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Abstract

Chemical Master Equations (CMEs) provide a comprehensive way to
model the probabilistic behavior in biochemical networks. Despite their
widespread diffusion in systems biology, the explicit computation of their
solution is often avoided in favor of purely statistic Monte Carlo methods,
due to the dramatically high dimension of the CME system.

In this work, we investigate some structural properties of CMEs and their
solutions, focusing on the efficient computation of the stationary distribution.
We introduce a generalized notion of one-step process, which results in a
sparse dynamic matrix describing the collection of the scalar CMEs, showing
a recursive block-tridiagonal structure as well. Further properties are inferred
by means of a graph-theoretical interpretation of the reaction network. We
exploit this structure by proposing different methods, including a dedicated
LU decomposition, to compute the explicit solution.

Examples are included to illustrate the introduced concepts and to show
the effectiveness of the proposed approach.
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1. Introduction

An important research topic in the field of Systems Biology is the detec-
tion of efficient methods for modeling complex cellular mechanisms. It has
been recently highlighted the importance of the noise role in the dynamics
of biological processes [1]. Random fluctuations, provided by a wide set of
concurring factors including, for instance, thermal noise or asynchronous oc-
currence of synthesis and degradation events, need to be considered when
modeling most of the molecular processes involved in cellular regulation, as
well as in gene expression, see e.g. [2, 3]. These noisy behaviors are much
more evident in cases when only few copies of the reacting species (DNA,
RNA or proteins) are involved, and standard reaction rate equations, essen-
tially dealing with the concentration dynamics in terms of Ordinary Differ-
ential Equations (ODE), fail to capture the inherent randomness of the phe-
nomena. On the contrary, the Chemical Master Equation (CME) approach
is known to be more appropriate in these cases, as it describes the biolog-
ical process in terms of probability distribution of the underlying chemical
population [4, 5, 6].

Such an attractive, stochastic approach, which allows to simulate and
keep track of the reactions occurring in a single fixed volume, has recently
become more and more appealing because of the biotechnology devices avail-
able nowadays, which are able to provide single-cell experimental data: see
e.g. [7], where CME-based stochastic simulations have been used to validate
a model of the Ras/cAMP/PKA signaling pathway, or the recent [8, 9, 10]
where stochastic simulations have been used with the goal of reverse engi-
neering from real data.

Except very basic cases, finding the exact solution of a CME (or just
looking for the steady-state solution) is a hard nut to crack, even though
the CME model results in a linear system. This is because the state vector
collects the probabilities for all the possible combinations of copies of all the
involved species, thus implying – even for a closed system of reacting species,
i.e. when the CME is finite-dimensional – a dramatically high dimension of
the state space. As a matter of fact, the computation of the matrix expo-
nential or of the null space (in the stationary case) would require non-trivial
numerical algorithms to be implemented. For these reasons, most efforts
have been so far focused on implementing Monte Carlo methods (such as
the Stochastic Simulation Algorithm (SSA), [5, 11], or the τ -leaping algo-
rithms, [12, 13]) with the goal of approximating the exact solution. Indeed,

2



the performance of such algorithms is a tradeoff between the high number of
Monte Carlo simulations required for approaching the exact solution and the
time spent for running a single long-term simulation. It has to be stressed
that, in some crucial cases, such a tradeoff could be not satisfactory. This
is the case when some biological events happen rarely, thus requiring a very
high number of Monte Carlo simulations in order to get a sufficiently precise
statistics. Examples are usually taken from biological toggle switches such
as, for instance, the ones related to the pyelonephritis-associated pili (Pap)
epigenetic switch in E. coli [14] or the genetic toggle switch model of Gard-
ner [15]. Therefore, a need exists to overcome purely statistical Monte Carlo
methods and look for the solution of the original CME.

Important results on this field have been published in the last few years,
aiming to highlight the properties characterizing the CMEs, and to provide
implementable approximation schemes for their solutions. In this frame-
work we may cite, among the others, the Finite State Projection method
[16, 17, 18], based on a proper truncation of the set of the (possibly) infi-
nite states of the CME system, and its improvements, such as [40], based on
approximate Krylov-based methods to speed up the computation of the so-
lution; the Moment Closure technique [19, 20, 21], aiming at estimating the
statistical moments of the CMEs; spectral decomposition approaches provid-
ing the approximate solution in terms of a suitable class of basis functions
[22, 23]; the sparse grid approach [41], specifically designed to deal with
high dimensional problems arising in gene regulatory networks; the novel ap-
proach based on reaction counts [42, 43], in which the collection of the master
equations is rewritten in terms of reactions instead of species, resulting in a
simpler structure of the system; finally, model reduction techniques by bal-
anced truncation [18, 46], exploited to efficiently approximate the probability
distribution.

The present work investigates the structural properties of the CMEs and
their usefulness in computing the solution, especially in the presence of a
large number of states. The starting point of our investigation relies on
the following observation: different state-space realizations (with different
structural properties) can be achieved according to different ways of gathering
probabilities, when building up the CME state vector. As a matter of fact,
we will show that a very regular structure can be achieved for the aggregated
system, and many nice features of the system can be inferred from it.

The mathematical setting that we here propose can be always adopted
regardless of the number or kind of reactions/reagents. The method to build
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up the CMEs exploits a recursive approach to aggregate the vector of prob-
abilities and the dynamic matrix. The analysis of the dynamical properties
is the novelty of the paper, as well as the characterization of the chemical
master equations in a graph-theoretical fashion. Our results are suitably ex-
ploited to find efficiently the exact solution of the master equation, in a much
faster way with respect to usual Monte Carlo SSA techniques; the method
is validated in a couple of well-established biochemical examples, where a
comparison with other solvers highlights the effectiveness of the approach.

The paper is organized as follows. In Section 2, we introduce the general
setting of the (bio)chemical reaction framework. Section 3 briefly recaps the
way to obtain the CMEs and introduces a novel structure to write them in a
compact, useful form that reveals to show a recursive block-tridiagonal struc-
ture according to non-restrictive assumptions. Section 4 focuses on the char-
acterization of the CME solutions, illustrating an intriguing graph-theoretical
interpretation of the stationary distribution. Different computational ap-
proaches are proposed in Section 5 to achieve the steady-state solutions,
most suitably exploiting the block-tridiagonal property coming out from the
proposed state-space realization. In Section 6, we present simulation results
in some biochemical applications. Section 7 offers concluding remarks. A
preliminary version of this paper appeared in [24].

Before starting with the main topic, we introduce some notation exten-
sively used throughout the paper. The symbols N, N0, R and R+ denote
the set of natural, nonnegative integer, real and positive real numbers, re-
spectively. The cardinality of a set V is denoted by |V |. The transpose of
a matrix A is written as AT . The time-derivative dp

dt
is denoted by ṗ. Given

a matrix A, the symbol [A]ij denotes the generic entry of matrix A, for any
i,j.

A matrix is said to be block-tridiagonal if it has the following form (see
e.g. [25], [26]):

Φν({Ai}, {Bi}, {Ci}; i) =


B0 C1 ∅ · · · ∅
A0 B1 C2 ∅ ∅
∅ . . . . . . . . . ∅
...

. . . Aν−2 Bν−1 Cν
∅ · · · ∅ Aν−1 Bν

 (1)

where {Ai} = {Ai, i = 0, ..., ν − 1}, {Bi} = {Bi, i = 0, ..., ν}, {Ci} =
{Ci, i = 1, ..., ν} are sequences of suitably dimensioned square matrices,
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and the ∅ entries are zero matrices of proper dimensions. The operator
Φν({Ai}, {Bi}, {Ci}; i), where i is the dummy index of the sequences taken
as inputs, is called block-tridiagonal matrix builder. If {Ai}, {Bi}, {Ci} are
sequences of scalar values and the ∅ entries are scalar (zeros), the matrix in
(1) is said to be tridiagonal.

2. State-space representation of Chemical Networks

Consider the following system (or network) of q (bio)chemical reactions
in the general form [27]:

al11Y1 + · · ·+ al1NYN −→ ar11Y1 + · · ·+ ar1NYN

· · · · · · · · · · · · · · · · · · · · · · · ·
alq1Y1 + · · ·+ alqNYN −→ arq1Y1 + · · ·+ arqNYN

(2)

where Y1, . . . , YN are the species involved. The number βij = arij − alij is
called stoichiometric coefficient of species j in reaction i, for all j = 1, . . . , N
and for all i = 1, . . . , q. In case the right-hand-side and the left-hand-side of
a given reaction are equal, respectively, to the left-hand-side and the right-
hand-side of a different reaction, we simply rephrase the two reactions as a
unique formal reversible reaction by means of the symbol �.

Let us denote by n(t) the state of the system at time t, with i-th com-
ponent ni(t) ∈ N0 being the number of copies of the i-th species at time
t. The state function n : [0,+∞) → NN

0 is a realization of a discrete-valued
continuous-time stochastic Markov process with initial conditions ni(0) = n̄i,
i = 1, . . . , N . We refer to a system (or to the underlying process) as closed
if ni(t) ∈ {0, 1, . . . , Ni} for some fixed Ni ∈ N, for all i. Due to mass balance
constraints, vector n(t) is usually redundant in closed systems, whose state
can be univocally identified by means of a reduced set of the n(t) components,
which are called independent species. Thus, if NC is the number of mass bal-
ance constraints, the reduced state vector x(t) is (N −NC)-dimensional and
can be built according to many different choices of the species involved. The
following definition focuses on an important property of the above mentioned
choices.

Definition 1 (Orthogonal species). Consider a system of q chemical re-
actions as in (2). A set {Yr1 , . . . , YrM} of independent species is a set of
orthogonal species for the given system of reactions if for any reaction i ∈
{1, . . . , q} there exists a unique index j ∈ {r1, . . . , rM} such that βij 6= 0.
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In practice, given M independent species on a set of reactions, we say
that these species are orthogonal if every chemical reaction changes just
one component of the reduced state x(t). Note that, although it is always
possible to define a set of independent species out of a system of q reactions,
it is not always possible to choose M independent and orthogonal species.
Nevertheless, the orthogonality property can be recovered by defining state
variables as appropriate linear combinations of the original species. This
approach is conceptually similar to that based on the so-called “reaction
counts” (see e.g. [42, 43]), where CMEs in terms of species are restated
in terms of reactions by means of an appropriate redefinition of the state
variables.

In the remainder of the work, a stochastic Markov process describing a
network of reactions involving M independent orthogonal species will be de-
noted as an orthogonal process. An important class of orthogonal processes
is the class of one-step processes [4], formally defined as the Markov pro-
cesses associated to a set of M independent species such that the following
assumptions are fulfilled:
(H1) βij ∈ {−1, 0, 1} for all i, j (unitary steps);
(H2) the M species are orthogonal.

In the following, we will generalize the one-step setting by removing the
orthogonality hypothesis (H2). Such a general case will be referred to as
generalized (non-orthogonal) one-step process, or unitary process, because
reactions are allowed to cause simultaneous changes of unitary amount in
the state variables. A graphical example is given in Figure 1.

3. Structure of the Chemical Master Equation for generalized one-
step processes

In the following, we denote by x(t) ∈ NM
0 the CME state vector, whose

components are related to a choice of M independent species in the q reac-
tions. As anticipated in the Introduction, different state-space realizations
for the CME provide different structural properties of the underlying dynam-
ical system, possibly suggesting a smart way to compute the solutions. To
this end, we will briefly recap the route to achieve the CME, according to
a new set of notations. We start from the definition of pn1,n2,...,nM

(t) as the
joint probability of having ni copies of the i-th species (for i = 1, . . . ,M) at
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(n1, n2)

(n1 + 1, n2 + 1)

(n1 − 1, n2 − 1)

(n1 + 1, n2)

(n1 + 1, n2 − 1)(n1, n2 − 1)

(n1 − 1, n2)

(n1 − 1, n2 + 1) (n1, n2 + 1)

Figure 1: Example of bivariate generalized (non-orthogonal) one-step process. The pairs
indicate the number of molecules of the two independent species; the links indicate non-
zero transition probabilities per unit of time. Note that the diagonal links vanish in the
classical one-step case.

time t:
pn1,...,nM

(t)
.
= P

(
x1(t) = n1, . . . , xM(t) = nM

)
.

The transition from one state to another is ruled by the propensities or
transition probabilities per unit of time, defined as:

gα1,...,αM
n1,...,nM

= lim
∆t→0

1

∆t

· P
(
xi(t+ ∆t) = ni + αi, i = 1, . . . ,M

∣∣∣xi(t) = ni, i = 1, . . . ,M
)
,

in which P is the conditional probability for a step transition of the discrete
amount αi in each state variable xi(t), i = 1, . . . ,M . According to stan-
dard hypotheses [4], it is assumed that such a probability does not depend
explicitly on the time t and that only one reaction per time can occur.

It is worth noticing that not all the transitions are allowed for a given
chemical network (2). As a matter of fact, the propensities are constrained to
match the variations in the number of copies of all species in some reactions,
namely:

gα1,...,αM
n1,...,nM

= 0 if (α1, . . . , αM) /∈ {β1, . . . , βq}. (3)

with βi
.
= (βi1, . . . , βiM) providing the aggregate vectors of the stoichiometric

coefficients associated to reactions i = 1, . . . , q.
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The following proposition formally defines generalized/orthogonal one-
step processes by means of the network propensities previously introduced.

Proposition 2. Consider a network of q chemical reactions involving M
independent species, described by the stoichiometric coefficients βij, for i =
1, . . . , q and j = 1, . . . ,M . Then,

(a) Assumption (H1) ( unitary or generalized one-step process) implies that
for any state (n1, . . . , nM) of the process, one has:

gα1,...,αM
n1,...,nM

= 0 if max
j=1,...,M

|αj| > 1. (4)

(b) Assumptions (H1)+(H2) ( orthogonal one-step process) imply that for
any state (n1, . . . , nM) of the process, one has:

gα1,...,αM
n1,...,nM

= 0 if
∑

j=1,...,M

|αj| > 1. (5)

We give a simple example to clarify the previous result. Consider M = 3
and the transition probability per unit of time gα1,α2,α3

n1,n2,n3
with (α1, α2, α3) =

(1,−1, 0), namely the propensity of the transition to the state (n1 + 1, n2 −
1, n3). This transition is not allowed in orthogonal one-step processes, in
fact

∑
j=1,...,3 |αj| = 2 > 1, implying gα1,α2,α3

n1,n2,n3
= 0, according to Proposition

2(b). In the non-orthogonal case (Proposition 2(a)), instead, the transition
is possible because maxj=1,...,3 |αj| = 1, so the case gα1,α2,α3

n1,n2,n3
6= 0 is allowed.

The Chemical Master Equation is written for any general state (n1, . . . , nM)
of the Markov process as the following probability balance equation [4]:

ṗn1,...,nM
(t) =

∑
α1,...,αM

g−α1,...,−αM
n1+α1,...,nM+αM

· pn1+α1,...,nM+αM
(t)

−
∑

α1,...,αM

gα1,...,αM
n1,...,nM

· pn1,...,nM
(t), (6)

where the first (second) summation takes into account the ingoing (outgoing)
probability rates with respect to state (n1, . . . , nM). In the case of closed sys-
tems, with each species i taking values in the set {0, 1, ..., Ni}, the equations
in (6) consist of a set ofM = (N1 + 1)× · · · × (NM + 1) equations providing
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the dynamics of the joint M -dimensional probability distribution. Note that
the hypothesis of closed system is usually reasonable since, even in the case
of open systems, one can truncate the system by constraining the population
of the unbounded species below some reasonable levels, in order to limit the
total number of states yet guaranteeing accurate results. This is justified
because the CME approach is commonly used for reactions involving few
molecules [4].

Hereafter we consider a proper way to collect the M equations given
by (6) in a compact form that satisfies a set of interesting properties. To
this end, for any choice (n1, . . . , nM−1) of the (N1 + 1) × · · · × (NM−1 + 1)
possible settings of the copies of the first M − 1 independent species, define
the (NM + 1)-dimensional vector of probabilities:

Pn1,...,nM−1

.
=


pn1,...,nM−1,0

pn1,...,nM−1,1
...

pn1,...,nM−1,NM

 ∈ RNM+1. (7)

Then, the following vectors of probabilities can be recursively defined (for
1 ≤ i ≤M − 2)

Pn1,...,ni

.
=


Pn1,...,ni,0

Pn1,...,ni,1
...

Pn1,...,ni,Ni+1

 ∈ R(Ni+1+1)×···×(NM+1), (8)

up to the definition of vector P , entailing all the probabilities involved by
the CME:

P .
=


P0

P1
...
PN1

∈ RM. (9)

Since the right-hand side of Eq. (6) is a linear combination of the joint prob-
abilities of the states of the Markov process, the equations for the joint prob-
abilities of all states can be collected in the form of an autonomous linear
system:

Ṗ = GP , G ∈ RM×M. (10)
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It follows from (6) that G is a Metzler matrix (namely all the off-diagonal
components are nonnegative), hence the system in (10) can be regarded as a
positive linear dynamical system [28].

The remainder of the Section is devoted to characterize the block partition
of matrix G, as naturally induced by the recursive definition of P in (7)–(9).
To this end, define the following scalar values for any state (n1, ..., nM) and
any vector of variations (α1, . . . , αM):

Gα1,...,αM
n1,...,nM

=


gα1,...,αM
n1,...,nM

if (α1, . . . , αM) 6= (0, . . . , 0),

−
∑

α′1,...,α
′
M

g
α′1,...,α

′
M

n1,...,nM if (α1, . . . , αM) = (0, . . . , 0).
(11)

Then, the following blocks can be recursively defined, backwards from (11):

Gα1,...,αi
n1,...,ni

=



Gα1,...,αi,0
n1,...,ni,0

Gα1,...,αi,−1
n1,...,ni,1

· · · G
α1,...,αi,−Ni+1

n1,...,ni,Ni+1

Gα1,...,αi,1
n1,...,ni,0

Gα1,...,αi,0
n1,...,ni,1

· · · G
α1,...,αi,−Ni+1+1
n1,...,ni,Ni+1

...
...

. . .
...

G
α1,...,αi,Ni+1

n1,...,ni,0
G
α1,...,αi,Ni+1−1
n1,...,ni,1

· · · Gα1,...,αi,0
n1,...,ni,Ni+1


,

(12)

for 1 ≤ i ≤M − 1, 0 ≤ ni ≤ Ni, 0 ≤ |αi| ≤ Ni. Note that the blocks Gα1,...,αi
n1,...,ni

are square matrices with dimension (Ni+1 + 1) × · · · × (NM + 1). Finally,
matrix G can be built exploiting the set of blocks defined in (12) for the last
(i = 1) backwards iteration:

G =



G0
0 G−1

1 G−2
2 · · · G−N1

N1

G1
0 G0

1 G−1
2 · · · G

−(N1−1)
N1

G2
0 G1

1 G0
2 · · · G

−(N1−2)
N1

...
...

...
. . .

...

GN1
0 GN1−1

1 GN1−2
2 · · · G0

N1


. (13)
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From the block decomposition of matrix G defined by eqs. (11)–(13),
it follows that any subvector Pn1,...,ni

in the right-hand side of Eq. (10)
is multiplied by blocks of the type Gα1,...,αi

n1,...,ni
for some choice of multi-index

(α1, . . . , αi). This happens for any choice of i = 1, . . . ,M ; therefore, for
i = M , the scalar elements pn1,...,nM

are multiplied by scalars of the type
Gα1,...,αM
n1,...,nM

, hence contributing to the dynamics of pn1+α1,...,nM+αM
in (6). As a

matter of fact, the case (α1, . . . , αM) = (0, . . . , 0) defines the main diagonal
of G which, accordingly to (11), is consistent with the CME in (6). The
notation is illustrated in Figure 2 and an example is given in Figure 3, where
it is shown the pattern of zeros of the 9×9 recursive block-tridiagonal matrix
G obtainable with M = 2, N1 = N2 = 2.

The following theorem characterizes the block partitioning of matrix G
in the case of generalized/orthogonal one-step processes, and generalizes the
scalar one-step conditions given in (4)–(5) to all the blocks in G.

Theorem 3. Consider a network of q chemical reactions involving M in-
dependent species, described by the stoichiometric coefficients βij, for i =
1, . . . , q and j = 1, . . . ,M , and assume the recursive block partitioning of G
described in (11)–(13). Then:

(a) Assumption (H1) ( unitary or generalized one-step process) implies
that, for any i = 1, ...,M and for any state (n1, ..., ni), one gets:

Gα1,...,αi
n1,...,ni

= ∅ if max
j=1,...,i

|αj| > 1, (14)

where ∅ is a suitably dimensioned zero matrix.

(b) Assumptions (H1)+(H2) ( orthogonal one-step process) imply that, for
any i = 1, ...,M , and for any state (n1, ..., ni), one gets:

Gα1,...,αi
n1,...,ni

= ∅ if
∑

j=1,...,i

|αj| > 1, (15)

where ∅ is a suitably dimensioned zero matrix.

Proof 4. Case (a). We proceed by induction as follows. Base case (i =
M). The condition in (14) rewrites

gα1,...,αM
n1,...,nM

= 0 if max
j=1,...,M

|αj| > 1, (16)
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G P

Gα1,...,αi
n1,...,ni

}} Pn1,...,ni,ni+1

Pn1,...,ni

d1

d1
G

α′
1,...,α

′
i,α

′
i+1

n1,...,ni,ni+1

G
α1−β1,...,αi+1−βi+1

n1+β1,...,ni+1+βi+1

} }dim. Ni+1 · ... ·NM

dim. Ni+2 · ... ·NM

Gα1,...,αi,αi+1
n1,...,ni,ni+1

d2

d2

Figure 2: Recursive partitioning of the matrix G and of the probability vector P. Note
the same relative positions (expressed by the column shifts d1 and d2) of the submatrices
Gα1,...,αi
n1,...,ni

and G
α1,...,αi,αi+1
n1,...,ni,ni+1 in G and of the subvectors Pn1,...,ni

and Pn1,...,ni,ni+1
in P.

Moreover, at any level of the iteration, the blocks of G sharing the same set of columns
(e.g. the red and the green blocks) are characterized by the same subscripts n1, ..., ni+1;
instead the component-wise summations of subscripts and superscripts are constant for
the blocks of G sharing the same set of rows (e.g. the red and the brown blocks).

where we plugged in the first case in Eq. (11). Since Assumption (H1) holds,
the condition in (16) is directly implied by Proposition 2(a), concluding the
proof of the base case.

Inductive step (1 ≤ i ≤ M − 1). We proceed backwards and we assume
that the condition

Gα1,...,αi,αi+1
n1,...,ni,ni+1

= ∅ if max
j=1,...,i+1

|αj| > 1
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0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0
0 0

00
0 0

0 0
0 0 0
0 0

Figure 3: Pattern of zeros of the 9 × 9 recursive block-tridiagonal matrix G obtainable
with M = 2, N1 = N2 = 2.

holds, in order to show that the condition

Gα1,...,αi
n1,...,ni

= ∅ if max
j=1,...,i

|αj| > 1

holds too. Note that the condition maxj=1,...,i |αj| > 1 implies that maxj=1,...,i+1 |αj|
≥ maxj=1,...,i |αj| > 1. Hence, by the inductive assumption, for any choice
of ni+1 and αi+1, G

α1,...,αi,αi+1
n1,...,ni,ni+1 = ∅, namely all the blocks in (12) are zero

matrices. This implies that Gα1,...,αi
n1,...,ni

= ∅, which concludes the proof of case
(a).

Case (b). The proof follows the same steps as case (a).

Remark 5 (Recursive block-tridiagonal structure of matrix G). Theorem
3 determines a recursive structure of matrix G, which we describe in the fol-
lowing. We distinguish two cases:

• Generalized (non-orthogonal) one-step processes: Theorem 3(a)
implies that G is block-tridiagonal (see in Eq. (1)) and all the non-
zero blocks of G are block-tridiagonal with the same structure of G.
This can be seen by inspecting the block partitioning shown in (12–13)
and noting that, at each level i of the iterative block partitioning, the
blocks in the main diagonal are characterized by αi+1 = 0, the first
block diagonal below the main diagonal is characterized by αi+1 = 1
and the first block diagonal above the main diagonal is characterized
by αi+1 = −1. Taking into account that a zero block at some iteration
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implies that all its internal blocks are zero matrices, the recursive block-
tridiagonal structure of G is directly implied by the condition in (14),
which prevents the existence of non-zero blocks Gα1,...,αi

n1,...,ni
with |αj| > 1

for some j ≤ i.

• Orthogonal one-step processes: Theorem 3(b) determines further
properties of G in the orthogonal case. In particular: G is still block-
tridiagonal with all the non-zero off-diagonal blocks of G being diagonal
matrices. This is implied by the fact that, for any off-diagonal block
Gα1,...,αi
n1,...,ni

, one has |αj| ≥ 1 for some j ≤ i. As a consequence, all the
elements G

α1,...,αi,αi+1,...,αM
n1,...,ni,ni+1,...,nM with (αi+1, ..., αM) 6= (0, ..., 0) (outside the

main diagonal of the block) satisfy the condition
∑

j=1,...,M |αj| > 1 in
(4) and are null.

It is worth noticing that the assumptions of generalized (non-orthogonal)
one-step process are the mildest conditions preserving the recursive block-
tridiagonal structure of G.

Finally note that, since matrix G is recursively block-tridiagonal, it can
be expressed by means of the matrix builder in (1). For any recursion step
i = M − 1, . . . , 1, the blocks in G can be expressed as:

Gα1,...,αi
n1,...,ni

= ΦNi+1

(
{Gα1,...,αi,1

n1,...,ni,ni+1
}, {Gα1,...,αi,0

n1,...,ni,ni+1
}, {Gα1,...,αi,−1

n1,...,ni,ni+1
};ni+1

)
,

and the last step of the backward recursion provides the whole matrix:

G = ΦN1

(
{G1

n1
}, {G0

n1
}, {G−1

n1
};n1

)
.

Remark 6 (Multi-step processes). Assumption (H1) of non-orthogonal
one-step process could be further extended to the more general case of non-
orthogonal h-step process:

gα1,...,αM
n1,...,nM

= 0 if max
j=1,...,M

|αj| > h.

This is the case, for instance, of networks of reactions generating bursts of
(at most) h molecules [29]. As a consequence, Theorem 3 can be generalized
with the aim of highlighting a recursive block-(2h + 1)-diagonal structure of
matrix G in generalized (non-orthogonal) h-step processes. A more formal
characterization of multi-step processes is out of the scope of the present work.
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4. Characterization of the CME solutions

In this Section, we show some interesting properties of matrix G that
reveal to be useful to characterize the CME solutions, with a special focus on
the steady-state distribution. From a theoretical point of view, the explicit
solution of the CME in (10) at time t is:

P(t) = eGtP(0), (17)

where the initial distribution P(0) is given at the initial time t0 = 0.
Most of our attention will be focused on a very classical task when dealing

with CMEs, namely the computation of the stationary distribution [4], pro-
viding fundamental information for understanding the equilibrium condition
of a network of chemical reactions. A way to compute it, while avoiding the
computation of the matrix exponential eGt, suitably exploits the stationary
distribution properties; indeed, it is the probability vector that satisfies the
following steady-state conditions:

GP = 0

1TP = 1

P ≥ 0

(18)

where 0 = (0 · · · 0)T ∈ RM, 1 = (1 · · · 1)T ∈ RM and the inequality is
interpreted as component-wise. We point out that, instead of calculating the
null space in (18), one can take advantage of some interesting properties of
matrix G, coming from the Algebraic Graph Theory [30].

4.1. A graph-theoretical interpretation of biochemical networks

Let us briefly recall the concept of weighted directed graph (digraph)
before getting to the details.

Definition 7. A weighted digraph is a triple (V,E,A), where V = {vk} is
a set of vertices (or nodes), E ⊆ V × V is a set of ordered pairs of vertices
called edges (or links), and A is a weighted adjacency matrix such that, for
any pair (i, j), the entry [A]ij is strictly positive if (vi, vj) is an edge, whilst
[A]ij = 0 otherwise.

Note that the set of edges E can be derived from matrix A and can be
therefore omitted in the previous definition. A very important matrix related
to a weighted digraph is the Laplacian matrix.

15



Definition 8. [30] The Laplacian matrix L of the digraph (V,E,A) is de-
fined as

Lij =


∑
k

[A]ik i = j

−[A]ij otherwise.

We now introduce a formal graph-theoretical interpretation of a Markov
process describing a network of chemical reactions.

Definition 9. The digraph associated to a continuous-time discrete-state
stochastic Markov process is a weighted digraph (V,E,A), where each ver-
tex vk ∈ V is associated to a discrete state (n1, . . . , nM) of the process, and A
is a matrix whose generic element [A]ij is the propensity gα1,...,αM

n1,...,nM
of reaching

the state vj = (n1 + α1, . . . , nM + αM) from the state vi = (n1, . . . , nM). The
set of edges E is uniquely defined by A and includes all the links (vi, vj) with
non-zero probability per unit of time of reaching vj from vi.

The following Theorem shows that matrix G shares most of the properties
of the graph Laplacian, according to a proper order of the nodes in V . This
result, with its consequences, provides a novel characterization (to the best
of the authors’ knowledge) of the dynamic matrix G of a general CME in
terms of well-known results of algebraic graph theory (see e.g. [30]).

Theorem 10. Let us assume that the set V of the nodes of the weighted
digraph associated with the Markov process describing a chemical network is
ordered according to the order of states induced by the recursive construction
in Eqs. (7)–(9). Let L be the Laplacian of the graph. Then G = −LT .

Proof 11. Consider any row i of the matrix G, corresponding to a state
(n1, . . . , nM) of the Markov process. The master equation for such a state is
given by (6), hence

[G]ii = −
∑

α1,...,αM

gα1,...,αM
n1,...,nM

(19)

and
[G]ij = g−α1,...,−αM

n1+α1,...,nM+αM
,

for i 6= j, where the generic column j is referred to the node (n1+α1, . . . , nM+
αM), for some α1, . . . , αM . Note that, from Definitions 8 and 9, [G]ii =
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−[L]ii. Now consider the element [L]ji = −[A]ji of the Laplacian which, from
Definition 9, is (minus) the probability per unit of time of reaching state i,
associated to (n1, . . . , nM), from state j, associated to (n1+α1, . . . , nM+αM);
hence by Definition 9 it is equal to −g−α1,...,−αM

n1+α1,...,nM+αM
, in turn equal to −[G]ij.

This concludes the proof.

Known properties of G, which we rediscover here as a consequence of
Theorem 10, are the following [30]:

• 1TG = 0T , following from (19) and from the fact that, for j 6= i,
[G]ji = gα1,...,αM

n1,...,nM
for some α1, . . . , αM . Hence each column adds up to

zero, implying that G is singular and admits a non-trivial null space;

• all eigenvalues ofG have nonpositive real part, ensuring the convergence
of the dynamics to the null space;

• 1T eGt = 1T for all t, i.e eGt is a column-stochastic matrix. This ensures
that P(t) is a probability vector (nonnegative entries which add up to
1) at any time t, provided that the initial condition P(0) is a probability
vector.

4.2. Existence, uniqueness and properties of the stationary solution

We now rely upon the results stated in the previous subsection to deal
with the solution of the Master Equation at the equilibrium.

The following proposition provides a necessary and sufficient condition
for the existence of a 1-dimensional null space, i.e. a unique stationary dis-
tribution. The condition is that the digraph associated with the network of
reactions has a globally reachable vertex1, which is a milder assumption than
strong connectivity; that is not a major assumption in networks of chemical
reactions, where states can usually jump to adjacent states with non-zero
probability per unit of time.

Proposition 12. The stationary distribution of a discrete-state continuous-
time Markov process is unique if and only if rank(G) = dim(G)− 1, namely
if and only if the digraph associated with the Markov process has a globally
reachable vertex. Under this assumption, 0 is a simple eigenvalue of G, with

1A globally reachable vertex v is a vertex of the digraph such that there exists a directed
path from any node of the graph to v.
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left eigenvector 1T , and the other eigenvalues of G have negative real part.
The stationary distribution is unique and is given by Pss = u0

1Tu0
, where u0 is

the right eigenvector corresponding to the eigenvalue 0. The second smallest
eigenvalue of G (also called algebraic connectivity of the digraph associated
with the Markov process) is related to the convergence speed to the stationary
distribution.

The previous statement is a consequence of known properties of the Lapla-
cian matrix [30], stating that rank(L) = dim(L) − 1 if and only if the
digraph has a globally reachable vertex, and Theorem 10, implying that
rank(G) = rank(L).

Remark 13 (Duality with respect to consensus problems). Theorem
10 and Proposition 12 highlight some interesting duality properties between
the problem of finding the stationary solution of a CME and the so-called
consensus problem, a very popular topic in the context of control of multi-
agent systems [31]. In a common formulation of this problem, each node i
in a network of agents, represented by a directed graph, is an integrator with
dynamics ẋi = ui. Starting from different local states xi, the agents adopt
an appropriate feedback rule ui, just based on the state information of their
own neighbors, in order to asymptotically reach a consensus (or agreement),
namely a common value α of the individual state xi for all the agents of the
network. The closed-loop dynamics of the global state x, collecting all the in-
dividual states, can be restated as ẋ = −Lx, where L is the graph Laplacian.
A consensus is reached if and only if rank(L) = dim(L)− 1, namely if and
only if the digraph has a globally reachable vertex [30]. The right eigenvector
1 of L, associated to the 0 eigenvalue of L, corresponds to the left eigenvector
1T of G and is the consensus eigenvector, because the state converges to α1,
namely all the local states asymptotically become equal. Note that, differently
from the CME, the steady state vector is not uniquely determined, i.e. the
consensus value α depends on the global initial state x(0). The left normal-
ized eigenvector wT of L (with

∑
iwi = 1), associated to the 0 eigenvalue of

L, corresponds to right eigenvector (stationary distribution) Pss of G. The
left eigenvector wT plays a role in determining the agreement value of the
network of agents as an appropriate convex combination of the local initial
states: α = wTx(0).
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5. Computational tools for the CME solution exploiting the block-
tridiagonal realization

The computational burden in dealing with multi-dimensional CMEs is
mainly dependent on the high dimension of G. This section is devoted to
show the benefits in numerical computations provided by the block-tridiagonal
realization of the system, induced by the state ordering considered in (7)–
(9). Note that a random reordering of the state space destroys the recursive
block-tridiagonal structure of the system, hence inhibiting, in general, the
application of the methods illustrated hereafter. In the following, Assump-
tion (H1) and the assumptions of Proposition 12 hold, namely we consider a
generalized one-step process with a unique stationary distribution.

5.1. Tools to compute the stationary solution

The search for the stationary solution requires to solve the linear equation
GP = 0 in (18). The reader may refer to [44] as a reference for numerical
tools involved in the solution of linear matrix equations for dense and sparse
matrices. The proposed following approaches will properly account for the
adopted block-tridiagonal realization.

Gaussian elimination method. Due to the sparsity of matrix G, the
equilibrium problem GP = 0 can be efficiently solved by means of the clas-
sical Gaussian elimination [32]. Moreover, because of the block-tridiagonal
structure, matrix G is diagonally dominant and the diagonal pivoting is nat-
urally employed. This ensures the numerical stability of the algorithm [44].
It is known that for dense matrices, the performance of Gaussian elimina-
tion is cubic with respect to the matrix dimension [48] but, in case of sparse
matrices, one can benefit from the known position of the many zero entries.
For instance, in the case of tridiagonal matrices, the Thomas algorithm [47]
implements the Gaussian elimination with a performance that is linear with
respect to the matrix dimension. The performance of the Gaussian elimina-
tion method will be tested in an example in Subsection 6.1.

Block LU decomposition method. The proposed block-tridiagonal
structure to organize the CME plays an active role to lighten the computa-
tional burden when properly exploiting the LU decomposition. According to
the Doolittle algorithm for the LU decomposition [33], matrix G can be fac-
torized as G = L·U , with L a unit (non-singular) lower triangular matrix and
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U a (possibly singular) upper triangular matrix. Therefore, the computation
of the stationary distribution provided by the solution of GPss = LUPss = 0
is reduced to the computation of the solution of the upper-triangular system
UPss = 0, by backward substitution.

Moreover, according to the block-tridiagonal structure and from Theorem
3, we know that matrix G in (13) assumes a simpler structure as:

G =



G0 G+
0 ∅ ∅ · · · · · · ∅

G−1 G1 G+
1 ∅ · · · · · · ∅

∅ G−2 G2 G+
2 ∅ · · · ∅

... ∅ . . . . . . . . .
...

...

...
...

. . . . . . . . . . . . ∅

...
...

. . . . . . . . . . . . G+
N1−1

∅ ∅ ∅ · · · ∅ G−N1
GN1



, (20)

where we renamed G+
i := G−1

i+1, G−i := G1
i−1 and Gi := G0

i for all i, for an eas-
ier notation. Thus, without loss of generality, matrix G can be decomposed
as G = LU , where L and U have the following structure:

L=



L0 ∅ ∅ · · · ∅

L−1 L1 ∅ · · · ∅

∅ L−2
. . .

...
...

...
. . . . . . . . . ∅

∅ · · · ∅ L−N1
LN1


, U=



U0 U+
0 ∅ · · · ∅

∅ U1 U+
1

. . .
...

...
...

. . . . . . ∅

...
...

. . . . . . U+
N1−1

∅ ∅ · · · ∅ UN1


. (21)

Algorithm 1 provides a scheme to compute the blocks in (21) (Forward
Elimination) according to which the components of the steady-state distri-
bution are achieved (Backward Substitution). Note that, taking advantage of
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the block-bidiagonal structure of matrices L and U , the LU decomposition
allows to manipulates blocks of reduced size with respect to G.

1: First Iteration:
[L0, U0] =lu(G0);
U+

0 = L−1
0 G+

0 ;
2: Forward Elimination:
3: for (i = 1 to N1 − 1) do
4: L−i = G−i U

−1
i−1;

[Li, Ui] =lu(Gi − L−i U+
i−1);

U+
i = L−1

i G+
i ;

5: end for
6: Last Forward Elimination:
L−N1

= G−N1
U−1
N1−1;

[LN1 , UN1 ] =lu(GN1 − L−N1
U+
N1−1);

7: Find p̃N1 ≥ 0, p̃N1 6= 0 s.t. UN1 p̃N1 = 0;
8: Backward Substitution:
9: for (i = N1 − 1 to 0) do

10: p̃i = −U−1
i U+

i p̃i+1;
11: end for
12: p̃ = [p̃0 p̃1 · · · p̃N1 ]

′;

13: Pss = p̃
1T p̃

;

Algorithm 1: Computation of the stationary distribution via Block
LU Decomposition for one-step processes. Differently from elsewhere in
the paper (e.g. in Eq.(13)), the superscript ’-1’ here denotes the matrix
inversion.

A few comments about Algorithm 1. We assume that the command lu
denotes the Doolittle algorithm for the LU decomposition. Since G is singu-
lar and the stationary distribution is assumed to be unique, this necessarily
results in matrix UN1 being singular with 1-dimensional null space, hence
p̃N1 in line 7 exists and is uniquely determined up to the multiplication by
a constant. Blocks Li are invertible for all i and blocks Ui are invertible for
i < N1. The normalization in line 13 makes Pss unique. The algorithm will
be exploited in an example in Section 6.1.

Reduced order system. A way to further speed-up the steady-state
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computation is to properly exploit the mass-balance constraints of closed
systems. In Eqs. (7)–(9), we proposed a recursive construction of P includ-
ing all the states (n1, . . . , nM) in the M -dimensional hyper-rectangular lattice
{0, 1, ..., N1}× . . .×{0, 1, ..., NM}. Note that, in closed systems, all the states
of the lattice not fulfilling the mass-balance constraints are not reachable (in
the sense of Munsky et al. [17]) at any time from the set of mass-balanced
states and have a zero steady-state probability. Therefore, one can erase a
priori the components referred to those states from the vector P , as well as
the corresponding rows/columns in G, thus obtaining a reduced dynamics
˙̃P = G̃P̃ and a reduced equilibrium equation G̃P̃ = 0. The reduced ma-

trix G̃ has dimension M̃ ≤ M, in general, and still possesses a recursive
block-tridiagonal structure, and can be defined in terms of a more general
matrix builder than the one in (1). In matrix G̃, in fact, keeping the same
notation as in (1), the square blocks in {Bi} are not equally dimensioned
and the sequences {Ai} and {Ci} include, in general, rectangular blocks of
appropriate dimensions. Matrix L̃ = −G̃T is still the Laplacian of the sub-
graph induced by the set of mass-balanced states of the biochemical network.
Hence G̃ enjoys the same properties, with respect to such a subgraph, illus-
trated in Subsection 4.1 for G with respect to the original digraph, with the
necessary modifications. In particular, the stationary distribution is unique
if and only if the subgraph of the mass-balanced states contains a globally
reachable node. In Subsection 6.2, we will show an example of the remarkable
complexity reduction obtained by considering G̃ instead of G in a practical
case.

Clearly, the reduced system obtained by means of the mass balance con-
straints may also be applied to the Gaussian elimination algorithm and to
the Block LU decomposition. In this last case, matrices {Li} and {Ui} may
well be rectangular, and the inverse matrices in Algorithm 1 may need to be
reinterpreted as pseudo-inverses, which can lead to singularity issues.

5.2. Transient solution

The second part of the Section is devoted to addressing the computa-
tion of the explicit transient solution of the CME, formally given by (17).
Unfortunately, the matrix exponential of a block tridiagonal matrix is not
block-tridiagonal, in general, therefore the computation of the solution P(t)
of the master equation does not take particular advantages of the one-step
assumption. Furthermore, the large dimension of matrix G in general cases
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makes the computation of eGt a hard task. Efficient methods to compute
and approximate the matrix exponential can be found in [35, 39].

An alternative way to face the numerical problem could be to discretize
the linear CME (17) according to a fixed step size ∆t:

Pk+1 = GdPk, Gd = eG∆t, (22)

with Pk = P(k∆t) for any k ∈ N0. The exact discretization (22) does
not introduce any approximation but, unfortunately, does not simplify the
problem of computing the matrix exponential Gd. To this end, we can lighten
the computational burden by truncating the Taylor expansion providing Gd.
This way, for a given h ∈ N, we build up the algorithm:

P̃k+1 = Gh
dP̃k, P̃0 = P(0), Gh

d =
h∑
s=0

Gs(∆t)s

s!
, (23)

providing P̃k, a computationally affordable estimate of Pk, for any k ∈ N0.
Note that the matrix Gh

d is recursively block-(2h + 1)-diagonal, so it is
generally sparse. Furthermore, matricesG andGh

d have the same eigenvectors
with the eigenvalues given by

Λ(Gh
d) =

{
h∑
s=0

λsi (∆t)
s

s!
: λi ∈ Λ(G)

}
,

where we denoted by Λ(·) the spectrum of a matrix. Note that, from Proposi-
tion 12, the right eigenvector u0, providing the unique stationary distribution
as Pss = u0

1Tu0
, corresponds to the single eigenvalue 0 of G and to the single

eigenvalue 1 of Gh
d , whatever order h ∈ N is chosen. As a matter of fact, if

matrix Gh
d preserves the stability of the corresponding discrete-time system,

the asymptotic solution coming out by iteratively running (23) definitely
converges to the real steady-state solution, thus providing a further way to
compute it. The problem is to design the step size ∆t and the approximation
order h in order to ensure Gh

d is Schur, i.e. has eigenvalues in the unitary
circle.

The first order (Euler) approximation (h = 1), see e.g. [49], deserves a
particular attention because the matrix G1

d is block-tridiagonal with same
recursive structure of G, thus making the computation very efficient. The
choice of the sampling time ∆t in this case is addressed in the following
result.
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Proposition 14. Consider the first-order discrete-time approximate CME

P̃k+1 = G1
dP̃k, P̃0 = P(0), (24)

where G1
d = I +G∆t, with I the M-dimensional identity matrix. Assume

that rank(G) =M− 1 and

0 < ∆t <
1

maxj=1,...,M|[G]jj|
, (25)

where the elements [G]jj are the diagonal entries of G. Then the discrete-time
approximate CME in (24) converges (as k → +∞) to the exact stationary
distribution Pss of the continuous-time CME in (10).

Proof 15. The proof is achieved by showing that (25) ensures that matrix
G1
d is Schur. Indeed, by applying the Gershgorin circle theorem [34], the

spectrum of G1
d, given by Λ(G1

d) = {1 + λi∆t : λi ∈ Λ(G)}, can be bounded
in the complex plane as follows:

Λ(G1
d) ⊂

M⋃
j=1

D([G1
d]jj,

∑
i 6=j

[G1
d]ij),

where D(a, b) denotes the closed disk centered at a with radius b. Since
G1
d = I+G∆t, we can restate any element [G1

d]ij in terms of the corresponding
element [G]ij of G. So one gets:

Λ(G1
d) ⊂

M⋃
j=1

D(1 + [G]jj∆t,
∑
i 6=j

[G]ij∆t)

=
M⋃
j=1

D(1 + [G]jj∆t,−[G]jj∆t),

where we used the property that the columns of G add up to zero. Note that
the disks are all centered on the real axis and the point (1, 0) of the complex
plane belongs to all the disks. Hence, each Gershgorin circle is tangent to
the unit circle and can be made internally tangent provided that its radius
−[G]jj∆t is smaller than 1. By imposing the joint conditions −[G]jj∆t < 1
for all the circles, one gets:

∆t < min
j=1,...,M

− 1

[G]jj
=

1

maxj=1,...,M |[G]jj|
, (26)

which concludes the proof.
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Note that Proposition 14 provides an upper bound for ∆t by avoiding
the explicit computation of the spectrum of G1

d, which is computationally
demanding. On the other hand, the choice of ∆t imposed by (26) might
be very conservative. As a matter of fact, it is common practice to try to
increase its value until one gets a numerical blow-up.

Remark 16. The tridiagonal form of (20) allows to efficiently compute the
components of vector P̃k. Indeed, analogously to partition (9), we may de-
compose

P̃k = [P̃k,0 P̃k,1 · · · P̃k,N1 ]
T , (27)

so that Eq. (24) becomes:

P̃k+1,j = G−j P̃k,j−1∆t+ (I +Gj∆t)P̃k,j +G+
j P̃k,j+1∆t, (28)

with j = 0, ..., N1, assuming P̃k,0 = P̃k,N1+1 = 0 and G−0 = G+
N1

= 0, and I
the identity matrix with the same dimension of Gj. In Section 6.2, we will
show the transient behavior of the Euler approximation in an example, in
comparison with other CME solvers.

6. Simulation results

All the simulations in this section have been computed in the Matlab
suite on an Apple MacBook Pro laptop with 2.5 GHz Intel Core i5 CPU and
16 GB RAM.

6.1. Orthogonal one-step process: miRNA-protein toggle switch

This first example is taken from [36], where a toggle switch involving a
protein compound and a miRNA cluster is considered. According to the def-
initions introduced in Sections 2–3, the bivariate master equation modeling
the biological framework under investigation provides an orthogonal one-step
process with non-trivial transition probabilities:

g1,0
n1,n2

= ᾱ +
k1n2

1

Γ1+n2
1+Γ2n2

g0,1
n1,n2

= β + k2n1

g−1,0
n1,n2

= δn1

g0,−1
n1,n2

= γn2

(29)
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where species Y1 and Y2 represent the E2F-Myc complex and the miRNA
cluster concentrations, respectively. The chosen parameters are ᾱ = 1.68,
β = 0.202, δ = 0.2, γ = 0.2, k1 = 90, k2 = 0.05, Γ1 = 10300, Γ2 = 1006
(see [36] and references therein for more details on meaning and measurement
units of the model above). In [36], the stationary distribution for this process
is not computed exactly, but a reduced one-dimensional model is studied,
by exploiting the different time scale for the two reactions. In particular,
n2 is considered as the fast variable and the value of its steady state is
computed by imposing g0,1

n1,n2
= g0,−1

n1,n2
in (29), to obtain n2 = β+k2n1

γ
. Such

a value is substituted into the bivariate master equation, thus obtaining
an approximate scalar CME, whose stationary distribution can be easily
computed analytically. This example shows the possibility of poor agreement
of the 1D approximation driven by different time scales with the original 2D
system.

We applied the Gillespie Stochastic Simulation Algorithm (SSA) [5] to
the described model. We repeated the stochastic simulation for the example
above by means of 2·104 Monte Carlo runs of SSA, with a time horizon of 103

seconds and at most 107 observed reactions for each run, and we plotted the
statistics of the occurrences of the steady states for n1. We compared them
to the previously described 1D stationary distribution and to the solution of
GP = 0, obtained by means of the methods illustrated in Section 5. The
matrix G was built by approximating the model with a closed system (as in
[36]) with a sufficiently large number of copies (N1 = 300, N2 = 80), chosen
so that the probability of generation of further molecules is negligible. While
the Monte Carlo runs of the Gillespie Algorithm took several hours, the
computation of the 2D stationary distribution by sparse Gauss Elimination
(see Section 5.1) was computed in just 45 seconds. The computation time was
further reduced in methods explicitly exploiting the block tridiagonal form of
G. For instance, by employing the Block LU decomposition (Algorithm 1 in
Section 5.1), it reduced to just 0.62 seconds, comparable to the most efficient
(purely numerical) known methods to calculate the eigenvector corresponding
to the smallest magnitude eigenvalue (computed in 0.4 seconds by using the
Matlab sparse linear algebra function “eigs”). One can indeed speed up the
statistical computation and reduce it to 24 minutes, by exploiting the ergodic
properties of the process through a very long SSA run including over 10
million reactions, and by inferring the statistical distribution by computing
the average recurrence time in each state of the process [37]. Although the
time computation is much lower, such a method is still outperformed by the
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aforementioned theoretical methods.
The plots in Figure 4 show the agreement of the statistical estimation (by

SSA simulation) of the steady-state marginal distribution of species Y1 with
the one obtained from the 2D theoretical stationary distribution (which is
the same for the two methods given in Sections 5.1), as well as the mismatch
with respect to the 1D approximate steady-state distribution.
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Figure 4: Comparison among the statistics of steady states provided by the Gillespie
Algorithm (solid blue line), the 2D theoretical stationary distribution (dashed black line)
and the 1D approximate stationary distribution (dash-dotted red line).
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6.2. Non-orthogonal one-step process: CDK activation

Let us consider the following q = 7 biochemical reactions:
Cdk + Cln 
 CdkCln

CdkCln + I 
 CdkClnI

CdkClnI −→ CdkClnIp

CdkClnIp 
 CdkCln + Ip

(30)

which represent a very general framework describing the activation of cyclin-
dependent kinases (Cdk), a family of protein kinases playing a crucial role
in regulating the cell cycle (see e.g. [38] and references therein for further
details). In order to phosphorylate their target proteins, Cdks are required to
bind to a proper cyclin, first reaction in (30); their action, however, is usually
delayed by the binding of an inhibitor, second reaction in (30); the Cdk −
cyclin complex eventually gets rid of the inhibitor after a (not reversible)
phosphorylation, third reaction in (30), followed by the dissociation of the
phosphorylated inhibitor, last reaction in (30).

We choose the M = 4 independent species as Y1 = Cdk, Y2 = I, Y3 =
CdkClnI and Y4 = Ip. According to the standard mass-action law, the
transition probabilities can be considered to be proportional to the number
of molecules of the reacting agents. As a result, a non-orthogonal one-step
process can be defined, described by a 4D master equation, whose non-trivial
transition probabilities are given by:



g−1,0,0,0
n1,n2,n3,n4

= h1n1(b2 − b1 + n1)

g1,0,0,0
n1,n2,n3,n4

= h2(b1 − b3 − n1 + n2 + n4)

g0,−1,1,0
n1,n2,n3,n4

= h3n2(b1 − b3 − n1 + n2 + n4)

g0,1,−1,0
n1,n2,n3,n4

= h4n3

g0,0,−1,0
n1,n2,n3,n4

= h5n3

g0,0,0,1
n1,n2,n3,n4

= h6(b3 − n2 − n3 − n4)

g0,0,0,−1
n1,n2,n3,n4

= h7n4(b1 − b3 − n1 + n2 + n4)

where b = (b1, b2, b3)T is the vector collecting the total mass of the three
elementary species Cdk, Cln and I, being I and Ip two different forms of the
same chemical player. We set b = (30, 15, 30)T and hj = 0.05, for j = 1, ..., q.
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In the following, our goal is to find the transient solution P(t) of the CME
in (10) for the 4D model described above, with initial condition P(0) = P̄
defined by:

P̄n1,n2,n3,n4 =

{
1 if (n1, n2, n3, n4) = (15, 15, 15, 0),

0 otherwise.

Then, we use the transient distribution P(t) to compute the probability (as a
function of time) that the number of molecules of the active kinase CdkCln
exceeds the number of molecules of the inhibited form CdkClnI. Indeed, the
instant when a CdkClnI gets rid of the inhibitor (formally when free CdkCln
exceeds CdkClnI in deterministic methods) is usually considered as the onset
of the Cdk functional activity [38]. For the simulation we consider a time
horizon [0, T ], with T = 300s. The experiment can be repeated for higher
absolute values of masses and different parameters, but the results and the
plots are qualitatively similar.

Since N1 = N2 = N4 = 30 and N3 = 15, the dimension of matrix G
is M = 313 · 16 = 476, 656, but one can reduce this value by erasing from
the vector of steady-state probabilities P the components referred to states
violating the mass constraints, as described in Section 5.2. The dimension
of the reduced matrix G̃ is M̃ = 19, 176 (about 1/25 of the dimensionM of
G).

Different solvers will be compared in achieving the CME solution. Ideally,
computing the exact solution requires the computation of the matrix expo-
nential of G̃. This is not an easy task, even for the reduced-order system, and
the computation is performed in about 75 minutes. Alternatively, the exact
iteration in (22) can be applied, and an accurate solution can be computed
iteratively by means of Expokit [45], which implements the Krylov subspace
method, see e.g. [35]. This approach required 26 seconds with a fixed time
step of ∆t = 1s. Note that the complexity of the method is strictly depen-
dent on the number time points considered, so a lower computation time can
be obtained at the expense of a more coarse sampling.

We then consider the first order (Euler) approximation of the matrix ex-
ponential described in Section 5.2, with time step ∆t = 0.04s computed
by exploiting inequality (25) to ensure convergence to the exact stationary
distribution Pss, in agreement with Proposition 14. Furthermore, the effi-
cient iteration described in Eqs. (27)-(28) is exploited. The whole transient
computation required 70 seconds.
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As a term of comparison, we also consider a Krylov-based FSP Algorithm
based on [40]. With respect to the original FSP [16], where the size of the
state projection is tuned according to the final time T and on the approxima-
tion ε required, the Krylov-FSP algorithm allows to simulate the time horizon
[0, T ] by approximating (via Krylov subspaces) the iteration in (22) and by
using progressively increasing state projections, where the expansion is based
on the concept of N -step reachability [16], which is conceptually analogous
to the breadth-first search applied to the reaction graph. In our case, the
whole network of reactions (including M̃ = 19, 176 states) is visited in 64
expansion steps, while the Krylov-FSP projection at time T , with ε = 0.01,
requires 52 expansion steps and includes 16850 states (−12% with respect
to M̃), so the computational saving in terms of spatial complexity is not
remarkable. On the other hand, the time spent for the computation of the
Krylov-based FSP solution resulted to be higher than the Euler approxima-
tion, mainly due to the computation of the successive approximation spaces,
which required several minutes (although it may be possibly improved, de-
pending on the actual implementation of the expansion algorithm and on the
data structures involved therein).

The simulation results are shown in Figure 5. It is readily seen that the
exact solution computed from (17) is almost indistinguishable from those ob-
tained by means of the approximate methods: the one exploiting the Krylov
subspace method [45], the Euler approximation in (27)-(28) and the one from
the Krylov-based FSP [40]. The probability exceeds the median value 0.5 af-
ter about 114 seconds, when the event that the molecules of CdkCln exceed
those of CdkClnI becomes more likely to happen than not. We let the reader
note that, since reaction CdkClnI −→ CdkClnIp in (30) is not reversible,
all the molecules of CdkClnI eventually vanish. This is in agreement with
Figure 5, where the probability goes to 1 as time increases.

We remark that the exact probabilistic information provided by our ap-
proach cannot be provided by any deterministic models based on the average
or on the reagent concentrations, such as the macroscopic deterministic ODE
computed from the first-order jump moment of the CME (see [4], Chapter
5, for further details). Indeed, since the obtained equation is not linear, it is
known that the average dynamic behavior obtained by integrating numeri-
cally the nonlinear reaction-rate equation is an approximation of the result
obtained solving exactly, by means of (17), the linear (higher-dimensional)
CME. As shown in Figure 6, according to the numerical solution of the con-
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centration equations, the expected number of CdkCln molecules exceeds the
expected number of CdkClnI ones after about 138 seconds, with a percent
relative error around 17%.
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Figure 5: Plot of the probability (as a function of time) that the number of molecules of
CdkCln exceeds the number of molecules of CdkClnI in the cyclin-dependent kinase (Cdk)
reaction network, according to the exact solution (blue solid line) and to the approximate
solutions: the one based on the Krylov subspace method (magenta dotted line), the Euler
approximation (red dash-dotted line), and the one from the Krylov-based FSP (black
dashed line). The trajectories are almost indistinguishable. After about 114 seconds, the
event that the molecules of CdkCln exceed those of CdkClnI is more likely to happen
than not.

7. Conclusions

In this work we presented some results on the dynamical properties and
the efficient solution of the Chemical Master Equation, with a particular focus
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Figure 6: Plot of the solution of the reaction-rate deterministic equation obtained by
means of the first jump moment [4] of the Cdk master equation. The state variables are
here intended either as concentrations or as approximations of the expected populations.
The expected number of CdkCln molecules exceeds the expected number of CdkClnI
ones after about 138 seconds.

on the exact equilibrium distribution. The recursive structure of the dynamic
matrix describing the stochastic evolution of the chemical population relies
on a very common one-step assumption. Indeed, this is not a restriction
because the property of orthogonal one-step process can always be recovered
by means of a generalized definition of independent (non-redundant) species.

The computation of the solution does not exploit any further hypotheses,
e.g. detailed balance property or reversibility of the Markov process, so it can
be applied to very general cases. Moreover, many conceptual results of the
present paper still hold in the infinite dimensional case, with the necessary
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modifications, just requiring some additional technical effort.
The application of the method to real biochemical networks appears to be

promising in that the approach is accurate and allows a cheap management
of the computational resources when compared to other solvers and to the
extensive use of stochastic simulation with the aim of approximating the
probability distributions.
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