx-

imation too as it can be more easily pushed numerically to smaller values of ρ and τ , which

one is interested in, and it might be easier to use in the case of matching to fixed-order.

– 17 –



J
H
E
P
1
2
(
2
0
1
8
)
0
3
1

We start by showing the τ21 distribution in figure 3. At small τ21 (τ21 . 0.3) our ana-

lytic results are in perfect agreement with the exact Event2 results. For larger τ21, we see a

transition at τ21 = 1
2 , as already discussed in section 4.1. Although this transition is present

in the Event2 simulations as well, it appears to be smoother. Around the transition point,

we also see some differences between the two choices of axes as well as a shoulder in the

analytic calculation which is absent in the Event2 simulations. Increasing log(1/ρ), makes

the transition at τ21 = 1
2 in Event 2 become sharper. This is expected, as for large log(1/ρ)

our calculation captures the dominant α2
s log2(1/ρ) contribution to f(ρ, τ), leaving correc-

tions of order α2
s log(1/ρ). However this does not obviously seem the case in the shoulder

region where the difference between Event2 and our analytic results seems to increase as

rapidly as the rest of the distribution. We traced back this shoulder effect to differences

between the exact τ21 and our leading-logarithmic approximation, eq. (4.6), specifically

in the region of similar angles (θ2 ∼ θ1 in figure 1). We discuss this in more details in

appendix C where we show that this region indeed only gives subleading corrections and

that these corrections are increasingly numerically relevant when approaching τ21 = 1
2 .

Note also that the shoulder present at O(α2
s) comes with a discontinuity in the deriva-

tive of the τ21 distribution at τ21 = 1
2 . This leads to additional logarithms of 1

2 − τ starting

at O(α3
s) (see ref. [59]).12 In principle, these logarithms have to be resummed to all orders

to obtain a trustworthy perturbative prediction close to the transition points. However,

the relative importance of these logarithms compared to the dominant log(1/ρ) terms we

resum in this paper becomes smaller as ρ decreases (i.e. pt increases or the jet mass de-

creases). In other words, the region in τ where one should additionally resum logarithms

of 1
2 − τ gets closer to 1

2 as ρ decreases. As we are mainly interested in the boosted limit,

we do not resum these transition-point logarithms in this work.

A comparison of the H(ρ,> τ) distribution, obtained either from Event2 or integrating

over the triple-collinear splitting function, to our analytic results is presented on figure 4.

We plot H(ρ,> τ) as a function of ρ for two different values of the τ cut. Results are

shown for both the plain jet and SoftDropped jet (using β = 2 and zcut = 0.05). As it

can be seen, our calculation indeed captures the dominant log2(1/ρ) behaviour.13 This is

confirmed by figure 5 which shows the result for the coefficient of the leading log2(1/ρ)

contribution. For the Event2 and the triple-collinear results, we extract this coefficient

using a simple fit of the distribution, for each individual cut on τ . The fitted coefficient lies

very closely to the expected analytic results, for both the plain and SoftDropped jets. We

believe that the small discrepancy is related to the limited fitting range and the difficulty

to obtain numerical results in the very small ρ limit.

We also see in figure 4 that the triple-collinear results are almost identical to what is

obtained from Event2, except in the large ρ region where the triple-collinear approximation

breaks down, and in the small ρ region, where Event2 has an infrared cut-off causing the

drop seen in the figure.

12More generally, a discontinuity in the derivative of the distribution at τ = n−1
n

starting at O(αns ) leads

to additional logarithms of n−1
n
− τ starting at O(αn+1

s ).
13The deviations close to τ = 1

2
can be attributed to the shoulder in the τ21 distribution which slows

down the convergence in that region.
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Figure 4. Comparison of our analytic results with the Event2 generator and with the triple-collinear

splitting function for the H(ρ,> τ) distribution. Dashed and solid lines respectively correspond to

results obtained using plain and SoftDropped jets. The top panel shows H(ρ,> τ) and the bottom

panel shows the ratio to our analytic results. The left and right plots correspond to a cut τ = 0.1

and τ = 0.3, respectively.
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Figure 6. Differential distribution in τ compared to Monte Carlo for 3 different bins in Lρ =

log(1/ρ). We show our analytic results (with their uncertainty band) compared to the Pythia8,

Sherpa2 and Herwig7 generators. All results are for jets groomed with SoftDrop. The vertical

dashed lines indicate when the scale ρτ starts to hit a given kt value, indicative of where non-

perturbative effects are expected to become dominant.

5.2 Parton shower Monte Carlo simulations

Setup. We now compare our analytic result to parton shower Monte Carlo genera-

tors. For this, we simulate dijet events with three different generators: Pythia 8.230 [60]

(Monash13 tune [61]), Sherpa 2.2.4 [62] and Herwig 7.1.1 [63, 64] with angular-ordered

shower. We only consider underlying fixed order matrix elements with quarks in the final

states, which means that we can assume quark jets for our analytic results as well. Events

are simulated at
√
s = 13 TeV and we focus for the moment on parton level results. We

reconstruct jets with the anti-kt algorithm [65] with R = 1 using FastJet 3.3.1 [66, 67].

We further require that all jets have pt > 3 TeV. We apply SoftDrop, using β = 2 and

zcut = 0.05, to each jet and compute the jet mass and N -subjettiness on the SoftDropped

jet. For τ1 and τ2 we use the generalised-kt(p = 1/2) (difference w.r.t. to minimal axes
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Figure 7. Mass distribution with a cut on τ21 compared to Monte Carlo for 3 different values of the

cut. We show our analytic results (with their uncertainty band) compared to the Pythia8, Sherpa2

and Herwig7 generators. All results are for jets groomed with SoftDrop. The vertical dashed lines

indicate when the scale ρτ starts to hit a given kt value, indicative of where non-perturbative effects

are expected to become dominant.
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in this case are smaller than what we observe with Event2). We then consider two distri-

butions: either the τ21 distribution for jets within a restricted window of mass, or the jet

mass distribution for a given cut on τ21. All analytical results shown here are obtained

from the cumulative distribution computed in section 4.3 (by taking the τ derivative to

get the τ21 differential distribution), applied to SoftDropped jets (see section 4.4), with

the uncertainty band calculated as described in section 4.5. For the radiators, we use the

expressions reported in appendix A, including running-coupling effects.

Comparison at parton level. Our results for the N -subjettiness distribution are pre-

sented in figure 6 for three different bins in Lρ = log(1/ρ). Overall, we see a good agreement

between the Monte Carlo simulations and our approximation, already at relatively small

values of log(1/ρ), with Herwig lying at the edge of our uncertainty band. As discussed

in the previous sections, we expect and observe a transition at τ = 1
2 in the analytic cal-

culation, which is smeared in Monte Carlo simulations. This can be explained by the fact

they compute the value of τ21 exactly. Going above τ = 1
2 , we observe, from our analytic

calculation, a sizeable contribution due to multiple emissions. The dashed vertical lines

on figure 6 indicate where our calculation becomes sensitive to a given kt scale (with the

soft scale of our calculation taken as the lowest kt accessible for a mass scale of ρτ). As kt
decreases, we expect sizeable non-perturbative contributions and we discuss this further in

the following paragraph.

Figure 7 shows the mass distribution obtained for three different cuts on τ21. The

top panels show the raw mass distribution,while the bottom panels show the distribution

normalised by the uncut mass distribution, highlighting the effect of the N -subjettiness

cut itself. As expected, putting a tighter cut on N -subjettiness reduces the mass distribu-

tion. As before, we see a good agreement between our calculation and the Monte Carlo

simulations, at least in the perturbative region. We also see differences between the three

generators of the order of our estimated theory uncertainty.

Lower pt and non-perturbative effects. We now want to check the level of agreement

of our prediction when the jet pt is smaller and assess the importance of non-perturbative

corrections. This is shown in figures 8 and 9, where the different plots correspond to

pt cuts of 2 TeV, 1 TeV and 500 GeV respectively. For each pt we have adjusted the bin

in Lρ = log(1/ρ) to be roughly around the value of the W mass, a typical scale where

the τ21 ratio is used in phenomenological applications. We show in these plots Pythia

distributions obtained from different type of events: parton level (long-dashed black lines),

and hadron level with both multiple-parton-interactions (MPI) switched off (short-dashed

green lines) and with MPI switch on (dash-dotted red lines). As far as the perturbative

aspects are concerned, the agreement between our calculation and Pythia remains valid

for smaller boosts. We see that hadronisation corrections have a sizeable impact on the

distributions, even in regions of phase-space, where we are only sensitive to fairly large kt
scales. Furthermore, while MPI effects are small for 1 and 2 TeV jets, they are sizeable for

500 GeV jets. These effects can be reduced by using a more aggressive grooming procedure,

like a smaller value of β, e.g. using the modified MassDrop tagger (mMDT), or a larger

value of zcut. In that context, note that we have checked that our analytic calculations still
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Figure 8. Same as figure 6 now for different values of pt. Here we show results for the Pythia8

generator at different levels in order to gauge the importance of non-perturbative effects. For each

pt, the bin in Lρ = log(1/ρ) is adjusted to be roughly around the mass of the W boson (for

definiteness).

work in the case of the mMDT where logarithms of ρ resummed in our multiple-emission

contributions (the R′(ρτ) factors) are now replaced by logarithms of zcut.

Decorrelated taggers. One interesting application of our analytic control of N -

subjettiness cut is that it largely facilitates the design of a decorrelated tagger [46]: for

each value of the mass, one can determine, based on our calculation, the value of the τ cut

required to get a flat mass distribution at a given level, say, with ρ/σdσ/dρ somewhere in

the 0.03-0.04 range (lower values would start having a larger sensitivity to non-perturbative

effects). We present the result of such a study in figure 10. For each value of ρ, we adjust

the cut on τ21 so as to obtain ρ/σdσ/dρ = 0.04. The cut one obtains is shown in the left

plot (whenever the uncut distribution was already smaller than 0.04, we did not impose a

further constraint on τ21). The resulting distribution is shown in the right plot together

with an uncertainty band and the result of applying the same ρ-dependent τ21 cut on a
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Figure 9. Same as figure 7 now for different values of pt. Here we show results for the Pythia8

generator at different levels in order to gauge the importance of non-perturbative effects. All the

plots use a representative cut on τ21 of 0.3.
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Figure 10. Analytic construction of a decorrelated tagger (DDT). Left: cut on τ21 which would

give an analytic mass spectrum ρ/σdσ/dρ = 0.04. Right: resulting mass spectrum analytically

(with an uncertainty band) and using Pythia8.

(parton-level) Pythia simulation. We see that the resulting decorrelated distribution (la-

belled “DDT”) on the plot, in the Pythia simulation is almost flat, and at least within

our analytic uncertainty. From a further study, one could conceive making a combined

adjustment of the τ cut together with the SoftDrop parameters in order to obtain a flat

background and maximise the signal efficiency for a colourless 2-body decay like in the case

of electroweak (H/W/Z) bosons.

6 Conclusions

In perturbative QCD, boosted jets are characterised by large logarithms of m/pt, i.e. the

ratio of their mass to their transverse momentum. In this work we have shown how one

can achieve an all-order resummation of the dominant logarithms of the jet mass in the

presence of a cut on a jet shape. Compared to our previous work, we lift the assumption

that the cut is small. This, in practice, allows one to take cut values of physical relevance.

In this paper, we have focused on applying a cut on a particular jet shape, namely the

N -subjettiness τ21 ratio with the angular exponent β set to 2. We compute both the τ21

distribution for a boosted jet, and the jet mass distribution in the presence of a cut on τ21.

The calculation is structured so as to also include the leading logarithms of the jet shape

when it becomes small, hence recovering results from previous works.

Besides the analytic results presented throughout the paper for τ21, we are confident

that the method can be applied to a wide range of other jet shapes. In a nutshell, the

calculation is organised in a number of key steps: (i) starting from a generic sum over

any number of real emissions, isolate the emission the dominates the jet mass, (ii) use

the shape to deduce the relevant physical scale for the remaining emissions, (iii) simplify

the expressions using CAESAR-like techniques, standard in resummation calculations. For

more complex observables, one likely also have to isolate other dominant emissions in step
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(i), like the emission dominating the plain jet mass (potentially different from the one

dominating the groomed jet mass) in the case of a dichroic N -subjettiness ratio, or the

emission dominating the jet broadening (potentially different from the one dominating the

jet mass) in the case of the β = 1 τ21 ratio. The generic approach presented here is then

expected to still apply. In the future, we plan to explore other jet shapes like τ21 ratios for a

generic β, dichroic ratios [45] and energy-correlation functions [12], as well as investigating

shapes relevant for (3-prong) top tagging like the τ32 ratio. Concerning energy correlation

functions, it would be interesting to compare our findings with results obtained in SCET

e.g. for D2 [14, 17, 18], especially since D2 appears to yield an efficient tagger (see e.g. [47]).

We have compared our analytic predictions to the three most used Monte Carlo event

generators, Pythia, Herwig and Sherpa, in two cases: the τ21 distribution and the jet mass

distribution with a τ21 cut. We have concentrated on the case of jets previously groomed

with SoftDrop, to limit non-perturbative effects. In both cases, we see a good agreement

with Monte Carlo predictions, within our theoretical uncertainty band, in the region where

resummation matters. As another example of a phenomenologically-relevant application

of our results, we have used our analytic calculations to build a decorrelated tagger.

This work opens on several possible future developments. First, one could try to

extend the precision of our calculation to include subleading logarithms and match it with

fixed-order results. (Note however that reaching an NLO accuracy for the fixed-order part

of the calculation would require 2→ 4 QCD events at NLO.) Such a prediction could then

be compared to an experimental measurement, similarly to what has been done recently

for the groomed jet mass [36–39]. Finally, the theoretical uncertainty on our calculations,

complemented with an assessment of the non-perturbative uncertainties, could then be

used to estimate the theoretical uncertainty of boosted taggers used in searches.
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A Explicit results for the radiators

The full expressions for the radiators and their derivatives are already available from the

literature (see e.g. [15, 39, 49]). We summarise them here for completeness.
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The SoftDrop radiator can be written as (assuming ρ < zcut)

RSD(ρ) = (A.1)

=
Ci

2παsβ2
0

{[
W (1−λB)−W (1−λc)

1+β
−2W

(
1− λρ+λB

2

)
+

2+β

1+β
W

(
1− λc+(1+β)λρ

2+β

)]
+
αsβ1

β0

[
V (1−λB)− V (1−λc)

1+β
−2V

(
1− λρ+λB

2

)
+

2+β

1+β
V

(
1− λc+(1+β)λρ

2+β

)]
− αsK

2π

[
log(1−λB)− log(1−λc)

1+β
−2log

(
1− λρ+λB

2

)
+

2+β

1+β
log

(
1− λc+(1+β)λρ

2+β

)]}
,

where λρ = 2αsβ0 log(1
ρ), λc = 2αsβ0 log( 1

zcut
) and λB = −2αsβ0Bi (associated with hard-

collinear splittings). and W (x) = x log(x), V (x) = 1
2 log2(x) + log(x). The expression

above is computed using a two-loop running coupling in the CMW scheme [68], and αs is

taken at the hard scale ptR. The results for R′ can be straightforwardly obtained by taking

a derivative of the above expression w.r.t. log( 1
ρ) and the plain jet radiators are obtained

by taking either β to ∞ or zcut to 0.

For RSD(ρτ̃ ; za), eq. (4.28), we need two further ingredients: the possible extra con-

tribution from θ > θa (and z < zcutθ
β , since the rest is already included in the expression

above), and the contribution from secondary emissions. Introducing

δRβ(λtop,λbot) =
Ci

2παsβ2
0

{[
W (1−λtop)

1+β
+W (1−λbot)−

2+β

1+β
W

(
1− λtop +(1+β)λbot

2+β

)]
+
αsβ1

β0

[
V (1−λtop)

1+β
+V (1−λbot)−

2+β

1+β
W

(
1− λtop +(1+β)λbot

2+β

)]
− αsK

2π

[
log(1−λtop)

1+β
+log(1−λbot)−

2+β

1+β
log

(
1− λtop +(1+β)λbot

2+β

)]}
Θ(λbot>λtop) ,

we can write the “extra triangle” and secondary contributions as

RSD,extra(ρτ, za) = δRβ

(
λc + (β + 1)

λρ − λa
2

,
λρ − λa

2
+ λτ

)
, (A.2)

Rsecondary(ρτ, za) = δRβ

(
λρ + λa

2
,
λρ + λa

2
+ λτ

)
, (A.3)

with λτ = 2αsβ0 log(1/τ) and λa = 2αsβ0 log(1/za).

B The multiple-emission function fME

In practice, fME(x,R′) can be computed analytically for x ≤ 1, and 1 < x ≤ 2 and we have

managed to reduce it to a single integration at least for 2 < x ≤ 4:

fME(x,R′)
x≤1
= xR

′−1, (B.1)

1<x≤2
= xR

′−1

[
1−
(
x−1

x

)R′
2F1

(
R′,1,1+R′,

x−1

x

)]
,

2<x≤3
= fME(2,R′)+R′2

∫ x−2

0
du

uR
′−1

x−u
log(x−1−u),

3<x≤4
= fME(3,R′)+R′3

∫ x−3

0
du

uR
′−1

x−u

[
Li2

(
1

x−1−u

)
+

1

2
log2(x−1−u)− π

2

12

]
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Figure 11. τ21 distributions at O(α2
s) in the triple-collinear limit, obtained with different approx-

imations for τ2. See text for details.

In general, we write fME(x,R′) as an inverse Mellin transform, which is what we have

used for x > 4:

fME(x,R′) = Γ(R′)

∮
dν

2iπ
eνx exp

{
R′

2
Ei(−ν)

[
log(−ν)− log

(
− 1

ν

)]}
. (B.2)

C Subleading contributions from similar angles

In this appendix, we investigate the difference between the O(α2
s) fixed-order predictions

and our analytic expressions for the τ21 distribution in the shoulder region, τ21 . 1
2 ,

and trace it back to a subleading contribution in the region where two emissions have

similar angles. To show this, we work at small jet radius and use the framework of the

integration over the triple-collinear splitting function. At O(α2
s), a jet is made of 3 partons

of momentum fractions zi and pairwise angles θij with i, j = 1, 2, 3, constrained so that

z1z2θ
2
12 + z1z3θ

2
13 + z2z3θ

2
23 = ρ. For simplicity, we focus on the C2

F term, as the other

contributions are subleading in log(ρ). We can then assume that particles 1 and 2 are

gluons and particle 3 is a quark.

The expression for τ2 for the minimal axes can be obtained by minimising over all

possible partitions of the jet and can be written as

τ
(min)
2 = min

(
z1z2

z1 + z2
θ2

12,
z1z3

z1 + z3
θ2

13,
z2z3

z2 + z3
θ2

23

)
[minimal]. (C.1)

Our leading-logarithmic expression, eq. (4.6), is obtained from τ
(min)
2 by applying two

approximations. Firstly, logarithms of ρ come from soft emissions, z1,2 � 1, z3 ≈ 1,

yielding

τ
(soft)
2 = min

(
z1z2

z1 + z2
θ2

12, z1θ
2
13, z2θ

2
23

)
[soft], (C.2)
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with θ13 ≈ θ1 and θ23 ≈ θ2. Secondly, if each emission comes with a logarithm of ρ,

they can be taken as strongly ordered in angles meaning z1z2
z1+z2

θ2
12 ≈ max(z1θ

2
1, z2θ

2
2) and

therefore

τ
(soft+ang.-ordered)
2 = min

(
z1θ

2
13, z2θ

2
23

)
[soft+ang.-ordered], (C.3)

which is to all practical purposes the expression (4.6) we use throughout this paper.

In figure 11, we plot results obtained by integrating the triple-collinear splitting func-

tion for the plain jet, with τ21 computed using the three definitions above, and compare

the results with our analytical formula. The striking feature here is that the above approx-

imations mostly affect the region close to τ21 = 1
2 , meaning that subleading logarithmic

corrections are expected to have a non-negligible impact in this region for reasonable values

of log(1/ρ).

It is helpful to discuss in a bit more details the differences associated with the soft

and angular-ordered approximations. For the soft approximation, we see in figure 1 (right)

that the correction indeed only affect a region of finite width at large z2. This therefore

gives at most a constant upon integration over z2, subleading compared to the log(1/ρ) one

would obtain from the integration in the soft limit. Interestingly, the difference between the

minimal axes and the soft approximation appears mostly in the region above τ21 = 1
2 , where

we also see differences between the minimal and generalised-kt choices of axes. Although

we have not explicitly checked that, the value of τ21 generalised-kt is likely affected by

factors of 1 − z in that region, due to differences between a pairwise mass zizjθ
2
ij and the

generalised-kt distance min(zi, zj)θ
2
ij .

Next, we want to show explicitly that the contribution coming from emissions of similar

angles, i.e. using τ
(soft)
2 instead of τ

(soft+ang.-ordered)
2 , also leads to a subleading correction.

This is particularly interesting because, from figure 11, it appears to be the main contri-

bution driving the shoulder effect for τ21 . 1
2 . For simplicity, let us consider the case of

the cumulative distribution H(ρ,> τ) with two emissions “1” and “2”, and look at the

contribution coming from the integration over emission “2”, with ρ2 < ρ1 for a fixed ρ and

θ1. This can be written as14

I2 =

∫ ρ/2

0

ρ dρ2

ρ2(ρ− ρ2)

∫ 1

ρ2

dθ2
2

θ2
2

∫ 2π

0

dφ

2π
Θ

(
min

(
z1z2

z1 + z2
θ2

12, ρ2

)
> ρτ

)
, (C.4)

where we use the soft approximation, eq. (C.2), and θ2
12 = θ2

1 − 2θ1θ2 cosφ + θ2
2. We

can write I2 as a “leading” contribution coming from the approximation in (C.3) and a

correction:

I2 = I2,leading−δI2, (C.5)

I2,leading =

∫ ρ/2

0

ρdρ2

ρ2(ρ−ρ2)

∫ 1

ρ2

dθ2
2

θ2
2

∫ 2π

0

dφ

2π
Θ(ρ2>ρτ) = log

(
1−τ
τ

)
log

(
1

ρ

)
+const., (C.6)

δI2 =

∫ ρ/2

0

ρdρ2

ρ2(ρ−ρ2)

∫ 1

ρ2

dθ2
2

θ2
2

∫ 2π

0

dφ

2π
Θ

(
min

(
z1z2

z1 +z2
θ2

12,ρ2

)
<ρτ <ρ2

)
. (C.7)

14The ρ− ρ2 denominator comes from the integration over ρ1 with the constraint ρ1 + ρ2 = ρ.
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contribution for different values of Lρ = log(1/ρ).

Here, I2,leading is the leading contribution we compute to all orders in this paper and δI2 is

a correction. We want to show that δI2 is subleading, i.e. that it does not come with any

log(ρ) enhancement. For that it is sufficient to show that the integration over θ2, which is

at the origin of the log(1/ρ) in I2,leading, now contributes at most to a constant in ρ. For

the constraint in (C.7) to be non-zero, we need z1z2
z1+z2

θ2
12 < ρ2 and cos(φ) < 1 from which

we get θ2
θ1
> ρ−2ρ2

2(ρ−ρ2) . Since the right hand side is a number, the limit of small θ2 does not

give a large logarithm of ρ.15

In the limit of large θ2, we can rewrite the constraint as τ < ρ2
ρ < τ(1 + 2 θ1θ2 cosφ +

O(
θ21
θ22

)). The integration over ρ2 therefore brings an extra factor θ1
θ2

suppressing the large-

θ2 contribution. This corresponds to the decrease towards a ratio of 1 at large θ2 in

figure 1. Altogether, this implies that δI2 does not have any log(1/ρ) enhancement. To

further illustrate this point, we plot δI2 in figure 12, compared to the leading contribution

I2,leading. We obtain this by numerically integrating eqs. (C.6), setting the limits of the

θ2 integration to ±∞ so that it becomes independent of ρ, and keeping only the leading

log(ρ) contribution in I2,leading. We clearly see on this plot that the δI2 contribution has a

relatively larger impact as τ increases.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

15Note however that it would be interesting to further investigate this contribution as τ approaches 1
2

where ρ− 2ρ2 can approach 0. In this case the integration over φ would still be suppressed by a power of
θ2
θ1

but it might be sufficient to discuss the transition around τ = 1
2
.
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