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Abstract

For an Itô-like Stochastic Differential Equation (SDE) system, with drift and
diffusion that are formal polynomials of the independent variables, we show
that all moments satisfy an infinite, countable, set of linear ordinary differ-
ential equations. This result is achieved by means of the exact cubification of
the SDE, which consists in a set of deterministic transformations of the state
variables, giving place to a new SDE with further finitely many state vari-
ables. Exact cubification can be considered as an extension to the ‘stochastic
case’ of the exact quadratization of deterministic nonlinear systems, available
in the literature. An example is finally shown, taken from systems biology,
in which, for a basic chemical reaction network the exact moment equation is
written down, and an approximate solution is calculated through a moment
closure method.

Keywords: Stochastic Differential Equations, Moments Equations,
Moments Closure, Exact Cubification, Exact Quadratization, σπ-functions.

1. Introduction

The problem of describing through an Ordinary Differential Equations
(ODE) system the moments evolution of the distribution associated to a non-
linear Stochastic Differential Equations (SDE) system is, up to now, solved
for a very restricted class of SDE only (essentially, for SDE with drift and
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diffusion nonlinearities provided by standard polynomials, i.e. polynomials
with non-negative integer exponents). Within the filtering theory framework,
moments equations use to refer to conditional moments (with respect to some
observed process), therefore they are stochastic processes instead of deter-
ministic quantities, and they are not given in general as a closed system of
SDE. In this regard it is shown in Liptser-Shiryayev (1977)[Ch. 8, eq. (8.10)]
that for a very general class of partially observable processes (those given by
the sum of an increasing process plus a martingale) an any-order conditional
moment can be written as an Itô process, but not as the strong solution of
a SDE, since this point is verified only for the smaller class of Conditionally
Linear Systems (CLS), i.e. nonlinear SDEs which are linear for fixed values
of the observed variable. In the latter case, it can be shown that the SDE
for the i-rd order conditional moment depends on the (i + 1)-rd order one,
eventually leading the moments equations to an infinite dimensional SDE.
In case the process distribution of the CLS is conditionally Gaussian, which
implies that any moment of such a distribution can be written as a function
of the first two moments, this allows to obtain a closed system of SDEs for the
first two conditional moments. For systems with non-stochastic coefficients,
taking the expectation of the aforementioned conditional moments equations
provides the moments equations as an ODE system, with closed ODE arising
only for original linear SDE.

This paper investigates how to achieve the ODE system of the (uncondi-
tioned) moments of the probability distribution associated to a general class
of nonlinear SDE extending that of standard polynomial nonlinearities for
which the problem is known to be solved, though not in closed form. Moti-
vation stems from the many applicative fields of stochastic modelling, where
relevant knowledge from the system is usually inferred by means of first and
second order moments. Among these fields, systems biology has shown an
increasing interest in stochastic modelling and computation. It has been
nowadays established the importance of the noise role in biological processes
Mettetal et al. (2007). Random fluctuations, provided by a wide set of
concurring factors including, for instance, thermal noise or asynchronous oc-
currence of synthesis and degradation events, need to be considered when
modelling most of the molecular processes involved in cellular regulation, as
well as in gene expression, see e.g. Bahar et al. (2006); Bruggerman et al.
(2009); Kiviet et al. (2014). These processes are usually described, up to a
discrete molecular scale, by the Chemical Master Equation (CME) or, up to
a continuous macroscopic scale, by a SDE called Chemical Langevin Equa-
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tion (CLE) Van Kampen (2007). Within this framework, the computation
of moment equations could be fruitfully exploited to infer information on
how noise propagates according to different network wirings or noise sources,
with applications in metabolic as well as in enzymatic reactions or gene ex-
pression networks (see, e.g., Sontag et al. (2015); Oyarzun et al. (2014);
Borri et al (2016b)). Provided that nonlinearities are standard polynomi-
als, moment equations can be computed (though, usually, they are not in
closed form) according to Hespanha et al. (2005); Singh et al. (2011) for
both CME and CLE, actually for any generic stochastic hybrid system, i.e., a
SDE (or an ODE) that allows discrete resets according to a continuous time
Markov chain modeling discrete stochastic events. In those papers, suitable
approximation schemes are also provided to close the moment equations.

In case of SDE with different nonlinearities than those of standard poly-
nomials, to achieve the exact moment equations in explicit form is an open
problem. The main contribution of this paper is to solve such a problem for
a wide class of nonlinearities that non-trivially extends the one of standard
polynomials and includes, for instance, formal polynomials, i.e., polynomials
with generic real exponents. According to Carravetta (2015), formal poly-
nomials will be also said σπ-functions. More in details, the exact moment
equations in explicit form are achieved by means of a preliminary result,
which can be regarded as the stochastic version of the exact quadratization
of nonlinear deterministic systems described in Carravetta (2015), where it
was proven that for a very large class of nonlinearities, there always exists a
change of variables that transforms a finite set of nonlinear ODE into another
(larger) set of ODE, in the old and new variables, with only quadratic non-
linearities. As we will see in the following, this result cannot be extended to
SDE of Itô type, but it can be proven that the same set of change of variables
used in the deterministic case gives place, in the stochastic case, to a cubic
(instead of quadratic) SDE in an augmented set of differential stochastic un-
knowns. Similarly to the deterministic case, we call exact cubification the
transformation of a σπ-SDE into a cubic one. We are not going to prove this
result for the same class of nonlinearities considered in Carravetta (2015),
and limit ourselves to the more restricted (but, nonetheless still wide) class
of σπ-functions, representing indeed the basic class of functions for which
exact quadratization was proven. However, the range of applicability of the
exact cubification can be extended to the larger (than σπ) class of analytic
ICF (Integral Closed Form) functions, according to the same procedure de-
scribed in Carravetta (2015) that substantially consists in a preliminary set
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of relations transforming the original ICF system into a σπ one. In a prelim-
inary version of the present theory Borri et al (2016), an example from the
systems biology framework was presented, modelling a basic, though mean-
ingful, case of gene regulation system. In that case, the SDE was in an ICF
form, thus requiring a preliminary transformation into a σπ system before to
apply cubification. Here, we present a different case from chemical reaction
networks with reaction rates modelled according to a generalised mass action
law, a framework exploited when dealing with ultrasensitivity responses in
systems biology (cf. Ferrell et al. (2014); Ferrell et al. (2014b,c)).

The paper is organised as follows. After §II, where main notations are
introduced following the same lines of Carravetta (2015), including SDE
in the σπ formal definition, in §III the first main result is presented (exact
cubification) showing that any σπ-SDE can be transformed into an equiv-
alent cubic SDE, evolving, in general, in a larger dimensional state space.
The compact vector form of exact cubification is reported in §IV. In §V the
general (linear, infinite-dimensional) moments equation is achieved (which is
the second main result). The applicative example from the systems biology
framework is reported in §VI.

2. Notation

2.1. Indices convention

Throughout the paper we adopt the following indices convention. If
a scalar quantity is defined through a multi-indexed symbol, for instance
ξi1,...,ip ∈ IR, (ij = 1, . . . , νj ∈ IN), then omitting the rightmost index denotes
a column vector, as follows:

ξi1,...,ip−1 = [ξi1,...,ip−1,1, . . . , ξi1,...,ip−1,νp ]
T ∈ IRνp , (1)

omitting the two rightmost indices denotes the stack of the vectors ξi1,...,ip−1 ∈
IRνp , for ip−1 = 1, . . . , νp−1, and so on (up to the vector ξ ∈ IRν1···νp). We also
sometimes denote by a single index, say k, a double index (i, j), by writing
ξk = ξi,j, where k runs as follows:

k = (1, 1), . . . , (1, nj), (2, 1), . . . , (ni, nj).

Double indices are denoted as a bold latin character for the sake of clarity.
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We denote by c the linear map (a matrix) swapping the first two indices
of its argument, i.e.:

(cξ)i2,i1,i3,...,ip = ξi1,...,ip . (2)

Moreover, we define ci2 as the matrix extracting the i2-rd sub-vector of cξ
(or, in other words, the vector obtained by stacking ξi1,i2 with respect to i1):

ci2ξ = (cξ)i2 . (3)

Notice that ci2 (resp: c) is a (ν̄2×ν)-dimensioned (resp: (ν×ν)-dimensioned)
matrix, with

ν = ν1 · ν2 . . . · νp; ν̄2 = ν/ν2. (4)

The calculation of the matrix c is given in Appendix A, Theorem 5. If
ξ ∈ IRα is a random vector, E{ξ} shall denote its expectation. The symbol
Iα denotes the identity in IRα. The symbol δi,j is the discrete Kronecker
function, defined as δi,j = 1 for i = j and δi,j = 0 elsewhere.

2.2. σπ-SDE and their short forms

We consider a stochastic system in IRn whose state variable x(t) ∈ IRn is
supposed to be a diffusion process well defined in some time interval [0, T ] ⊂
IR (where T can be +∞ as well) as the unique strong solution – for a given
random variable x̄ assigned as initial condition: x(0) = x̄ – of an Ito-type
SDE:

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), (5)

where f (resp. g) is a suitable vector function in IRn (resp. a suitable matrix
function in IRn×d), and W (t) ∈ IRd is the standard Wiener process with
incremental covariance dE{WW T} = Iddt.

1 Let us consider equation (5)
written component-wise, and omit the time-dependencies hereinafter:

dxi = fi(x)dt+
d∑
s=1

gi,s(x)dWs. (6)

1Under mild hypotheses, which are essentially the same as for ordinary differential
equations (i.e. that all systems functions are locally Lipschitz in their domain of definition)
we can of course guarantee existence and unicity for a strong-solution over some interval
[0, T ]. The class of functions (formal polynomials) we are going to introduce, fulfills
these requirements. However, note that one cannot assure in general that T = +∞ with
probability one, which, on the other hand, is not assured in the deterministic case either.
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We consider the case of fi and gi,s being σπ-functions, that is to say formal
polynomials in the variable x, accordingly to the following formulas:

fi(x) =

νi∑
l=1

αi,lXi,l; Xi,l =
n∏
j=1

x
pli,j
j , (7)

gi,s(x) =

ν∗i,s∑
λ=1

α∗i,s,λX
∗
i,s,λ; X∗i,s,λ =

n∏
j=1

x
p∗,s,λi,j

j , (8)

where pli,j and p∗,s,λi,j are real exponents, and αi,l, α
∗
i,s,λ real parameters, time-

varying in general. A stochastic system (6) with drift and diffusion given
by σπ-functions, as in (7), (8), is said a σπ-stochastic system. We call the
functions Xi,l given in (7) drift-monomials, and the functions X∗i,s,λ given in
(8) diffusion-monomials. By substituting (7), (8) into (6), and introducing
the compound double index k = (s, λ) = (1, 1), . . . (1, ν∗i,1), . . . (d, ν∗i,d), we
obtain:

dxi =

νi∑
l=1

αi,lXi,ldt+

(d,ν∗i,d)∑
k=(1,1)

α∗i,kX
∗
i,kdW

∗
k , (9)

W ∗
k = W ∗

s,λ = Ws, ∀λ = 1, . . . , ν∗i,s. (10)

Let us define
ν∗i = ν∗i,1 + . . .+ ν∗i,d, (11)

which is the number of values that the double index k takes on, and let
ι an enumeration of these values, i.e. an invertible function ι such that
k = ι(l∗), for l∗ = 1, . . . , ν∗i . Equation (9) can be written in a compact form
by introducing the formal coefficients vi,l defined as:

vi,l = αi,ldt, for l = 1, . . . , νi, (12)

vi,l = α∗i,ι(l−νi)dW
∗
ι(l−νi), l = νi + 1, . . . , µi, (13)

where µi = νi+ν
∗
i , and extending the definition of αi,l, Xi,l for l = νi+1, . . . , µi

as follows
αi,l = α∗i,ι(l−νi), Xi,l = X∗i,ι(l−νi). (14)

Then eq. (9) turns into the short form:

dxi =

µi∑
l=1

vi,lXi,l = v̄Ti X̄i, (15)
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where the barred symbols v̄i (resp: X̄i) are used to indicate that the indices
convention has been applied with respect to the extended definitions of vi,l
(resp: Xi,l) i.e. for the index l running up to µi. We will use the standard
notation vi (resp: Xi) when the indices convention is applied to the original
vi,l (resp: Xi,l), i.e. the index l runs up to νi only.

Note that X∗i is a sub-vector of X̄i, and in fact:

X̄i = [(Xi)
T , (X∗i )T ]T , (16)

and thus we have:
X∗i = εiX̄i, (17)

for a suitable {0, 1}-valued matrix εi. Moreover, X ∈ IRr−r∗, X∗ ∈ IRr∗ , with

r = µ1 + . . .+ µn, (18)

r∗ = ν∗1 + . . . , ν∗n, (19)

and we have
X∗ = εX̄, with ε = diag{ε1, . . . , εn}. (20)

The short form (15) is a SDE where the drift and diffusion are hidden
into the formal coefficients vi,l. Another short form, which does not hide the
drift and the diffusion, can be obtained by directly applying the convention
on the indices to the coefficients α and α∗. Thus fi and gi,s in (7), (8) rewrite

fi(x) = αTi Xi, (21)

gi,s(x) = α∗Ti,sX
∗
i,s, (22)

and (6) becomes:

dxi = αTi Xidt+
d∑
s=1

α∗Ti,sX
∗
i,sdWs. (23)

In the following we use both the representations (15) and (23). The reader
has to be aware that X∗i,s in (23) is a vector, while X∗i,k is a scalar, and
indeed the latter is a quantity with three indices (remind that k in (9) is a
double index) and X∗i,s is the vector which aggregates the X∗i,k (= X∗i,s,λ) by
saturating the index λ, accordingly with the convention on indices.
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3. Exact cubification of σπ-SDE.

Recall that the Itô formula, for a general (measurable and scalar) function
φ(x), and an Itô process x satisfying (6), writes as follows (cf. Liptser-
Shiryayev (1977)):

dφ(x) =
n∑
j=1

∂φ

∂xj
dxj +

1

2

n,n,d∑
j,j′,s

gj,s(x)gj′,s(x)
∂2φ

∂xj∂xj′
dt. (24)

The main theoretical result of the paper is stated in the following Theorem.

Theorem 1. Let us consider the Ito-type σπ stochastic system described (in
short form) by eq. (15). Let us define, for i = 1, . . . , n and l = 1, . . . , µi the
functions Zi,l(x):

Zi,l = Xi,lx
−1
i , l = 1, . . . , νi, (25)

Zi,l = Z∗i,ι(l−νi), l = νi + 1 + . . . , µi, (26)

where, for k = (1, 1), . . . , (d, ν∗i,d), the functions Z∗i,ι(l−νi) are defined as:

Z∗i,k = X∗i,kx
−1
i . (27)

Moreover let the exponents πli,j be defined as:

πli,j = pli,j − δi,j, l = 1, . . . , νi, (28)

πli,j = π
∗,ι(l−νi)
i,j , l = νi + 1 + . . . , µi, (29)

π∗,ki,j =p∗,ki,j − δi,j, k = (1, 1), . . . , (d, ν∗i,d), (30)

π̃li,j,j′ = πli,j(π
l
i,j′ − δj,j′). (31)

Then, the processes xi and Zi,l satisfy the (Ito-type) SDE:

dxi = (αTi Zi)xidt+
d∑
s=1

(α∗Ti,sZ
∗
i,s)xidWs, (32)

dZi,l =
n∑
j=1

πli,j(α
T
j Zj)Zi,ldt+

1

2

n,n,d∑
j,j′,s

π̃li,j,j′(α
∗T
j,sZ

∗
j,s)(α

∗T
j′,sZ

∗
j′,s)Zi,ldt

+

n,d∑
j,s

πli,j(α
∗T
j,sZ

∗
j,s)Zi,ldWs, (33)

for i = 1, . . . , n, and l = 1, . . . , µi.
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Proof. Equation (32) comes directly from the definition of Zi,l given in
(25). By Itô formula (24), with φ(x) = Zi,l(x), using (15), we have

dZi,l =
n∑
j=1

∂Zi,l
∂xj

(v̄Tj X̄j) + χ, (34)

where χ, through (22), is given by:

χ =
1

2

n,n,d∑
j,j′,s

(α∗Tj,sX
∗
j,s)(α

∗T
j′,sX

∗
j′,s)

∂2Zi,l
∂xj∂xj′

dt. (35)

By (25) and the definition of Xi,l given in (7) one has

∂Zi,l
∂xj

=
∂

∂xj
Xi,lx

−1
i =

∂

∂xj

n∏
s=1

x
pli,s
s x−1

i

= pli,jXi,lx
−1
j x−1

i −Xi,lx
−2
i δi,j = πli,jXi,lx

−1
j x−1

i

= πli,jZi,lx
−1
j

which multiplied by v̄Tj X̄j, again by (25) yields

∂Zi,l
∂xj

(v̄Tj X̄j) = πli,jZi,l(v̄
T
j Z̄j), (36)

where
Z̄j = X̄jx

−1
j . (37)

Moreover

∂2Zi,l
∂xj∂xj′

=
∂

∂xj′

∂Zi,l
∂xj

=
∂

∂xj′
πli,jZi,lx

−1
j = πli,j

∂

∂xj′

(
Zi,lx

−1
j

)
= πli,jπ

l
i,j′Zi,lx

−1
j x−1

j′ −π
l
i,jZi,lx

−2
j δj,j′ = πli,jZi,lx

−1
j x−1

j′ (πli,j′−x−1
j xj′δj,j′). (38)

Observe that πli,j′ − x−1
j xj′δj,j′ = πli,j′ − δj,j′ , therefore by (31), eq. (38)

rewrites
∂2Zi,l
∂xj∂xj′

= π̃li,j,j′Zi,lx
−1
j x−1

j′ (39)

which, replaced into (35) yields

χ =
1

2

n,n,d∑
j,j′,s

π̃li,j,j′(α
∗T
j,sZ

∗
j,s)(α

∗T
j′,sZ

∗
j′,s)Zi,ldt (40)

9



Now, from (15), (23), and recalling (37), we have

v̄Tj Z̄j = αTj Zjdt+
d∑
s=1

α∗Tj,sZ
∗
j,sdWs,

which has to be used into (36). The result is

∂Zi,l
∂xj

(v̄Tj X̄j) = πli,j(α
T
j Zj)Zi,ldt+

d∑
s=1

πli,j(α
∗T
j,sZ

∗
j,s)Zi,ldWs, (41)

which, used into (34), with (40) replaced as well into (34), finally yields (33).
•

Similarly as in Carravetta (2015), we name the SDE (33) the stochastic
driver, and the bilinear SDE (32), the stochastic final stage, associated to the
SDE (6). We name the SDE systems constituted by the stochastic driver
and final stage an exact cubification of the original SDE in (6).

4. Cubification in vector form

By using Kronecker products (see Appendix A), we can gather equations
(32) and (33) in order to obtain a couple of vector equations. Note that
(33) is an autonomous SDE, in the vector variable Z̄ aggregating (37), since
Z∗ just collects a part of the entries of Z̄, as one can read out from (25), (27).

Let us consider the vectors αi, α
∗
i,s in the final stage equation (32), and

the coefficients π, π̃ defined in (28)–(31). Define

βi,l,j,l′ = πli,jαj,l′ , (42)

γs,i,l,j,m = πli,j(cα
∗)s,j,m, (43)

hs,i,l,j,m,j′,m′= π̃li,j,j′(cα
∗)s,j,m(cα∗)s,j′,m′ , (44)

where, looking at (8), and on account of (2), we infer that the indices s, j,m
range from (1, 1, 1) to (d, n, ν∗j,s), and thus c is a square matrix having dimen-
sion q = n · d · r∗, with r∗ given by (19). The matrix c can be calculated by
applying Theorem 5 to the present case (ν1 = n, ν2 = d, ν3 = r∗) the result
is:

c = CT
n,d ⊗ Ir∗ . (45)
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where CT
n,d are commutation matrices defined in Appendix (Theorem 5).

Note that c has q rows, which can be partitioned into d subsets of rows, each
of cardinality n · r∗. Then, accordingly with the notation stated in (2), in
the following we denote by cs the (n · ν∗ × q)-dimensioned matrix obtained
from c by extracting the s-th subset of rows. That said, let us build up the
matrices

A = diag{αT1 . . . . , αTn}, (46)

A∗s = diag{(cα∗)Ts,1. . . . , (cα∗)Ts,n}, (47)

A = diag{AT1 , . . . , ATn}, (48)

A∗s = diag{(A∗s)T1 , . . . , (A∗s)Tn}, (49)

F = diag{βT1,1, . . . , βTn,µn}, (50)

H∗s = diag{hTs,1,1, . . . , hTs,n,µn}, (51)

G∗s = diag{γTs,1,1, . . . , γTs,n,µn}, (52)

where Ai (resp: (A∗s)i) denotes the i-th column of the matrix A (resp: A∗s).
Moreover, let us define

Bs = A∗s(In ⊗ cs)(In ⊗ ε), (53)

H =
1

2

d∑
s=1

H∗s(Ir ⊗ c[2]
s )(Ir ⊗ ε[2]), (54)

Gs = G∗s(Ir ⊗ cs)(Ir ⊗ ε), (55)

where ε is the matrix defined through (17), (20). We can prove the following
Theorem.

Theorem 2. (Cubification in vector form). The final stage and driver are
given, in vector form, by:

dx = A(x⊗ Z)dt+
d∑
s=1

Bs(x⊗ Z)dWs, (56)

dZ =
(
FZ [2] + HZ [3]

)
dt+

d∑
s

GsZ
[2]dWs. (57)

By defining the aggregate process Z ∈ IRn+r:

ZT = [xT , ZT ], (58)
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we can write the exact cubification (56), (57) according to the following com-
pact SDE:

dZ = (ΦZ[2] + ΨZ[3])dt+
d∑
s=1

ΓsZ
[2]dWs. (59)

with

Φ =

[
0 A 0 0
0 · · · 0 F

]
∈ IR(n+r)×(n+r)2

; (60)

Ψ =

[
0 · · · · · · 0
0 · · · 0 H

]
∈ IR(n+r)×(n+r)3

; (61)

Γs =

[
0 Bs 0 0
0 · · · 0 Gs

]
∈ IR(n+r)×(n+r)2

. (62)

Proof. The following preliminary results are required. Given two vectors
v, w ∈ IRp we define v ◦ w ∈ IRp as (v ◦ w)i = viwi. Let M be a ν1 × ν2

matrix, and x ∈ IRν2 , y ∈ IRν1 . Then, there obviously exists a matrix M,
(ν1 × ν1ν2)-dimensioned, such that:

(Mx) ◦ y = M(y ⊗ x). (63)

As a matter of fact, such a matrix M can be easily derived by noting that
the i-th entry (i = 1, . . . , ν1) of the vector (Mx) ◦ y is

∑
jMi,jyixj, and yixj

is the (i, j)-th entry of the ν1ν2 dimensioned vector y ⊗ x. Thus, defining
M = diag{MT

1 , . . . ,M
T
n } we get (63).

By suitably exploiting these results, since (α∗Ti,sZ
∗
i,s)xi = ((cα∗)Ts,i(cZ

∗)s,i)xi,
by aggregating in i for eq. (32), we obtain

dx = (AZ) ◦ xdt+
d∑
s=1

(A∗s(cZ
∗)s) ◦ xdWs

= A(x⊗ Z)dt+
d∑
s=1

A∗s(x⊗ (cZ∗)s))dWs. (64)

Let us consider the three terms on the right-hand side of (33), we have

πli,jαj,l′Zj,l′ = βi,l,j,l′Zj,l′

π̃li,j,j′(α
∗
j,s,mZ

∗
j,s,m)(α∗j′,s,m′Z

∗
j′,s,m′)

= π̃li,j,j′(cα
∗)s,j,m(cα∗)s,j′,m′(cZ

∗)s,j,m(cZ∗)s,j′,m′

= hs,i,l,j,m,j′,m′(cZ
∗)s,j,m(cZ∗)s,j′,m′

πli,jα
∗
j,s,mZ

∗
j,s,m = πli,j(cα

∗)s,j,m(cZ∗)s,j,m = γs,i,l,j,m(cZ∗)s,j,m,
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thus, taking the sums:∑
j,l′

πli,jαj,l′Zj,l′ = βTi,lZ, (65)∑
j,j′,m,m′

π̃li,j,j′(α
∗
j,s,mZ

∗
j,s,m)(α∗j′,s,m′Z

∗
j′,s,m′) = hTs,i,l(cZ

∗)[2]
s , (66)∑

j,m

πli,jα
∗
j,s,mZ

∗
j,s,m = γTs,i,l(cZ

∗)s. (67)

Notice that the same matrix c swaps the first two indices in both α∗ and Z∗.
Substituting in (33), we have

dZi,l = (βTi,lZ)Zi,ldt+
1

2

d∑
s

hTs,i,l(cZ
∗)[2]
s Zi,ldt+

d∑
s

γTs,i,l(cZ
∗)sZi,ldWs. (68)

Let F,H∗s , G
∗
s be the matrices whose (i, l)-th rows are βTi,l, h

T
s,i,l, γ

T
s,i,l, respec-

tively. By aggregating with respect to the double index (i, l) eq. (68), we
obtain

dZ =
(

(FZ) ◦ Z +
1

2

d∑
s

(H∗s (cZ∗)[2]
s ) ◦ Z

)
dt+

d∑
s

(G∗s(cZ
∗)s) ◦ ZdWs

=
(
FZ2 +

1

2

d∑
s

(H∗s(Z ⊗ (cZ∗)[2]
s )
)
dt+

d∑
s

(G∗s(Z ⊗ (cZ∗)s)dWs. (69)

By suitably exploiting the Knonecker product properties (see, e.g. Carravetta
et al. (1996) and references therein), we have

x⊗ (cZ∗)s = (In · x)⊗ (csZ
∗) = (In ⊗ cs)(x⊗ Z∗)

= (In ⊗ cs)(In · x⊗ εZ) = (In ⊗ cs)(In ⊗ ε)(x⊗ Z),

which, with Z playing the role of x, and recalling that Z ∈ IRr turns into:

Z ⊗ (cZ∗)s = (Ir ⊗ cs)(Ir ⊗ ε)Z [2].

Moreover,

Z ⊗ (cZ∗)[2]
s = (Ir · Z)⊗ (csZ

∗)[2]

= (Ir · Z)⊗ c[2]
s Z

∗[2] = (Ir ⊗ c[2]
s )(Z ⊗ Z∗[2])

= (Ir ⊗ c[2]
s )(Ir · Z ⊗ ε[2]Z [2]) = (Ir ⊗ c[2]

s )(Ir ⊗ ε[2])Z [3].

13



The identities above, used in (64), (69), yield (56), (57). Finally, by exploiting
(58), we have

Z[2] =


x[2]

x⊗ Z
Z ⊗ x
Z [2]

 , Z[3] =



x[3]

x[2] ⊗ Z
x⊗ Z ⊗ x
x⊗ Z [2]

Z ⊗ x[2]

Z ⊗ x⊗ Z
Z [2] ⊗ x
Z [3]


, (70)

from which we readily derive the matrices (60)–(62). •

5. Equations of the Moments

Consider the exact cubification form described by (59) and suppose that
all moments of Z exist and are finite, namely:

mh(t) = E{Z[h](t)} < +∞, t ∈ [0,+∞), h = 1, 2, . . .

Note that all moments of h-th order of x(t) are included in the entries of
mh(t). In order to write the equations of all mh, h = 1, 2 . . ., we need some
additional tools that can be found in Carravetta et al. (2000), and we report
here for the ease of the reader.

For any C∞ matrix function F : IRn 7→ IRm×p, we introduce the differential
operator (d/dx)⊗ defined as

d

dx
⊗ F (x) =

[∂F (x)

∂x1

. . .
∂F (x)

∂xn

]
∈ IRm×np. (71)

In case of a vectorial map F : IRn 7→ IRm, (d/dx)⊗ provides the Jacobian
matrix. Higher-order derivatives of F can be represented by the following
recursive formalism

d[i]

dx[i]
⊗ F (x) =

d

dx
⊗
[
d[i−1]

dx[i−1]
⊗ F (x)

]
∈ IRm×nip. (72)

In case of polynomial transformations (denoted according to the Kronecker
formalism, see the Appendix), the following formulas involved in the first
and second order derivatives will be exploited.
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Lemma 1. (Lemma 4.1 in Carravetta et al. (2000)) For any integer h ≥ 1
and x ∈ IRn, it results

d

dx
⊗ x[h] = Uh

n (In ⊗ x[h−1]) (73)

and for any h > 1:

d[2]

dx[2]
⊗ x[h] = Oh

n(In2 ⊗ x[h−2]), (74)

where

Uh
n =

( h−1∑
τ=0

CT
n,nh−1−τ ⊗ Inτ

)
, (75)

Oh
n =

h−1∑
τ=0

h−2∑
s=0

(CT
n,nh−1−τ ⊗ Inτ )(In ⊗ CT

n,nh−2−s ⊗ In). (76)

and matrices CT
u,v, u, v ∈ IN, are commutation matrices (see Appendix, The-

orem 5).

Theorem 3. The set of all moments mh, for h ∈ IN \ {0} of the random
process Z ∈ IRq, with q = n + r, defined by the SDE (59), is given by the
following infinite set of ODE:

ṁh = Φhm
h+1 + Ψhm

h+2, h = 1, 2, . . . (77)

where

Φh = Uh
q (Φ⊗ Iqh−1), (78)

Ψh = Uh
q (Ψ⊗ Iqh−1) +

d∑
s=1

Oh
q (Γ[2]

s ⊗ Iqh−2), (79)

with Φ,Ψ,Γs being the matrices defined in (60)-(61)-(62), and Uh
q , O

h
q being

the matrices defined in (75), (76).

Proof. In order to get a SDE for the processes Z[h], we need the Itô
formula in the Kronecker formalism (see Theorem 5.2 in Carravetta et al.
(2000)):

dZ[h] =

(
d

dZ
⊗ Z[h]

)
dZ +

1

2

(
d[2]

dZ[2]
⊗ Z[h]

) d∑
s=1

Γ[2]
s Z[4]dt. (80)
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By properly exploiting Lemma 1 we have

d

dZ
⊗ Z[h] = Uh

q (Iq ⊗ Z[h−1]),
d[2]

dZ[2]
⊗ Z[h] = Oh

q (Iq2 ⊗ Z[h−2]),

so that one has(
d

dZ
⊗ Z[h]

)
dZ = Uh

q (Iq ⊗ Z[h−1])
(
ΦZ[2] + ΨZ[3]

)
dt

+
d∑
s=1

Uh
q (Iq ⊗ Z[h−1])ΓsZ

[2]dWs, (81)

and (
d[2]

dZ[2]
⊗ Z[h]

) d∑
s=1

Γ[2]
s Z[4]dt =

∑
s

Oh
q (Iq2 ⊗ Z[h−2])Γ[2]

s Z[4]dt. (82)

By means of the usual tensor product calculations we obtain (by using the
formulas in the Appendix):

(Iq ⊗ Z[h−1])ΦZ[2] = (Iq ⊗ Z[h−1])
(
(ΦZ[2])⊗ 1

)
= (ΦZ[2])⊗ Z[h−1]

= (Φ⊗ Iqh−1)Z[h+1],

and, similarly:

(Iq ⊗ Z[h−1])ΨZ[3] = (Ψ⊗ Iqh−1)Z[h+2],

(Iq ⊗ Z[h−1])ΓsZ
[2] = (Γs ⊗ Iqh−1)Z[h+1],

(Iq2 ⊗ Z[h−2])Γ[2]
s Z[4] = (Γ[2]

s ⊗ Iqh−2)Z[h+2]

which, used in (81) and (82), turn equation (80) into:

dZ[h] =
(
ΦhZ

[h+1]+ΨhZ
[h+2]

)
dt+

d∑
s

ΓhsZ
[h+1]dWs, (83)

with Φh,Ψh given by (78)–(79), and

Γhs = Uh
q (Γs ⊗ Iqh−1). (84)

Taking expectations in (83) we finally derive (77). •
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6. A systems biology application

The applicative example is taken from a basic chemical reaction net-
work, aiming at describing ultra-sensitivity response, a phenomenon widely
investigated in systems biology, the challenging research line conceived as
a mixture of life science investigation, rigorous mathematical modeling and
engineering methodologies. In this framework, stochastic modeling revealed
to be an unavoidable means to properly investigate the inherent stochas-
ticity of the many and diverse noise sources affecting the molecular and/or
cellular processes under investigation Mettetal et al. (2007); Bahar et al.
(2006); Bruggerman et al. (2009); Kiviet et al. (2014). To this end, to
achieve the whole probability distribution of all the species under investiga-
tion could be not computationally affordable (or even unreliable); therefore,
first- and second-order moments are usually sought as the proper compromise
between the obtainable information and the computational burden. Indeed,
the second-order moments allow to quantify the stochastic variability around
the steady-state average solution and have been recently investigated in the
synthetic biology framework with the aim of quantifying noise reduction in
presence of feedback Oyarzun et al. (2014); Sontag et al. (2015); Borri et
al (2016b).

Ultra-sensitivity response has been recently investigated in detail, seem-
ing to be a potentially important biochemical property and a commonplace
in cell signaling Ferrell et al. (2014); Ferrell et al. (2014b,c). The example
under investigation takes inspiration from signaling cascades like, e.g., the
three-step Mitogen-Activated Protein Kinase (MAPK) cascade: each step
can be thought of as an input/output module where the input is the active
kinase that catalyzes the activation of a downstream kinase. The following
example considers one such module with W ∗ being the active kinase playing
the role of the input that catalyzes the activation of another kinase Y 
 Y ?

(asterisks will denote activated species). The ratio Y ?/(Y +Y ?) is the output
of the module, with Y ? being the input of another downstream module. In
Ferrell et al. (2014c), it is shown that the upstream signal can be better
transmitted without degradation through the cascade of subsequent activa-
tions if the steady-state response of each module is described by a steep Hill
function of the type

Y ?

Y + Y ?
=

(W ?)m

(W ?)m + θm
(85)

where m is the Hill coefficient providing a measure of the steepness of the Hill
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function (i.e. a measure of the sensitivity of the cascade module response).
The higher is m, the more accurate is the signal transmission through the
cascade. Thinking at the entries of 85 as steady-state concentrations, the
Hill coefficient can be estimated from experimental data, therefore it may
well result as a real number. In terms of a reverse engineering problem,
when looking for the chemical reaction network providing the experimental
steady-state results, it readily comes out that these can be obtained according
to the following bidirectional biochemical reaction

Y +mW ? hon



hoff

Y ? (86)

where W , Y (as well as their activated counterparts W ?, Y ?) are the species
involved and hon, hoff ∈ R+ are the on/off reaction coefficients. If m is treated
as the usual stoichiometric coefficient, according to mass-action law, we can
write the forward/backward reaction rates

v+ = honY (W ?)m v− = hoffY
? (87)

so that, at steady state, when v+ = v−, by properly exploiting the mass
constraint Y +Y ? = YTOT , we find again the input/output relationship (85).

Standard mass action law usually sets stoichiometric coefficients as integer
numbers. On the other hand, the ultrasensitivity is a typical case where
generalized mass-action laws would be preferred (see also Vlad et al (2009)),
so that it is meaningful to consider the reactions (86) with m being any
positive real number.

According to the discrete stochastic modeling framework, define x =
[w? y?]T as the vector associated to the chemical reaction network, which
uniquely determines the state of the system, thanks to the mass constraints.
Symbols w,w?, y, y? denote the copy numbers of species W,W ?, Y, Y ?, re-
spectively, and yT = y + y? refers to the overall (and constant) amount of
species Y . Then, the following reactions of degradation/production can be
considered:

Reaction 1 :

{
w? 7→ w? −m
y? 7→ y? + 1

N1 = [−m 1]T

a1(x̄) = hon(w?)m(yT − y?),

Reaction 2 :

{
w? 7→ w? +m

y? 7→ y? − 1,

N2 = [m − 1]T

a2(x̄) = hoffy
?,
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where Ni is the stoichiometric vector of reaction i = 1, 2 (i.e. reaction i re-
sets x̄ to x̄+Ni) and ai(x̄) is its propensity (or probability for unit time). In
the stochastic approach, reaction propensities and stoichiometry completely
define a continuous-time Markov chain, whose dynamics (in terms of proba-
bility distribution) is represented in a discrete and noisy way by the chemical
master equations (CMEs) Van Kampen (2007). In the general case, how-
ever, the CME is solvable neither in explicit nor in numerical form, since
its complexity grows exponentially with the number of species involved. An
alternative formulation, which dramatically reduces the complexity of the
underlying CME, consists in switching from discrete to continuous states
by means of the chemical Langevin equation (CLE, see e.g. Van Kampen
(2007); Khanin et al. (2008)), whose computational cost is just linear with
respect to the number of species. The CLE is a stochastic differential equa-
tion describing the evolution in time of the copy number x̄(t) (approximated
as continuous rather than discrete), as follows:

dx̄(t) =
2∑
i=1

Niai(x̄(t))dt+
2∑
i=1

Ni

√
ai(x̄(t))dWi(t), (88)

where Wi(t) are mutually independent standard Wiener processes. By ex-
panding the CLE in (88), which is in the general form (5), by defining the
state variables x1 := w?, x2 := y? and omitting the time dependencies, one
obtains the following equations:

dx1 = (−mhonx
m
1 (yT − x2) +mhoffx2) dt−m

√
honxm1 (yT − x2)dW1

+m
√
hoffx2dW2,

dx2 = (honx
m
1 (yT − x2)− hoffx2) dt+

√
honxm1 (yT − x2)dW1 −

√
hoffx2dW2,

(89)

which do not define a σπ-stochastic system in the form (6)–(8). In order to
turn the system (89) into a σπ-stochastic system, we define an additional
state variable x3 := yT − x2, so that the evolutions can be rewritten as:

dx1 = (−mhonx
m
1 x3 +mhoffx2) dt−m

√
honxm1 x3dW1 +m

√
hoffx2dW2,

dx2 = (honx
m
1 x3 − hoffx2) dt+

√
honxm1 x3dW1 −

√
hoffx2dW2,

dx3 = −dx2 = (−honx
m
1 x3 + hoffx2) dt−

√
honxm1 x3dW1 +

√
hoffx2dW2.

(90)
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We stress that the coefficient m being any real number prevents writ-
ing finite-order moments in a closed way, unless the proposed cubification
methodology is applied. By defining the augmented state x = [x1 x2 x3]T

and the noise vector W = [W1 W2]T , it is readily seen that the system (90)
is σπ, namely it can be rewritten in the form (6)–(8), with the following
settings (zero drift/diffusion exponents are omitted):

• n = 3 (state dimension)

• d = 2 (dimension of the Wiener process)

• νi = 2, for i = 1, 2, 3 (number of drift monomials for each state equation
i)

• ν∗i,s = 1, for i = 1, 2, 3, for s = 1, 2 (number of diffusion monomials for
each state equation i and for each noise component s)

• α1,1 = −mhon, α1,2 = mhoff ,
α2,1 = −α3,1 = hon, α2,2 = −α3,2 = −hoff (drift coefficients)

• Xi,1 = xm1 x3, Xi,2 = x2, i = 1, 2, 3 (drift monomials)

• p1
i,1 = m, p1

i,3 = p2
i,2 = 1, p1

i,1 = p2
i,1 = p2

i,3 = 0 i = 1, 2, 3 (drift
exponents)

• α∗1,1,1 = −m
√
hon, α∗1,2,1 = m

√
hoff , α∗2,1,1 = −α∗3,1,1 =

√
hon,

α∗2,2,1 = −α∗3,2,1 = −
√
hoff (diffusion coefficients)

• X∗1,1,1 = X∗2,1,1 = X∗3,1,1 = x
m
2

1 x
1
2
3 ,

X∗1,2,1 = X∗2,2,1 = X∗3,2,1 = x
1
2
2 (diffusion monomials)

• p∗,1,11,1 = p∗,1,12,1 = p∗,1,13,1 = m
2

, p∗,1,1i,2 = p∗,2,1i,3 = p∗,2,1i,1 = 0,

p∗,1,11,3 = p∗,1,12,3 = p∗,1,13,3 = p∗,2,11,2 = p∗,2,12,2 = p∗,2,13,2 = 1
2

(diffusion exponents)

Note that, since d = 2 and ν∗i,s = 1, for i = 1, 2, 3, then one gets:

ν∗i =
d∑
s=1

ν∗i,s = d = 2 i = 1, 2, 3,

µi = νi + ν∗i = 2 + d = 4 i = 1, 2, 3.

(91)
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From (10) one can equivalently define, for all i, the compound double index
k = (s, l), with s = 1, 2, l = ν∗i,s = 1, from which we can extend the definition
of αi,l and Xi,l, in agreement with (14). Such quantities are included in the
vectors αi and Xi, for all i:

αi = [αi,1 αi,2 α∗i,1,1 α∗i,2,1]T ∈ IRµi ,

Xi = [Xi,1 Xi,2 X∗i,1,1 X∗i,2,1]T ∈ IRµi ,
(92)

which are useful, in turn, to define the vector Z in (25)–(27) as follows:

Z = [XT
1 x
−1
1 XT

2 x
−1
2 XT

3 x
−1
3 ]T ∈ IRr,

with r = µ1 +µ2 +µ3 = 12. Finally, the aggregate process Z in (58) is defined
as:

Z = [xT ZT ]T ∈ IRq,

with q = n + r = 15. The settings above allow to compute all the matrices
required to explicitly write the moment equation (77). Since we are interested
in the second-order moments, we consider the following system of q+q2 = 240
differential equations:

ṁ1 = Φ1m
2 + Ψ1m

3,
ṁ2 = Φ2m

3 + Ψ2m
4.

(93)

An approximate solution of (93) can be obtained by using a moment
closure procedure, as e.g. in Hespanha et al. (2005); Singh et al. (2011).
We do not drift along into this topic, which goes beyond the scope of the
paper: we just point out that numerical simulation results would strongly
depend on the adopted moment closure approximation scheme.

7. Conclusion

It is well known in the literature how to write exact moment equations
for nonlinear SDE with drift and diffusion terms provided by standard poly-
nomials. Here we extend such a result to the case of drift and diffusion terms
provided by formal polynomials, i.e., polynomials with real exponents. The
result is achieved by means of a suitable embedding of the original nonlinear
system into a larger state space where nonlinearities are at most third-order
standard polynomials with respect to the new state variables (cubification).
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Similarly to the case of standard-polynomial nonlinearities, the achieved ex-
act moment equations cannot be straightforwardly solved, since they require
a suitable moment closure technique. A motivating example taken from sys-
tems biology is reported to show a nontrivial framework where the present
theory could be applied.

Appendix A. Tensor algebras

Here follows, for the ease of the readers, a list of the main definitions and
few properties of Kronecker products, up to an extent just sufficient for the
present paper. For more details we address the reader to Carravetta et al.
(2000), and Rodgers (1980). The interested reader, familiar with algebraic
concepts, is referred to Dummit et al. (2004) for more insight about the
interplay with tensor algebra.

For u ∈ IRn, v ∈ IRm, we define their Kronecker product u⊗ v as follows:

u⊗ v = [u1v
T , . . . unv

T ]T ∈ IRnm, (A.1)

Of course, definition (A.1) can be applied even if u, v are matrices, by iden-
tifying u ∈ IRn×m to an element of IRnm. The Knonecker product is asso-
ciative and distributive with respect to sum of vectors, however it is non-
commutative. Moreover, we recall the following properties. For A,B,C,D
suitably defined matrices, and u, v vectors, provided that both sides are well
defined, the following identities hold (see Carravetta et al. (2000)–Rodgers
(1980)):

(A · C)⊗ (B ·D) = (A⊗B) · (C ⊗D), (A.2)

(A⊗B)T = AT ⊗BT , (A.3)

st(A ·B · C) = (CT ⊗ A) · st(B), (A.4)

u⊗ v = st(v · uT ), (A.5)

tr(A⊗B) = tr(A) · tr(B), (A.6)

where tr(M) denotes the trace of a square matrix M , and st(M) is the stack
of any matrix M (i.e. the vector piling up the columns of M). Although
the Kronecker product is not commutative, the following property holds (see
Carravetta et al. (2000) for a proof).

Theorem 4. For any given pair of matrices A ∈ IRr×s, B ∈ IRn×m, we have

B ⊗ A = CT
r,n(A⊗B)Cs,m , (A.7)
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where the commutation matrix Cu,v is the (u · v)× (u · v) matrix such that its
(h, l) entry is given by:

{Cu,v}h,l = δl,(|h−1|v)u+([h−1
v ]+1) (A.8)

where [·] and | · |s denote integer part and s-modulo, respectively.

Observe that C1,1 = 1, hence in the vector case when a ∈ IRr and b ∈ IRn,
(A.7) becomes

b⊗ a = CT
r,n(a⊗ b). (A.9)

We can now find the expression of the matrix c defined in (2)

Theorem 5. The matrix c, defined in (2), is given by

c = CT
ν1,ν2
⊗ Iν3···νp , (A.10)

Proof. Let uj ∈ IRνj , j = 1, . . . , p, a set of p vectors, and h = {h1, . . . , hp}
a permutation of the ordered set {1, . . . , p}. Denote by H the set of all of
these permutations. Define the following sets of symbols, namely S1, S2:

S1 = {ξih1
,...,ihp

: h ∈ H}, S2 = {uh1
ih1
· · ·uhpihp : h ∈ H},

Then, we have the natural bijection between S1 and S2:

ξih1
,...,ihp

↔ uh1
ih1
· · ·uhpihp . (A.11)

By (A.9), and using formula (A.2), we have

u2 ⊗ u1 ⊗ u3 ⊗ . . .⊗ up =
[
CT
ν1,ν2

(u1 ⊗ u2)
]
⊗ u3 ⊗ . . .⊗ up

=
(
CT
ν1,ν2
⊗ Iν3···νp

)
(u1 ⊗ u2 ⊗ u3 ⊗ . . .⊗ up) (A.12)

Moreover, by reason of the bijection (A.11), looking at (2) we realize that
(component-wise):

cξ ↔ u2 ⊗ u1 ⊗ u3 ⊗ . . .⊗ up ξ ↔ u1 ⊗ u2 ⊗ . . .⊗ up

through which, identity (A.12) implies cξ =
(
CT
ν1,ν2
⊗ Iν3···νp

)
ξ. Thus, (A.10)

ensues.
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