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Abstract
Celiac disease (CeD) is an autoimmune disorder, mainly affecting the small
intestine, triggered by the ingestion of gluten with the diet in subjects with a
specific genetic status. The passage of gluten peptides through the intestinal
barrier, the uptake by antigen presenting cells and their presentation to T cells
represent essential steps in the pathogenesis of the disease. CeD prevalence varies
in different populations, but a tendency to increase has been observed in various
studies in recent years. A higher amount of gluten in modern grains could
explain this increased frequency, but also food processing could play a role in
this phenomenon. In particular, the common use of preservatives such as
nanoparticles could intervene in the pathogenesis of CeD, due to their possible
effect on the integrity of the intestinal barrier, immune response or microbiota. In
fact, these alterations have been reported after exposure to metal nanoparticles,
which are commonly used as preservatives or to improve food texture,
consistency and color. This review will focus on the interactions between several
food additives and the intestine, taking into account data obtained in vitro and in
vivo, and analyzing their effect in respect to the development of CeD in
genetically predisposed individuals.

Key words: Celiac disease; Food additives; Metallic nanoparticles; Gluten; Intestine;
Immune system
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Core tip: Celiac disease (CeD) is a common autoimmune disorder caused by the
ingestion of gluten. Its frequency has been increasing, and several factors have been
analyzed as possible triggers; among them also food additives should be taken into
account. Several nanoparticles are used as food additives or preservatives, and they can
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interact with the intestine or the immune system, increasing, in theory, the immune
response towards gluten. The scope of this review is to analyze the data present in the
literature with respect to the pathogenetic mechanisms involved in the development of
CeD.
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CELIAC DISEASE PATHOGENESIS
Celiac disease (CeD) is a multifactorial disorder, characterized by the presence of an
autoimmune response that  mainly involves  the small  intestine,  triggered by the
ingestion  of  gluten  from  wheat,  barley,  and  rye  in  genetically  predisposed
individuals. CeD genetic background is quite complex, and partially still unknown.
About  40% of  the  genetic  predisposition relies  on genes  localized in  the  human
leukocyte antigen (HLA) region, mainly on those encoding for specific class II HLA
molecules, namely DQ2.5 and DQ8 heterodimers. The combination of the HLA alleles
DQA1*0501 and DQB1*0201 generates the HLA-DQ2.5 heterodimer, which is detected
in more than 90% of Caucasian CeD patients (either in cis or in trans), whereas the
remaining patients carry the HLA-DQ8 heterodimer, encoded by DQA1*03 (α chain)
and DQB1*0302 (β chain).  However,  the presence of  the DQ2 heterodimer is  not
sufficient for the development of CeD. In fact, the HLA-DQ2 haplotype is present in
30%-35% of the Caucasian population (in which CeD has a high prevalence), but only
2%-5% of gene carriers develop CeD[1]. Using the Genome Wide Association Study
approach, several additional loci have been identified as predisposing to CeD, but in
total they account for about 50% of the genetic component.

Although the genetic background is essential for the development of CeD, research
has started to focus on the possible environmental factors (apart from gluten) that
could trigger the disorder. This could be quite important, since several data suggest
that  the  prevalence  of  CeD  is  increasing,  and  cases  are  now  reported  even  in
populations that were thought to have a negligible prevalence of this disease. A study
performed in United Kingdom showed a four-fold increase in CeD incidence rate over
a period of 22 years, but regional differences were present[2]. Even if this increased rate
could be explained by a different awareness of the problem by physicians, or by the
use of an easier serological diagnosis and a casefinding approach, there is still some
evidence which suggests that this raise in the prevalence/incidence of the disease is a
real phenomenon. Evaluation in a Scottish pediatric population revealed that, in two
decades, the incidence of children with nonclassical CeD had increased dramatically
(attributable  to  better  diagnosis),  but  also  the  number  of  patients  with  classical
manifestations had quadrupled (thus suggesting a real variation in CeD frequency)[3].
Moreover,  similar  data  have  been  observed in  Finland as  well  as  in  the  United
States[4-6].

To identify the possible additional environmental causes it is necessary to dissect
the various steps involved in CeD pathogenesis.  The ingested gluten undergoes
digestion,  which generates several  small  peptides,  including the 33 mer peptide
(residues 57 to 89 of α-gliadin), a celiac “superantigen” able to stimulate T cells[7], or
the 31-43 peptide (from residues 31 to 43 of α-gliadin), which can have a toxic effect
on intestinal mucosa[8]. However, in order to trigger the autoimmune response these
peptides need to cross the gastrointestinal barrier and reach the lamina propria. This
passage can take place using two different routes, namely the transcellular and the
paracellular one. The first is a vesicle-mediated passage which involves endocytosis
on  the  luminal  side  of  enterocytes,  followed by  transcytosis  and  release  on  the
basolateral  side.  Thus,  in  theory,  substances  which  are  able  to  make  the  gluten
peptides more prone to be captured on the apical side and transported could play a
role in the pathogenesis of CeD. Conversely, paracellular transport depends on tight
junctions (TJ) and the correct expression/interaction of the proteins that maintain
junction functionality. Therefore, agents able to induce inflammation and/or cytokine
release could cause the rearrangement of proteins such as ZO-1 or occludin, causing a
loss  of  function  of  TJ  and,  in  turn,  an  increased  paracellular  passage  of  lumen
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substances, such as gluten peptides.
Once gluten peptides have crossed the intestinal barrier, they are further processed

in the submucosa; due to their high content in glutamine, proline and hydrophobic
amino acid residues, these peptides are excellent substrates for transglutaminase 2
(TG2) which deamidates them. This processing increases negative charges, allowing
the gluten peptides to bind more strongly to HLA-DQ2 (or HLA-DQ8). Better antigen
presentation results in CD4+ Th1 T-cell activation that, in turn, will cause activation of
intraepithelial lymphocytes, crypt hyperplasia and villus atrophy, as well as B cell
stimulation  and the  production  of  auto-antibodies  directed  against  deamidated
gliadin peptides and TG2 (Figure 1A).

Given these data, food additives could have a role in triggering the development of
CeD if they are able to alter the gastrointestinal barrier, antigen presentation or the
activation of the immune system. Although there are currently few experimental
published data that specifically address the interaction between food additives and
CeD, there are at least three possible categories that should be analyzed, namely
transglutaminase, gluten nanoparticles and metallic nanoparticles.

USE OF TRANSGLUTAMINASE IN FOOD PREPARATION
The use of transglutaminase in food processing belongs to the various techniques that
industries  in  the  field  currently  use  to  modify  the  proteins  present  in  aliments.
Microbial  transglutaminases  (mTGs),  like  human  ones,  catalyzes  acyl  transfer,
deamidation and crosslinking between glutamine (acyl donor) and lysine (acceptor).
These reactions can profoundly modify a large amount of proteins constituting food
matrices and this, in turn, can improve several food properties such as texture and
stability; more interestingly, these changes can take place without affecting other food
characteristics like taste or nutritional value. For these reasons, the possible ingestion
of microbial tranglutaminases, due to its use in food processing, has been recognized
as safe by Food and Drug Administration[9].

Currently mTGs are is used in several processed foods since, among others, their
use increases the water retention capacity of proteins, fact that could help to increase
the juiciness of products such as meat, or emulsion properties that are important in
food  characterized  by  creamy  texture  (e.g.,  yogurt) [10].  Moreover,  bacterial
transglutaminase treatment has also been applied to cereal proteins (including wheat
protein); its use can improve stability, elasticity and water retention of the dough, and
for this reason it has also been employed in the preparation of gluten-free food[11-12].

Due to the pivotal role of transglutaminase in the pathogenesis of CeD, its use in
food preparation has raised some concern.  Transglutaminases  can act  on gluten
peptides, making them more immunogenic, but it must also be remembered that TG2
is  itself  an  autoantigen,  and  the  ingestion  of  mTGs  could  also  generate  an
autoimmune response through a molecular mimicry mechanism. The comparison of
the primary and tertiary structure of a commonly used mTGs with TG2 reveals little
homology, although both are able to bind gluten peptides using similar aminoacids[13].
Moreover, mTGs can deamidate gluten peptides, making them more immunogenic, as
assessed in an in vitro system that employed gluten-specific T cells isolated from the
duodenum of celiac patients[14].

Few papers have tried to assess the possible correlation between the use of bacterial
transglutaminase and CeD, but most of them are only based on peptide-patients’
antibody interaction. An initial investigation performed using sera from nine celiac
patients  suggested  that  treatment  of  wheat  with  mTGs increases  the  IgA-based
reactivity, and to a lesser degree when mTGs were used to treat gluten-free bread[15].
Matthias et al[16] evaluated the presence of antibodies directed against either human or
bacterial transglutaminase (alone or bound to gluten peptides) in pediatric patients
with or without CeD. In the serum of CeD patients,  they could detect antibodies
against mTGs, although prevalently IgG rather than IgA (as commonly observed
against TG2), whereas they were not present in controls. The authors also found a
correlation between serum levels  of  antibodies  against  mTG-peptides  and TG2-
peptides,  as  well  as  between these  serum titer  and intestinal  damage,  and they
suggested a causal role of this food supplement in the development of CeD. Different
results were observed by Ruh et al[17], who extracted gliadin from pasta treated or
untreated with mTGs and employed it to assess possible reactivity with circulating
antibodies present in CeD patients. The authors detected a huge variation among
patients, but no difference in reactivity between the two types of gliadin. These results
were also confirmed by Heil et al[18].

On the contrary, in theory, the use of mTGs could also be useful to decrease the
immunogenicity  of  gluten,  but  in  order  to  do  so  the  enzyme  has  to  be  used  in
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Figure 1

Figure 1  Role of Food additives in the pathogenesis of celiac disease. A: The pathogenesis of celiac disease involves the digestion of gluten in the gut lumen,
the increased passage of gluten peptides through the intestinal epithelium, the deamination by the tissue transglutaminase 2 and the uptake by antigen-presenting
cells. Once the gluten peptides are presented within the HLA class II molecule they activate CD4+ T cells, which in turn trigger the destruction of the tissue by CD8+ T
cells and the production of autoantibodies by B cells. The increase amount of gluten or bacterial transglutaminase used as additive could increase this process; B:
Metallic nanoparticles could affect both gluten passage through the epithelium (paracellularly or intracellularly) or the presentation of the antigen by dendritic bells.
Moreover they can alter the microbiota, influencing gluten processing and/or immune response.

association with acyl-acceptor molecules  such as  lysine[19].  This  pre-treatment of
gluten could in  fact  block the  aminoacids  that  are  the  usual  target  of  TG2,  thus
preventing the modifications that increase the affinity of gluten peptides for the DQ2
molecule[13,20]. Moreover, experiments performed ex vivo on duodenal biopsies of CeD
patients showed that the modification of gluten by mTGs with L-lysine prevented
pro-inflammatory cytokine production[21,22]. Gluten transamidation by mTGs could
thus be used to produce flour of bread with less immunoactive gluten peptides[23,24],
but there are still some issues that need to be clarified, due to the affinity of mTGs for
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the aminoacids usually targeted by TG2 and to the possibility that TG2 overcomes the
modification induced by mTGs.

GLUTEN-BASED NANOPARTICLES
Gluten-based nanoparticles have been mainly developed as a tool for drug delivery,
and have  been  tested  in  particular  for  hydrophobic  drugs[25].  However,  there  is
another use that could be potentially problematic, i.e., the development of coating
matrices for paper and cardboard used for food packaging. Plant-derived proteins
have good film-forming properties, are biodegradable, and can be produced with
moderate costs,  facts  that  make them suitable for  coating food containers.  Some
authors have also combined gluten with nanocellulose and titanium dioxide in order
to  obtain  nanocomposites  able  to  increase  the  resistance  of  paper.  These  na-
nocomposites  also  have  an  antibacterial  activity,  a  quality  that  might  be  very
attractive  for  food-preserving packages[26].  As  will  be  mentioned later,  the  issue
regarding these nanomaterials is that data about the possible release of nanoparticles
in food are needed.

METALLIC NANOPARTICLES
Nowadays several nanoparticles (NPs) are intentionally added to food, beverages and
their packages[27], mainly to preserve aliments[28,29] or to improve their organoleptic
properties (such as taste, consistency and appearance). Consequently, in recent years,
an  increase  of  toxicological  studies  on  food  nanoparticles  has  been  registered.
Although  NP  can  enter  the  body  through  several  routes,  according  to  the
Nanotechnology Consumer Product Inventory (CPI) enlisted in 2014, one of the major
NP  points  of  entry  is  the  gastrointestinal  system[30].  They  also  reported  that
nanomaterials are particularly present in commercial food or food-related products
under the form of metallic nanoparticles (mNP), of which Ag (E174), TiO2 (E171),
ZnO,  Au (E175)  and SiO2 (E551)  NPs  are  the  most  popular.  Briefly,  AgNPs are
particularly used as antimicrobial agent in aliments/beverages, their packages and in
agriculture[29]; ZnONPs are also used as strong antibacterial agents, but they can also
be used as a dietary supplement; E171 is used as a whitening agent in pharmaceutical,
dairy and pastry products; AuNP is mostly present as a contaminant from dental
restoration material or agriculture-derived products (such as seeds)[31,32]; SiO2NP is
employed to improve the organoleptic properties of food and its nutritional values.

In order to evaluate the possible effects of ingested NP, there are several factors that
should be taken into account: (A) NP dimensions: several studies reported as the size
of food mNP might alter their uptake from intestinal cells[33-35]. The smaller the mNP,
the faster and easier will be its passage through the mucous layer and its passage into
the mucosa either by transcellular or paracellular transport; (B) Core material: it could
determine whether NPs remain intact or partially digested by the intestinal fluids. An
important concern is in fact the propensity of NPs to be dissolved and release heavy
metals, which in turn affects NP toxicity. In this sense, AgNP, ZnONP and CuONP
are regarded as the most dangerous food nanoparticles[36,37]. NP core composition also
determines the chemical reactivity, substance adsorption on NP surface, and possibly
the epithelial translocation route[38,39]; (C) Aggregation/agglomeration state: NPs can
arrive into the gut as single entities or in clusters (agglomerates or aggregates[40]). This
feature depends on the NP composition, but also on the physiochemical properties of
the environment. It has been reported that the degree of aggregation/agglomeration
of SiO2-, Ag- and aluminium-NPs can change in artificial mouth, gastric and intestinal
conditions[41-43]. At the same time, this factor also affects NP uptake and toxicity, as
demonstrated  by  McCracken  et  al[44]  and  Albanese  et  al[45];  (D)  Gastrointestinal
environment and food: Physiochemical features of food, beverages, and the gut are
important  factors  that  influence  NP  stability,  size,  surface  composition  and
aggregation/agglomeration state[41,43,44,46,47]. Wang et al[48] and Cao et al[49] demonstrated
a higher oxidative stress-related toxicity exerted by ZnONP when associated with
Vitamin C and palmitic oil, respectively; on the contrary the presence of flavonoids or
quercetin seems to protect against AgNP toxicity[50,51].

Although the daily consumption of metallic NPs is usually thought to be trivial,
this is not the case, in particular if TiO2 is taken into account. Early studies suggested
that  average daily  human consumption of  TiO2 was 5.4  mg per  person[52],  0.035
mg/kg of body weight (b.w.)/d[53] and 5 mg/person[54]. More recent papers, however,
estimated a daily intake of 1–2 mg TiO2/kg b.w. for United States children under 10
years  of  age,  and 0.2-0.7mg TiO2/kg b.w.  for  other  United  States  consumers[55],
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whereas EFSA data reported a range between 0.2 and 0.4 mg/kg b.w. in infants and
the elderly,  and 5.5-10.4  mg/kg b.w.  in  children,  depending on the  exposure[56].
Although these data should be corrected for the percentage on TiO2 NPs present in
the E171, it must be noted that these quantities are not far from the estimates for the
lowest observed adverse effect level (LOAEL) of 5 mg/kg body weight/d derived for
nano  TiO2  by  the  European  Commission’s  Scientific  Committee  on  Consumer
Safety[57].

The effects  of  mNP that  could have a  role  in  CeD development  involve three
different aspects, namely the impairment of the intestinal barrier, the interaction with
the immune system and the possible effect on microbiota (Figure 1B).

Intestinal barrier impairment
The first layer of the small intestinal barrier is a very thin (approximately 20 micron)
layer of mucus, composed of mucin glycoproteins and antimicrobial agents such as
secretory IgA. The second layer is a continuous and tight epithelium, composed of
several specialized cells: at the bottom of the crypts reside stem and Paneth cells,
whereas enterocytes, goblet and enteroendocrine cells are mainly in the villi. What
makes  the  epithelium  a  selective  barrier  is  the  presence  of  highly  dynamic
intercellular junctions, adherent junctions (AJ) and TJ being the most representative.
AJ are composed of transmembrane proteins cadherine, which are connected between
them extracellularly, and with the catenin proteins in the cells. Catenins are in turn
linked to the acti-myosin complex. TJ are formed by occludins, claudins and JAM-A
proteins that interact with zonula occludens proteins and catenins in the intracellular
space. Therefore AJ, TJ and actin cytoskeleton form a complex that can regulate the
permeability (paracellular route) of the intestinal barrier, following intracellular or
extracellular signals.

A growing number of diseases have recently been associated with intestinal barrier
alterations, particularly related to TJ dysfunction. This finding can be easily explained:
gastrointestinal barrier permeability alterations can increase the cut-off of molecules
passing into the submucosa. In physiological conditions, only small molecules with a
molecular weight of about 600da can pass the barrier, but these alterations result in
the passage of immunogenic molecules, the activation of the immune system and the
establishment of an inflammatory state. Since inflammatory mediators are also known
to affect the intestinal barrier, a mild inflammatory status could eventually lead to a
stronger disruption of the barrier itself[58]. Particularly important in this sense is the
association of a leaky barrier with inflammatory bowel diseases (IBD) and several
autoimmune diseases, such as CeD[58-60]. To develop CeD, gluten peptides have to pass
into the submucosa. Therefore, any factors which are able to alter the intestinal barrier
permeability, allowing an higher passage of these peptides into the submucosa, may
increase the number of predisposed subjects developing the disease.

In  2015  Lerner  and Matthias[61]  observed that  the  increase  in  the  incidence  of
autoimmune  diseases  (considering  also  CeD among others)  paralleled  with  the
growing use of food additive in the industry.  They therefore postulated that the
permeability alterations induced by food additives could be associated with the
increment in incidence of autoimmune diseases. Although the author did not refer
directly to the mNP, several studies have been performed on their impact on the GI
barrier. Results showed that mNP can alter the intestinal permeability both directly,
by altering the TJ or inducing epithelial cell death[34,62-64], or indirectly, by inducing
inflammation or oxidative stress that in turn can impair TJ and permeability[58,65]. In
this context, the work of Ruiz et al[66] is interesting. It looked at the impact of TiO2NP
both in vivo (mice with DSS-induced ulcerative colitis) and in vitro (intestinal epithelial
cells  and  macrophages).  TiO2NP  oral  administration  worsened  the  already
established colitis  through inflammasome activation.  Also,  in  vitro  stimulations
induced IL-1β and IL18 increment, as well as higher epithelial permeability driven by
the activation of  the inflammasome pathway.  These results  clearly  associate  the
consumption of mNP with an increase of the intestinal permeability, but only when
there is a pre-existent tendency to develop it.

However, even if the studied mNP does not induce permeability alteration, it has to
be considered that the mNPs may absorb the protein itself on its surface and therefore
behave as a “Trojan horse”, increasing the amount of immunogenic molecules that
arrive into the submucosa[67,68]. Thus, in the case of CeD, food NPs could bind gliadin
peptides and help them to cross the intestinal barrier, probably using the endocytotic
pathway.  Several  studies  are  needed  to  test  this  hypothesis,  since  no  data  are
currently available on this topic. Moreover, it will be necessary to take into account
the interaction with other food components[69,70], and with the intestinal mucus[71], since
both components can alter NPs uptake by enterocytes.

On  the  other  hand,  it  must  be  underlined  that  NPs  can  play  a  role  in  the
pathogenesis of other gastroenterological disorders, and concerns have also been
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raised  for  several  evidences  that  linked  NPs,  particularly  the  whitening  agent
E171(TiO2NP), to IBD development[66,72,73].

mNPs and the immune system
mNPs can interact with cells involved in innate and adaptive immune response in
several  organs,  altering cytokine production,  activation of  cell  surface receptors
and/or  cell  maturation  (including  the  ability  of  cells  to  present  antigens)[74-77].
Nanoparticles can be recognized as foreign materials and eliminated by the immune
system, but they can also trigger an excessive activation of immune responses. This
could be useful  should NP be used as an adjuvant in vaccinations,  but  could be
detrimental in case of autoimmune disorders. In particular, the binding of gliadin
peptides to food NP could represent a way by which these specific antigens can be
taken up in great quantity by antigen presenting cells, thus increasing the activation
of the autoimmunity process. Several studies have been performed on macrophage-
like cell lines to assess the effect of metallic NPs, analyzing the cytotoxicity as well as
differences in cytokines production; AgNPs were able to increase the production of
IL-8[78,79], which also depended on NP size[78] whereas TiO2 NPs increased the secretion
of TNF-α and IL-6[80]. Interestingly, Au-NPs induced an alteration in phagocytosis
without variation in cytotoxicity or cytokine gene expression[81], whereas a similar
effect by TiO2 NPs was associated with an inflammatory response[82]. Transcription
profiling on a macrophage cell line treated with different NPs revealed a particular
expression pattern,  thus  suggesting  that  each  metallic  NP can trigger  a  specific
response, also depending on the chemical characteristics of the nanoparticle itself[83].
Silver NPs have been demonstrated to be able to interact with human monocytes,
increasing the production and release of IL-1β, even after the exposure to very low
concentrations[84]. Ag-NP were also able to cause superoxide production, as well as the
formation of inflammasome. Metallic NPs also altered the expression of adhesion
molecules  and  chemokine  receptor  type  4  on  the  surface  of  human  peripheral
lymphocytes[85];  interestingly,  these  effects  were  independent  from  any  sign  of
cytotoxicity, suggesting that the response to NP exposure can be more subtle and
mainly related to gene expression variations. However, NPs can also interact with
cells involved in adaptive immune response, and in vitro data showed that TiO2 NPs
can induce maturation of dendritic cells through the activation of Nf-kB pathway[86], a
process  which is  essential  for  antigen presentation to  T helper  cells.  Again,  this
process could be important in CeD, since antigen presentation by dendritic  cells
represents an essential step for the activation of the autoimmune response.

Nanoparticles and microbiota
Microbiota plays an important role in maintaining the homeostasis of a healthy gut.
Alterations in microbiota composition have been reported both in pediatric as well as
adult CeD patients if compared to controls[87-89], although it is currently still unknown
whether these changes are causative of  the disease or a consequence of  mucosal
alterations.

However,  microbiota  can  be  altered  by  exposure  to  dietary  mNP.  In  vitro
experiments performed on a colon-like microbial community showed that exposure to
small quantities of E171 (comparable to the amount present in two pieces of chewing
gum) was sufficient to alter the phylogenetic composition[90]. Significant changes in the
phyla were also observed in mice treated for 28 d with TiO2NP, with variations
induced by both forms of TiO2NP, namely rutilium and anatase[91].

As already mentioned, silver nanoparticles are employed as antibacterial agents,
and thus it should be expected that they can alter the microbiota composition. In fact,
in mice exposed to increasing doses of AgNP for 28 d, a disturbed bacterial evenness
(αdiversity)  and  populations  (β-diversity)  was  detected  by  Next  Generation
Sequencing. This effect was also dose-dependent. Ag NP increased the ratio between
Firmicutes  (F)  and  Bacteroidetes  (B)  phyla,  results  similar  to  those  observed  in
presence of inflammation[92]. Variation in microbiota composition were also observed
by another group, although results were different regarding the phyla, possibly due
to the different experimental design (rats treated for 14 d)[93].

Last but not least, it must be emphasized that within our gut there is also a viral
component that interacts with the microbiota and the intestinal mucosa. Although
studies evaluating the possible effect of food NP on this component are scanty, initial
data obtained in vitro suggest that Ag-NP can alter the abundance of several viral
species[94].  Since  these  species  can  be  hosted  by  different  categories  of  bacteria
(commensal or pathogenic), changes in intestinal viriome can, in turn, cause alteration
in the microbiota itself.
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CONCLUSIONS
Food additives  could play  an important  role  in  the  pathogenesis  of  CeD,  either
altering gliadin peptides properties or interacting with the intestinal environment, at
the barrier level or with the immune system. Moreover, the increasing use of prepared
food and, in turn, the augmented ingestion of NPs, could be an additional factor in
triggering the development of CeD in genetically predisposed individuals. For this
reason, in vitro and in vivo studies to evaluate these possible interactions are needed.
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