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Abstract

Noise in gene expression can be substantively affected by the presence
of production delay. Here we consider a mathematical model with bursty
production of protein, a one-step production delay (the passage of which
activates the protein), and feedback in the frequency of bursts. We specif-
ically focus on examining the steady-state behaviour of the model in the
slow-activation (i.e. large-delay) regime. Using a quasi-steady-state (QSS)
approximation, we derive an autonomous ordinary differential equation
for the inactive protein that applies in the slow-activation regime. If the
differential equation is monostable, the steady-state distribution of the
inactive (active) protein is approximated by a single Gaussian (Poisson)
mode located at the globally stable steady state of the differential equa-
tion. If the differential equation is bistable (due to cooperative positive
feedback), the steady-state distribution of the inactive (active) protein is
approximated by a mixture of Gaussian (Poisson) modes located at the
stable steady states; the weights of the modes are determined from a WKB
approximation to the stationary distribution. The asymptotic results are
compared to numerical solutions of the chemical master equation.
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WKB approximation; Large deviations; Exponential asymptotics
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1 Introduction

Gene expression in individual cells involves the interaction of molecules which
are present at low copy numbers (Eldar and Elowitz, 2010; Munsky et al, 2012).
The intrinsic noise generated by the low-copy-number reactions is passed down
to the end product of gene expression, the protein, and results in temporal fluc-
tuations and cell-to-cell heterogeneity of the protein copy number (Taniguchi
et al, 2010; Suter et al, 2011). The production of proteins in bursts of mul-
tiple copies is one of the most important sources of protein variability (Singh
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et al, 2010; Dar et al, 2012). Specifically, bursty production accounts for super-
Poissonian variability observed in protein copy numbers (Thattai and van Oude-
naarden, 2001).

Mathematical modelling has been proved useful in understanding the mech-
anisms of stochastic gene expression. The underlying probability distributions
are typically defined as solutions to a specific master equation (Paulsson, 2005;
Veerman et al, 2018; Albert, 2019). Explicit solutions to the master equa-
tion, especially at steady state, can be found for models with few components
(Bokes et al, 2012; Zhou and Liu, 2015) and/or with special structural prop-
erties (Kumar et al, 2015; Anderson and Cotter, 2016). Generally, however,
explicit solutions are unavailable or intractable and one resorts to stochastic
simulation or seeks a numerical solution to a finite truncation of the master
equation (Munsky and Khammash, 2006; Borri et al, 2016; Gupta et al, 2017).
An alternative approach, which often provides useful qualitative insights into
the model behaviour, is based on reduction techniques such as quasi-steady-
state (Srivastava et al, 2011; Kim et al, 2014) and adiabatic reductions (Bruna
et al, 2014; Popovic et al, 2016), piecewise-deterministic framework (Lin and
Doering, 2016; Lin and Buchler, 2018), linear-noise approximation (Schnoerr
et al, 2017; Modi et al, 2018), or moment closure (Singh and Hespanha, 2007;
Andreychenko et al, 2017; Gast et al, 2019).

Production delay is an inevitable part of gene expression (Monk, 2003; Zavala
and Marquez-Lago, 2014; Bokes et al, 2018). It can be caused by a number of
mechanisms, e.g. transcriptional/translational elongation (Roussel and Zhu,
2006), post-translational modification (Gedeon and Bokes, 2012), or compart-
mental transport (Mor et al, 2010; Sturrock et al, 2017). The delay specifies the
amount of time that needs to pass before a newly produced molecule can partake
in its regulatory function (specifically in feedback). Delay can be fixed or ran-
domly chosen from a distribution (Barrio et al, 2006; Lafuerza and Toral, 2011;
Gupta et al, 2014). Exponentially distributed delays are the simplest among dis-
tributed delays as they are realised by the passage of a single memoryless step.
Erlang and phase-type distributions provide a wider family of distributed delays
which can be generated by a finite network of memoryless states (Soltani et al,
2016). Previous results indicate that large one-step (exponential) and multi-
step (Erlang/phase-type) delays reduce the super-Poissonian noise in a bursty
protein down to Poissonian levels (Singh and Bokes, 2012; Stoeger et al, 2016;
Smith and Singh, 2019). This effect is also seen experimentally with buffered
noise in cytoplasmic mRNA levels compared to nuclear mRNA levels due to
transport delays (Battich et al, 2015). Additional effects of the inclusion of a
delay are observed if the protein regulates, via transcriptional feedback, its burst
frequency. In case of negative feedback, delays of moderate size lead to an in-
crease, rather than decrease in protein noise (Smith and Singh, 2019). In case of
non-cooperative positive feedback, noise-driven bimodal protein distributions,
which are observed in the absence of delay, turn unimodal upon the inclusion of
a distributed delay, and eventually converge to the Poissonian statistics as the
delay increases (Borri et al, 2019). In case of cooperative positive feedback, the
introduction of delay has been reported to enhance the stability of the modes
of the protein distribution (Gupta et al, 2013; Feng et al, 2016; Kyrychko and
Schwartz, 2018).

In the paper we focus, for its relative simplicity, on the case of exponential
delay. We refer to the delay as activation and distinguish between the inactive
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Name Scheme Rate Reset map

Production ∅ → B ×X ε−1fs X → X +B

Activation X→ S X
X → X − 1,
s→ min{s+ 1, smax}

Decay S→ ∅ ε−1s s→ s− 1

Table 1: Reaction channels in the delayed feedback model. The copy number
of the inactive protein X is denoted by X (in italic type) and that of the active
protein S by s. The production burst rate fs is a function of s, which implements
the feedback. The production burst size B is in general drawn from a prescribed
random distribution. The parameter ε� 1 determines the discrepancy between
the O(1) slow activation timescale and the O(ε) fast timescale of turnover of the
active protein S. The reset map of the activation channel ensures that s never
exceeds an upper bound smax.

and active protein species. We will argue that in the limit of slow activation
rates the model behaviour becomes deterministic at the level of the inactive
protein. Behaviour of stochastic models near a deterministic limit can be inter-
preted using the large-deviation theory (Tsimring and Pikovsky, 2001; Heymann
and Vanden-Eijnden, 2008; Kumar and Kulkarni, 2019) and quantified by WKB
asymptotic approximations (Schuss, 2009; Bressloff, 2014; Assaf and Meerson,
2017). The WKB approach has been successfully applied to stochastic reac-
tion kinetics systems with large molecule copy numbers (Hinch and Chapman,
2005; Be’er and Assaf, 2016; Yin and Wen, 2019), fast switching of internal
states (Newby, 2012; Lin and Galla, 2016), or a combination of both (Newby
and Chapman, 2014, discussed at greater length in Section 7). Here we will
use the WKB approximation to obtain reliable estimates of the stationary dis-
tribution of the active (and also the inactive) protein in the slow activation
(large-delay) regime.

The outline of the paper is as follows. The stochastic model is introduced in
Section 2 and reduced in Section 3 to a deterministic rate equation by means of
a quasi-steady-state (QSS) reduction. Section 4 introduces the WKB solution
and outlines the key aspects of the WKB analysis. Section 5 compares the
WKB and numerical solutions to the master equation. The WKB analysis is
performed in Section 6. Section 7 concludes the paper with a discussion.

2 Model formulation

The paper is concerned with a reaction system involving an inactive protein X
and an active protein S which are subject to the production, activation, and
decay reaction channels (Table 1). Each reaction is specified by its rate and
reset map. The reaction rate, upon the multiplication by the length of an
infinitesimally short time interval, gives the probability that the reaction will
occur within the interval. The reset map determines the adjustment of the
reaction species copy numbers resulting from an occurrence of the reaction.

We are specifically interested in studying the model in the regime of slow
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activation. Making activation slow is equivalent to making all the remaining
reactions fast: indeed, by Table 1, the activation rate is O(1), whereas the
production and decay rates are O(1/ε), where ε � 1 is a small dimensionless
parameter. The aim of the paper is to find asymptotic approximations, valid
for ε� 1, of the stationary behaviour of the model.

Let us talk through the specific forms of the reaction rates and reset maps
of the individual reactions in Table 1. The production rate depends on the
number s of active protein through a general (integer-valued) feedback response
function fs. The production reset map indicates that the number X of inactive
protein is increased by the size B ≥ 1 of a production burst. Bursts sizes are
drawn (independently of each other) from a distribution

bj = P [B = j], j = 1, 2, . . . (1)

The activation rate is proportional to the number of inactive protein; the factor
of proportionality is set to one without loss of generality. The activation reset
map turns one inactive protein into an active protein if there is extra capacity
for active protein (s < smax); it removes an inactive protein without creating an
active protein if there is no capacity (s = smax). The importance of introducing
an upper bound smax on the number of active protein is discussed at greater
length in Section 7. The decay rate is proportional to the number of active
protein; the decay reset map decreases the number of active protein by one.

3 QSS approximation

In the slow-activation regime (ε � 1), the inactive protein X is present at a
copy number X (written in italics) which is O(ε−1) large. In order to measure
the abundance of species X on an O(1) scale, we define

x = εX, (2)

which we refer to as the concentration of the inactive protein X. In the limit of
ε→ 0, the concentration x becomes a continuous quantity.

An additional effect of small values of ε is that the turnover of the active
protein S becomes much faster than that of the inactive protein X. This differ-
ence in timescales leads to seeking a quasi-steady-state (QSS) reduction of the
model. On the fast timescale of the turnover of S, we treat the concentration x
of the slow species X as a fixed quantity. With this assumption, the dynamics
of S is that of an M/M/smax/smax server with memoryless arrival and service
times, smax servers, and no queue (Gross, 2008). This analogy identifies active
protein molecules S with customers, protein activation with customer arrival
(occurring with a constant rate ε−1x), and protein decay with customer service
(with rate ε−1 per customer). A well-known result from the queuing theory
implies that the QSS distribution of s is

ρs(x) = N (x)
xs

s!
, s = 0, 1, . . . , smax, (3)

where

N (x) =

(
smax∑
s=0

xs

s!

)−1
(4)
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is the normalisation constant. Thus, fixing the slow species X to a concentration
x, the fast species copy number s obeys the (truncated) Poisson distribution (3)
with location parameter x.

Given a concentration x of the inactive protein X, the effective production
burst rate is equal to ε−1f̄(x), where f̄(x) is the expectation of fs with respect
to the QSS distribution (3), i.e.

f̄(x) =

smax∑
s=0

fsρs(x). (5)

The value of f̄(x) is determined by all values of fs: for example, f̄(2) includes,
with a small weight, the value f10; conversely, f2 contributes a little towards
f̄(10). Nevertheless, the main contribution to f̄(x) comes from the values of fs
whose argument s is close to x. Due to the contributions of neighbouring terms,
any sharp features of fs are “mollified” in the function f̄(x); for example, a step
function (Gedeon et al, 2017; Crawford-Kahrl et al, 2019)

fs =

{
a0 if s < sthresh,

a1 if s ≥ sthresh,
(6)

tunrs into a smooth sigmoid function by the application of (5); see Figure 1,
top panels.

The concentration of protein produced per unit time is equal to the product
of the effective burst rate ε−1f̄(x) and the mean burst size ε〈B〉 (in units of
concentration), where

〈B〉 =
∞∑
j=1

jbj (7)

is the mean burst size (in units of copy number). Subtracting from the product
〈B〉f̄(x) the linear activation rate yields the limiting deterministic dynamics

dx

dt
= 〈B〉f̄(x)− x (8)

for the inactive protein. Steady states of (8) are the intersections of 〈B〉f̄(x)
with the diagonal (i.e. fixed points), and we consider two cases separately:

Monostable case. Assume that (8) possesses a single globally stable steady
state x0 (Figure 1, top left, blue diamond). After the elapse of an initial tran-
sient, the inactive protein concentration x is attracted to x0, and the active
protein copy number s follows the QSS distribution ρs(x0).

Bistable case. Assume that (8) possesses three steady states x− < x0 <
x+, of which x− and x+ are stable and x0 is unstable (Figure 1, top right,
blue diamonds). Since in the long run the inactive protein concentration will
alternate between being very close to either of the two attractors, the steady-
state distribution of the active protein is expected to take the form of a mixture
of the QSS distributions ω−ρs(x−) + ω+ρs(x+), where ω− ≥ 0, ω+ ≥ 0, ω− +
ω+ = 1, are the probabilistic weights of the stable steady states x− and x+.
Thus, we expect the steady-state distributions of s to be a mixture of two
Poissonian modes located at the two stable steady states of the ODE (8).
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Figure 1: Top: The instantaneous production rate 〈B〉fs (black circles) and the
QSS-averaged production rate 〈B〉f̄(x) (blue line) for negative (left) or positive
(right) feedback. Blue diamond markers indicate the fixed points. Middle: The
WKB potential Φ(x). Its local extrema colocate with the fixed points of the
QSS-averaged production rate. The potential gets flatter as production becomes
bursty (dashed line). Bottom: The WKB approximation of the probability
density function of the inactive protein concentration x. The pdf is peaked
around the potential minima for ε � 1. Parametric values: The upper bound
on S is smax = 20. The feedback threshold is sthresh = 6. The burst size is fixed
to B = 1 except for the dashed line, middle panels, where it is fixed to B = 4.
Unimodal examples use a0 = 10, a1 = 2, except for the dashed line, middle
panels, which uses a0 = 2.5, a1 = 0.5. Bimodal examples use a0 = 2, a1 = 10,
except for the dashed line, middle panels, which uses a0 = 0.5, a1 = 2.5.
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4 WKB approximation: an overview

The approximation introduced in this Section reinforces the QSS-based heuris-
tics with a systematic argumentation. Additionally, it provides asymptotic ex-
pansions as ε → 0 of the weights in the mixture distributions (which the QSS
heuristics does not).

The WKB approximation of the probability mass function p(x, s; ε) of the
inactive protein concentration x and the active protein copy number s is sought
(and found in Section 6) in the form of

p(x, s; ε) ∼ k(x)ws(x)e−
Φ(x)
ε , ε� 1, (9)

where k(x), ws(x) and Φ(x) are independent of ε and satisfy k(x) > 0, ws(x) >
0, and

∑smax

s=0 ws(x) = 1. The variable s is placed in the subscript to emphasise
its discreteness (contrasting it with the continuous nature of x in the limit of
ε→ 0). The ansatz (9) can be rephrased in terms of the marginal distribution
of x and the conditional distribution of s as

p(x, · ; ε) =

smax∑
s=0

p(x, s; ε) ∼ k(x)e−
Φ(x)
ε , (10)

p(s|x; ε) =
p(x, s; ε)

p(x, · ; ε)
∼ ws(x). (11)

We refer to Φ(x) as the WKB potential, to k(x) as the WKB prefactor, and to
ws(x) as the WKB conditional distribution of s. In Section 6 we determine these
terms from the underlying chemical master equation and establish a connection
between the WKB and QSS approximations. At this stage, let us highlight the
main outcomes of the forthcoming analysis.

We will show that the potential is a Lyapunov function of the limiting ODE
model (8), possessing local minima (maxima) at the same points where (8) has
stable (unstable) steady states (Figure 1, centre). Additionally, the potential
carries information about the noise in the model that the ODE does not: specif-
ically, the ODE depends only on the product of burst rate and burst frequency,
remaining the same if the burst size is multiplied by the same factor as the burst
frequency is divided by; the potential, on the other hand, becomes flatter as the
system becomes more bursty (Figure 1, centre, dashed lines). This observation
is consistent with an intuition that bursty production enhances noise and the
chance to escape potential wells.

If the ODE is monostable, the potential has a single global minimum situated
at the single global attractor x0 of the differential equation (Figure 1, centre
left). For ε� 1 the distribution (10) of x is sharply peaked around x0 (Figure
1, bottom left) so that it can be approximated by a delta peak

p(x, · ; ε) ∼ δ(x− x0). (12)

If the ODE is bistable, Φ(x) is a double-well potential, with the wells at the
stable steady states x− and x+ being separated by a barrier at the unstable
steady state x0 (Figure 1, centre right). For ε � 1 the distribution (10) of x
is sharply peaked around x−, x+ (Figure 1, bottom right) so that a mixture of
delta peaks

p(x, · ; ε) ∼ ω−δ(x− x−) + ω+δ(x− x+) (13)
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can be used as a rough approximation.
We will show in Section 6 that at a steady state x∗ ∈ {x−, x0, x+} of (8) the

WKB conditional distribution of s coincides with the QSS approximation,

ws(x∗) = ρs(x∗), 0 ≤ s ≤ smax, (14)

where ρs(x) is defined by (3)–(4). Interestingly, conditioning on points x away
from the steady states of (8) leads to WKB conditional distributions of s that
differ from the QSS heuristics. Arguably, this disagreement arises because the
simplifying QSS assumption of a fixed x is invalidated by making a large devia-
tion from a steady state. Nevertheless, the contribution of non-QSS conditional
distributions towards the total distribution of s turns out to be negligible.

The total distribution of s is given by

p(·, s; ε) =

∫ ∞
0

p(s|x; ε)p(x, · ; ε)dx ∼
∫ ∞
0

ws(x)p(x, · ; ε)dx. (15)

Inserting the delta-peak singleton (12) or the delta-peak-mixture (13) approxi-
mations into (15) and using (14) we find a Poisson singleton

p(·, s; ε) ∼ ρs(x0) (16)

for the monostable case and a Poisson mixture

p(·, s; ε) ∼ ω−ρs(x−) + ω+ρs(x+) (17)

for the bistable case. These are the very approximations which were suggested
by the QSS approach.

For the weights ω− and ω+ we have

ω−
ω+
∼

∫
O(x−)

k(x)e−
Φ(x)
ε dx∫

O(x+)
k(x)e−

Φ(x)
ε dx

,

where O(x−) and O(x+) are neighbourhoods of x− and x+. Applying the
Laplace method to approximate for small ε the integrals in the above equation,
we find

ω−
ω+
∼ k(x−)

k(x+)

√
Φ′′(x+)

Φ′′(x−)
e−

Φ(x−)−Φ(x+)

ε , (18)

which together with ω− + ω+ = 1 determine the asymptotic behaviour of the
weights. In particular, if the right well of the potential Φ(x) is deeper than the
right well, i.e. Φ(x−) > Φ(x+), then (18) implies that (ω−, ω+) → (0, 1) as
ε → 0 (and (ω−, ω+) → (1, 0) as ε → 0 if Φ(x−) < Φ(x+)). However, if the
two wells are finely balanced, the weights are comparable for a range of ε� 1,
and both Poissons that constitute the steady-state distribution (17) of s are
appreciable.

The approximation of the distribution of x by a single delta peak (monostable
case) or a mixture of two delta peaks (bistable case) is sufficient for the purpose
of deriving the leading-order approximation of the distribution of s. If one is
interested in the distribution of x itself, a satisfactory result is obtained by
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a parabolic approximation of the WKB potential around its minima. In the
monostable case it is given by a Gaussian singleton

p(x, · ; ε) ∼
√
Φ′′(x0)

2πε
exp

(
−Φ
′′(x0)(x− x0)2

2ε

)
, (19)

and in the bistable case by a Gaussian mixture

p(x, · ; ε) ∼ ω−

√
Φ′′(x−)

2πε
exp

(
−Φ
′′(x−)(x− x−)2

2ε

)
+

ω+

√
Φ′′(x+)

2πε
exp

(
−Φ
′′(x+)(x− x+)2

2ε

)
.

(20)

The results (19) and (20) for the inactive protein distribution are expressed
in terms of the concentration x. Expressions in terms of the copy number
X = x/ε can be obtained using the well-known rule for a linear transformation
of a normally distributed random variable.

For further background on this Section’s results as well as practical recipes
for the calculation of the WKB terms that appear in these results, we refer the
reader to Section 6. In the next Section, we introduce the master equation, find
its steady-state solution numerically, and compare it to the Poisson/Gaussian
singleton/mixture approximations.

5 Master equation

The probability P = P (X, s, t) of having X molecules of inactive protein X and
s molecules of active protein S (cf. Table 1) at time t satisfies the chemical
master equation (CME)

ε
∂P

∂t
= fs

 ∞∑
j=1

bjE−jX − 1

P + ε
(
EXE−1s − 1

)
XP + (Es − 1) sP, (21)

in which EX and Es denote the van Kampen step operators (van Kampen, 2006)
in variables X and s and E−1X and E−1s are their formal inverses. The master
equation (21) applies in the unbounded case smax = ∞; the bounded case will
be dealt with in detail in Section 6. The principal interest of this paper is in
steady-state solutions, which are obtained by setting the derivative in (21) to
zero.

The first step in finding a numerical solution to a CME is its truncation to
a finite number of equations. Following the approach illustrated e.g. by Borri
et al (2016), we truncate the master equation to a finite lattice {0, 1, ..., smax}×
{0, 1, ..., Xmax}, and calculate the (unique) normalised steady-state solution;
this amounts to finding a nullvector of a sparse square matrix of large order
(smax+1)(Xmax+1). The upper bound for the active protein is set to smax = 20,
while the upper bound Xmax for the inactive protein is set to Xmax = 4dx+/εe,
where x+ is the uppermost steady state of the ODE (8). Preliminary rounds
of the Gillespie stochastic simulation algorithm (SSA) (Gillespie, 1976) show
that sample trials (almost) never exceed Xmax, so that the truncated solution
is expected to be a good approximation of the original one.
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Figure 2: Steady-state distributions for negative feedback and fixed burst size
B = 1 obtained by numerical solution (red line) and asymptotic approximation
(blue line). Panel columns refer to the two protein species; panel rows refer
to distinct values of ε. The dashed lines indicate the locations of stable fixed
points of the deterministic rate equation. The step function (6) parameters are
sthresh = 6, a0 = 10, a1 = 2.
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Figure 3: Steady-state distributions for negative feedback and fixed burst size
B = 4 obtained by numerical solution (red line) and asymptotic approximation
(blue line). Panel columns refer to the two protein species; panel rows refer
to distinct values of ε. The dashed lines indicate the locations of the stable
fixed points of the deterministic equation. The step function (6) parameters are
sthresh = 6, a0 = 2.5, a1 = 0.5.
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Figure 4: Steady-state distributions for the case of positive feedback and fixed
burst size B = 1 obtained by numerical solution (red line) and asymptotic
approximation (blue line). Panel columns refer to the two protein species; panel
rows refer to distinct values of ε. The dashed lines indicate the locations of
the stable fixed points of the deterministic equation. The step function (6)
parameters are sthresh = 6, a0 = 2, a1 = 10.
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Figure 5: Steady-state distributions for the case of positive feedback and fixed
burst size B = 4 obtained by numerical solution (red line) and asymptotic
approximation (blue line). Panel columns refer to the two protein species; panel
rows refer to distinct values of ε. The dashed lines indicate the locations of
the stable fixed points of the deterministic equation. The step function (6)
parameters are sthresh = 6, a0 = 0.5, a1 = 2.5.
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Burst size Feedback x∗ (Φ′′(x∗))
−1 k(x−)/k(x+) Φ(x−)− Φ(x+)

1 Negative 5.81 10.69 N/A N/A

4 Negative 5.81 14.44 N/A N/A

1 Positive
2.2 3.35

4.47 0.0606
9.14 14.98

4 Positive
2.2 8.67

4.42 0.0216
9.14 40.17

Table 2: Coefficients of the WKB approximation used in the numerical examples
of Figures 2–5. The values of x∗ give the location of the stable fixed points of
ODE (8). The value of (Φ′′(x∗))

−1 gives (up to a factor of 1/ε) the variance
of the Gaussian modes. The prefactor ratio k(x−)/k(x+) and the potential
difference Φ(x−) − Φ(x+) enter into the calculation of the mixture weights in
the bistable case.

The numerical and the WKB-based asymptotic solutions to the CME are
in a good agreement both for negative feedback (Figures 2–3) as well as for
positive feedback (Figure 4–5). For each feedback type we consider two (fixed)
burst sizes B = 1 and B = 4 (bB = 1, bj = 0 for j 6= B). Panel columns in the
figures refer to the two protein species; panel rows refer to the chosen values of
ε. The parameters of the step function (6) are given in the figure captions. The
asymptotic approximations (Figures 2–5, blue lines) are obtained by evaluating
(16) and (19) in the monostable case (negative feedback) or (17) and (20) in the
bistable case (positive feedback). The Poisson modes are evaluated from the
formula (3)–(4). The weights in the mixture distributions are calculated from
(18). The numerical values of the coefficients that enter these calculations are
summarised in Table 2.

6 WKB approximation: analysis

We start our analysis by formulating a version of the master equation (21) that
is applicable to the smax < ∞ case (cf. Table 1). For this purpose it turns
out to be helpful to use a modified version of the van Kampen step operators.
For a sequence vs indexed by an integer 0 ≤ s ≤ smax, we define the left- and
right-shift operators by

Lvs =

{
vs+1 if 0 ≤ s < smax,

0 if s = smax,
Rvs =


0 if s = 0,

vs−1 if 0 < s < smax,

vs−1 + vs if s = smax.

(22)

Away from the boundary s = smax, the left- and right-shift operators L and R
are equal to the van Kampen step operator and its formal inverse, respectively.
Let us discuss the meaning of the modifications of the operators that are made
on the boundary s = smax. The left-shift operator is used below to describe the
transfer of probability mass due to protein decay. The modification of the left-
shift operator at the boundary s = smax means there is no transfer of probability
from the inadmissible state smax + 1. The right-shift operator is used below to
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describe the transfer of probability mass due to protein activation. The reset
map of the activation reaction channel (Table 1) implies that the states with
smax as well as the states with smax − 1 active protein molecules transfer into a
state with smax molecules. Correspondingly, the right-shift operator returns at
the boundary the sum of the ultimate and the penultimate terms of the original
sequence.

The probability P (X, s, t) of at time t having X molecules of inactive protein
X and s molecules of active protein S (cf. Table 1) satisfies

ε
∂

∂t
P (X, s, t) = fs

∞∑
j=1

bjP (X − j, s, t) + ε(X + 1)RP (X + 1, s, t)

+ LsP (X, s, t)− (fs + εX + s)P (X, s, t),

(23)

in which we use the operator formalism (22) in the variable s but the shifts in the
variable X are made explicit. We thereby tacitly understand, as is customary in
analyses of chemical master equation, that the probability of having a negative
number of species X is equal to zero.

Inserting

X =
x

ε
, P (X, s, t) = p(x, s, t)

into (23), we obtain

ε
∂

∂t
p(x, s, t) = fs

∞∑
j=1

bjp(x− εj, s, t) + (x+ ε)Rp(x+ ε, s, t)

+ Lsp(x, s, t)− (fs + x+ s)p(x, s, t),

(24)

which expresses the master equation in terms of the concentration of the inac-
tive protein. Equating the derivative in (24) to zero, we arrive at a bivariate
difference equation

0 = fs

∞∑
j=1

bjp(x−εj, s)+(x+ε)Rp(x+ε, s)+Lsp(x, s)−(fs+x+s)p(x, s) (25)

for the steady-state distribution p(x, s). Below we seek an asymptotic approxi-
mation as ε→ 0 to the (normalised) solution of (25).

6.1 Expansion

We seek a solution to (25) in the WKB form, cf. Equation (9),

p(x, s; ε) =
(
r0s(x) + εr1s(x) +O(ε2)

)
e−

Φ(x)
ε , (26)

where r0s(x) = k(x)ws(x) and r1s(x) give the first two terms in the asymptotic
expansion in the powers of ε. Below we develop, by means of (26), the individual
terms of the difference equation (25) into asymptotic expansions of up to the
second order. This is a mechanistic but laborious exercise. Therefore we suggest
that, on first reading, the reader focus their attention on the leading-order terms
in the expansions; these are sufficient for evaluating the potential Φ(x) and ws(x)
(which play the central role in the analysis). The second-order terms, including
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those that involve r1s(x), come into play in Subsection 6.3 in the determination
of the prefactor k(x).

For the first term in equation (25) we find

∞∑
j=1

bjp(x− εj, s; ε) =
∞∑
j=1

bj
(
r0s(x− εj) + εr1s(x− εj) +O(ε2)

)
e−Φ(x−jε)/ε

= e−
Φ(x)
ε

∞∑
j=1

bje
jθ
(
r0s(x)− εjr0 ′s (x) + εr1s(x) +O(ε2)

)(
1− εj2Φ′′(x)

2
+O(ε2)

)
∼ e−

Φ(x)
ε

(
r0s(x)M(θ) + ε

[
r1s(x)M(θ)− r0 ′s (x)M ′(θ)− 1

2
Φ′′(x)r0s(x)M ′′(θ)

])
,

where

θ = Φ′(x), M(θ) =
∞∑
j=1

bje
jθ. (27)

are the potential derivative and the moment generating function of the burst-size
probability distribution (1), respectively.

The second term in equation (25) is developed into

(x+ ε)Rp(x+ ε, s; ε) = (x+ ε)
(
Rr0s(x+ ε) + εRr1s(x+ ε) +O(ε2)

)
e−Φ(x+ε)/ε

= e−
Φ(x)
ε −θ(x+ ε)

(
Rr0s(x) + ε[Rr0 ′s (x) +Rr1s(x)] +O(ε2)

)(
1− εΦ′′(x)

2
+O(ε2)

)
∼ e−

Φ(x)
ε −θ

(
xRr0s(x) + ε

[(
1− Φ′′(x)x

2

)
Rr0s(x) + x

(
Rr0 ′s (x) +Rr1s(x)

)])
.

The remaining terms in (25) are easy to expand.
We insert the WKB ansatz (26) into (25), expand the individual terms of

the equation as suggested above, and collect terms of same order; at the leading
order this yields

Ar0s(x) = 0, (28)

where
Avs = e−θxRvs + Lsvs − (fs(1−M(θ)) + x+ s)vs (29)

is a linear operator acting on sequences vs defined for 0 ≤ s ≤ smax. Such
sequences can be represented by (smax + 1)-dimensional column vectors v =
(v0, v1, . . . , vsmax

)ᵀ, and the linear operator A as a square matrix A of order
smax + 1. Here and throughout this Section, we will go back and forth be-
tween the operator–sequence and the matrix–vector notations, using that which
expresses a given formula more succinctly.

The matrix A is tridiagonal. On the diagonal it has the sequence −fs(1 −
M(θ))− x− s, where 0 ≤ s < smax, except for the last diagonal element, which
is given by −fsmax

(1−M(θ))−x(1− e−θ)− smax. On the upper diagonal it has
the sequence 1, 2, . . . , smax; the elements of the lower diagonal are all equal to
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e−θx. It looks like

A =



−f0(1−M(θ))− x 1
0

e−θx
. . .

. . .

0

. . .
. . . smax

e−θx
−fsmax

(1−M(θ))
− (1− e−θ)x− smax


. (30)

The matrix A = A(x, θ) — just like the associated operator A = A(x, θ)
— depends on the protein concentration x and the (yet unknown) potential
derivative θ = Φ′(x).

Equation (28) can be written in a matrix form as

A(x, θ)r0(x) = 0, (31)

where r0(x) = (r00(x), r01(x), . . . , r0smax
(x))ᵀ is a positive vector (i.e. a vector with

only positive elements). The matrix A does not have any negative off-diagonal
elements. Denote by

H(x, θ) = λ1(A(x, θ)) (32)

the eigenvalue with largest real part (which we refer to hereafter as the prin-
cipal eigenvalue). The Perron–Frobenius theorem implies that the principal
eigenvalue is real and that its right and left eigenvectors (referred to as princi-
pal eigenvectors) are real and positive. The right eigenvectors of non-principal
eigenvalues, being orthogonal to the left principal eigenvector, cannot be posi-
tive. Therefore, equation (31) is solvable in r0(x) > 0 if

H(x, θ) = 0 (33)

holds. Solving equation (33) in θ, we obtain a functional dependence of the
potential derivative θ = Φ′(x) on the concentration x. The potential itself can
be obtained by (numerically) integrating its derivative.

Crucially, equation (33) does not define θ = θ(x) uniquely. First, there is a
trivial solution θ = 0 for any value x > 0. Indeed, θ = 0 implies M(0) = 1, with
which the matrixA(x, 0) reduces to (the transpose of) the transition rate matrix
of the QSS process (the M/M/smax/smax server; see Section 3). Therefore it is
singular and its principal eigenvalue (32) is equal to zero. The trivial branch
θ ≡ 0 of solutions to (33) cannot be used to construct the potential: we need
to look for a different branch. To do so, it is useful to consider a Hamiltonian
system of differential equations corresponding to the Hamiltonian (32).

6.2 The Hamiltonian system

Differentiating with respect to x equation (33) in which θ = θ(x) yields

∂H

∂x
+
∂H

∂θ

dθ

dx
= 0,

i.e.
dθ

dx
= −

∂H
∂x (x, θ)
∂H
∂θ (x, θ)

. (34)
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The non-autonomous differential equation (34) is equivalent to the system of
two autonomous differential equations

ẋ =
∂H

∂θ
(x, θ), θ̇ = −∂H

∂x
(x, θ), (35)

in which the dot represents the time derivative. The system is Hamiltonian: its
trajectories form the level sets of (32). We are specifically interested in the zero
set (33). Borrowing terminology from the Hamiltonian formalism, we refer to
the variable θ as the conjugate momentum.

In order to solve system (35), we need to evaluate the right-hand sides. For
this purpose it is useful to express the Hamiltonian (32) as

H = uᵀAv, (36)

where u > 0 and v > 0 are the left and right eigenvectors corresponding to the
principal eigenvalue H, i.e.

uᵀA = Huᵀ, Av = Hv, (37)

which additionally satisfy

uᵀv = 1,

smax∑
s=0

vs = 1. (38)

Conditions (38) can be met by a suitable choice of multiplicative constants.
The principal eigenvectors u and v, just like A and the principal eigenvalue

H, depend on the protein concentration x and the conjugate momentum θ. For
θ = 0 the matrixA(x, 0) reduces to the transition rate matrix of the QSS process
with principal eigenvalue H(x, 0) = 0; the principal eigenvectors are given by
the nullvectors of the QSS process

u(x, 0) = 1, v(x, 0) = ρ(x), (39)

in which 1 = (1, 1, . . . , 1)ᵀ is an (smax + 1)-dimensional vector of ones and
ρ(x) = (ρ0(x), ρ1(x), . . . , ρsmax

(x))ᵀ is the vector representation of the QSS
stationary distribution (3).

The partial derivatives of the Hamiltonian (36) are given by

∂H

∂x
= uᵀ ∂A

∂x
v +

∂uᵀ

∂x
Av + uᵀA

∂v

∂x

= uᵀ ∂A

∂x
v +H

∂uᵀv

∂x

= uᵀ ∂A

∂x
v, (40)

∂H

∂θ
= uᵀ ∂A

∂θ
v. (41)

The derivatives of A in (40)–(41) are matrix representations of the derivatives

∂A
∂x

vs = e−θRvs − vs,
∂A
∂θ

vs = −e−θxRvs +M ′(θ)fsvs (42)

of the operator A (29).
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For θ = 0 the derivatives (40)–(41) of the Hamiltonian satisfy

∂H

∂x
(x, 0) = 1ᵀ ∂A

∂x
(x, 0)ρ(x) =

smax∑
s=0

∂A
∂x

(x, 0)ρs(x)

=

smax∑
s=0

Rρs(x)−
smax∑
s=0

ρs(x) = 0, (43)

∂H

∂θ
(x, 0) = 1ᵀ ∂A

∂θ
(x, 0)ρ(x) =

smax∑
s=0

∂A
∂θ

(x, 0)ρs(x)

= −x
smax∑
s=0

Rρs(x) +M ′(0)

smax∑
s=0

fsρs(x)

= −x+ 〈B〉f̄(x). (44)

We note that in the equalities leading up to (43) and (44), we made use of
the following properties: (i) the product of a row vector of ones and a column
vector is equal to the sum of the column vector’s elements; (ii) the right-shift
operator R (22) preserves the sum of vector elements; (iii) evaluating at zero
the first derivative of the burst-size moment generating function (27) gives the
mean burst size; we also used the definition of the QSS-averaged production
rate (5).

Inserting θ = 0 into (35) and using (43)–(44), we find that on the x-axis the
Hamiltonian system satisfies

ẋ = 〈B〉f̄(x)− x, θ̇ = 0 (if θ = 0). (45)

Equations (45) imply that (i) the x-axis is an invariant set of the Hamilto-
nian system and that (ii) the system reduces to the deterministic rate equation
(8) when restricted to the invariant set. The Hamiltonian system (35) thus
comprises, and extends by an additional dimension in θ, the ODE dynamics
established by the quasi-steady-state analysis of Section 3.

A point (x∗, 0), where x∗ ∈ {x−, x0, x+} is any of the fixed points of (8), is
also a steady state of the full Hamiltonian system (35). The linearisation matrix
is given by

J =

(
∂2H
∂x∂θ

∂2H
∂θ2

0 − ∂2H
∂x∂θ

)∣∣∣∣∣
x=x∗,θ=0,

(46)

in which the second derivative of H with respect to x is immediately seen to be
zero because of (43).

It follows that (x∗, 0) is a saddle of (35) with eigenvalues

λ1,2(J) = ± ∂
2H

∂x∂θ
(47)

and eigenvectors

Ker(J − λ1(J)) 3 (1, 0)ᵀ, Ker(J − λ2(J)) 3

(
1,−2

(
∂2H

∂θ2

)−1
∂2H

∂x∂θ

)ᵀ

,

(48)

17

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855783doi: bioRxiv preprint first posted online Nov. 26, 2019; 

http://dx.doi.org/10.1101/855783
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 4 6 8 10
Concentration x

0.10

0.05

0.00

0.05

0.10
Co

nj
ug

at
e 

m
om

en
tu

m
 

0 2 4 6 8 10
Concentration x

0

2

4

6

8

10

Pr
ef

ac
to

r k
(x

)

Figure 6: Left: Phase plane of the Hamiltonian system (35). The heteroclinic
orbits (red colour) form the zero set of the Hamiltonian (32). The nontrivial
portion of the zero set (full red line) defines the derivative of the WKB potential
θ = Φ′(x). The trivial portion of the zero set (θ = 0; dashed red line) is the phase
line of the deterministic ODE (8). The red markers denote the steady states
of (8), which are also saddles of the Hamiltonian system. Right: The WKB
prefactor. The parameter values are: The upper bound on S is smax = 20. The
burst size is fixed to B = 1. The step function (6) parameters are sthresh = 6,
a0 = 2, a1 = 10.

in which the derivatives of the Hamiltonian are evaluated at (x∗, 0). One can
show that

∂2H

∂x∂θ
(x∗, 0) = −1 + 〈B〉f̄ ′(x∗), (49)

∂2H

∂θ2
(x∗, 0) = x∗

(
1 +
〈B2〉
〈B〉

)
+ 21ᵀ ∂A

∂θ
(x∗, 0)ṽ, (50)

where ṽ is a solution to A(x∗, 0)ṽ = −∂A∂θ (x∗, 0)ρ(x∗). Equation (49) is an
immediate consequence of (44). Equation (50) is derived in Appendix A. The
derivative of the effective production rate (5) satisfies

f̄ ′(x) = N (x)

((
f̄(x)− fsmax

) xsmax

smax!
+

smax−1∑
s=0

(fs+1 − fs)
xs

s!

)
. (51)

Equations (49)–(51) provide a practical numerical recipe for calculating the
nontrivial eigenvector (48) of the Hamiltonian system linearisation.

The trajectories emanating from a saddle (x∗, 0) along the direction of the
eigenvector (1, 0)ᵀ form the trivial branch θ = 0 of the zero set (33). The
trajectories emanating from the saddle along the nontrivial eigenvector (48)
form the nontrivial branch of the zero set (33) (Figure 6, left). The nontrivial
branch constitutes the sought-after WKB potential derivative θ = Φ′(x). The
derivative Φ′(x) is equal to zero where the nontrivial θ = Φ′(x) and the trivial
θ = 0 branches intersect, i.e. at the fixed points x = x∗ ∈ {x−, x0, x+} of the
deterministic rate equation (8). This establishes the claim made in Section 4
that the potential extrema coincide with the fixed points of the deterministic
model.

Formulae (18), (19), and (20) require us to evaluate the second derivative
of the potential at fixed points. The second derivative of Φ(x), i.e. the first
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derivative of θ = Φ′(x), is equal at the fixed points to the second component
of the nontrivial eigenvector (48) of the Hamiltonian system linearisation (cf.
Figure 6, left panel). Away from fixed points, the derivative of θ = Φ′(x) can
be evaluated by substituting into the right-hand side of (34).

In order to complete the WKB approximation (9) at the leading order, we
express

r0(x) = k(x)w(x), w(x) = v(x, Φ′(x)), (52)

in which the l1-normalised nullvector w(x) = (w0(x), . . . , wsmax(x))ᵀ gives the
distribution of s conditioned on a concentration x, and k(x) is a prefactor. In
particular, if x = x∗ is a fixed point, then we havew(x∗) = v(x∗, 0) = ρ(x∗) (the
Poissonian QSS distribution); this establishes the claim (14) made in Section 4.
Away from the fixed points, the conditional probability mass function of s is in
general different from the Poissonian QSS distribution.

Having determined the potential Φ(x) and the probability mass function
ws(x), the last remaining task is to calculate the prefactor k(x). Doing so
requires us to consult the second-order terms in the WKB expansion.

6.3 Calculating the prefactor

Having inserted the WKB ansatz (26) into the master equation (25) and having
expanded the individual members up to the second order (Section 6.1), we now
collect the second order terms and obtain

Ar1s(x)− fs
(
M ′(θ)r0 ′s (x) +

1

2
Φ′′(x)M ′′(θ)r0s(x)

)
+ e−θ

[(
1− 1

2
Φ′′(x)x

)
Rr0s(x) + xRr0 ′s (x)

]
= 0.

Inserting the factorisation r0s(x) = k(x)ws(x), cf. (52), into the equation above
yields

Ar1s(x) = k′(x)αs(x) + k(x)βs(x), (53)

where

αs(x) = M ′(θ)fsws(x)− e−θxRws(x),

βs(x) = M ′(θ)fsw
′
s(x) +

1

2
Φ′′(x)M ′′(θ)fsws(x)

− e−θ
[(

1− 1

2
Φ′′(x)x

)
Rws(x) + xRw′s(x)

]
.

In order that equation (53) be solvable in r1s(x), its right-hand side must be
orthogonal to the left nullvector ls(x) = us(x, θ(x)) of A = A(x, θ(x)), i.e.

k′(x)

smax∑
s=0

ls(x)αs(x) + k(x)

smax∑
s=0

ls(x)βs(x) = 0,

Integrating the above linear homogeneous first-order equation in k(x) yields

k(x) = e−ψ(x), ψ′(x) =

∑smax

s=0 ls(x)βs(x)∑smax

s=0 ls(x)αs(x)
.

The function ψ(x) is determined by numerically integrating ψ′(x). The depen-
dence of the prefactor k(x) on the protein concentration x is exemplified in
Figure 6, right panel.
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7 Discussion

We formulated and investigated a stochastic model for the production of a pro-
tein with delayed positive feedback. In the model, the protein is produced in
bursts of multiple molecule copies. Newly produced protein molecules are inac-
tive, and become activated by passing through a single activation step; biologi-
cally, the step can represent chemical modification, compartmental transport, or
other scenarios. Active protein molecules regulate the frequency of bursty pro-
duction of inactive protein. Such feedback can biologically be realised through
transcriptional regulation.

The model incorporates an upper bound smax on the number of active pro-
tein. If smax active protein are already present, a new activation is allowed to
occur, but is immediately followed by the removal of the activated molecule; con-
sequently, the number of active protein molecules never exceeds smax. Thanks to
the introduction of the upper bound, a number of crucial steps in the mathemat-
ical analysis involve finite, rather than infinite, calculation (e.g. the averaging
(5) or the matrix (30)). Without an explicit upper bound in the model, each of
these calculations would require an ad-hoc truncation; the explicit inclusion of
the upper bound in the model guarantees a consistent use of truncation through-
out the entire analysis. In the presented numerical examples, we choose smax

large enough in order that the results be close to those expected without an
upper bound.

We focused on examining the model behaviour in the regime of slow acti-
vation. The regime is characterised by activation rates of O(1) and produc-
tion/decay rates of O(1/ε), where ε� 1. Consequently, the inactive protein is
present at O(1/ε) large copy numbers and fluctuates on a O(1) slow timescale,
whereas the active protein is present at O(1) moderate copy numbers and fluctu-
ates on a O(ε) fast timescale. Performing a quasi-steady-state (QSS) elimination
of the fast active protein, we found that the QSS distribution of the active pro-
tein is a (truncated) Poisson, and that the inactive protein evolves on the O(1)
timescale according to a deterministic rate equation (8).

We were specifically interested in situations where the rate equation has
two stable steady states. Bistability occurs if the effective feedback response
function, which quantifies the feedback of the inactive protein on itself, is suf-
ficiently sigmoid so as to support multiple fixed points. The effective response
function is equal to the average value, weighted by the QSS distribution of the
active protein, of the original, active-protein-dependent, production rate. As
a result of averaging by the noisy active protein, the effective response func-
tion is a smoothed-out (or “mollified”) version of the original response function;
the requirement that the mollified function be sigmoid implies that the original
function must be yet steeper. For simplicity, we used an (infinitely steep) step
function in the examples of this paper. Biologically, highly sigmoid feedback
responses can be maintained through cooperative binding of the protein to the
regulatory DNA sequences.

If the model operates in the slow activation regime and if the limiting rate
equation is monostable, then the steady-state distribution of the inactive (ac-
tive) protein is nearly Gaussian (Poisson); the location of the Gaussian/Poisson
mode is dictated by the unique fixed point of the rate equation. If the rate
equation is bistable, the distribution of the inactive protein is approximated by
a mixture of two small-noise Gaussians, and that of the active protein by a mix-

20

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855783doi: bioRxiv preprint first posted online Nov. 26, 2019; 

http://dx.doi.org/10.1101/855783
http://creativecommons.org/licenses/by-nc-nd/4.0/


ture of two (moderate-noise) Poissons; the locations of the Gaussian/Poissonian
modes are dictated by the fixed points of the rate equation. In order to ob-
tain asymptotic approximations of the weights of the two modes, one needs to
consult (and calculate) a WKB solution to the master equation; doing so was
the concern of the bulk of the mathematical analysis presented in this paper.
The asymptotic solution agrees well with a numerical solution to the master
equation.

The principal step in the calculation of the asymptotic WKB solution is
the determination of the WKB potential. The derivative of the potential is
formed by the nontrivial heteroclinic connections between the steady states of a
Hamiltonian system (Figure 6, full red line). The trivial heteroclinic connections
that lie on the x-axis (Figure 6, dashed red line) satisfy the rate equation (the one
previously established by the QSS analysis). The potential derivative and the
deterministic rate have opposite signs: the potential has local minima/maxima
where the rate equations has stable/unstable steady states; in other words, the
WKB potential is the deterministic rate equation’s Lyapunov function.

Our asymptotic analysis stands on the shoulders of previous analyses (see
Introduction for a limited review), and one in particular: Newby and Chapman
(2014) study a stochastic gene expression model which is based on different bi-
ological assumptions than ours; the commonality is that it features two compo-
nents with a similar pattern of time and abundance scales. The model of Newby
and Chapman (2014) consists of an “internal” finite-state Markov chain (rep-
resenting promoter states) coupled with an “external” birth and death process
(representing protein). The coupling of the two components is in the dependence
of transition rates for either component on the current state of both. The deter-
ministic limit in protein dynamics is obtained by reducing both the internal and
the external noise. The internal noise is reduced by speeding up the promoter
transitions; the external noise is reduced by increasing the protein abundance.
If both noise sources are reduced proportionally to each other (and to a small
parameter ε), the same configuration of time and abundance scales is achieved
as in our model in the slow activation regime: the promoter state fluctuates at
O(1) numbers on a O(ε) time scale and the protein at O(1/ε) numbers on a
O(1) time scale. Like we did here for our model, Newby and Chapman (2014)
used the WKB method to describe the large-time behaviour of their model in
the ε � 1 regime. There are some similarities, as well as differences, between
the two models as well as in the methodologies of this paper and Newby and
Chapman (2014). Our model features bursting and a stoichiometric connection
between the two species that the model of Newby and Chapman (2014) does
not. The WKB potential is determined, in both studies, from the condition that
a matrix, here (30), be singular. Our matrix is large and sparse, whereas that
of Newby and Chapman (2014) is dense and typically small (few gene states).
Methodologically, we define the Hamiltonian as the principal eigenvalue (one
with the largest real part), where Newby and Chapman (2014) use the determi-
nant, of the matrix. The method of determining the prefactor (Section 6.3) from
the higher-order terms of the master equation is the same as used in Newby and
Chapman (2014).

In future work, we would like to look beyond the steady state and quantify
the transition rates between the modes x− and x+ of the mixture distributions
identified in the present paper. It is expected that these rates are proportional
to exp(−(Φ(x0)− Φ(x±))/ε), i.e. exponentially small as ε→ 0. The proportion-
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ality constant will be determined by matching the WKB solution to a solution
of a Fokker–Planck equation in the neighbourhood of the unstable steady state
x0 (Hinch and Chapman, 2005; Bressloff, 2014). We would also like to see the
current framework extended to more general distributed delays; we expect that
delays composed of m slow memoryless steps will lead to a Hamiltonian system
in the 2m-dimensional Euclidean space.

In summary, we performed a detailed analysis of the steady-state distribution
for an autoregulating protein with a large one-step production delay. Previous
studies show that deterministically monostable positive feedbacks can exhibit
bimodal distributions when formulated stochastically (Singh, 2012; Bokes and
Singh, 2019). Our analysis shows that while both monostable and bistable
feedbacks can exhibit bimodality at the single-cell level without any time delay,
they will converge to different distributions with the inclusion of large delays,
and hence provides a novel method to probe the structure of positive genetic
feedback circuits.

Appendix A: Linearisation of the Ham. system

Here we derive the expression (50) for the second θ-derivative of the Hamiltonian
(36). By doing so, we complete the linearisation analysis of the Hamiltonian
system (32).

Differentiating Av = Hv with respect to θ twice yields

∂2A

∂θ2
v + 2

∂A

∂θ

∂v

∂θ
+A

∂2v

∂θ2
=
∂2H

∂θ2
v + 2

∂H

∂θ

∂v

∂θ
+H

∂2v

∂θ2
.

At a saddle with coordinates x = x∗ ∈ {x−, x0, x+} and θ = 0, we have
H(x∗, 0) = ∂H

∂θ (x∗, 0) = 0 and v(x∗, 0) = ρ(x∗), so that

∂2H

∂θ2
(x∗, 0)ρ(x∗) =

∂2A

∂θ2
(x∗, 0)ρ(x∗) + 2

∂A

∂θ
(x∗, 0)

∂v

∂θ
(x∗, 0)

+A(x∗, 0)
∂2v

∂θ2
(x∗, 0).

We multiply the above equation by uᵀ(x∗, 0) = 1ᵀ from the left; noting that
1ᵀρ(x∗) = 1 and 1ᵀA(x∗, 0) = 0ᵀ, we obtain

∂2H

∂θ2
(x∗, 0) = 1ᵀ ∂

2A

∂θ2
(x∗, 0)ρ(x∗) + 21ᵀ ∂A

∂θ
(x∗, 0)

∂v

∂θ
(x∗, 0). (A1)

The second derivative of A(x, θ) is the matrix representation of the second
derivative

∂2A
∂θ2

(x, θ)vs = e−θxRvs +M ′′(θ)fsvs

of the operator A(x, θ) (29). Therefore, the first term on the right-hand side of
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(A1) satisfies

1ᵀ ∂
2A

∂θ2
(x∗, 0)ρ(x∗) =

smax∑
s=0

∂2A
∂θ2

(x∗, 0)ρs(x∗)

= x∗

smax∑
s=0

Rρs(x∗) +M ′′(0)

smax∑
s=0

fsρs(x∗)

= x∗ + 〈B2〉f̄(x∗) = x∗

(
1 +
〈B2〉
〈B〉

)
, (A2)

in which we utilised the fact that x∗ is a fixed point of 〈B〉f̄(x).
The second term on the right-hand side of (A1) involves the derivative of the

principal eigenvector with respect to θ. Differentiating Av = Hv with respect
to θ and inserting x = x∗ and θ = 0 yields

A(x∗, 0)
∂v

∂θ
(x∗, 0) = −∂A

∂θ
(x∗, 0)ρ(x∗), (A3)

Solving the inhomogeneous linear algebraic system (A3) yields

∂v

∂θ
(x∗, 0) = ṽ + cρ(x∗),

where cρ(x∗) is a representant of the (right) kernel of A(x∗, 0) and

ṽ = −[A(x∗, 0)]+
∂A

∂θ
(x∗, 0)ρ(x∗)

is a least-squares solution to (A3), with A+ denoting the pseudo-inverse of A.
The second term in (A1) therefore satisfies

1ᵀ ∂A

∂θ
(x∗, 0)

∂v

∂θ
(x∗, 0) = 1ᵀ ∂A

∂θ
(x∗, 0)ṽ + c1ᵀ ∂A

∂θ
(x∗, 0)ρ(x∗)

= 1ᵀ ∂A

∂θ
(x∗, 0)ṽ + c

∂H

∂θ
(x∗, 0)

= 1ᵀ ∂A

∂θ
(x∗, 0)ṽ. (A4)

Inserting (A2) and (A4) into (A1) recovers (50).
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