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ABSTRACT Convolutional Neural Networks (CNNs) achieve excellent computer-assisted diagnosis with
sufficient annotated training data. However, most medical imaging datasets are small and fragmented.
In this context, Generative Adversarial Networks (GANs) can synthesize realistic/diverse additional training
images to fill the data lack in the real image distribution; researchers have improved classification by
augmenting data with noise-to-image (e.g., random noise samples to diverse pathological images) or image-
to-image GANs (e.g., a benign image to a malignant one). Yet, no research has reported results combining
noise-to-image and image-to-image GANs for further performance boost. Therefore, to maximize the
DA effect with the GAN combinations, we propose a two-step GAN-based DA that generates and refines
brain Magnetic Resonance (MR) images with/without tumors separately: (i) Progressive Growing of GANs
(PGGANs), multi-stage noise-to-image GAN for high-resolution MR image generation, first generates
realistic/diverse 256×256 images; (ii)Multimodal UNsupervised Image-to-image Translation (MUNIT) that
combines GANs/Variational AutoEncoders or SimGAN that uses a DA-focused GAN loss, further refines
the texture/shape of the PGGAN-generated images similarly to the real ones. We thoroughly investigate
CNN-based tumor classification results, also considering the influence of pre-training on ImageNet and
discarding weird-looking GAN-generated images. The results show that, when combined with classic DA,
our two-step GAN-based DA can significantly outperform the classic DA alone, in tumor detection
(i.e., boosting sensitivity 93.67% to 97.48%) and also in other medical imaging tasks.

INDEX TERMS Data augmentation, synthetic image generation, GANs, brain MRI, tumor detection.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) are playing a key
role in medical image analysis, updating the state-of-the-art
in many tasks [1]–[3] when large-scale annotated training
data are available. However, preparing such massive medical
data is demanding; thus, for better diagnosis, researchers
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generally adopt classic Data Augmentation (DA) techniques,
such as geometric/intensity transformations of original
images [4], [5]. Those augmented images, however, intrinsi-
cally have a similar distribution to the original ones, resulting
in limited performance improvement. In this sense, Genera-
tive Adversarial Network (GAN)-based DA can considerably
increase the performance [6]; since the generated images are
realistic but completely new samples, they can fill the real
image distribution uncovered by the original dataset [7].
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FIGURE 1. Combining noise-to-image and image-to-image GANs for
better tumor detection: the PGGANs generates a number of realistic brain
tumor/non-tumor MR images separately, the MUNIT/SimGAN refines
them separately, and the binary classifier uses them as additional training
data.

The main problem in computer-assisted diagnosis lies in
small/fragmented medical imaging datasets from multiple
scanners; thus, researchers have improved classification by
augmenting images with noise-to-image GANs (e.g., random
noise samples to diverse pathological images [8]) or image-
to-image GANs (e.g., a benign image to a malignant one [9]).
However, no research has achieved further performance boost
by combining noise-to-image and image-to-image GANs.

So, how can we maximize the DA effect under limited
training images using the GAN combinations? To gener-
ate and refine brain Magnetic Resonance (MR) images
with/without tumors separately, we propose a two-step
GAN-based DA approach: (i) Progressive Growing of
GANs (PGGANs) [10], low-to-high resolution noise-to-
image GAN, first generates realistic/diverse 256 × 256
images—the PGGANs helps DA since most CNN architec-
tures adopt around 256 × 256 input sizes (e.g., Inception-
ResNetV2 [11]: 299 × 299, ResNet-50 [12]: 224 × 224);
(ii) Multimodal UNsupervised Image-to-image Translation
(MUNIT) [13] that combines GANs/Variational AutoEn-
coders (VAEs) [14] or SimGAN [15] that uses a DA-focused
GAN loss, further refines the texture/shape of the
PGGAN-generated images to fit them into the real image dis-
tribution. Since training a single sophisticated GAN system
is already difficult, instead of end-to-end training, we adopt
a two-step approach for performance boost via an ensemble
generation process from those state-of-the-art GANs’ differ-
ent algorithms.

We thoroughly investigate CNN-based tumor classifica-
tion results, also considering the influence of pre-training on
ImageNet [16] and discarding weird-looking GAN-generated
images. Moreover, we evaluate the synthetic images’ appear-
ance via Visual Turing Test [17] by an expert physician, and
visualize the data distribution of real/synthetic images via

t-Distributed Stochastic Neighbor Embedding (t-SNE) [18].
When combined with classic DA, our two-step GAN-based
DA approach significantly outperforms the classic DA alone,
boosting sensitivity 93.67% to 97.48%.1

Research Questions.We mainly address two questions:
• GAN Selection: Which GAN architectures are well-
suited for realistic/diverse medical image generation?

• Medical DA: How to use GAN-generated images as
additional training data for better CNN-based diagnosis?

Contributions. Our main contributions are as follows:
• Whole Image Generation: This research shows that
PGGANs can generate realistic/diverse 256 × 256
whole medical images—not only small pathological
sub-areas—and MUNIT can further refine their tex-
ture/shape similarly to real ones.

• Two-step GAN-based DA: This novel two-step
approach, combining for the first time noise-to-image
and image-to-image GANs, significantly boosts tumor
detection sensitivity.

• Misdiagnosis Prevention: This study firstly analyzes
how medical GAN-based DA is associated with pre-
training on ImageNet and discarding weird-looking
synthetic images to achieve high sensitivity with
small/fragmented datasets.

The manuscript is organized as follows. Section II
covers the background of GANs, especially focusing
on GAN-based DA in medical imaging. Section III describes
the analyzed brain tumor MRI dataset, along with the inves-
tigated image generation method using a noise-to-image
GAN (i.e., PGGANs) and refinement methods using image-
to-image GANs (i.e., MUNIT and SimGAN), respectively.
This section also explains how to evaluate those synthesized
images based on tumor detection via ResNet-50, clinical
validation viaVisual Turing Test, and visualization via t-SNE.
Section IV presents and discusses the experimental results.
Lastly, Section V provides the conclusive remarks and future
directions.

II. GENERATIVE ADVERSARIAL NETWORKS
VAEs [14] often accompany blurred samples despite easier
training, due to the imperfect reconstruction using a single
objective function;meanwhile, GANs [6] have revolutionized
image generation in terms of realism/diversity [19] based on a
two-player objective function: a generator G tries to generate
realistic images to fool a discriminator D while maintaining
diversity;D attempts to distinguish between the real/synthetic
images. However, difficult GAN training from the two-
player objective function accompanies artifacts/mode
collapse [20], when generating high-resolution images

1This paper remarkably improves our preliminary work [8] investigating
the potential of the ImageNet-pre-trained PGGANs—with minimal pre-
processing and no refinement—for DA using a vanilla version of ResNet-50,
resulting in minimum performance boost; since PGGAN-generated images
unstabilized ResNet-50 training, we further optimize the ResNet-50 hyper-
parameters (i.e., the optimizer, learning rate, and decay rate) according to the
training data, also modifying its architecture before the final sigmoid layer.
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(e.g., 256 × 256 pixels) [21]; to tackle this, multi-stage
noise-to-image GANs have been proposed: AttnGAN [22]
generates images from text using attention-based multi-
stage refinement; PGGANs [10] generates realistic images
using low-to-high resolution multi-stage training. Contrarily,
to obtain images with desired texture/shape, researchers have
proposed image-to-image GANs: MUNIT [13] translates
images using both GANs/VAEs; SimGAN [15] translates
images for DA using the self-regularization term/local adver-
sarial loss.

Especially in medical imaging, to handle small and frag-
mented datasets from multiple scanners, researchers have
exploited both noise-to-image and image-to-image GANs as
DA techniques to improve classification: researchers used
the noise-to-image GANs to augment liver lesion Computed
Tomography (CT) [23] and chest cardiovascular abnormality
X-ray images [24]; others used the image-to-image GANs to
augment breast cancer mammography images [9] and bone
lesion X-ray images [25], translating benign images into
malignant ones and vice versa.
However, to the best of our knowledge, we are the first

to combine noise-to-image and image-to-image GANs to
maximize the DA performance. Moreover, this is the first
medical GAN work generating whole 256 × 256 images,
instead of regions of interest (i.e., small pathological sub-
areas) alone, for robust classification. Along with clas-
sic image transformations, a novel approach—augmenting
realistic/diverse whole medical images with the two-step
GAN—may become a clinical breakthrough.

III. MATERIALS AND METHODS
A. BRATS 2016 TRAINING SET
We use a dataset of 240 × 240 contrast-enhanced
T1-weighted (T1c) brain axial MR images of 220 high-
grade glioma cases from the Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS) 2016 [26]. T1c is the
most common sequence in tumor detection thanks to its
high-contrast [27].

B. PGGAN-BASED IMAGE GENERATION
Pre-processing For better GAN/ResNet-50 training, we
select the slices from #30 to #130 among the whole 155 slices
to omit initial/final slices, which convey negligible useful
information; also, since tumor/non-tumor annotation in the
BRATS 2016 dataset, based on 3D volumes, is highly incor-
rect/ambiguous on 2D slices, we exclude (i) tumor images
tagged as non-tumor, (ii) non-tumor images tagged as tumor,
(iii) borderline images with unclear tumor/non-tumor appear-
ance, and (iv) images with missing brain parts due to the
skull-stripping procedure2. For tumor detection, we divide
the whole dataset (220 patients) into:

2Although this discarding procedure could be automated, we manually
conduct it for reliability; the pre-processed dataset is available on Dropbox
in https://www.dropbox.com/s/v208w1q7kpvv9lo/data.zip?dl=0

FIGURE 2. Example real MR images used for PGGAN training.

FIGURE 3. PGGAN architecture for 256× 256 brain MR image generation.
N × N refers to convolutional layers operating on N × N spatial
resolution.

• Training set
(154 patients/4, 679 tumor/3, 750 non-tumor images);

• Validation set
(44 patients/750 tumor/608 non-tumor images);

• Test set
(22 patients/1, 232 tumor/1, 013 non-tumor images).

During the GAN training, we only use the training set to
be fair; for better PGGAN training, the training set images
are zero-padded to reach a power of 2: 256×256 pixels from
240× 240. Fig. 2 shows example real MR images.
PGGANs [10] is a GAN training method that progressively
grows a generator and discriminator: starting from low res-
olution, new layers model details as training progresses.
This study adopts the PGGANs to synthesize realistic/diverse
256 × 256 brain MR images (Fig. 3); we train and generate
tumor/non-tumor images separately.
PGGAN Implementation Details The PGGAN architecture
adopts the Wasserstein loss with gradient penalty [20]:

E
ỹ∼Pg

[D(ỹ)]− E
y∼Pr

[D(y)]+λgp E
ŷ∼Pŷ

[(
∥∥∇ŷD(ŷ)∥∥2−1)2], (1)

where E[·] denotes the expected value, the discriminator
D ∈ D (i.e., the set of 1-Lipschitz functions), Pr is the data
distribution defined by the true data sample y, and Pg is the
model distribution defined by the generated sample ỹ = G(z)
(z ∼ p(z) is the input noise z to the generator sampled from
a Gaussian distribution). A gradient penalty is added for the
random sample ŷ ∼ Pŷ, where ∇ŷ is the gradient operator
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TABLE 1. PGGAN architecture details for the generator/discriminator. Pixelwise feature vector normalization [28] is applied in the generator after each
convolutional layer except for the final output layer as in the original paper [10]. LReLU denotes Leaky ReLU with leakiness 0.2.

towards the generated samples and λgp is the gradient penalty
coefficient.

We train the model (Table 1) for 100 epochs with a batch
size of 16 and 1.0×10−3 learning rate for the Adam optimizer
(the exponential decay rates β1 = 0, β2 = 0.99) [29]. All
experiments use λgp = 10 with 1 critic iteration per gener-
ator iteration. During training, we apply random cropping in
0-15 pixels as DA.

C. MUNIT/SimGAN-BASED IMAGE REFINEMENT
Refinement Using resized 224× 224 images for ResNet-50,
we further refine the texture/shape of PGGAN-generated
tumor/non-tumor images separately to fit them into the real
image distribution using MUNIT [13] or SimGAN [15].
SimGAN remarkably improved eye gaze estimation results
after refining non-GAN-based synthetic images from the
UnityEyes simulator via image-to-image translation; thus,
we also expect such performance improvement after refining
synthetic images from a noise-to-imageGAN (i.e., PGGANs)
via an image-to-image GAN (i.e., MUNIT/SimGAN) with
considerably different GAN algorithms.

We randomly select 3, 000 real/3, 000 PGGAN-generated
tumor images for tumor image training, and we perform the
same for non-tumor image training. To find suitable refining
steps for each architecture, we pick the MUNIT/SimGAN
models with the highest accuracy on tumor detection valida-
tion, when pre-trained and combined with classic DA, among
20, 000/50, 000/100, 000 steps, respectively.
MUNIT [13] is an image-to-image GAN based on both auto-
encoding/translation; it extends UNIT [30] to increase the

generated images’ realism/diversity via a stochastic model
representing continuous output distributions.
MUNIT Implementation Details The MUNIT architecture
adopts the following loss:

min
E1,E2,G1,G2

max
D1,D2

L VAE1 + L GAN1+L CC1+L VGG1

+L VAE2+L GAN2+L CC2 + L VGG2 , (2)

where L(·) denotes the loss function. Using the multiple
encoders E1/E2, generators G1/G2, discriminators D1/D2,
cycle-consistencies CC1/CC2, and domain-invariant percep-
tions VGG1/VGG2 [31], this framework jointly solves learn-
ing problems of the VAE1/VAE2 and GAN1/GAN2 for the
image reconstruction streams, image translation streams,
cycle-consistency reconstruction streams, and domain-
invariant perception streams. Since we do not need the style
loss for our experiments, instead of the MUNIT loss, we use
the UNIT loss with the perceptual loss for the MUNIT
architecture (as in the UNIT authors’ GitHub repository).
We train the model (Table 2) for 100, 000 steps with a

batch size of 1 and 1.0 × 10−4 learning rate for the Adam
optimizer (β1 = 0.5, β2 = 0.999) [29]. The learning rate
is reduced by half every 20, 000 steps. We use the follow-
ing MUNIT weights: the adversarial loss weight = 1; the
image reconstruction loss weight= 10; the Kullback-Leibler
(KL) divergence loss weight for reconstruction = 0.01; the
cycle consistency loss weight = 10; the KL divergence loss
weight for cycle consistency = 0.01; the domain-invariant
perceptual loss weight= 1; the Least Squares GAN objective
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TABLE 2. MUNIT architecture details for the generator/discriminator. We input color images (i.e., 3 channels) to use ImageNet initialization. Instance
normalization [32]/adaptive instance normalization [33] are applied in the content encoder/decoder after each convolutional layer respectively
except for the final decoder output layer as in the original paper [13]. LReLU denotes Leaky ReLU with leakiness 0.2.

TABLE 3. SimGAN architecture details for the refiner/discriminator. Batch normalization is applied both in the refiner/discriminator after each
convolutional layer except for the final output layers respectively as in the original paper [15].

function for the discriminators [34]. During training,
we apply horizontal flipping as DA.
SimGAN [15] is an image-to-image GAN designed for DA
that adopts the self-regularization term/local adversarial loss;
it updates a discriminator with a history of refined images.
SimGAN Implementation Details The SimGAN architec-
ture (i.e., a refiner) uses the following loss:∑

i

Lreal(θ; xi,Y)+ λregLreg(θ; xi), (3)

where L(·) denotes the loss function, θ is the function param-
eters, xi is the ith PGGAN-generated training image, and Y is
the set of the real images yj. The first partLreal adds realism to
the synthetic images using a discriminator, while the second
part Lreg preserves the tumor/non-tumor features.

We train the model (Table 3) for 20, 000 steps with a batch
size of 10 and 1.0 × 10−4 learning rate for the Stochastic
Gradient Descent (SGD) optimizer [35] without momentum.
The learning rate is reduced by half at 15,000 steps. We
train the refiner first with just the self-regularization loss with
λreg = 5 × 10−5 for 500 steps; then, for each update of the

discriminator, we update the refiner 5 times. During training,
we apply horizontal flipping as DA.

D. TUMOR DETECTION USING ResNet-50
Pre-processing. As ResNet-50’s input size is 224 × 224
pixels, we resize the whole real images from 240 × 240 and
whole PGGAN-generated images from 256× 256.
ResNet-50 [12] is a 50-layer residual learning-based CNN.
We adopt it to detect brain tumors in MR images
(i.e., the binary classification of tumor/non-tumpor images)
due to its outstanding performance in image classifi-
cation tasks [36], including binary classification [37].
Chang et al. [38] also used a similar 34-layer residual
convolutional network for the binary classification of brain
tumors (i.e., determining the Isocitrate Dehydrogenase status
in low-/high-grade gliomas).
DA Setups To confirm the effect of PGGAN-based DA
and its refinement using MUNIT/SimGAN, we compare
the following 10 DA setups under sufficient images both
with/without ImageNet [16] pre-training (i.e., 20 DA setups):

1) 8429 real images;
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FIGURE 4. Example real MR image and its geometrically-transformed
images.

FIGURE 5. Example PGGAN-generated MR images: (a) Success cases;
(b) Failure cases.

2) + 200k classic DA;
3) + 400k classic DA;
4) + 200k PGGAN-based DA;
5) + 200k PGGAN-based DA w/o clustering/discarding;
6) + 200k classic DA & 200k PGGAN-based DA;
7) + 200k MUNIT-refined DA;
8) + 200k classic DA & 200k MUNIT-refined DA;
9) + 200k SimGAN-refined DA;

10) + 200k classic DA & 200k SimGAN-refined DA.

Due to the risk of overlooking the tumor diagnosis via
medical imaging, higher sensitivity matters much more than
higher specificity [39]; thus, we aim to achieve higher sensi-
tivity, using the additional synthetic training images. We per-
form McNemar’s test on paired tumor detection results [40]
to confirm our two-step GAN-based DA’s statistically-
significant sensitivity improvement; since this statistical anal-
ysis involves multiple comparison tests, we adjust their
p-values using the Holm–Bonferroni method [41].

Whereas medical imaging researchers widely use the
ImageNet initialization despite different textures of natural/
medical images, recent study found that such ImageNet-
trained CNNs are biased towards recognizing texture rather
than shape [42]; thus, we aim to investigate how the
medical GAN-based DA affects classification performance
with/without the pre-training. As the classic DA, we adopt a
random combination of horizontal/vertical flipping, rotation
up to 10 degrees, width/height shift up to 8%, shearing up
to 8%, zooming up to 8%, and constant filling of points out-
side the input boundaries (Fig. 4). For the PGGAN-based DA
and its refinement, we only use success cases after discarding

TABLE 4. ResNet-50 architecture details without/with pre-training.
We input grayscale images (i.e., 1 channel) for experiments without
pre-training, whereas we input color images (i.e., 3 channels) for
experiments with pre-training to use ImageNet initialization. Batch
normalization is applied after each convolutional layer as in
the original paper [12].

weird-looking synthetic images (Fig. 5); DenseNet-169 [43]
extracts image features and k-means++ [44] clusters the
features into 200 groups, and then we manually discard each
cluster containing similar weird-looking images. To verify
its effect, we also conduct a PGGAN-based DA experiment
without the discarding step.
ResNet-50 Implementation Details The ResNet-50 archi-
tecture adopts the binary cross-entropy loss for binary classi-
fication both with/without ImageNet pre-training. As shown
in Table 4, for robust training, before the final sigmoid layer,
we introduce a 0.5 dropout [45], linear dense, and batch nor-
malization [46] layers—training with GAN-based DA tends
to be unstable especially without the batch normalization
layer. We use a batch size of 96, 1.0 × 10−2 learning rate
for the SGD optimizer [35] with 0.9 momentum, and early
stopping of 20 epochs. The learning rate was multiplied
by 0.1 every 20 epochs for the training from scratch and
by 0.5 every 5 epochs for the ImageNet pre-training.

E. CLINICAL VALIDATION USING VISUAL TURING TEST
To quantify the (i) realism of 224 × 224 synthetic images
by PGGANs, MUNIT, and SimGAN against real images
respectively (i.e., 3 setups) and (ii) clearness of their tumor/
non-tumor features, we supply, in random order, to an expert
physician a random selection of:

• 50 real tumor images;
• 50 real non-tumor images;
• 50 synthetic tumor images;
• 50 synthetic non-tumor images.

VOLUME 7, 2019 156971



C. Han et al.: Combining Noise-to-Image and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection

TABLE 5. ResNet-50 tumor detection (i.e., binary classification) results with various DA, with (without) ImageNet pre-training. Sensitivity and specificity
consider the slight tumor/non-tumor class imbalance (about 6:5) in the test set. Boldface indicates the best performance.

Then, the physician has to classify them as both
(i) real/synthetic and (ii) tumor/non-tumor, without previ-
ously knowing which is real/synthetic and tumor/non-tumor.
The so-called Visual Turing Test [17] can probe the human
ability to identify attributes and relationships in images,
also for visually evaluating GAN-generated images [15]; this
also applies to medical images for clinical decision-making
tasks [47], [48], wherein physicians’ expertise is critical.

F. VISUALIZATION USING t-SNE
To visualize distributions of geometrically-transformed and
each GAN-based 224 × 224 images by PGGANs, MUNIT,
and SimGAN against real images respectively (i.e., 4 setups),
we adopt t-SNE [18] on a random selection of:

• 300 real tumor images;
• 300 real non-tumor images;
• 300 geometrically-transformed or each GAN-based
tumor images;

• 300 geometrically-transformed or each GAN-based
non-tumor images.

We select only 300 images per each category for better
visualization. The t-SNE method reduces the dimensionality
to represent high-dimensional data into a lower-dimensional
(2D/3D) space; it non-linearly balances between the input
data’s local and global aspects using perplexity.
t-SNE Implementation Details The t-SNE uses a perplexity
of 100 for 1, 000 iterations to visually represent a 2D space.
We input the images after normalizing pixel values
to [0, 1]. For point locations of the real images, we com-
press all the images simultaneously and plot each setup
(i.e., the geometrically-transformed or each GAN-based
images against the real ones) separately; we maintain their
locations by projecting all the data onto the same subspace.

IV. RESULTS
This section shows how PGGANs generates synthetic brain
MR images and how MUNIT and SimGAN refine them.
The results include instances of synthetic images, their

FIGURE 6. Example PGGAN-generated MR images and their refined
versions by MUNIT/SimGAN.

quantitative evaluation by an expert physician, their t-SNE
visualization, and their influence on tumor detection.

A. MR IMAGES GENERATED BY PGGANs
Fig. 5 illustrates examples of synthetic MR images by
PGGANs. We visually confirm that, for about 75% of cases,
it successfully captures the T1c-specific texture and tumor
appearance, while maintaining the realism of the original
brain MR images; but, for the rest 25%, the generated
images lack clear tumor/non-tumor features or contain unre-
alistic features (i.e., hyper-intensity, gray contours, and odd
artifacts).

B. MR IMAGES REFINED BY MUNIT/SimGAN
MUNIT and SimGAN differently refine PGGAN-generated
images—they render the texture and contours while main-
taining the overall shape (Fig. 6). Non-tumor images change
more remarkably than tumor images for both MUNIT and
SimGAN; it probably derives from unsupervised image trans-
lation’s loss for consistency to avoid image collapse, resulting
in conservative change for more complicated images.
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TABLE 6. McNemar’s test p-values for the pairwise comparison of the ResNet-50 tumor detection results in terms of accuracy, sensitivity, specificity,
respectively. We compare our two-step GAN-based DA setups and all the other DA setups. All numbers within parentheses refer to DA setups on Table 5
and PT denotes pre-training. Boldface indicates statistical significance (threshold p-value < 0.05).

C. TUMOR DETECTION RESULTS
Table 5 shows the brain tumor classification results
with/without DA while Table 6 indicates their pairwise
comparison (p-values between our two-step GAN-based
DA setups and the other DA setups) using McNemar’s

test. ImageNet pre-training generally outperforms training
from scratch despite different image domains
(i.e., natural images to medical images). As expected,
classic DA remarkably improves classification, while no
clear difference exists between the 200, 000/400, 000 classic
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TABLE 7. Visual Turing Test results by an expert physician for classifying Real (R) vs Synthetic (S) images and Tumor (T) vs Non-tumor (N) images.
Accuracy denotes the physician’s successful classification ratio between the real/synthetic images and between the tumor/non-tumor images,
respectively. It should be noted that proximity to 50% of accuracy indicates superior performance (chance = 50%).

FIGURE 7. T-SNE plots with 300 tumor/non-tumor MR images per each category: Real images vs (a) Geometrically-transformed images;
(b) PGGAN-generated images; (c) MUNIT-refined images; (d) SimGAN-refined images.

DA under sufficient geometrically-transformed train-
ing images. When pre-trained, each GAN-based DA
(i.e., PGGANs/MUNIT/SimGAN) alone helps classifica-
tion due to the robustness from GAN-generated images;
but, without pre-training, it harms classification due to the
biased initialization from the GAN-overwhelming data dis-
tribution. Similarly, without pre-training, PGGAN-based DA
without clustering/discarding causes poor classification due
to the synthetic images with severe artifacts, unlike the
PGGAN-based DA’s comparable results with/without the
discarding step when pre-trained.

When combined with the classic DA, each GAN-based
DA remarkably outperforms the GAN-based DA or classic
DA alone in terms of sensitivity since they are mutually-
complementary: the former learns the non-linear manifold
of the real images to generate novel local tumor features
(since we train tumor/non-tumor images separately) strongly
associated with sensitivity; the latter learns the geometrically-
transformed manifold of the real images to cover global
features and provide the robustness on training for most
cases. We confirm that test samples, originally-misclassified
but correctly classified after DA, are obviously different for
the GAN-based DA and classic DA; here, both image-to-
image GAN-based DA, especially MUNIT, produce remark-
ably higher sensitivity than the PGGAN-based DA after

refinement. Specificity is higher than sensitivity for every
DA setup with pre-training, probably due to the training
data imbalance; but interestingly, without pre-training, sen-
sitivity is higher than specificity for both image-to-image
GAN-based DA since our tumor detection-oriented two-step
GAN-based DA can fill the real tumor image distribution
uncovered by the original dataset under no ImageNet initial-
ization. Accordingly, when combined with the classic DA,
the MUNIT-based DA based on both GANs/VAEs achieves
the highest sensitivity 97.48% against the best performing
classic DA’s 93.67%, allowing to significantly alleviate the
risk of overlooking the tumor diagnosis; in terms of sensitiv-
ity, it outperforms all the other DA setups, including two-step
DA setups, with statistical significance.

D. VISUAL TURING TEST RESULTS
Table 7 indicates the confusion matrix for the Visual
Turing Test. The expert physician classifies a few
PGGAN-generated images as real, thanks to their realism,
despite high resolution (i.e., 224 × 224 pixels); mean-
while, the expert classifies less GAN-refined images as real
due to slight artifacts induced during refinement. The syn-
thetic images successfully capture tumor/non-tumor features;
unlike the non-tumor images, the expert recognizes a consid-
erable number of themild/modest tumor images as non-tumor
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for both real/synthetic cases. It derives from clinical tumor
diagnosis relying on a full 3D volume, instead of a single
2D slice.

E. t-SNE RESULTS
As Fig. 7 represents, the real tumor/non-tumor image
distributions largely overlap while the non-tumor images
distribute wider. The geometrically-transformed tumor/non-
tumor image distributions also often overlap, and both images
distribute wider than the real ones. All GAN-based synthetic
images by PGGANs/MUNIT/SimGAN distribute widely,
while their tumor/non-tumor images overlap much less than
the geometrically-transformed ones (i.e., a high discrimi-
nation ability associated with sensitivity improvement); the
MUNIT-refined images show better tumor/non-tumor dis-
crimination and a more similar distribution to the real ones
than the PGGAN/SimGAN-based images. This trend derives
from the MUNIT’s loss function adopting both GANs/VAEs
that further fits the PGGAN-generated images into the real
image distribution by refining their texture/shape; contrarily,
this refinement could also induce slight human-recognizable
but DA-irrelevant artifacts. Overall, the GAN-based images,
especially the MUNIT-refined images, fill the distribution
uncovered by the real or geometrically-transformed ones with
less tumor/non-tumor overlap; this demonstrates the superi-
ority of combining classic DA and GAN-based DA.

V. CONCLUSION
Visual Turing Test and t-SNE results show that PGGANs,
multi-stage noise-to-image GAN, can generate realistic/
diverse 256×256 brain MR images with/without tumors sep-
arately. Unlike classic DA that geometrically covers global
features and provides the robustness on training for most
cases, the GAN-generated images can non-linearly cover
local tumor features with much less tumor/non-tumor over-
lap; thus, combining them can significantly boost tumor
detection sensitivity—especially after refining them with
MUNIT or SimGAN, image-to-image GANs; thanks to an
ensemble generation process from those GANs’ different
algorithms, the texture/shape-refined images can replace
missing data points of the training set with less tumor/
non-tumor overlap, and thus handle the data imbalance
by regularizing the model (i.e., improved generalization).
Notably, MUNIT remarkably outperforms SimGAN in terms
of sensitivity, probably due to the effect of combining both
GANs/VAEs.

Regarding better medical GAN-based DA, ImageNet pre-
training generally improves classification despite different
textures of natural/medical images; but, without pre-training,
the GAN-refined images may help achieve better sensitiv-
ity, allowing to alleviate the risk of overlooking the tumor
diagnosis—this attributes to our tumor detection-oriented
two-step GAN-based DA’s high discrimination ability to
fill the real tumor image distribution under no ImageNet
initialization. GAN-generated images typically include odd

artifacts; however, only without pre-training, discarding them
boosts DA performance.

Overall, by minimizing the number of annotated images
required for medical imaging tasks, the two-step GAN-based
DA can shed light not only on classification, but also on
object detection [49] and segmentation [50]. Moreover, other
potential medical applications exist: (i) A data anonymization
tool to share patients’ data outside their institution for training
without losing detection performance [50]; (ii) A physician
training tool to show random pathological images for med-
ical students/radiology trainees despite infrastructural/legal
constraints [51]. As future work, we plan to define a new
end-to-end GAN loss function that explicitly optimizes the
classification results, instead of optimizing visual realism
while maintaining diversity by combining the state-of-the-
art noise-to-image and image-to-image GANs; towards this,
we might extend a preliminary work on a three-player GAN
for classification [52] to generate only hard-to-classify sam-
ples to improve classification; we could also (i) explicitly
model deformation fields/intensity transformations and
(ii) leverage unlabelled data during the generative pro-
cess [53] to effectively fill the real image distribution.
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