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Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation
of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at
promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-
lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and
increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life,
trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral
(mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders
in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain
morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of
the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms
may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli.

1. Introduction

Life experiences often produce uncertainty or threat and trig-
ger a physiological response, the so-called “stress response,”
aimed at promoting adaptation and improving survival [1].
The stress response, including fast and transient activation
of the autonomic nervous system and of the hypothalamic-
pituitary-adrenocortical (HPA) axis, implies release of cate-
cholamines and corticosteroids (mainly cortisol in humans
and corticosterone in rodents). Corticosteroids exert their
function through the activation of the high-affinity miner-
alocorticoid receptor (MR) and the low-affinity glucocor-
ticoid receptor (GR), which are widely expressed both at
peripheral level and in the brain. Corticosteroids, together
with regulating metabolism, food intake, and the immune
system, modulate brain function, neuronal transmission, and
plasticity, especially in corticolimbic areas [2, 3].

In the high majority of individuals, the stress response is
able to activate coping strategies to adverse environmental
changes, promoting stress resilience. However, in vulnera-
ble subjects, the stress response may become dysregulated
and induce maladaptive changes, which in turn underlie
increased susceptibility to stress-related neuropsychiatric
diseases [4–6]. Daskalakis and collaborators [7] proposed the
3-hit concept (hit 1: genetic predisposition, hit 2: early-life
environment, and hit 3: later-life environment) to explain
why some individuals can cope with adverse events and
remain resilient while others are vulnerable and succumb to
stress-related disorders.This concept readapts the cumulative
hypothesis of stress [8], which indicates that accumulating
failures to cope with stressors lead to dramatic consequences
on the individuals, consistent with increased vulnerability to
psychiatric disorders [1]. Of note, the 3 hits also endorse the
mismatch hypothesis of psychiatric disorders, suggesting that
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early-life adversities can prepare the individuals to cope with
future life similar challenges; conversely, the coping strategies
are compromised when the later-life events exhibit mismatch
with the early-life environment [9, 10].

In this context, during the last decades, there have
been a growing number of studies on short- and long-term
consequences of early-life stress (including manipulations
during the prenatal period and/or the early phase of postnatal
development), suggesting an increased interest in the impact
of early-life adversities on stress response and susceptibility
to neuropsychiatric disorders in the adulthood [11–24].

In the first sections of the present review, we will sum-
marize functional, morphological, and epigenetic changes
in adults induced by stress exposure during adulthood, or
during early life. Finally, in order to recapitulate the interplay
between life adversities at early stages and in the adulthood,
we will introduce the concept of “reprogramming,” a process
whereby a stimulus or insult, during a sensitive period of
development, has lasting and/or lifelong significance, induc-
ing readaptation of the stress response.

2. Acute and Chronic Stress at Synapses:
Corticosterone-Dependent Effects of the
Stress Response

A growing body of literature has analyzed the multifaceted
effects of different stress protocols and of corticosteroids
(mainly corticosterone) on neurotransmission, neuronal
plasticity, and behavior (see below). MR and GR are nuclear
receptors, acting as transcription factors, ultimately leading
to regulation of gene expression. However, more recently,
compelling evidence has reported fast effects of corticos-
teroids on neuronal excitability, in line with early nonge-
nomic mechanisms that are likely dependent on membrane-
located receptors (for recent reviews, see [25–27]).

In the next sections, we will review the most recent
findings on fast and delayed effects of acute and repeated
stress, mediated by genomic and nongenomic action of
corticosteroids in the brain.

2.1. Corticosterone-Dependent Effects of Stress on Excita-
tory Neurotransmission. A number of studies have been
performed to unravel the time-dependent and brain area-
specific effects of stress on neuronal excitability and cognitive
processes (for recent reviews, see [2, 26–28]). The changes
in neuronal excitability and synaptic plasticity induced by
stress are the result of an imbalance of excitatory (gluta-
matergic) and inhibitory (GABAergic) transmission, leading
to long-lasting (mal)adaptive functional modifications [28–
34]. Although both glutamate and GABA transmission are
critically associated with stress-induced alteration of neu-
ronal excitability [32, 34], the present review will focus on the
modulation of glutamate release and transmission induced by
stress and glucocorticoids.

Genomic and nongenomic effects of acute stress were
characterized in both the hippocampus and the pre-
frontal cortex. Acute stress was consistently reported to

rapidly enhance the frequency of miniature excitatory cur-
rents (mEPSCs) at hippocampal synapses, thus suggest-
ing increased probability of glutamate release, through
nongenomic action of corticosterone, and activation of
membrane-located pre- and postsynaptic MR [29, 35–
37]. On the other hand, slower genomic effects of acute
stress in the hippocampus are mainly mediated by GR,
which prevents synaptic 𝛼-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor potentiation and
enhances voltage-dependent calcium currents and mEPSCs
amplitude. This leads to steady depolarization and attenu-
ation of firing activity [29, 38, 39] and impaired long-term
potentiation (LTP) [30, 40].

Partially different effects of acute stress were reported
in the prefrontal cortex, where nongenomic mechanisms,
despite being involved in the priming of excitatory synapses,
are not sufficient to induce changes in glutamate release and
transmission [41–43]. Indeed, it was found that corticos-
terone rise induced by acute footshock stress increases the
size of the readily releasable pool of glutamatergic vesicles
in the prefrontal cortex, through completely nongenomic
mechanisms involving both MR and GR located at synaptic
sites. However, in the same brain area, slower genomic
mechanisms are required to enhance presynaptic glutamate
release and mEPSCs amplitude [43–45]. In line with these
observations, different acute stress protocols, as well as acute
corticosterone in vivo and in vitro treatments, were shown
to induce delayed and long-lasting increase of excitatory
transmission in prefrontal cortex pyramidal neurons [44–
46].

In recent studies, fast and slow effects of acute stress
were also analyzed in the amygdala [47]. In basolateral
amygdala, a brain area responsible for the control of emotion
and fear memory, different and partially opposite effects of
stress compared to hippocampus and prefrontal cortex were
reported. Indeed, the early nongenomic increase of mEPSCs
frequency induced by corticosterone is accompanied by a fast
decrease in synaptic potentiation (LTP), while genomic and
delayed effects include enhancement of neuronal excitability
and synaptic plasticity.

Long-term adaptive changes induced by repeated stress
exposure include impairments in neuronal transmission and
synaptic activity (extensively reviewed in [27, 31, 32, 48]).
Indeed, in both hippocampus and prefrontal cortex, chronic
stress was associated with defects in the ability to induce or
maintain LTP, and increased long-term depression (LTD),
together with enhancing basal transmission, while opposite
changes were measured in basolateral amygdala.The changes
in neuronal activity induced by chronic stress in brain
areas involved in the negative feedback of the HPA axis are
consistent with impairment and dysregulation of the stress
response [31]. It has been suggested that functional connec-
tivity between amygdala and ventral hippocampus plays a
key role in stress-induced changes in synaptic plasticity (for a
recent review, see [49]). In particular, Ghosh and coworkers
showed that, in animals subjected to repeated restraint
stress, the directional connection from the amygdala to the
hippocampus is gradually and persistently potentiated [50].
The authors suggest that this mechanism could be involved in
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the long-term emotional and cognitive impairments induced
by chronic stress.

2.2. Morphological and Cytoarchitectural Changes Induced by
Stress. Stress and corticosterone cause structural alterations,
including dendritic remodeling and changes in spine density,
mostly in brain areas implicated in the regulation of the
emotional state (for recent reviews, see [27, 51, 52]).

Chronic stress was reported to reduce dendritic arboriza-
tion and synaptic contacts both in hippocampus and in pre-
frontal cortex, whereas in basolateral amygdala, both chronic
and acute exposure to stressors significantly increased den-
dritic complexity (for recent reviews, see [27, 48–53]). These
long-lasting structural changes occur together with increased
anxious- and depressive-like behaviors, strongly suggesting
that dendritic atrophy induced by chronic stress may induce
severe behavioral deficits [48, 53, 54].

Recently, a few studies also analyzed morphological
alterations induced by acute stress and corticosterone. Acute
corticosterone treatment of rats was shown to induce delayed
and time-dependent opposite changes of dendrite morphol-
ogy in medial prefrontal cortex pyramidal neurons, com-
pared to basolateral amygdala spiny neurons [55]. Similarly,
5 hours of multimodal combined physical/psychological
stress was demonstrated to induce a corticotropin-releasing
hormone-dependent reduction of spine density in hippocam-
pal area CA3 [54]. In a more recent study, one single session
of acute footshock stress was shown to reduce the apical
dendritic length of pyramidal neurons in medial prefrontal
cortex layers II-III [56]. Intriguingly, this effect wasmeasured
as early as one day after stress and lasted for up to 14 days.
Furthermore, the effect was partly prevented by chronic
treatment with antidepressants before the stress session.

On the other hand, in line with the rapid enhancement of
excitatory transmission induced by stress and improvement
of working memory performance [44, 45], both acute foot-
shock and acute restraint stress were shown to remarkably
increase the number of excitatory axoshaft and axospinous
synapses in the medial prefrontal cortex of rats [57] and to
induce sprouting of new spines one day after stress [56].
Accordingly, Liston and Gan [58] have shown that acute
treatment with corticosterone promotes a dose-dependent
increase of spine formation in medial prefrontal cortex pyra-
midal neurons. Furthermore, acute corticosterone induces
rapid GR-dependent spinogenesis in hippocampal slices [59].
These findings suggest that the increased number of synapses
induced by acute stress is likely a corticosterone-dependent
effect.

2.3. Epigenetic Changes Induced by Stress. Theterm “epigenet-
ics” refers to mechanisms modulating gene expression inde-
pendently of changes in nucleotide sequence and includes
alterations of DNA methylation, posttranslational modifica-
tion of histone proteins, and regulation by small noncoding
RNAs (essentially, microRNAs, miR) [60, 61]. Compelling
evidence showed that behavioral stress induces epigenetic
changes in selected brain areas, leading to regulation of gene
expression and neuronal function [61–63].

A few studies have assessed changes in DNAmethylation
(a modification associated with gene silencing) in stress
animal models. Chronic social stress in mice induced per-
sistent demethylation at the corticotrophin-releasing factor
promoter in the paraventricular nucleus of the hypothalamus,
suggesting hyperactivation of theHPA axis [64].Moreover, in
a recent study, changes in the global DNAmethylation profile
were measured after acute restraint stress in the hippocam-
pus, cerebral cortex, and periaqueductal gray matter, while
these alterations were prevented by physical exercise [65].

A growing body of literature reported posttranslational
modification of histone proteins after exposure to acute
and chronic stress protocols. A genome-wide chromatin
immunoprecipitation study reported changes in histone H3
lysine 9 dimethylation levels (inducing repression of gene
expression) in the nucleus accumbens of mice susceptible
to chronic social defeat stress, and not in resilient animals
[66, 67]; importantly, chronic antidepressants reversed these
modifications [68]. A recent study also showed that both
chronic social defeat in mice and depression in humans
reduced the expression of the RAS-related C3 botulinum
toxin substrate 1 (Rac1) gene in the nucleus accumbens,
through a mechanism involving increased histone H3 lysine
9 dimethylation [69]. On the other hand, permissive histone
H3 acetylation is transiently reduced and then persistently
increased in the nucleus accumbens of susceptible, but not
of resilient, animals subjected to chronic social stress [66]. In
the same paper, similar results were obtained in postmortem
studies, reporting increased levels of histoneH3 acetylation in
the nucleus accumbens of depressed patients. However, since
local infusion of histone deacetylase inhibitors showed an
antidepressant-like effect, the authors hypothesized that the
increase in H3 acetylation measured in susceptible animals
might mediate long-lasting positive neuronal adaptations to
chronic stress.

In the hippocampus, selected and time-dependent
changes in histone H3 methylation at lysines 4, 9, and
27 (resp., associated with increased transcription, hetero-
chromatin formation, and transcriptional repression)
were demonstrated after acute and repeated restraint
stress in rats [70]. A further study from the same group
showed that, soon after one single session of restraint
stress, repressive histone H3 lysine 9 trimethylation is
selectively increased in the hippocampus, especially at
transposable element loci [71]. Individual variations of
histone H3 acetylation levels were also reported in the hippo-
campus of rats subjected to repeated social defeat stress
[72, 73]. Moreover, it was shown that the acquisition of
behavioral immobility response induced by acute forced
swim stress was dependent on increased histone H3
phosphoacetylation in the hippocampus and GR-induced
activation of the NMDA/extracellular signal-regulated
kinases (ERK)/mitogen- and stress-activated kinases (MSK)
1/2 pathway [74].

Repeated social defeat stress was also found to increase
histone H3 acetylation in the infralimbic (and not prelimbic)
prefrontal cortex [73, 75]. A recent study on postmortemPFC
from patients with mood disorders reported increased levels
of the presynaptic protein synapsin 2, together with increased
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histone H3 lysine 4 trimethylation at its promoter, suggesting
epigenetic regulation of synapsin 2 gene expression [76].

Intriguingly, a number of studies reported stress-induced
epigenetic regulation of the brain-derived neurotrophic fac-
tor (BDNF), a neurotrophin with key roles in neuroplasticity
and synaptic function, as well as in the pathophysiology of
neuropsychiatric disorders [77, 78]. The expression of BDNF
is mediated by the transcription of different mRNAs, driven
by dedicated promoters and derived by the splicing of one of
multiple 5 noncoding exons (at least eight in rodents) with
the 3 coding exon [79].

Social defeat stress induced long-lasting downregulation
of BDNF transcripts containing exons IV and VI, by increas-
ing dimethylation of histone H3 at specific exon promoters in
the mouse hippocampus, and chronic imipramine reversed
this downregulation increasing histone acetylation at the
same promoters [80]. Similarly, the reduction of total BDNF
transcript and mRNAs containing exons I and IV expression,
induced by single immobilization stress in the rat hippocam-
pus, was shown to be accompanied by a significant decrease
in histone H3 acetylation at respective promoters [78]. In a
more recent study, physical exercise was found to counteract
the downregulation of selected BDNF transcripts induced by
acute restraint stress and to increase the levels of histone H3
acetylation at related promoters [81].

MicroRNAs are small noncoding RNAs regulating gene
expression, generally repressing the expression of target
mRNAs [82]. In recent years, research studies have been
conducted on the involvement of microRNAs in the stress
response and onset of neuropsychiatric disorders [83]. It was
shown that both acute restraint stress and chronic social
defeat in mice markedly upregulated miR-34 levels in amyg-
dala and that miR-34 overexpression in the central amygdala
exerted anxiolytic effect [84]. In the same study, in vitro
experiments showed that miR-34 reduced the activation of
the corticotropin-releasing hormone receptor 1, suggesting a
role of miR-34 in functional regulation of the stress response.
In more recent papers from the same research group, miR-
135 in serotonergic neurons was found to have a key role in
determining stress resiliency and antidepressant efficacy [85],
while the increase of amygdalar miR-19b induced by chronic
social defeat stress was suggested to be related to behavioral
responses to stress, throughmechanisms involving the adren-
ergic receptor 𝛽-1 [86].

3. Perinatal Reprogramming of
the Stress Response

The high majority of functional and morphological changes
promoted by behavioral stress and corticosteroids were
reported in “näıve” young adult animals or mature neu-
ronal cultures. Nevertheless, early-life experiences shape the
stress response in adulthood, leading to the reprogramming
of coping strategies against environmental challenges and
having a strong impact on behavior and susceptibility to
neuropsychiatric disorders (see Section 1).

Intriguingly, a few studies on humans aimed at separating
the effects of the objective exposure to a stressor and the

mother’s subjective reaction [87–90]. According to King and
Laplante [87], exposure to a natural disaster (Project Ice
Storm) occurring during the gestational period allows for a
reliable study of the effects of prenatal stress on child health
and development [91].

However, the reprogramming effects observed in the
offspring likely recapitulate the cumulative experience in
utero and the quality of the postnatal environment, which
is, in turn, mostly associated with the quantity, quality, and
reliability of maternal care [92–97]. Thus, we will refer to
“perinatal” reprogramming to include events occurring pre-
natally and/or during the lactation period. Considering that
the limitations of retrospective studies constrain the number
of epidemiological findings in humans, a large number of
data come from evidence in rodents and nonhuman primates
[21, 24, 98–104].

3.1. Changes in Excitatory Neurotransmission Induced by Peri-
natal Stress. Overall, the changes in excitatory transmission
and neuronal remodeling, induced by both acute and chronic
stress (reviewed in Section 2.1), strongly suggest a key role
of the glutamate synapse in the adaptive and maladaptive
response to stressful stimuli. However, the study of the effects
of exposure to perinatal stress on the activity of glutamatergic
neurons is still at its infancy.

Morphological studies have shown that prenatal stress
is associated with reduction of dendritic arborization and
synaptic loss in prefrontal cortex and hippocampus in adult
life, suggesting that stress in gestational period might induce
long-lasting impairments of glutamate neuron and transmis-
sion [105–108].

A number of studies reported changes in the expres-
sion of glutamate receptors and transporters, in adult ani-
mals subjected to stress during the perinatal life [109–115].
Maternal separation in rats was found to decrease mRNA
expression levels of ionotropic glutamate receptors, together
with increasing GLutamate ASpartate Transporter (GLAST)
levels, selectively in the hippocampus and not in the pre-
frontal cortex [109]. It was also demonstrated that maternal
separation significantly reduced the expression of type 4
metabotropic glutamate receptor in hippocampus, a change
reversed by chronic fluoxetine treatment [110]. Similarly,
adult male offspring of pregnant dams subjected to restraint
stress during pregnancy display impairment of N-methyl-
D-aspartate (NMDA) receptor-mediated long-term potenti-
ation, decreased NMDA receptor subunits [111], and reduced
expression of group I/II metabotropic glutamate receptors
[112] in the hippocampus. In a more recent study, Adrover
and collaborators [113] have shown increased mRNA and
protein expression levels of the glial glutamate transporter
(GLT-1) in the hippocampus and enhanced glutamate uptake
and vesicular glutamate transporter 1 (v-Glut-1) protein levels
in the prefrontal cortex of prenatally stressed rats.

Overall, the high majority of studies reported that early
stress both decreases the expression of glutamate receptors,
suggesting reduced transmission efficacy, and increases glu-
tamate transporters, which may imply an increased rate of
glutamatemetabolism.Of note, others have found higher lev-
els of ionotropic and metabotropic glutamate receptors [114]
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and increased NMDA receptor activation [115]. Others have
shown impairment of long-term potentiation and enhance-
ment of long-term depression in young rats subjected to
prenatal stress [116]. These abnormalities were correlated
with increased pro-brain-derived neurotrophic factor (pro-
BDNF), decreased mature BDNF levels, and no changes in
NMDA receptor subunits expression [116]. Although changes
in the expression of glutamate receptors and transporters are
only rough indicators for predicting glutamate release and
transmission, these data strongly suggest that perinatal stress
exerts a long-term influence on the glutamate system.

It was recently demonstrated that the increase of anxiety-
like behavior induced by prenatal stress in rats is causally
associated with a reduction of depolarization-evoked presy-
naptic glutamate release in the ventral hippocampus [117,
118], a brain region encoding memories related to stress
and emotions [119]. Interestingly, this effect is blocked by
activation of oxytocin receptor [120] (see below for oxytocin
and reprogramming). Although the mechanisms by which
prenatal stress may cause long-lasting dampening of gluta-
mate neurotransmission in the ventral hippocampus have
been poorly clarified, it was hypothesized that prenatal stress,
besides enhancing glutamatemetabolism,might induce long-
lasting dysfunction in the intrinsic machinery controlling
exocytotic glutamate release [117].

3.2. Modulation of HPA Axis Reactivity Induced by Perinatal
Stress. HPA axis alterations are the characteristic feature of
the endophenotypes induced by perinatal stress [21, 121–126].

A pioneering study by Levine showed that maternal
separation induced downregulation of the stress response,
consistent with weight reduction of adrenal glands [127]. To
date, the literature about the long-term effects of perinatal
stress on the HPA axis is contradictory, although in many
species including mice, rats, guinea pigs, and nonhuman
primates, prenatal stress has been shown to increase the
overall production of glucocorticoid and/or the feedback
regulation [100, 101, 103, 128–130]. For example, peer rearing
in monkeys has been shown to exaggerate stress reactivity
[122, 123], stereotypies and self-directed behaviors [124],
and abnormal brain morphology [125]. Moreover, maternal
separated rodents show general upregulation of stress and
fear responses [126, 131–133], increased hypothalamic CRF
expression, reduced cortical GR expression [134], increased
immobility in the forced-swim test [135], and poorer mem-
ory performance [134]. Curiously, in rats, 3 hours of daily
maternal separation during the first two weeks after birth
increases the vulnerability to stress in the adulthood [136,
137], whereas 8 hours of separation decreases the response of
the HPA axis [138]. Similarly, prenatally restraint stressed rats
display prolonged corticosterone secretion associated with
downregulation of GR andMR receptors in the hippocampus
[21, 92]. Interestingly, these effects are reversed by prenatal
adrenalectomy [93] or postnatal cross-fostering [92].

3.3. Epigenetic Reprogramming of the HPA Axis: Regulation of
GR Expression. An ever growing number of studies focused
on short- and long-term epigenetic changes induced by

stress in early life (recently extensively reviewed in [22,
92, 139–141]). The mechanisms involved in the epigenetic
reprogramming are highly complex and strongly depend on
the gender of the individual, the type of stressor, and its
intensity and duration. Here, we will focus on the epigenetic
regulation of GR in the offspring induced by prenatal and
postnatal maternal stress.

At the epigenetic level, theGRgene is consistently affected
by natural variation of maternal care in rodents (measured as
licking/grooming, arched-back and blanket nursing, and nest
building) [142, 143]. Indeed, low absolute levels of maternal
care selectively modify the DNA methylation status of GR
promoter in the hippocampus of the offspring, suggesting
reduced expression of the receptor as well as increased
HPA reactivity. Conversely, offspring receiving high levels of
maternal care exhibit lower level of DNA methylation of the
GR promoter and increased histoneH3 lysine 9 acetylation (a
marker of transcriptional activation).

The GR gene expression and promoter methylation
have also been examined in humans following early-life
trauma, with similar epigenetic outcomes. McGowan and
collaborators [144] found decreased levels of hippocampal
GR mRNA and increased cytosine methylation of the GR
promoter in subjects with a history of childhood abuse.
Similarly, childhood maltreatment has been associated with
decreased hippocampal GR expression and increased stress
responses in adulthood. Again, such effects are mediated
by DNA methylation and hydroxymethylation across GR
promoter regions [145]. A compelling study in genocide
survivors suggested that the increased DNA methylation at
the promoter region of the GR was associated with less
intrusive memory of the traumatic event and sex-specific
reduced PTSD risk [146]. Together, these findings indicate
that the epigenetic regulation of GR expression is a key factor
in the reprogramming of theHPAaxis induced by early stress.

3.4. Mother-Offspring Interplay: Role of 11𝛽-Hydroxysteroid
Dehydrogenases and Oxytocin. The mother/infant interac-
tion is a critical intermediary to study early-life reprogram-
ming. Such interplay is mainly mediated by the placenta,
which modulates fetal exposure to maternal factors. As an
example, glucocorticoids, despite circulating across the pla-
centa, are significantly lower in the fetus than in the mother.
This key tissue-specific barrier control is exerted by the
placental 11𝛽-hydroxysteroid dehydrogenase, an enzyme that
converts cortisol and corticosterone into inactive cortisone
and 11-dehydrocorticosterone (11𝛽-HSD2), and vice versa
(11𝛽-HSD1) [147–149]. Recently, it has been shown that 11𝛽-
HSD2 undergoes epigenetic regulation in the placenta and
fetal brain [150–152]. Curiously, Appleton and collaborators
[153] have shown that women experiencing adversity during
pregnancy display low levels of 11𝛽-HSD2 methylation. This
accounts for increased levels of placental 11𝛽-HSD aimed at
protecting the fetus from excessive glucocorticoid exposure.
Others have shown that pregnant rats exposed to repeated
episodes of restraint stress, a model that recapitulates the
main feature of anxiety and depression in the adult offspring,
display a reduction of 11𝛽-HSD2 activity in the placenta, thus
increasing the amount of nonmetabolized corticosterone
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reaching the fetus [55]. Also, high methylation in the pro-
moter region of placental 11𝛽-HSD2 has been associated with
low infant birth weight [154]. However, it is unclear whether
the modifications of the 11𝛽-HSD2 are exclusively disruptive
and/or directly associated with pathological endophenotypes
in late life. For example, the downregulation of 11𝛽-HSD2may
provide the fetus with a reliable signal about the maternal
stressful environment, thereby predicting the milieu it is
likely to cope with after birth.

ThematernalHPAaxis itself also plays a pivotal role in the
mother-offspring interplay. The HPA axis is normally atten-
uated from midpregnancy to the end of lactation [155–157];
such attenuation is generally associated withmaternal behav-
ioral changes including reduced anxiety [158, 159], enhanced
maternal behavior [160], and increased aggressiveness [161,
162]. Of note, the central oxytocinergic system exerts this
inhibitory effect on the maternal HPA axis [160, 163–167].
Oxytocin is a neurohypophysial peptide, which plays a key
role in parturition, lactation, mother/infant interaction, and
social behavior [168]. Interestingly, intracerebroventricular
administration of oxytocin stimulates maternal behavior
in ovariectomized virgin rats [160]. Moreover, enhanced
maternal care increases the expression of oxytocin receptor
in the central nucleus of the amygdala [169]. Remarkably,
in subjects with a history of early-life stress, the inhibitory
effect of oxytocin on the HPA axis is diminished or even
reversed [120, 170]. Interestingly, impaired social behavior
and increased anxiety have been associated with an altered
number of oxytocin neurons in the paraventricular and
supraoptic nuclei [171] and increased expression of oxytocin
receptor in the hippocampus and amygdala [120] of adult
prenatally stressed rats. Moreover, it has been shown that
the activation of presynaptic oxytocin receptor during the
adulthood could both correct the abnormal glucocorticoid
feedback of the HPA axis and normalize the expression of GR
and MR in the hippocampus in prenatally restraint stressed
rats [120]. In humans, it has been shown that intranasal
administration of oxytocin dampens the enhanced stress-
induced functional connectivity between the amygdala and
the hippocampus in subject with a history of early-life stress
[172]. Finally, variations inmaternal care have been associated
with DNA methylation of oxytocin receptor in blood cells
both in rodents [173] and in humans [174].

Together, the evidence reviewed in this section empha-
sizes the molecular and neuroendocrine mechanisms that
underlie the critical role of mother-infant interaction in
the reprogramming of stress response and vulnerability to
neuropsychiatric disorders.

4. Conclusion

The “cumulative stress hypothesis” of neuropsychiatric dis-
orders states that repeated exposure to stressful events is
the main environmental factor for pathological onset [1, 8,
32]. Thus, it is conceivable that repeated adverse events,
especially when added to perinatal stress, exacerbate psy-
chopathological conditions. On the other hand, according
to the “match/mismatch hypothesis,” early-life stress might
also be somehow protective against stressors in late life,

leading to higher achievement of adaptation and survival
[7, 9, 175]. Yet, these hypotheses are strictly related and
interconnected. Indeed, the deleterious effects of stress rely
not only on when or how often stress occurs, but especially
on how intense the stress is and how much it impacts an
individual, depending on one’s genetic background [176, 177].
In this context, repeated subjective mild stressors may act
improving adaptation to environmental challenges [3, 178],
while a single overwhelming adverse event may precipitate
neuropsychiatric diseases, as in the case of posttraumatic
stress disorder [179, 180].

It is also important to notice that whereas the physio-
logical stress response activates adequate coping strategies,
leading to stress resiliency and adaptation in the high major-
ity of subjects, vulnerability toward stress is dependent on
individual behavioral, physiological, and genetic factors [4–
6]. Thus, individual reprogramming of the stress response
induced by early-life stress could be both adaptive and
maladaptive. In line with this hypothesis, Macr̀ı and collab-
orators [181] have suggested that mild neonatal changes may
reduce the HPA axis reactivity, leading to resilience, whereas
severe neonatal challenges would increase the adult HPA
axis reactivity, with the ensuing increased vulnerability to
stress-related disorders. Intriguingly, it was recently reported
that early-life trauma in humans can also promote early
maturation of amygdala-prefrontal cortex connectivity, in
line with enhanced emotion regulation and reduced anxious
behavior [182].

Integration of perinatal and late-life experiences may
induce long-lasting consequences on neuronal excitatory
transmission and morphology, especially in corticolimbic
areas (Figure 1). If acute stress in adult life was consistently
shown to increase glutamate transmission and release, at
least in the hippocampus and prefrontal cortex [2, 26–
28], chronic stress has the opposite effect, inducing impair-
ments in neuronal transmission and synaptic activity [31]
(Figure 1(a)). In turn, the effects of chronic stress are generally
associated with behavioral deficits and depressive/anxious-
like behavior [32, 61, 183], while the response to acute stress
can be both adaptive, with improved behavioral and cognitive
functions [44, 45], and maladaptive [7]. However, when
the individual is subjected to stress in early life, the stress
response in adulthood may be shaped by prior experiences
(Figure 1(b)). It was shown that depolarization-dependent
release of glutamate in dorsal hippocampus is decreased
in animals subjected to chronic stress in the prenatal life
[117, 118]; however, little is known on the reprogramming
of the stress response at the level of excitatory transmission
induced by early-life stress. A very recent cross-sectional
observational study examined the effects of early- and late-
life trauma in Korean college students, showing a significant
correlation between early trauma, stress, and psychological
distress [184].

We speculate that the long-lasting attenuation of the stress
response induced by early-life stress might also affect the
changes in excitatory transmission usually induced by stress
in adult life. Thus, hypothetically, both the rise of glutamate
transmission induced by acute stress and the attenuation
of excitatory currents caused by chronic stress might be
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Figure 1: Influence of early-life stress on neuronal excitatory neurotransmission in corticolimbic areas. (a) In subjects with no history of
perinatal adverse challenges, acute stress induces an increase in stimulation-evoked glutamate release.This response can be both adaptive and
maladaptive. On the other hand, exposure to repeated episodes of stress (chronic stress) induces hypofunction of the glutamatergic synapse
with reduced evoked glutamate release, associated with increased vulnerability to stress-related neuropsychiatric disorders. (b) Perinatal
stress induces hypofunction of the glutamatergic synapse in adult life, with ensuing reduction in evoked glutamate release. The effects of the
association between early- and late-life stress are largely unknown. See text for details.

affected by reprogramming of the stress response induced by
early-life stress, thus likely leading to adaptive or maladap-
tive changes, depending on the intensities of the stressors.
Experimental evidence is required to validate or falsify the
hypothesis.

Excitotoxicity caused by excessive glutamate release and
epigenetic reprogramming are reasonably among the main

mechanisms involved in long-lasting neuroplastic alterations
induced by stress [1, 185] (Figure 2). Excitoxicity is gen-
erally associated with reduced ability to clear the synap-
tic glutamate, resulting in glutamate spillover and activa-
tion of extrasynaptic glutamate receptors [32]. However,
it is likely that exposure to high levels of corticosteroids
(Figure 2(b)), together with inducing changes in excitatory
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Figure 2: Long-term neuroplastic alterations induced by early-life stress and chronic stress. (a) Basal condition: presynaptic neuron (light
blue), postsynaptic neuron (pink). (b) Repeated episodes of stress in early life or in adulthood induce an increase in glucocorticoids associated
with a transient increase in glutamate release both in the synaptic cleft and in the extrasynaptic space. Increase in glutamate releasemay activate
reprogramming mechanisms that lead to either reduced synaptic efficacy (c) or loss of synaptic contacts (d).

transmission, activates epigenetic mechanisms, which mod-
ulate gene expression and neuronal responsiveness to stress.
Of note, mounting evidence suggests that perinatal stress
reprogramming of the neuroendocrine stress response and
the ensuing behavioral state can cross multiple generations,
thus supporting the hypothesis that epigenetic mechanisms
underlie the reprogramming of the “stressed synapse” [22,
186]. This in turn leads to functional and structural conse-
quences, in line with reduced synaptic efficacy [31, 117, 118]
(Figure 2(c)) and number of synaptic contacts [52, 53, 105–
108] (Figure 2(d)).

The mechanisms by which early-life events affect stress
resilience via the reprogramming of the stress response
and the modulation of excitatory neurotransmission war-
rant further investigation. In-depth studies of changes in
glutamate transmission and dendrite remodeling induced
by stress in early and late life will help to elucidate the
biological underpinnings of the (mal)adaptive strategies the
brain adopts to cope with environmental challenges in one’s
life.
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