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Abstract—This paper addresses the problem of glucose control
in the presence of sampled measurements. This topic is important
in the study and development of the Artificial Pancreas (AP),
which is a general expression to describe a set of techniques
for the control of the glucose behaviour by means of exogenous
insulin administration in diabetic individuals. Differently from
most of the approaches available in the literature, we not only
assume the lack of insulin measurements, but also the availability
of the glucose measurements just at sampling times. An observer
is designed for the model-based reconstruction of glucose and
insulin trajectories from the glucose samples. On top of that, a
feedback algorithm (based on the estimated state) is designed
to continuously deliver exogenous intra-venous insulin to the
patient. Simulations have been performed in-silico on models of
virtual patients identified from real data and in the presence
of quantization errors. The preliminary results highlight the
potential of the proposed approach.

I. INTRODUCTION

Artificial Pancreas (AP) is a general expression to describe
a set of techniques for the control of the glucose behaviour
by means of exogenous insulin administration in diabetic
individuals (see e.g. [1], [2]), usually via subcutaneous or
intravenous infusions. Diabetes Mellitus (DM) is a widespread
disease (affecting millions of people worldwide) characterized
by the lack of insulin production or resistance to insulin action.
As a consequence, a number of techniques have been made
available in the last few years for the automatic control of
glucose levels, which need to cope with the several non-
idealities of the underlying dynamics, among which we recall
the nonlinear and delayed insulin response [3], [4] and the
difficulty in obtaining precise and frequent measurements of
the current levels of insulin [5].

A major role in this field is given by the model-based
techniques, when the regulator is synthesized by explicitly
exploiting the structure of the model equations. To this
aim, small-scale minimal models are usually preferred since
they allow to provide the analytical solution to the control
problem under investigation [6]. Such methods require an
internal model of the system to reconstruct the behavior of
the unknown variables and to simulate (in-silico) the effect of
different control strategies.

In this framework, our attention mainly focuses on the DDE
minimal model introduced in [7], [8] and exploited e.g. in
[9], [10], [11], [12] in different clinical settings. The use of
DDE models when seeking model-based glucose control laws
applicable not only to Type-1 (lacking insulin release), but
also to Type-2 diabetic patients (the great majority of people
suffering from DM, in which the exogenous insulin admin-
istration complements the endogenous insulin production), is
due to the need for modeling the pancreatic Insulin Delivery
Rate (IDR), which is known to show irregular variations [4]. In
this context, the results in [9] allow to track plasma glycemia
down to a safe euglycemic level for a Type-2 diabetic patient,
while [10] performs a validation of the DDE model closing the
observer-based control loop on a population of virtual patients
modeled by a different maximal model, accepted by the Food
and Drug Administration (FDA) as an alternative to animal
trials for the preclinical testing of control strategies in AP.

In this paper, we build on top of the literature reviewed
above by considering the problem of glucose control in the
presence of sampled measurements. Differently from most
of the approaches available in the literature, we not only
assume the non-availability of the insulin measurements, but
also the availability of the glucose measurements just at
sampling times (this happens also for the so-called Continuous
Glucose Monitoring, CGM [13]). An observer, based on the
construction illustrated in [14], [15], is designed for the model-
based reconstruction of glucose and insulin trajectories from
the glucose samples. In particular, with respect to the approach
followed in [9], we do not assume the availability of glycemia
at all times. On the other hand, the construction in [14],
[15] cannot be applied to DDE models, so we restrict our
attention to the cases in which the apparent delay in the insulin
response is negligible (less than 1 minute). As a consequence,
we consider a particular case of the glucose-insulin model
developed in [7], [8].

On top of that, a feedback algorithm (based on the estimated
state) is designed to continuously deliver exogenous intra-
venous insulin to the patient. We assume that the delivery rate
is changed at the sampling times. In the simulation setting,
we consider further non-idealities, by introducing quantization



(modeling the possible lack of accuracy of the instrument as
well as the analog-to-digital and digital-to-analog conversion
processes) both in the measurement and in the control phases,
where the goal is to track some desired good trajectories of
glucose and insulin.

The paper is structured as follows: In Section II, we describe
the ODE model of the glucose-insulin system. In Section
III, we describe an observer reconstructing the continuous
glucose-insulin behaviour from sparse glucose measurements.
In Section IV, we construct a control law for the exogenous
insulin rate input in order to track desired glucose trajectories.
Section V shows some simulations, based on data taken from
real patients, in an experimental setting. Section VI offers
concluding remarks.

II. AN ODE MODEL OF THE GLUCOSE-INSULIN SYSTEM
WITH SAMPLED MEASUREMENTS

The work in [7], [8] introduces a DDE model of the glucose-
insulin system, characterized by a nonlinear delayed secondary
insulin release in response to varying plasma glucose concen-
tration, quantified in a constant delay τg > 0. The interested
reader is referred to [7] for identification issues and statistical
robustness of this model and to [8] for further details on its
mathematical properties and qualitative behavior.

In general, it is well known that the state space of systems
with delays in the state equations has infinite dimension, which
leads to difficulties in the system analysis, controller/observer
synthesis and physical implementation. Hence, although the
aforementioned model is more accurate, it introduces compli-
cations which are not worthwhile in those cases where the
apparent delay in the pancreatic response is negligible. The
behaviour of such individuals can still be well represented by
setting the delay τg = 0, which leads to the following ODE
model:

{
dG(t)
dt = −KxgiG(t)I(t) +

Tgh

VG
,

dI(t)
dt = −KxiI(t) + TiGmax

VI
h
(
G(t)

)
+ u(t),

t ≥ 0

(1)

with initial conditions G(0) = G0, I(0) = I0, where:
• G(t) is the Plasma Glycemia at time t [mM ];
• I(t) is the Plasma Insulinemia at time t [pM ];
• Kxgi is the rate of (insulin-dependent) glucose uptake

by tissues per unit of plasma insulin concentration
[min−1pM−1];

• Tgh is the net balance between hepatic glucose output
and insulin-independent zero-order glucose tissue uptake
[min−1(mmol/KgBW )];

• VG is the apparent distribution volume for glucose
[L/kgBW ];

• Kxi is the apparent first-order disappearance rate constant
for insulin [min−1];

• TiGmax is the maximal rate of second-phase insulin
release [min−1(pmol/kgBW )];

• VI is the apparent distribution volume for insulin
[L/kgBW ];

• h(·) is a nonlinear map modeling the endogenous pan-
creatic Insulin Delivery Rate (IDR) as

h(G) =
(G/G∗)

γ

1 + (G/G∗)
γ ,

where γ (dimensionless) is the progressivity with which
the pancreas reacts to circulating glucose concentrations
and G∗ [mM] is the glycemia at which the insulin release
reaches half of its maximal rate;

• u(t) is the exogenous intra-venous insulin delivery rate
at time t, i.e. the control input [pM/min].

As already said, the previous model is less general than
the one with delay (whose qualitative behavior is described in
[8]), since fitting the ODE model on the real data for some
patients showing a non-negligible τg leads to progressively
larger estimation errors for respectively larger values of the
delay τg , which is not considered in (1). On the other hand,
an ODE model allows to apply the results in [15] and obtain
the state reconstruction when the measurements are available
just at some instants. So, given the sampling sequence {ti},
we define the piecewise-constant output function as

y(t) = G(ti) t ∈ [ti, ti+1), i = 0, 1, ...

which can be equivalently restated as a delayed output

y(t) = G(t− δ(t)) t ≥ 0 (2)

with the time varying delay δ(t) defined within any two
consecutive sampling instants as

δ(t) = t− ti, t ∈ [ti, ti+1), i = 0, 1, ... (3)

where we take t0 = 0. The upper bound on the sampling
interval is given by ∆ := max

i
(ti+1 − ti).

III. OBSERVER FOR THE GLUCOSE-INSULIN SYSTEM WITH
SAMPLED MEASUREMENTS

By collecting the state variables within the state vector
x(t) = [x1(t), x2(t)]T = [G(t), I(t)]T , and denoting by
ẋ(t) := dx(t)

dt the time derivative of x(t), state equations (1)–
(3) can be rewritten in the compact form


ẋ(t) = f(x(t)) +Bu(t), t ≥ 0

y(t) = Cx(t− δ(t)),
δ(t) = t− ti, t ∈ [ti, ti+1), i = 0, 1, ...

(4)

with

f(x) =

[
f1(x)
f2(x)

]
=

[
−Kxgix1x2 +

Tgh

VG

−Kxix2 + TiGmax

VI
h(x1)

]
,

δ(t) ∈ [0,∆], B = [0 1]T , C = [1 0].

Generally speaking, the problem of asymptotic state ob-
servation consists in finding a causal system (asymptotic
observer), driven by the pair (u(t), y(t)), that produces a



vector variable x̂(t) (observed state) asymptotically converging
to the state x(t) (i.e., ‖x(t) − x̂(t)‖ → 0). Furthermore, an
observer is said to be an exponential observer if there exist
µ > 0 and α > 0 such that

‖x(t)− x̂(t)‖ ≤ µ e−αt‖x(0)− x̂(0)‖, (5)

for any x(0) and x̂(0) in IRn.
In order to design such an observer, we preliminarily define

the drift-observability map z = φ(x) as

z =

[
z1
z2

]
= φ(x) :=

[
Cx

Cf(x)

]
=

[
x1
f1(x)

]
=

[
x1

−Kxgix1x2 +
Tgh

VG

]
(6)

and its Jacobian

Q(x) :=
∂φ(x)

∂x
=

[
1 0

−Kxgix2 −Kxgix1

]
, (7)

which is non-singular for x1 6= 0.
The observer in [14], [15] takes the following form:

˙̂x(t) = f(x̂(t)) +Bu(t)

+ e−ηδ(t)Q−1(x̂(t))K
{
y(t)− Cx̂(t− δ(t))

}
, (8)

where K =

[
−(λ1 + λ2)

λ1λ2

]
assigns the eigenvalues λ1 < 0,

λ2 < 0 of (A − KC) to obtain convergence to zero of the
estimation error x(t)− x̂(t), with

A =

[
0 1
0 0

]
,

and η > 0 being a design parameter, giving more weight to
recent measurements with respect to the older ones.

By recalling x̂(t) = [x̂1(t), x̂2(t)]T = [Ĝ(t), Î(t)]T , the
explicit form of the observer (8), for t ∈ [ti, ti+1), for i =
0, 1, ... is the following:

dĜ(t)
dt = −KxgiĜ(t)Î(t) +

Tgh

VG

+e−ηδ(t)(λ1 + λ2)(G(ti)− Ĝ(ti)),
dÎ(t)
dt = −KxiÎ(t) + TiGmax

VI
h
(
Ĝ(t)

)
+ u(t)

+e−ηδ(t)
Kxgi(λ1+λ2)Î(t)−λ1λ2

KxgiĜ(t)
(G(ti)− Ĝ(ti))

(9)
Under hypotheses that are known to hold for the glucose-

insulin system in (1) (see the technical assumptions described
in [9] for the more general DDE case), it is possible to prove
the following result, establishing the exponential convergence
to zero of the observation error.

Theorem 1: [15] Consider the system (1)–(3), with δ(t) ∈
[0,∆]. Then, for any assigned η > 0, there exists K and a
positive ∆̄ such that, if ∆ < ∆̄, then the system in (9) is
a global exponential observer for the system in (1)–(3) such
that η is the decay rate of the estimation error (i.e., eq. (5) is
verified for some µ > 0 and α = η).

Note that the previous result enables the use of the observer
(9), provided that the sampling interval is upper-bounded by

∆. Otherwise, a chain of sampled observer is required (full
details are given in [15]).

IV. GLUCOSE CONTROL ALGORITHM

To develop the glucose control algorithm, we follow an
input-output linearization approach [16]. The dynamics of the
observability map in (6) is the following:

ż =

[
ż1
ż2

]
=
∂φ(x)

∂x
ẋ = Q(x)(f(x) +Bu)

=

[
1 0

−Kxgix2 −Kxgix1

] [
f1(x)

f2(x) + u

]
(10)

=

[
1 0

−Kxgix2 −Kxgix1

] [
z2

−Kxix2 + TiGmax

VI
h(x1) + u

]
,

from which one gets
ż1 = z2,

ż2 = −Kxgix2

(
−Kxgix1x2 +

Tgh

VG

)
+Kxgix1

(
Kxix2

−TiGmax

VI
h(x1)

)
−Kxgix1u.

(11)

By imposing ż2 := v, we get the linearizing feedback as

u = Kxix2 −
TiGmax
VI

h(x1)−
v +Kxgix2(−Kxgix1x2 +

Tgh

VG
)

Kxgix1
(12)

which is computable for positive values of the glycemia
x1, consistently with the fact that in those cases the Jacobian
matrix Q(x) in (7) is non-singular.

We now need to choose v in order to achieve a desirable
behavior. Consider a reference signal for the glucose given by

yref (t) = Gref (t) = Gd + (Gb −Gd)e−λt,

with λ > 0, which aims at driving the basal glycemia Gb
of a subject to a desired value Gd. By setting

zref =

[
z1,ref
z2,ref

]
:=

[
yref
ẏref

]
,

one easily obtains

żref (t) =

[
ż1,ref (t)
ż2,ref (t)

]
=

[
z2,ref (t)
ż2,ref (t)

]
=

[
−λ(Gb −Gd)e−λt
λ2(Gb −Gd)e−λt

]
.

We define the error e := z − zref , whose dynamics is

ė =

[
ż1 − ż1,ref
ż2 − ż2,ref

]
=

[
z2 − z2,ref
v − ż2,ref

]
= Ae+B(v − ż2,ref ).

Since the pair (A,B) is reachable, it suffices to impose

v = He+ ż2,ref (13)

to obtain the convergence to zero of the linearized error

dynamics, where H =

[
−λ3λ4

(λ3 + λ4)

]T
assigns the eigenvalues

λ3 < 0, λ4 < 0 of matrix (A+BH).
Note that the control law given in Eq. (12)–(13) is a contin-

uous state-feedback control law, depending on the continuous



states x1, x2, which are not available in our case, since we only
know their estimates x̂1, x̂2 from (9). In the linear case, the
separation principle would guarantee the convergence of the
output y(t) = G(t) to its reference value yref (t) = Gref (t).
Unfortunately, this is not guaranteed in the non-linear case,
in general. However, inspired by the procedure and results
followed in [9] (which proves local convergence results), we
restate the control law in (12)–(13) in terms of a feedback
from the reconstructed state, which leads to the following
continuous control law

u = max

{
0, Kxix̂2 −

TiGmax
VI

h(x̂1)+ (14)

−
H(ẑ − zref ) + ż2,ref +Kxgix̂2(−Kxgix̂1x̂2 +

Tgh

VG
)

Kxgix̂1

}

where ẑ :=

[
x̂1
f1(x̂)

]
, and x̂ =

[
x̂1
x̂2

]
=

[
Ĝ

Î

]
is the observer

output in (9). Note that in (14) we explicitly prevent the
possibility of a negative exogenous insulin rate.

V. SIMULATION RESULTS

In this section, the performance of the algorithm developed
in the previous section is evaluated in an experimental setting.
We consider the data coming from 3 healthy subjects, whose
glucose and insulin data are a subset of the data collected
in [7]. Such patients underwent an Intra-Venous Glucose
Tolerance Test (IVGTT), which is a perturbation experiment
consisting in administering intra-venously a glucose bolus
after an overnight fasting period and then sampling plasma
glucose and serum insulin concentration during the following
3 hours, with varying sampling time. Glucose and insulin
measurements from this experiment are used to identify the
parameters of the DDE model in [7], [8], by imposing τg = 0
in the identification procedure. In fact, as already mentioned
at the beginning of Section II, we focus on the subjects for
which the delay in the glucose action on pancreatic IDR
is negligible, since the sample-based observer illustrated in
Section III follows the approach in [15] and, unfortunately,
there are no theoretical results on such a method applied to
systems with state delays.

After the preliminary identification, since the considered
subjects are not diabetic (but some of them show a picture of
pre-diabetic condition), we follow the conceptual procedure
in [9] and consider a perturbation of the parameters that
simulates a natural progression of the disease towards diabetes.
In particular, we reduced the insulin resistance (up to values
Kxgi < 104) as well as the pancreatic glucose sensitivity
TiGmax, and then recomputed consistently (via the algebraic
steady-state conditions obtained from the model in Eq. (1))
some of the other parameters, in particular the basal values
of glycemia Gb and insulinemia Ib, which constitute the equi-
libria of (1) in absence of exogenous insulin administration
(u = 0). The values of the parameters for the three individuals
are summarized in Table I. In the spirit of personalized
medicine, the parameters of each model are exploited for the

Parameter Patient 1 Patient 2 Patient 3
Gb 8.89 8.67 8.56
Ib 28.29 23.70 6.90
Kxgi 7.60 · 10−5 9.86 · 10−5 5.50 · 10−5

Tgh 0.0025 0.0026 0.0026
VG 0.13 0.13 0.10
Kxi 0.10 0.06 0.25

TiGmax 1.45 0.74 0.89
VI 0.25 0.25 0.25
γ 2.28 2.55 1.55
G∗ 9 9 9

TABLE I
NUMERICAL VALUES OF THE MODEL PARAMETERS (IN THE RESPECTIVE

UNITS OF MEASUREMENT) FOR THE 3 PATIENTS CONSIDERED.

Fig. 1. Time course of glucose concentration (top panel) and insulin
concentration (bottom panel) for the 3 virtual patients considered. The dash-
dotted lines represent the basal values of glycemia and insulinemia, while the
solid lines are obtained by closing the loop with an Artificial Pancreas.

design of the artificial pancreas (the observer-based control
law) tailored to the particular subject.

On top of the assumptions considered so far, we build a
more realistic simulation setup by imposing a quantization
error both in the sampling and in the actuation, accounting
for the processes of analog-to-digital and digital-to-analog
conversion in digital devices. We consider a quantization step
of 0.1 mM for the glycemia measurements and 20pM/min for
the exogenous Insulin Delivery Rate (IDR). As a consequence,
the observer-based controller is initialized with quantization
errors.

Regarding the sampling time of the glucose measurements,
we impose a constant sampling time ti+1 − ti = ∆, for all i.
So we can write more simply ti = i ·∆, with ∆ = 5 [min].
This choice is consistent with many devices currently on the
market [17]. We assume that each control sample is held for
the same interval.

Simulations have been carried out by designing the AP
for each of the three subjects by properly exploiting the
correct model parameters. The observer gain K in (8) and the
control gain H in (14) are set to obtain the same closed-loop
eigenvalues for all patients: λ1 = −0.5, λ2 = −1, λ3 = −0.4,
λ4 = −0.8. The parameter η in (9) is set equal to 5, the target
glycemia is equal to Gd = 5 mM, with decay rate λ = 1/30.

The results are shown in Figures 1–2 in terms of glucose-
insulin behavior and IDR input. It is readily seen that, starting
from the individual basal glycemia levels, the target value Gd
is approached in the three subjects within the considered time
horizon of 3 hours.

Fig. 2. Applied control input in terms of Exogenous Insulin Delivery Rate
(IDR) for the 3 virtual patients considered.



VI. CONCLUSION

In this paper, we addressed the problem of glucose control
with incomplete information. Starting from a minimal ODE
model, well representing the dynamic behavior of the glucose-
insulin system in the individuals showing a negligible delay
in the pancreatic response, we first designed a sample-based
observer reconstructing the full glucose-insulin behavior from
sparse glucose measurements. Then, we closed the loop by
designing a control law (based on the reconstructed state)
with the goal of tracking a desired behavior of glycemia. Pre-
liminary simulations have been performed in silico on virtual
patients whose parameters have been identified from real data,
in a realistic setting with additional non-idealities given by
quantization errors. The results show that the approach can
constitute a promising tool in the context of the development
of the artificial pancreas. Future research effort will be devoted
to possible extensions of the observer-based sampled data
glucose control to formally take into account the more general
cases of state delays and quantized inputs and outputs.
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