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Abstract In this paper we propose and compare three heterogeneous Cournotian
duopolies, in which players adopt best response mechanisms based on different
degrees of rationality. The economic setting we assume is described by an isoelastic
demand function with constant marginal costs. In particular, we study the effect
of the rationality degree on stability and convergence speed to the equilibrium
output. We study conditions required to converge to the Nash equilibrium and the
possible route to destabilization when such conditions are violated, showing that a
more elevated degree of rationality of a single player does not always guarantee an
improved stability. We show that the considered duopolies exhibit either a flip or
a Neimark-Sacker bifurcation. In particular, in heterogeneous oligopolies models,
the Neimark-Sacker bifurcation usually arises in the presence of a player adopting
gradient-like decisional mechanisms, and not best response heuristic, as shown in
the present case. Moreover, we show that the cost ratio crucially influences not
only the size of the stability region, but also the speed of convergence toward the
equilibrium.
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1 Introduction

A duopoly is a market supplied by only two firms. Cournot [12] developed the
first formal theory of duopolistic markets and introduced a model which is still an
interesting subject of economic dynamics and game theory study. An oligopolistic
market is much more complex that a monopolistic or competitive one, as the firms,
to make choices, in addition to the demand function, have to consider at the same
time both their own and their opponents decisions. Such framework involves a wide
range of computational and informational capabilities, and it can be not realistic
to assume full rationality for all the firms, which would give rise to a static model.

Rand [26] and Poston and Stewart [23] considered a simple duopoly, with
abstractly set reaction functions, which could give rise to complex dynamic phe-
nomena. This strand was continued by Puu [24], in which the reaction functions
were rigorously derived by solving an optimization problem for the profit func-
tions. Puu considered the case of constant marginal costs and isoelastic demand
function, microfunded on Cobb-Douglas consumer preferences. He showed that the
outputs evolution of each competitor can lead to a period doubling sequence of flip
bifurcations and then to chaos. Recently, the best response decisional mechanism
has also been considered in a setting with sequential decisions by Gao et al. [16].

Progressively, the research aims focused on investigating different decisional
mechanisms, involving low degrees of rationality of the players. We can mention
the gradient-like mechanism proposed by Bischi and Naimzada [8], Bischi et al. [6,
7] and Agiza et al. [3], Askar [5], in which no optimization problem is solved by
players, which only adjust their strategies using a local estimate of the marginal
profit. Another decisional mechanism (introduced by Silvestre [27] and reconsid-
ered by Tuinstra [29], Bischi et al. [9], Naimzada and Sbragia [21], Naimzada
and Ricchiuti [20]) is the “Local Monopolistic Approximation” (LMA), in which
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oligopolists conjecture a linear approximation of the demand function, by means of
a local knowledge of true demand curve and the market state in terms of quantities
and price. Finally, several authors studied what happens when heterogeneous firms,
adopting different decisional mechanisms, are coupled. We mention the works by
Leonard and Nishimura [17], Den-Haan [13], Agiza and Elsadany [1,2], Agnelini
et al. [4], Tramontana [28], Dubiel-Teleszynski [14], Cavalli et al. [10,11]. Finally,
the study of heterogeneity in oligopolies with more than two firms is conducted
for example in the contributions by Li and Ma [18], Ma and Wu [19], Elsadany
and Tramontana [15].

The main purpose of this paper is to compare several dynamic duopolistic
Cournotian games, which differentiate themselves for the degree of rationality of
the players. In particular, we consider rational players, which are able to compute
the best response function and have perfect foresight, in the sense that their ex-
pectation about the strategy of the other player for the next period is correct,
näıve players, which are able to compute correctly the best response function but
they have not perfect foresight and so they adopt static expectations, and reduced

rationality or LMA players, which use the “Local Monopolistic Approximation”.

We set in the research strand of heterogeneous oligopolies, and we combine
in different ways the previous players, considering three distinct duopolies. In the
first one we couple a rational player with a näıve one, in the second one we couple
a rational player with a reduced rationality one, in the third one we couple a näıve
player with a reduced rationality one, so that the duopolies actually differ for the
degree of rationality of the involved players. The economic setting is defined by
an isoelastic demand function and we assume linear total costs for the firms.

The main results concern the study of the effect of the rationality on the stabil-
ity and the convergence speed to the equilibrium output. Regarding the stability,
we investigate both the conditions required to converge to the Nash equilibrium
and the possible route to destabilization when such conditions are violated. In
particular, we show that the presence of the LMA mechanism has a stabilizing
effect. Equally, in the studied examples, an elevated degree of rationality does not
necessarily implies a reduced region of stability. Conversely, stability is governed
by the marginal cost ratio, which, if sufficiently unbalanced, introduces instability.
We show that all the considered duopolies exhibit a flip bifurcation except for
the duopoly with näıve and LMA players, in which the equilibrium loses stability
through a Neimark-Sacker. This is a significantly different behavior from the Puu
model in which, although sharing the economic setting, stability is lost through a
flip bifurcation. This behavior is particularly interesting also compared to the ex-
isting literature, as the Neimark-Sacker bifurcation is usually seen in the presence
of firms adopting a gradient-like decisional process[6,7,4,28,10]. On the contrary,
in the present work, we show that such destabilization can occur with mechanisms
based on the best response too.

Moreover, we prove that the cost ratio influences in a determinant way not
only the size of the stability region, but also the speed of convergence toward the
equilibrium, namely the number of iterations required to approach the equilibrium
with a certain accuracy.

The paper is organized as follows. In Section 2 we introduce the duopolistic
Cournotian game. In Section 3 we present the different decisional mechanisms and
the models we want to study. In Section 4 we study the nonlinear stability and in
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Section 5 we investigate the speed of convergence. Conclusions and perspectives
are presented in Section 6.

2 Duopolistic Cournotian game

We consider an economy populated by n agents. Let qj = (q1j , q
2
j , . . . , q

m
j ) be the

vector of the quantities of m goods. Assuming Cobb-Douglas preferences for the

agents, with utility functions Uj(qj) =
∏m

k=1
(qkj )

αk
j , if we indicate with pk the

price of commodity k and with yj the income of the jth agent, under the budget
constraint

∑m
k=1

pkq
k
j ≤ yj, we obtain

qkj =
αk
j y

j

pk

by solving a constrained maximization problem. Let us focus on just one market, so
that we can suppress the index k = 1, . . . ,m. Introducing the aggregated demand
Q =

∑

j qj , we obtain the aggregated inverse demand function

p(Q) =
1

Q
, (1)

where we set
∑

j αjy
j = 1. We remark that the resulting inverse demand function

(1) is the same isoelastic one studied by Puu [24].

In the present work, the industry producing the good we are considering is
made up by two firms (indexed by i = 1,2), which produce and supply two homo-
geneous goods q1 and q2 and have linear cost functions

Ci(qi) = ciqi, i = 1,2,

where ci > 0 represent the (constant) marginal cost of each duopolist. The resulting
profit functions of the firms are then

Πi(qi, Q) =
qi
Q

− ciqi, i = 1, 2. (2)

We then have a game, in which players are the two duopolists, the feasible strate-
gies are the nonnegative production levels (qi ≥ 0) and the payoff functions are the
profit functions (2). In this work, to focus on a true duopolistic market, we only
consider strictly positive output levels, namely qi > 0, which means that both the
firms are producing.

As in the work by Puu [24], we have a unique positive Nash equilibrium given
by

qN = (qN1 , qN2 ) =

(

c2
(c1 + c2)2

,
c1

(c1 + c2)2

)

. (3)

We underline that, when equilibrium (3) is achieved, the output produced by the
most efficient firm is larger than the opponent’s one, as well as its profits.
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3 Dynamic Models

The Nash equilibrium notion is very demanding in terms of rationality and in-
formation set, since players have to exactly know the demand function and to
correctly forecast the competitor decisions. If all the players were endowed with
such degree of rationality, the Nash equilibrium would be achieved in just one-shot.
So it is natural to assume that agents have reduced informational and computa-
tional capabilities. This implies that, in order to make choices, agents have to
consider past market outcomes, i.e. past strategies, prices and profits. This gives
rise to a dynamical adjustment process.

We start describing three players which, although using decisional mechanisms
based on the best response method, are endowed with different degrees of ratio-
nality. The first two players we consider are rational and näıve players, who both
have sufficient informational and computational capabilities to optimally respond
to the other player strategy. In particular, both players know the demand function,
the cost function and they are able to compute the output level qi,t+1, which, on
the base of the expected strategy of the other player, maximize their profits. Since
the marginal profit of the ith agent is

φi(qi, Q) = ∂qiΠi(qi, Q) =
Q− qi
Q2

− ci,

the optimization problem is obtained by imposing

φi(qi,t+1, Q
e
t+1) = 0, (4)

where Qe
t+1 = qi,t+1 + qe

−i,t+1 is the expected aggregated strategy, which depends
on the strategy qe

−i,t+1 that the ith firm expects that its opponent −i will choose
at time t+ 1. By obtaining qi,t+1 from (4), we have the best response function

qi,t+1 =

√

qe
−i,t+1

ci
− qe−i,t+1. (5)

Rational and näıve players differ with respect to the expected strategy. Rational
player has perfect foresight and he is able to correctly foresee the next period
strategy of his opponent, so that qe

−i,t+1 = q−i,t+1. In this case equation (5)
becomes

qi,t+1 =

√

qi,t+1

ci
− qi,t+1. (6)

Conversely, näıve player assumes static expectations qe
−i,t+1 = q−i,t and conse-

quently (5) becomes

qi,t+1 =

√

q−i,t

ci
− q−i,t. (7)

The last economic agent we consider has further reduced rationality. In particu-
lar, he has only a local knowledge of the demand function and adopts the so-called
“Local Monopolistic Approximation” (LMA). The LMA [21,9,22] is a bounded
rational adjustment process, in which the firm has only a limited knowledge of the
demand function, in particular it knows the market price pt, the corresponding
produced quantity Qt, and is able to obtain a correct estimate of the slope of
the price function in (pt, Qt). As noticed in [9], such estimation can be obtained
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through market research, looking for a correct local estimate of the price function
for market values in a neighborhood of (pt, Qt) in order to correctly compute the
derivative f ′(Qt). Then, the firm uses such information to conjecture the demand
function by means of a linear approximation of the true demand function in (pt, Qt)
obtaining the expected price function

pei,t+1 = pi(Qt) + p′(Qt)(Q
e
t+1 −Qt). (8)

Assuming static expectations (qe
−i,t+1 = q−i,t), we can rewrite (8) as

pei,t+1 =
1

Qt
− 1

(Qt)2
(qi,t+1 − qi,t), (9)

where we also used (1). By means of the globally conjectured demand function the
firm optimizes the expected profits: in order to compute the best response on the
base of the conjectured price (9), the player has to solve

qi,t+1 = arg max
qi,t+1

[pei,t+1qi,t+1 − ciqi,t+1],

which gives

qi,t+1 =
1

2
qi,t +

1

2

(

1− ci(qi,t + q−i,t)
)

(qi,t + q−i,t). (10)

We notice that, for some qi,t, both (6), (7) and (10) could give negative output
levels, which means that the output level should actually be null. However, as
already remarked, in this work we only focus on positive output levels, so we
restrict ourselves to initial data that produce positive trajectories.

3.1 Heterogeneous duopolies

The oligopolistic competitions we want to focus on are those heterogeneous, in the
sense that the players do not adopt the same heuristic.

The duopoly involving the most elevated degree of rationality is obtained by
coupling a rational and a näıve player, and it is modeled by

TRB(q1, q2) :















q1,t+1 =

√

q2,t
c1

− q2,t,

q2,t+1 =

√

q1,t+1

c2
− q1,t+1.

(11)

which actually reduces to the one dimensional map

TRB(q1) : q1,t+1 =

√

1

c1

(√

q1,t
c2

− q1,t

)

−
√

q1,t
c2

+ q1,t, (12)

Hereinafter, we will indicate both (11) and (12) by RB.
The second duopoly we consider is obtained coupling a rational player and a

LMA player

TRL(q1, q2) :











q1,t+1 = 1

2
q1,t +

1

2

(

1− c1(q1,t + q2,t)
)

(q1,t + q2,t),

q2,t+1 =

√

q1,t+1

c2
− q1,t+1,
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which can again be studied by means of the one-dimensional map

TRL(q1) : q1,t+1 =
1

2
q1,t

(

1− c1
c2

)

+
1

2

√

q1,t
c2

. (13)

We make reference to such model using RL.
In the last duopoly, we couple the two least rational players, näıve and LMA

player, obtaining the following two dimensional discrete dynamical system

TBL(q1, q2) :











q1,t+1 =
1

2
q1,t +

1

2

(

1− c1(q1,t + q2,t)
)

(q1,t + q2,t),

q2,t+1 =

√

q1,t
c2

− q1,t,
(14)

which will be identified with BL.
Finally, as a comparison, we consider the classical (homogeneous) model stud-

ied by Puu [24]

TBB(q1, q2) :















q1,t+1 =

√

q2,t
c1

− q2,t,

q2,t+1 =

√

q1,t
c2

− q1,t.
(15)

We will refer to (15) with BB.

4 Analysis

We start considering the possible steady states for RB, RL and BL models. We
have the following straightforward result.

Proposition 1 Both (12), (13) and (14) have a unique positive steady state which

coincides with the Nash equilibrium (3).

Before studying local stability of RB, BL and RL, we recall [24] that, for the BB
model, the Nash equilibrium is locally stable provided that

3− 2
√
2 <

c1
c2

< 3 + 2
√
2. (16)

RB model local stability analysis

Map (12) is unimodal when c1/c2 ≤ 1 and bimodal when c1/c2 > 1, as shown in
Figure 1. Local stability is studied in the following

Proposition 2 The Nash equilibrium is locally asymptotically stable provided that

3− 2
√
2 <

c1
c2

< 3 + 2
√
2. (17)

Proof The steady state is stable provided that |T ′

RB(qN )| < 1. From

T ′

RB(q1) =

(

1

2
√
c2q1

− 1

)









1

2

√

c1
(√

q1
c2

− q1
)

− 1









,
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Fig. 1 Plot of RB map. When c1/c2 ≤ 1 (left) the map is unimodal, while when c1/c2 > 1
(right) it is bimodal.

we have

T ′

RB(qN ) = − (c1 − c2)
2

4c1c2
. (18)

Since T ′

RB(qN ) < 0, we only need T ′

RB(qN ) > −1, which is equivalent to c21 −
6c1c2 + c22 < 0. This allows concluding.

RL model local stability analysis

Map (13) is strictly increasing when c1/c2 ≤ 1, while it is unimodal when c1/c2 > 1,
as shown in Figure 2. We have the following stability result.

Proposition 3 The Nash equilibrium is locally asymptotically stable for

0 <
c1
c2

≤ 7. (19)

Proof Since

T ′

RL(q
N ) =

3

4
− c1

4c2
, (20)

we have that |T ′

RL(q
N )| < 1 for c1/c2 < 7, which allows concluding.

Thanks to the previous results, we have again that when the iterated map con-
verges, the limit is the Nash equilibrium.

BL model local stability analysis

To investigate the local stability of the equilibrium, we need the Jacobian matrix
of system (14)

J(q1, q2) =







1− c1(q1 + q2)
1

2
− c1(q1 + q2)

1

2
√
q1c2

− 1 0






.
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Fig. 2 Plot of RL map. When c1/c2 ≤ 1 (left) the map is increasing, while when c1/c2 > 1
(right) it is unimodal.

Recalling Jury’s condition for the local stability of a steady state











1−Tr(J(qN )) + det(J(qN )) > 0,

1 + Tr(J(qN )) + det(J(qN )) > 0,

1− det(J(qN )) > 0,

(21)

we have the following local stability result.

Proposition 4 The Nash equilibrium (3) is locally asymptotically stable provided that

0 <
c1
c2

< 3 + 2
√
3. (22)

Proof Evaluating the Jacobian matrix in the Nash equilibrium (3), we obtain

J(qN ) =







c2
c1 + c2

c1 − c2
2(c1 + c2)

c1 − c2
2c2

0






, (23)

and, consequently,

Tr(J) =
c2

c1 + c2
, det J =

(c1 − c2)
2

4c2(c1 + c2)
.

The first two conditions of (21) are automatically fulfilled, while the third one
requires that c2/c1 ∈ (3− 2

√
3, 3 + 2

√
3), which, since ci > 0, reduces to (22).

The previous proposition allows concluding that if (14) converges, then the limit is
the Nash equilibrium. Moreover, when condition (22) is violated, a Neimark-Sacker
bifurcation occurs.

Comparing the stability conditions (16),(17) (19) and (22), we have the follow-
ing corollary
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Fig. 3 Comparison of the stability intervals for models (14), (13) and (15)

Corollary 1 For any given value of one of the marginal costs ci, we can choose the

other cost c−i so that

– BL,RL,BB and RB are all stable or unstable;

– BB and RB are unstable while BL and RL are both stable;

– BB,RB and BL are both unstable while RL is stable.

In Figure 3 we report the stability intervals with respect to c1/c2. As we can see,
we have that stability can not be directly connected to the rationality degree. In
particular, we have that even if in RB one of the players have an elevated degree of
rationality, RB and BB have exactly the same stability interval. This leads to some
counterintuitive situations. For instance, let us consider a duopoly consisting of
two näıve firms and let us suppose that one of the firms improves its informational
capabilities and acquires perfect foresight, becoming a rational firm. Then, the
dynamic of the new RB duopoly would not be more stable than the previous one
(BB), resulting exactly as stable (or unstable) as before. Furthermore, it can be
natural to assume that if a firm becomes more rational, this can also have a positive
effect on its technology, resulting in reduced marginal costs. In this case, we could
have an even more counterintuitive scenario, in which the equilibrium is stable for
the original BB duopoly but it is no more stable for the new RB duopoly.

Conversely, comparing BL and RL, we have that the presence of the rational
player improves the stability, as trajectories can converge for a wider range of
marginal cost ratios. In particular, if the most rational player (both rational and
näıve) is the most efficient, then equilibrium is stable independently of the marginal
cost of the reduced rationality firm.

Remark 1 The previous stability conditions confirm and generalizes to a hetero-
geneous framework the results about the equilibrium stability of homogeneous
oligopolies consisting of either LMA or näıve players. In [9,22], the authors show
that, for an economy characterized by isoelastic demand function, the LMA mech-
anism gives rise to more stable dynamics with respect to the (näıve) best response
one. In fact, it is shown in [9,22] that considering an oligopoly of identical firms, all
adopting LMA, equilibrium becomes unstable when the oligopoly consists of a least
5 firms, while for the classical best response mechanism instability already arises
for 4 firms. Similarly, duopolies of LMA firms are stable for a larger interval of costs
ratios than those consisting of best response firms. The stability intervals reported
in Figure 3 confirm that a similar behavior arises in the present heterogeneous
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duopolies, suggesting to extend the investigation also to the case of generic size
heterogeneous oligopolies of firms adopting either LMA or best response adjust-
ment mechanisms. Moreover, all the previous results and considerations suggest
that stability is connected not only to the rationality level of the firms, but it can
be influenced by the way and the reactivity the least rational firm uses to adapt
its strategy. To compute its best response, a LMA firm uses a conjectured linear
function of a convex price function, resulting in a global underestimation of the
prices, which automatically induces a more cautious adjustment.

Remark 2 To the best of our knowledge, BL model is the first example of a
duopolistic competition in which equilibrium loses its stability through a Neimark-
Sacker bifurcation but both the firms adopt behavioral rules based on best response
mechanisms, although in a reduced rationality framework. In existing literature,
the Neimark-Sacker bifurcation is always related to the presence of a gradient rule,
as for example shown by Angelini et al. in [4] and Tramontana in [28]. Since the
difference between the destabilization through a Neimark-Sacker or a flip bifurca-
tion is substantial, as it results in either macro-predictable (Neimark-Sacker) or
possibly unpredictable chaotic (flip) dynamics, it is very important to understand
whether the kind of stability loss is connected to the degree of rationality and the
heuristics the firms adopt.

4.1 Simulations

We investigate through simulations the different qualitative behaviors of RB, BB,
RL and BL models. The goal is to confirm the analysis performed in the previous
section and to investigate the different quasi-periodic and chaotic behaviors of
unstable equilibria.

In Figure 4 we compare the bifurcation diagrams of RB,RL and BL models
(the bifurcation diagram for BB is essentially the same of that for RB) when c2 = 1
on varying c1. For all the simulations, the initial datum is (q1,0, q2,0) = (0.01,0.2).
We have that, when the Nash equilibrium becomes unstable, for both RB and
RL models a flip bifurcation occurs, and a cascade of period doubling leads to
chaos. Conversely, for BL, the dynamic is different, since when the equilibrium
becomes unstable, the values of (q1, q2) follow a quasi-periodic orbit around the
equilibrium. The evolution of the closed curve attractor for c1 = 6.5,6.8, 7,7.2 is
shown in Figure 5. It is worth noticing that in all cases both the firms adopt a
best response mechanism within the same economic framework (isoelastic demand
and constant marginal costs), only with different degrees of rationality. In BL
model, the destabilization occurs through a quasi-periodic motion with an at least
“macroscopic” level of predictability of the evolution while, on the contrary, for
the other models the resulting dynamic can be completely chaotic.

5 Convergence speed

In Section 4 we showed how the degree of rationality affects the convergence to the
Nash-Cournot equilibrium with respect to the cost ratio c1/c2. Now, we want to
focus on the convergence speed of the three different models, namely we want to
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Fig. 4 Bifurcation diagrams for output levels q1 (left column) and q2 (right column) with
c2 = 1 for RB model (top), RL model (middle) and BL model (bottom). For RB and RL
models stability is lost through a flip bifurcation, while BL model presents a Neimark-Sacker
bifurcation.

compare the number of iterations requires to approach the equilibrium. In partic-
ular, as in the previous section we showed that the presence of a rational player is
not always sufficient to improve the stability of the equilibrium, we want to inves-
tigate how convergence speed is affected by the presence of the rational player. It
is evident that, since equilibrium stability depends on the largest eigenvalue, when
the costs ratio approaches the instability threshold, the convergence becomes more
and more slow. This means that comparing the convergence speed for models with
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Fig. 5 Evolution of the closed curve attractor for BL model, for c2 = 1 and different choices
of c1.

different stability intervals is interesting when the costs ratio is sufficiently far
from both the stability thresholds of the two models. Finally, since convergence to
equilibrium actually requires an infinite number of iterations, convergence speed
serves as an indicator of the time required to approach the equilibrium up to a
desired accuracy.

To this end, in accordance to the literature about fixed point iterations [25],
for a one-dimensional map xt+1 = f(xt) we can define the asymptotic convergence
factor

C = |f ′(xN )|, (24)

where xf is the (stable) fixed point of the iteration map. For multidimensional
maps xt+1 = g(xt), the previous definition becomes

C = ρ(J(xN )), (25)

where ρ(J) = maxi{|λi|} is the spectral radius of the Jacobian matrix J of map g

and λi are its eigenvalues. In both cases, the convergence to the equilibrium is as
fast as C is small. When the iteration scheme converges, we have C < 1 and, when
C 6= 0, convergence is linear, with C representing the (asymptotic) absolute error
reduction, namely

|et+1| < C|et|,

where et = xt − xN . Conversely, for C = 0 we have a super-linear convergence.

Referring to models (12), (13), (14) and (15), setting r = c1/c2 we have the
following
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Proposition 5 Provided that the respective stability conditions are satisfied, the output

levels generated by RB, BB, RL and BL models converge to the equilibrium (3) with

asymptotic convergence factors

CRB(r) =
(r − 1)2

4r
, CBB(r) =

∣

∣

∣

∣

r − 1

2
√
r

∣

∣

∣

∣

,

CRL(r) =

∣

∣

∣

∣

3− r

4

∣

∣

∣

∣

, CBL(r) =

∣

∣

∣

∣

1 + z

2(r+ 1)

∣

∣

∣

∣

,

(26)

where z is a positive real or complex number such that z2 = r(−r2 + 2r+ 1).

Proof The result is a straightforward consequence of definitions (24) and (25).
Factor CRB is simply the absolute value of (18). Factor CBB can be computed by
noticing that

JBB(qN ) =







0
c2 − c1
2c1

c1 − c2
2c2

0






,

whose eigenvalues are λ1,2 = ±i(c1 − c2)/(2
√
c1c2). Factor CRL is simply the ab-

solute value of (20). Factor CBL can be obtained by computing the roots of the
characteristic polynomial of (23)

λ2 − c2
c1 + c2

λ− c2
c1 + c2

− c1 − 3c2
4c2

.

Such solutions are real provided that r(−r2 + 2r+ 1) ≥ 0, i.e. for 0 ≤ r ≤ 1 +
√
2,

and are a complex conjugate pair for r > 1 +
√
2.

The behavior of the coefficients (26) is reported in Figure 6, for c1/c2 ∈ (3−2
√
2, 3+

2
√
2), since in this range the equilibrium point is stable for all the models. We can

see that BL duopoly, in which the firms use the lowest degree of rationality, is in
general the slowest one. Once more, We want to draw attention on the comparison
between BB and RB duopolies, as we can see that even if the stability region is
exactly the same, the asymptotic convergence factor of RB is uniformly smaller
than that of BB, since we have CRB = C2

BB , and this results in a faster convergence
speed for all costs ratios.With respect to the convergence speed, the presence of the
rational firm allows for a fast approach to the equilibrium, which is true taking
into account BL and RL too. Since the previous convergence results are valid
asymptotically, we test their robustness for initial time steps through simulations.
In Figure 7 we report the evolution of the relative error

Er,t =
|q1,t − qN1 |

qN1

for three particular situations. We consider c2 = 1 and c1 = 0.9, for which the
fastest convergence is achieved for RB model, c1 = 2.3, for which all the duopolies
approach equilibrium with approximatively the same speed, and c1 = 5, for which
the fastest convergence is achieved for RL model. Such conclusions are in good
agreement with the analytical results and with the plot reported in Figure 6. In
fact, when the costs ratio c1/c2 is close to 1, we have that the dynamical adjust-
ment generated by RB model very quickly converges to the equilibrium quantity,
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Fig. 6 Comparison of the asymptotic convergence factors. A smaller value means a faster
convergence. When c1 ≤ c2, the output level adjustment obtained with RB model is the
fastest one, while for sufficiently large c1/c2 RL model has the fastest convergence.

requiring only few iterations to provide a very accurate approximation of qN1 . If the
rational firm is replaced by a best response one, we have that convergence, even
if it is faster than those achieved by RL and BL models, is sensibly slower than
that of RB. We remark that RB and BB have the same stability interval and they
both provide superlinear convergence for c1/c2 = 1 (as CRB(1) = CBB(1) = 0),
but they likewise have a quite different behavior for marginal costs ratios close
to 1. Conversely, both RL and BL models approach equilibrium quite slowly, be-
having very similarly (top left plot of Figure 7). In the top right plot of Figure 7,
we can see that when c1/c2 becomes increasingly larger than 1, both RB and BB
models converge more and more slowly, even if the presence of the rational firm
in RB still provides the fastest convergence rate for c1/c2 < 2.3. Finally, as c1/c2
approaches the stability threshold of RB and BB models, RL model provides the
fastest convergence. We notice that even if the stability region of BL is larger than
that of RB and BB, the convergence of BL toward the equilibrium is very irregular
(bottom plot of Figure 7).

6 Conclusions

In this work we analyzed and compared several duopolies based on best response
decisional mechanisms, with different degrees of rationality, in an economic setting
characterized by isoelastic demand function. The analytical and simulative inves-
tigations show that the degree of rationality can have an ambiguous effect on the
stability of the equilibrium, in an heterogeneous context. Such results definitely
deserves further investigations. For instance, it would be interesting to generalize
the previous analysis to oligopolies of generic sizes, studying the effect of com-
position and size on the equilibrium stability, in the case of both balanced and
unbalanced marginal costs. We also want to introduce evolutionary mechanisms
by means of which players can choose and change their heuristics, studying the
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Fig. 7 Comparison of the relative errors for initial time steps and for three different coefficients
choices. The behavior is in good agreement with the asymptotic results.

competition between different decisional mechanisms. Another aspect we aim to
investigate concern the study in general economic settings of the more stable be-
havior of the LMA mechanism with respect to the näıve best response adjustment.
The goal is to understand if and how such improved stability is determined by the
particular form of the price function.

In our contribution we also provided an example of duopoly model in which
equilibrium loses its stability through a Neimark-Sacker bifurcation and in which
the decisional mechanisms are not based on a gradient-like behavioral rule, but
instead on a best response method. In future works, we aim to investigate and
compare different models to understand the reasons that cause the destabilization
through either Neimark-Sacker or flip bifurcation, in particular with respect to the
kind of behavioral rule, as this aspect has economic relevance for the predictability
of the trajectories of the output levels in unstable regimes.
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