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Chapter 1

Introduction

Graphical models are used to represent conditional independence relationships among
variables by the means of a graph, with variables corresponding to a graph’s nodes.
They are widely used in genomic studies (Dobra et al. 2004 and Bhadra and Mallick
2013), finance (Sohn and Kim 2012 and Carvalho and Scott 2009), energy forecasting
(Wytock and Kolter 2013), among other fields.

Our interest lies in a collection of q real valued random variables Y = {Y1, · · · , Yq}
from which we observe n i.i.d. q-dimensional observations which can be arranged in
an n× q matrix

Yn×q = (Y1, · · · ,Yq) =

 yT1
...

yTn

 (1.1)

where yi = (yi1, · · · , yiq) denotes the i-th observation and Yj = (y1j, · · · , ynj) de-
notes the observations on the j-th variable.

We model the observations as yi|Σ ∼ Nq(0,Σ) independently over i = 1, · · · , n,
where Σq×q is an unconstrained semi-positive definite matrix, and Nq(0,Σ) denotes
the q-variate normal distribution with mean vector µ = 0 and covariance matrix Σ.
The distribution of Y given the covariance matrix Σ is a special case of the Matrix
Normal distribution, which will be presented in section 4.2.

Our goal is to depict the conditional independence structure of variables {Y1, · · · , Yq}
by the means of an undirected graph, whose structure we assume to be unknown and
to be inferred by the data at hand. This procedure in the bibliography is referred as
Structure Learning , which in reality is a model selection procedure that involves
graphical models. There are two approaches to this problem:

1. Constraint-based approaches, where we search for a graph structure which
satisfies the independence assumptions observed through the empirical distri-
bution.

2. Score based approaches, where we define a scoring function which enable us
to rank the models at hand and then identify the highest-scoring model.

This thesis will explore score-based approaches, based on posterior probabilities. We
start from defining a model space which is consisted by a set of candidate graphical
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models; then we define a scoring function which enables us to score the different
models of the model space and finally, we construct a search algorithm that will
navigate through the model space to identify the optimal model that explains the
problem at hand. The choise of a scoring function is crucial for optimizing the
search procedure through the model space. Our approach to this problem is purely
Bayesian for handling uncertainty in a more elaborate fashion. We will use estimates
of posterior model probabilities for ranking the models at hand.

The underlying graph’s structure is identified by observing the non-zero entires
of the inverse of the covariance matrix Σ−1 = K, called, the concentration matrix.
Thus, for estimating a candidate model’s posterior probabilty, we first need to assign
a prior on the graph itself and a prior distribution over the column-covariance matrix
Σ

The specification of a conditional prior on Σ is not trivial, because each graph
under consideration induces a different independence structure and it affects the
parameter space. In cases where it is infeasible to sucessfully elicit a subjective
prior, especially in high dimensions, we resort to Objective Bayes, an approach
which exploits non-informative priors. By non-informative priors, we refer to prior
distributions with minimal impact on the corresponding posterior analysis.

Furthermore, the non-informative priors considered throughout this thesis are
improper, i.e. do not have a finite mass and we assume that they depend on an
arbitrary normallizing constant which is responsible for converting their total mass
to finite (see section 3.3). These priors cannot be used for computing Bayes factors,
since a pairwise model comparison will be multiplied by the ratio of their respective
normallizing contants and subsequently deem the Bayes factor indeterminate (see
section section 3.3).

For creating an automated Bayesian scoring technique, we resort to Objective
Bayes approaches, which are initiated by an improper prior distribution and their
output is a fully usable prior distributions.

Objective Bayes contributions to the field of strucutre learning can be found in
Carvalho and Scott (2009), Consonni et al. (2017), Castelletti et al. (2018), where
they all follow the same scoring approach based on the Fractional Bayes Factor of
O’Hagan (1995). Despite its efficiency and computational conveniency, the Frac-
tional Bayes Factor has the disadvantage of using the entire of the data twice for
both prior specification and model selection.

In this thesis, we propose the use of two alternative Objective Bayes approaches
for estimating posterior probabilities of models, namely the Expected Posterior prior
approach of Pérez and Berger (2002) and the Power-Expected Posterior Prior ap-
proach of Fouskakis et al. (2015). Both approaches utilize the device of imaginary
observations for providing usable prior distributions and are theoretically sounder
than the Fractional Bayes Factor of O’Hagan (1995). They both facilitate pairwise
comparison of models under consideration, by comparing them with a reference
model, and then comparing the respective Bayes factors to decide which model is
prefferable. Our goal is to introduce both the Expected and Power-Expected Poste-
rior prior approaches to the field of structure learning of undirected graphical models
and evaluate their performance using certain stochastic search techniques.

The remainder of the thesis is organized as follows. In chapter 2, we provide

12 Chapter 1 Nikolaos Petrakis
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some basic notions and notations of Graph theory, Markov and Hyper-Markov laws.

In chapter 3 we describe the Model selection problem under a Bayesian point
of view, focused on Objective Bayes approaches. This chapter specifically describes
the importance of the use of both Expected and Power-Expected posterior prior
approaches and how they can be applied under certain cases.

In chapter 4 we face the structure learning problem under an Objective Bayes
point of view. We first describe how the Fractional Bayes Factor is being used for
evaluating the performance of different models versus the simplest model available.
Then we apply, step by step, both Power-Expected and Expected posterior prior ap-
proaches to the graphical model selection framework. We then provide the course of
action required for estimating Bayes factors of candidate models versus the simplest
model available.

Then, we explore standard choices for assigning a prior on any given graph under
consideration. After exploring both prior specification steps we describe a stochastic
search algorithm that will be used for exploring the given graphical model space.
Finally, we provide applications of Expected and Power-Expected posterior prior
approaches to artificially simulated datasets as well as and in real-life application.
Both approaches are compared with the Fractional Bayes Factor approach of Car-
valho and Scott (2009) and the Birth-Death MCMC approach of Mohammadi and
Wit (2015).

In chapter 6 we describe the conclusions from the applications of Expected and
Power-Expected Posterior prior approach to the structure learning problem of undi-
rected gaussian graphical modeles as well as future directions for reasearch. Compu-
tational Appendix is provided. Finally, chapter 4 is an extended version of a paper
submitted to a Special Issue Article to of Statistica Neerlandica for 2020 (Manuscript
ID: 2019-050).

Chapter 1 Nikolaos Petrakis 13





Chapter 2

Notions of Graph Theory and
Graphical Models

By the term Graphical Model , we refer to a statistical model that embodies a
collection of marginal and conditional independencies which can may be summa-
rized by means of a graph (Dawid and Lauritzen (1993)). Graphical models can
incorporate richness in modeling, clarity of interpretation and expedite analysis of
complex problems.

A graph, which may be either undirected, directed or a combination of them,
contains nodes associated with variables on one to one correspondence under a given
problem. If a directed graph is considered, then edges from a ‘parent ’ node lead to
a ‘child’ node, representing unique direct influences on the respective child node,
which are independent of any other possible direct influences conditional on the other
parents. If a graph is undirected, then a node is independent of any other node given
its immediate neighbors. This thesis will be devoted to undirected graphs.

The goal of this chapter is to set the groundwork for chapter 4, where we in-
troduce to the reader the concept of Gaussian graphical models. We first present
the basic notions of graph theory that will be used throughout this thesis. Then we
state the notion of conditional independence, which is a key inferential feature of
graphical models. We then move to the description of Markov and Hyper Markov
laws and how they are connected to Bayesian inference. All notions descibed, are
based on Dawid and Lauritzen (1993) and Lauritzen (1996).

2.1 Notions of Graph Theory

Prior to the establishment of Markov and Hyper Markov laws, it is necessary to
define basic terms and notions of Graph Theory that will be used throughout this
thesis. A Graph G is characterized by a pair G = (V,E), where V denotes a finite
set of Vertices and E denotes a set of Edges that connect nodes of set V . Thus,
a respective graph G cannot contain multiple edges or loops.

Let (a, b) denote an edge connecting nodes A and B with A,B ∈ V . If both
(a, b) and (b, a) exist in E, then we will refer only to node (a, b) which will be called
an undirected edge. If one of the edges does not exist in E, then the respective
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edge that exists in E will be called a directed edge. If a graph G is composed
by undirected edges, it will be called an Undirected Graph and if the edges are
directed, then it will be called a Directed Graph . If a graph G contains both
directed and undirected edges, it will be called Mixed Graph ; all three types of
graphs are illustrated in Figure 2.1. This thesis will consider graphs of Figure 2.1a.

(a) Undirected Graph. (b) Directed Graph.

(c) Mixed Graph.

Figure 2.1: Graph Examples.

An graph will be stated as Complete , if all its respective vertices are connected.
A graph’s subset will be stated as complete, if it induces complete subgraph. A
complete subgraph that is maximal with respect to ⊂ will be called a Clique . A
subset S ⊂ V will be called a Separator , if all paths from a to b intersect S. The
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subset S is said to separate set A from B if it is an (a, b) separator for every a ∈ A
and b ∈ B.

Definition 1. A pair (A,B) of subsets of the vertex set V of an undirected graph
G is said to form a decomposition of G, if V = A∪B, A∩B is complete and A∩B
separates A from B.

Thus, a graph that is decomposable, it can be successively decomposed into its
respective cliques. This can be formally stated in the following definition provided
by Lauritzen (1996):

Definition 2. An undirected graph is said to be decomposable if it is complete, or
if there exists a proper decomposition (A,B) into decomposable subgraphs GA and
GB.

The decomposition of a graph G is assumed to be proper, such that subgraphs
GA and GB contain less vertices than the original graph G. An undirected graph G
will be called Triangulated , if every cycle of length n ≥ 4 possesses a chord, i.e.
two non-consecutive neighboring vertices. This leads to the following proposition:

Proposition 1. An undirected graph is decomposable if and only if it is triangulated.

A sequence (C1, · · · , Ck) of complete sets in G such that ∀j > 1, Rj is simplicial
in GHj , where

Hj = (C1 ∪ · · · ∪ Cj), Rj = Cj \Hj−1, (2.1)

is said to be Perfect . Elements Hj are denoted as histories and Rj are the residuals
of the respective sequence. A Perfect Numbering of the vertices V of graph G is
a numbering (α1, · · · , αk such that the sets

bd(αj) ∩ {α1, · · · , αj−1}, j > 1 (2.2)

are complete sets, i.e. the sequence ({α1}, · · · , {αk}) is a perfect sequence of sets.

Thus, we obtain the following proposition from the Appendix of Dawid and
Lauritzen (1993), which enables us with the ability to identify a decomposable graph:

Proposition 2. Given an undirected graph G, the following are equivalent :

1. The graph G admits a perfect directed version D.

2. The cliques of G admit a perfect numbering.

3. The graph G is decomposable.

2.2 Conditional Independence

Key feature of graphical models is the conditional independence of random vari-
ables, described by the underlying structure of a graph. The notion of conditional
independence was extensively studied by Dawid (1979) and was formally defined in
Dawid (1980). We provide the definition of conditional independence that was used
in Dawid and Lauritzen (1993):

Chapter 2 Nikolaos Petrakis 17
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Definition 3. If X, Y, Z are random variables on a probability space (Ω,A, P ), we
say that X is Conditionally Independent of Y given Z under P , and write
X ⊥⊥ Y |Z [P ], if for any measurable set N in the sample space of X, there exists
a version of the conditional probability P (X ∈ N |Y, Z) which is a function of Z
alone.

The relation X ⊥⊥ Y |Z [P ] may not have a probabilistic interpretation, yet as
in Lauritzen (1996) p.30, it can be expressed as:

Having knowledge about Z, reading Y is irrelevant for reading X .

It further has the following properties:

1. If X ⊥⊥ Y |Z then Y ⊥⊥ X |Z.

2. If X ⊥⊥ Y |Z and U is a measurable function of X, then U ⊥⊥ Y |Z.

3. If X ⊥⊥ Y |Z and U is a measurable function of X, then X ⊥⊥ Y | (Z,U).

4. If X ⊥⊥ Y |Z and X ⊥⊥ W | (Y, Z) then X ⊥⊥ (W,Y ) |Z.

5. If X ⊥⊥ Y |Z and X ⊥⊥ Z |Y then X ⊥⊥ (Y, Z).

Lauritzen (1996) p.29 provide the notion of conditional independence, under a
generic probability density f of random variables (X, Y, Z). The following state-
ments will hold:

1. X ⊥⊥ Y |Z ⇔ fXY Z(x, y, z) = fXZ(x, z)fZY (y, z)/fZ(z).

2. X ⊥⊥ Y |Z ⇔ fX|Y Z(x|y, z) = fX|Z(x|z).

3. X ⊥⊥ Y |Z ⇔ fXZ|Y (x, z|y) = fX|Z(x|z)fZ|Y (z|y).

4. X ⊥⊥ Y |Z ⇔ fXY Z(x, y, z) = h(x, z)k(y, z) for some h, k.

5. X ⊥⊥ Y |Z ⇔ fXY Z(x, y, z) = fX|Z(x|z)fY Z(y, z).

If the density f is continuous, the above equations hold if the quantities x, y, z are
well-defined i.e. the respective densities of all conditioning variables are positive.

2.3 Markov Laws for Undirected Graphs

For the remainder of this thesis, G = (V,E) will always denote an undirected graph
with vertex set V and edge set E, which will be assumed to be decomposable. We
consider a collection of random variables (Ya)a∈V having values on probability spaces
(Ya)a∈V . For a subset A ⊆ V , we denote YA = ×a∈AYa and Y = YV . Similarly
YA = (Ya)a∈A. The notion of conditional independence will imply

A ⊥⊥ B |C → YA ⊥⊥ YB |YC . (2.3)

Lauritzen (1996) p.32 provided three distinct Markov properties under a graph
G = (V,E) for a collection of random variables (ya)a∈V . These are the following:

18 Chapter 2 Nikolaos Petrakis
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1. A probability measure P on Y is said to obey the Pairwise Markov property
relative to G, if for any pair (α, β) of non-adjacent vertices

α ⊥⊥ β |V \ {α, β}. (2.4)

2. A probability measure P on Y is said to obey the Local Markov property
relative to G, if for any vertex α ∈ V

α ⊥⊥ V \ cl(α) | bd(α). (2.5)

3. A probability measure P on Y is said to obey the Global Markov property
relative to G, if for any triple (A,B, S) of disjoint subsets of V such that S
separates A from B in G

A ⊥⊥ B |S. (2.6)

The Markov properties are related, as described by proposition 3.4 Lauritzen (1996)
p.33, in the following way:

Proposition 3. For any undirected graph G and any probability distribution on X,
it holds that

Global Markov → Local Markov → Pairwise Markov.

The global Markov property is of great importance, because it enables us to
decide when two sets of variables A and B are conditionally independent given
another set of variables S. Dawid and Lauritzen (1993) define the Markov property
for a distribution P as follows:

Definition 4. A distribution P on a V is called Markov over G if for any decom-
position (A,B) of G

A ⊥⊥ B |A ∩B [P ]. (2.7)

Let Q and R be the underlying distributions for YA and YB respectively. In
order for a common underlying joint distribution to exist, having Q and R as its
marginals, both Q and R must be consistent.Dawid and Lauritzen (1993) denote
consistency in the following sense:

Definition 5. We say that distributions Q over A and R over B are consistent if
they both yield the same distribution over A ∩B.

Lemma 1. Suppose that the distributions Q over A and R over B are consistent.
Then, there exists a unique distribution P over A ∪B such that :

1. PA = Q.

2. PB = R.

3. A ⊥⊥ B |A ∩B [P ].

Chapter 2 Nikolaos Petrakis 19
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The set of distributions that satisfy condition 3 of Lemma 1 will be denoted as
M(A,B). We will denote with P , the Markov combination of Q and R that satisfy
all conditions of Lemma 1, and write P = Q ? R. If P , Q and R have density
functions p, q and r respectively, then we will obtain

p(x) =
q(YA) r(YB)

qA∩B(YA∩B)
, (2.8)

where the denominator could have been written as rA∩B(YA∩B). In particular, P ∈
M(A,B) if and only if

p(Y ) =
pA(YA)pB(YB)

pA∩B(YA∩B)
. (2.9)

The construction mechanism described above, can be extended to the case of a
general decomposable graph G = (V,E). Under the clique set C = {C1, · · · , Ck}
of a decomposable graph G that admits a perfect ordering, we consider a pairwise
consistent collection of distributions {QC : C ∈ C}, where QC is a distribution over
the respective clique C. Then, a Markov distribution P is defined having QC as its
margins on cliques by

PC1 = QC1 , (2.10)

PHi+1
= PHi ? QCi+1

. (2.11)

Using Equation 2.10 and Equation 2.11 we can rewrite Equation 2.9 as follows

p(Y ) =

∏k
i=1 pCi(YCi)∏k
i=2 pSi(YSi)

. (2.12)

Note that separators Si are the same for any given perfect ordering of cliques. Each
respective separator S is repeated v(S) times in any sequence (Si), where with v(S)
Dawid and Lauritzen (1993) denote a combinatorial index which is associated with
the number of disconnected components of GV \S.

By denoting S the set of separators that include all v(S) repetitions of each
separator S, then Equation 2.12 can be alternatively provided by

p(x) =

∏
C∈C pC(YC)∏

S∈S pS(YS)v(S)
. (2.13)

Usually, the term v(S) will be omitted and we will obtain:

p(Y ) =

∏
C∈C pC(YC)∏
S∈S pS(YS)

. (2.14)

2.4 Hyper Markov Laws for Undirected Graphs

Dawid and Lauritzen (1993) in Section 3 introduced distributional laws for a quan-
tity θ with values in the set M(G) of Markov probabilities over the undirected
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decomposable graph G. We will exploit these laws to describe prior and posterior
distributions for graphical models. We will refer to a distribution of θ over the set
M(G) as a law for θ and will be denoted as £(θ).

For the remainder of this chapter, the notation

A ⊥⊥ B |C [£] (2.15)

will imply

θA ⊥⊥ θB | θC [£] (2.16)

with respect to the law £ for θ. Thus, we state the following lemma provided by
Dawid and Lauritzen (1993):

Lemma 2. It holds that :

1. If A ⊆ V then

θ ' (θA, θV \A |A). (2.17)

2. If C is the set of cliques of G then

θ ' {θC : C ∈ C}. (2.18)

3. If G is collapsible onto U ⊆ V and (A,B) is a decomposition of GU , then

θU ' (θA, θB). (2.19)

The notation ' denotes that each member of a given relation is a function of the
other.

Next, we need to define the notion of hyperconsistent laws, to lay the groundwork
for the construction mechanism of Hyper Markov laws.

Definition 6. We say that laws M over A ∈ V and N over B ∈ V are Hyper-
consistent if they both induce the same law over A ∩B.

If M and N rise from an appropriate marginalization of a common underlying
law, then subsequently both are hyperconsistent. If A ∩ B = ∅, then any pair of
laws will be hyperconsistent.

Lemma 3. Given a hyperconsistent law M over A ∈ V and N over B ∈ V , there
exists a unique law £ over A ∩B such that :

1. £ is concentrated on M(A,B).

2. £A = M.

3. £B = N.

4. θA ⊥⊥ θB | θA∩B.
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The law £ which satisfies the conditions of Lemma 3, is called the Hyper
Markov combination of M and N and will be denoted by £ = M

⊙
N.

The primary goal of Dawid and Lauritzen (1993) was to use this scheme to
construct a law £ over a graph G, determined by its respective clique marginal laws
{£C : C ∈ C}. To expedite this construction mechanism, Dawid and Lauritzen
(1993) had to establish a restriction on law £ comparable to the Markov requirement
on the distribution θ of Y as in Definition 4.

Definition 7. A law £(θ) on M(G) is called (weak) Hyper Markov over G, if
for any decomposition (A,B) of G

θA ⊥⊥ θB | θA∩B. (2.20)

As Dawid and Lauritzen (1993) indicate, this definition is equivalent with the
following:

θA |B ⊥⊥ θB | θA∩B (2.21)

θA |B ⊥⊥ θB |A | θA∩B, (2.22)

yet it is different from the corresponding pointwise property

θA(YA) ⊥⊥ θB(YB) | θA∩B(YA∩B), ∀Y. (2.23)

The construction of hyper Markov laws can be achieved using the same scheme of
Markov distributions. Given a set of hyperconsistent laws {MC : C ∈ C} for a clique
set C of a graph G that admits a perfect ordering, the hyper Markov distribution
£ over G having {MC} as its margins on cliques, must satisfy

£C1 = MC1 (2.24)

£Hi+1
= £Hi

⊙
MCi+1

. (2.25)

Theorem 1. The distribution defined by Equation 2.24 and Equation 2.24 is the
unique hyper Markov law over G with the given hyperconsistent laws {MC} over
clique marginals.

An important consequence of the hyper Markov property is the following:

Theorem 2. If the law £ is hyper Markov over G then

θA ⊥⊥ θB | θS [£] (2.26)

whenever S separates A from B in G.

The hyper Markov property can be maintained under a collapsible marginaliza-
tion:

Proposition 4. If a graph G is collapsible onto A and £ is hyper Markov over G,
then £A is hyper Markov over GA.
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In order to use laws for a graphical model selection procedure, as we will describe
in later parts of this thesis, we need to consider laws with stronger independence
properties than the ones stated in Definition 7. Dawid and Lauritzen (1993) provide
the following:

Definition 8. A law £(θ) on M(G) is a strong hyper Markov over G, if for
any decomposition (A,B) of G implies that

θB |A ⊥⊥ θA. (2.27)

As Dawid and Lauritzen (1993) indicate, the condition provided by 8 implies
that the law £(θ) is weak hyper Markov. It is stronger than the corresponding
pointwise property

θB |A(YB |YA) ⊥⊥ θA(YA), ∀Y. (2.28)

Proposition 5. A law £(θ) on M(G) is strong hyper Markov over G if and only
if, under £

⊥⊥θA |B ,θB |A, θA∩B (2.29)

whenever A ∩B is complete and separated A from B.

We can induce a unique hyper Markov law over a graph G dependent on its
clique-marginal laws, which can be formally expressed in the following proposition:

Proposition 6. Let £ be a hyper Markov law over G. Then £ is strong hyper
Markov if and only if, for all cliques of C of G and all subsets A of C we have

θC\A |A ⊥⊥ θA [£]. (2.30)

2.5 Hyper Markov Laws for Bayesian inference

Hyper Markov laws can be used as prior distributions for a parameter θ and the hyper
Markov property can simplify prior to posterior analysis or graphical model selection
procedures. For this section, Y will denote an observation from a distribution θ with
its respective law £.

Proposition 7. If the prior law £(θ) is hyper Markov over G, then the joint dis-
tribution (Y, θ) satisfies, for any decomposition (A,B) of G,

(YA, θA) ⊥⊥ (YB, θB) | (YA∩B, θA∩B). (2.31)

If the law £(θ) is strong hyper Markov, then it also satisfies :

(YA, θA) ⊥⊥ (YB, θB |A) |YA∩B. (2.32)

Dawid & Larutizen (1993) further conditioned with YA and YB the following
relations Equation 2.31 and Equation 7 to obtain the following corollary
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Corollary 2.1. If the prior law of θ is hyper Markov, so is the posterior law obtained
on the complete data Y = y. If the prior law is strong hyper Markov, so is the
posterior.

Dawid and Lauritzen (1993) note that Corollary 2.1 can be extended to the case
where the data are provided as a random sample of size n from the distribution theta,
since observations are usually assumed as i.i.d. realizations. Thus, Corollary 2.1
indicates that hyper Markov laws and strong hyper Markov laws can form conjugate
families of the family M(G) of Markov models over graph G.

Corollary 2.2. If the prior law £(θ) is strong hyper Markov, the posterior law
of θ is the unique (strong) hyper Markov law £∗ specified by the clique-marginal
laws {£∗C : C ∈ C, where £∗C is the posterior distribution of θC based on its prior
law £C and the clique-specific data YC = yC . When densities exist, π(θC |yC) ∝
f(yC |θC)π(θC).

Thus, with a strong hyper Markov prior distribution, the posterior distribution
can be provided piece-wise over the clique set C and update the marginal distribution
in the same manner, a feature not available when one considers weak hyper Markov
laws.

Marginal data distributions are extensively used in model selection procedures,
as we will describe later on this thesis. The Markov property can be extended to a
marginal distribution, i.e. distribution of the data not conditioned on parameters,
using the following proposition by Dawid and Lauritzen (1993):

Proposition 8. If the prior law of θ is strong hyper Markov, then the marginal
distribution of Y is Markov.

This property allows marginal data distributions to be decomposed accordingly
to Equation 2.14 and expedite graphical model selection procedures, as we will
explore in later parts of this thesis.
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Chapter 3

Objective Bayes Model Selection

As mentioned in chapter 1, this thesis deals with the graphical model selection prob-
lem under an objective Bayes viewpoint. The goal of this chapter is to communicate
to the reader how Bayesian statistics deal with the model selection problem, what
kind of challenges one faces with in absense of information and how objective Bayes
can fill this gap.

We first provide the general scope of Bayesian model selection as well as all the
key quantities required. We then present a computational approach for estimating
Bayes factors. Note that we describe a specific technique, namely the Importance
Sampling approach, because it will be intrumental for approximating Bayes factors
in chapter 4; further references provided for alternative methods.

After setting the groundwork for comparing models under a Bayesian point of
view, we then present the challenges of Bayesian model selection and how objective
Bayes operates. Using a non-informative setup (see section 3.3) we proceed with
defining alternative Bayes factors that can facilitate the comparison of models that
utilize improper priors.

Finally, we shift from the pairwise comparison of models to an automated con-
struction of minimally informative prior distributions that allow model comparison
using a common reference model (see subsection 3.5.3). Notions and strategies
communicated to this chapter, will be combined with the notions of graph theory
presented in chapter 2, to facilitate an objective Bayes approach to the graphical
model selection problem.

3.1 Bayesian Model Selection

One of the core objectives of Statistical Science is the development of a Statistical
Model for either interpreting casual relationships between characteristics of a pop-
ulation, like a relationship between lung cancer and dyspnoea, or predicting a future
outcome, like the future price of a stock. In practice, we are called to explore a set of
candidate statistical models to identify the most promising ones, in terms of either
prediction or interpretation. This procedure is described as the Model Selection
Problem and it has been explored extensively from both Frequentist and Bayesian
point of view.
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For the remainder of this chapter, we will use the following terms and notation.
With the term statistical model, we refer to a family of distributions for the observ-
able random variables (Consonni et al. (2018) Section 3.1). Let M = {M1, · · · ,Mk},
where k ≥ 2, denote a countable set of statistical models, Y = {Y1, · · · , Yq} be a
collection of q variables from which we observe n i.i.d. q-dimensional observations yi
for i = 1, · · · , n arranged in a data matrix Y as in Equation 1.1. With f(Y|θj,Mj),
we denote the density of Y under model Mj ∈ M. To compare two models of the
set M, we consider

Model Mi : f(Y|θi,Mi),θi ∈ Θi ⊂ Rdi ,

Model Mj : f(Y|θj,Mj),θj ∈ Θj ⊂ Rdj ,

where θi and θj , with respective dimensions di and dj, represent the unknown
parameters of models Mi and Mj. When Mi is nested in model Mj we assume that
θj = (θi,θj\i)

T , where θi represents the parameters shared by both models Mi and
Mj and θj is contained only in model Mj. This specification will prove useful for
specifying compatible prior distributions across models of set M, as we will present
in later sections of this chapter. Under a nested-model setup, we single out a specific
model M0 ∈M, which is nested in every other model Mj ∈M with j 6= 0 and it is
called the null model.

For each model Mj ∈M, we assign a prior probability π(Mj) which represents
our prior belief that Mj is the true model, and a prior distribution π(θj|Mj) on
the parameter vector θj ∈ Θj ⊂ Rdj . By using Bayes theorem, we obtain the
Posterior Model Probability of model Mj by

π(Mj|Y) =
π(Mj)mj(Y)∑

Ml∈M π(Ml)ml(Y)
. (3.1)

The quantity mj(Y) denotes the marginal likelihood of the data vector Y under
model Mj ∈M and it is obtained by integrating over the parameter vector θj, i.e.

mj(Y) =

∫
f(Y|θj,Mj)π(θj|Mj)dθj. (3.2)

The most common approach for comparing two models Mj,Mi ∈ M is the pro-
duction of the Posterior Odds (Jeffreys (1961)) of model Mj versus model Mi ,
defined by

POMj :Mi
=
π(Mj|Y)

π(Mi|Y)
=
mj(Y)

mi(Y)
× π(Mj)

π(Mi)

= BFMj :Mi
(Y)×OMj :Mi

, (3.3)

which represent the odds that model Mj will perform better than model Mi, based
on their respective posterior model probabilities. The quantity

BFMj :Mi
(Y) =

mj(Y)

mi(Y)
(3.4)
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denotes the Bayes Factor (BF ) of model Mj versus model Mi and represents the
evidence in favor of model Mj based on information provided by the data Y. The
quantity

OMj :Mi
=
π(Mj)

π(Mi)
(3.5)

denotes the Prior Odds of model Mj versus model Mi which represents our prior
belief that model Mj will perform better than model Mi. Using the Bayes factor of
Equation 3.4 we can define in a straightforward manner the Bayes factor of model
Mi versus model Mj by

BFMi:Mj
(Y) =

1

BFMj :Mi
(Y)

. (3.6)

The Bayes factor is not influenced by prior model probabilities, thus by assigning
a uniform probability across all models of M, i.e. we assume that every model
Mj ∈ M has the exact same prior probability, the Posterior odds of Equation 3.3
are reduced to the Bayes factor of Equation 3.4. Using Equation 3.3 we can provide
another interpretation for the Bayes factor, that is, the ratio of Posterior to Prior
Odds.

Larger values of Posterior odds (or Bayes factors) correspond to stronger evidence
in favor of model Mj against model Mi and smaller values indicate the opposite
behavior. Jeffreys (1961) and Kass and Raftery (1995) provide specific thresholds
of Bayes and log-Bayes factors that measure the amount of evidence in favor of each
model.

After establishing the pairwise comparison of candidate models of set M, we
can define the Posterior model probabilities of a candidate model Mj ∈ M using
Posterior Odds of every model of M versus null model, i.e.

π(Mj|Y) =
π(Mj)mj(Y)∑

Ml∈M π(Ml)ml(Y)

=
π(Mj)mj(Y)∑

Ml∈M π(Ml)ml(Y)

π(M0)m0(Y)

π(M0)m0(Y)

=
POMj :M0∑

Ml∈M POMl:M0

. (3.7)

The model that achieves the highest posterior probability compared to every other
model of set M, is defined as the Maximum a-Posteriori Model and we will
refer to it as the MAP model.

The main disadvantage of the posterior model probabilities, compared to pos-
terior odds and Bayes factors, is their decline over similar models. If one considers
even larger model spaces, then the posterior model probabilities decrease, even for
the MAP model. A useful suggestion by Consonni et al. (2018) Section 3.2 is, be-
sides the posterior model probabilities, to investigate the posterior odds or the Bayes
factors of each model considered against the MAP model.
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3.2 Monte Carlo Estimation of Bayes Factors

The derivation of posterior model probabilities requires the calculations of BFs using
marginal likelihoods of relation Equation 3.2, which can be analytically tractable
only in low dimension settings or under a conjugate setup; for larger dimension
settings, numerical approximations or Monte Carlo schemes are deployed. The most
well known numerical approximations are the Laplace approximation as was used by
Tierney and Kadane (1989) and the Schwarz criterion (Schwarz (1978)), but both
these approximations are plausible only for certain simple problems as indicated by
Berger and Pericchi (1998a).

An alternative approach is provided using MCMC methods in conjunction with
Importance Sampling, which will only be presented in this subsection since it will be
used for the utilization of Expected and Power-Expected Posterior prior approaches;
see subsection 3.5.4

Under a given model Mj ∈M, a simple Monte Carlo estimator of the marginal
likelihood of Equation 3.2 can be provided by

mj

∧
(Y) =

1

R

R∑
r=1

f(Y|θ(r),Mj) (3.8)

where {θ(r), r = 1, · · · , R} is a sample obtained by the prior distribution π(θj|Mj).
When one considers diffused priors or highly concentrated likelihoods, this rough
average of likelihoods will return unstable estimations, because it will be guided
by a few large values of the likelihood. Moreover, this estimator will have large
variances and its convergence to its actual value will be very slow. To obtain more
accurate Monte Carlo estimations of the marginal likelihood Equation 3.2, we deploy
Importance Sampling .

Let g∗(θj|Mj) be an importance density, which will be used to generate a sample

of {θ(r), r = 1, · · · , R}. Then, the marginal likelihood Equation 3.2 can be estimated
by

m
∧
j(Y) =

∑R
r=1w

∗
rf(Y|θj,Mj)∑R
r=1w

∗
r

(3.9)

where w∗r = π(θj|Mj)/g
∗(θj|Mj). One intriguing choice of the importance density

g∗(θj|Mj) is the posterior distribution of π(θj|Y,Mj), which results to the following
estimator

m
∧
j(Y) =

{ 1

R

R∑
r=1

[f(Y|θ(r)
j ,Mj)]

−1
}−1

. (3.10)

More information on this topic is provided by Kass and Raftery (1995) Section 4.3.

3.3 The Objective Bayes Approach

The derivation of Bayes factors requires the specification of a prior distribution
π(θj|Mj) for the parameters θj under each model Mj ∈M. There are two stances
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to be adopted to assign prior distributions; a subjective stance, where one can
successfully elicit a prior distribution to quantify his knowledge and beliefs for θj and
an objective stance where one depicts his prior ignorance or lack of knowledge for θj
and the prior distributions are used up to suitably defining statistical models. These
stances are formally called Subjective Bayes and Objective Bayes approaches.

The Objective Bayes approach has received a great deal of criticism by re-
searchers in the Bayesian community regarding its philosophical viewpoints (Berger
(2004) Section 1.2). In real life applications, it may be difficult for a practitioner to
encapsulate his/her prior opinion into a suitable prior distribution. This complica-
tion rises when we consider high-dimensional parameter spaces, where it is infeasible
to illustrate the dependence structure among parameters through a prior distribu-
tion. It is also possible that for several applications there is no prior knowledge and
yet we must depict our prior ignorance to a prior distribution. Thus, in this thesis,
we will focus only on Objective Bayes approaches.

The distributions that are used under an Objective Bayes approach are called
non-informative prior distributions . For the remainder of this thesis, we
will refer to a non-informative prior distribution for a parameter vector θj under
model Mj ∈ M as πN(θj|Mj). When we consider improper prior distributions,
i.e. distributions with total mass not finite, we assume that they depend from an
arbitrary normalizing constant cj which is responsible for converting their total mass
to finite. Non-informative distributions are characterized by the fact that their effect
on the posterior analysis is minimal and our results are guided by the data at hand.

The main difficulties one meets in search of automatic default Objective Bayes
model selection procedures according to Berger and Pericchi (2001) Section 1.5, are
the following:

1. Computational cost can be enormous .
When the parameter or model space grows rapidly, the computational burden
for the derivation of Bayes factors and Posterior odds can become enormous,
especially in variable selection and graphical model selection problems.

2. Use of improper priors on different parameter spaces, yields inde-
terminate answers .
If we consider modelsMi,Mj ∈M and their respective improper non-informative
priors πN(θi|Mi), π

N(θj|Mj), the Bayes factor of model Mj versus model Mi

will be provided by:
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BFMj :Mi
(Y) =

mN
j (Y)

mN
j (Y)

=

∫
f(Y|θj,Mj)π

N(θj|Mj)∫
f(Y|θi,Mi)πN(θi|Mi)

=

∫
f(Y|θj,Mj)cjπ

N(θj|Mj)∫
f(Y|θi,Mi)ciπN(θi|Mi)

=
cj
ci

∫
f(Y|θj,Mj)π

N(θj|Mj)∫
f(Y|θi,Mi)πN(θi|Mi)

=
cj
ci
BFN

Mj :Mi
(Y). (3.11)

We observe that with different parameter spaces between models, the Bayes
factor of Mj versus model Mi depends from the ratio of arbitrary constants
cj/ci, thus we are not able to extract any information regarding which model
performs better.

As Berger and Pericchi (2001) indicate, even when we compare models with
identical parameter spaces it is not rational to assume cj = ci since we refer to
a completely arbitrary constant. If we consider similar model spaces, it may
not be prohibitive to set cj = ci, yet it is not suggested. Solution to this issue
will be investigated extensively in the following sections.

3. Model parameters do not maintain their meaning across models
and prior distributions should adapt .
This complication usually rises in the variable selection and Berger and Per-
icchi (2001) provided a simple example of a variable selection problem, where
they consider two candidate models having one covariate in common. If one
decides to assign the same prior distribution regarding the coefficient of the
common covariate, it will result in irrational results since under the second
model there exists positive correlation among the two given covariates.

Under an objective Bayes appraoch, we start by defining a default non-informative
prior distributions and we present the most important of them as were described by
Consonni et al. (2018) Section 2. These are the following:

1. Uniform prior distribution .
With a uniform prior distribution, we assign a prior to a continuous pa-
rameter which provides equal probability over equal sized intervals. Yet as
Consonni et al. (2018) indicate, the uniform prior is not invariant under re-
parametrization and in real life applications is impossible to find a natural
parametrization for a given model. If the model space is not bounded then
the uniform prior will be improper, thus we cannot be certain that the poste-
rior will be proper.

2. Invariant prior distribution .
Since the uniform prior is not invariant under re-parametrization, the devel-
opment of a suitable objective prior that would be invariant under a certain
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class of transformation was necessary. Following the notation provided by Con-
sonni et al. (2018), let (P,Θ) denote a statistical model for the observation
X, where P denotes a family of distributions and θ is the set of parameters.
Consider the transformation Y = s(X) with distribution model P and set
of parameters Λ. Since the family of distributions P is common for both X
and Y , the model is invariant to a transformation s(·). If we define our prior
through family P, then the priors πθ of θ and πλ of λ must be defined such
that Pπθ{θ ∈ A} = Pπλ{λ ∈ A},∀A. This attribute is named Context In-
variance in Dawid (2006) and represents a very strong requirement, since
the structure of P remains the same regardless of the framework applied.

3. Matching prior distribution .
The matching prior is based on the principle that a non-informative prior
should have similar inferential capabilities with some standard frequentist ap-
proaches. If we consider an example where we compare credible and confidence
intervals, the probability matching prior should lead to posterior probabilities
of certain regions which are the identical or approximately equal with their
respective frequentist coverage probabilities; more details on Datta and Muk-
erjee (2004).

4. Maximum entropy prior .
The maximum entropy prior is a distribution which maximizes the entropy over
a class of priors under some certain constraints. Let π(θ) denote a distribution,
then its entropy will be provided by

Ent(π) = −
∫

Θ

π(θ) log π(θ)dθ (3.12)

which is able to quantify the absence of information from a non-informative
prior distribution.

This approach is based on two steps. First, one defined a class Γ of candidate
prior distributions characterized on k constraints, which can be in the form of
quantiles or moments and can be expressed as

E(gj(θ)) = µj, j = 1, · · · , k, (3.13)

where gj(·) is a set of suitable functions. To finalize the selection of the maxi-
mum entropy prior, one should select the element of the set Γ that maximizes
the entropy Ent(π).

5. Jeffreys and reference prior .
Before the emergence of MCMC methods, the most common choice of a prior
distribution under an objective Bayes framework was the Jeffreys prior, which
is provided by

πJ(θ) ∝ det(I(θ))1/2. (3.14)

The term I(θ) denotes the Fisher information matrix, where under the as-
sumption of a continuous parameter space Θ, its elements are provided by

Iij(θ) = −Eθ

( ∂2

∂θi∂θj
log f(Y|θ)

)
, (3.15)
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where the expectation Eθ denotes the expected value over the sampling space
for a given value of the parameter θ, and Y is the observable random variable.

Jeffreys prior is remains invariant under re-parametrization and enjoys many
optimality properties in the absence of nuisance parameters. It achieves the
maximum asymptotic divergence between the prior and the posterior for θ
under several different metrics, and for scalar θ Jeffreys prior is a second order
matching prior.

Though it is the most widely used objective prior distribution, it has some
certain flaws that need to be taken into account. First, it does not always lead
to proper posterior distributions for all possible datasets, as was proved with
counterexamples in Ye and Berger (1991) and Berger et al. (2001). Jeffreys
prior was originally developed for scalar parameters, yet for larger dimensions,
it may lead to incoherence and paradoxes, as was pointed out by Dawid et al.
(1973).

Second, it was suggested by Jeffreys to separately deal with location param-
eters. If θ = {φ, λ} where φ denotes a vector of location parameters, then it
is advised to keep φ fixed and use πJ(θ) ∝ (det(λ))1/2. This prior is called by
Kass and Wasserman (1996) non-location Jeffreys prior.

Third, when we consider a low dimensional function ψ(θ) of the entire pa-
rameter vector θ, there is no guarantee of a ”satisfactory” behavior of Jeffreys
approach. The word ‘satisfactory’ is used from Consonni et al. (2018) to de-
scribe the ability of Jeffreys approach to producing statistical procedures which
correspond to frequentist procedures for the repeated sampling framework.

3.4 Model Selection Under Objective Bayes Ap-

proach

Following the description of default prior distributions, we proceed with establishing
the groundwork that will lead to a well-defined construction of standard Objective
Bayes model selection procedures.

3.4.1 Principles for Objective Bayes Model Comparison

Bayarri et al. (2012) proposed a general framework in terms of criteria, under which
an objective prior distribution should operate. Note, that several of these criteria
are applicable only in nested model comparison. These where described extensively
in Consonni et al. (2018) Section 3.3 as follows:

1. Propriety : The prior distribution of each specific model parameter condition-
ally on the common ones, π(θj\0|θ0,Mj), must be proper in order to deliver
identifiable Bayes factors without arbitrary normalizing constants.

2. Model Selection Consistency : If Mj is the model that generated the data,
then the posterior probability of Mj should converge to 1 as the sample size
grows to infinity. Though it is one of the strongest requirements for developing
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objective priors, yet it cannot provide evidence in favor of a candidate objective
prior among several that satisfy model selection consistency.

3. Information Consistency : If there exists a sequence of identical-sized
datasets such that the likelihood ratio between model Mj and model M0 goes
to infinity, then the respective sequence of Bayes factors will also go to infin-
ity. This form of consistency was originally described in Berger and Pericchi
(2001) under a conjugate prior setup for location with unknown scale.

4. Intrinsic Consistency Criterion : Effects that rise from model structure,
such as sample size, should diminish as n grows to infinity leading to a limiting
proper prior

5. Predictive Matching : Under a minimal sample size an Objective Bayes
model selection procedure should not be able to discriminate among two com-
peting models, with the resulting Bayes factor converging to one for all mini-
mally sized samples.

6. Measurement Invariance : Answers provided by an Objective Bayes model
selection procedure should not be affected by changes in measurement units.

7. Group Invariance Criterion : If models Mj and M0 remain invariant with
respect to a group of transformation Γ0, then the respective conditional priors
π(θj\0|θ0,Mj) must be defined accordingly to provide an invariant marginal
distribution f(Y|θ0,Mj) under Γ0.

Prior Compatibility

The assignment of prior distributions is focused on encapsulating the level of un-
certainty regarding a model parameter, yet it should also contain features that are
relevant across models of set M. This feature can be formally expressed as Prior
Compatibility ; see Consonni and Veronese (2008). In essence, the prior com-
patibility ensures that prior distributions are related across models, which is not
a requirement, each being conditional on a given model. Usually, it is applied in
comparison of nested models with different parameter spaces, where all models are
compared to a benchmark model (e.g. the null model). In this way, prior compat-
ibility can be achieved between each model and the null model and by implication
between any pair of models.

Compatibility was originally proposed to alleviate the sensitivity of model com-
parison to prior specifications and allow the extraction of multiple prior distributions
when a large number of models is considered. Yet, it can influence the construction
of Objective Prior distributions, e.g. the Expected Posterior Priors that we will
describe in latter parts of this chapter, where all prior distributions are defined up
to a common predictive measure.

3.4.2 Partial Bayes Factors

Before the development of automated Objective Bayes model selection procedures,
the use of improper default priors was allowable by deploying a specific type of Bayes

Chapter 3 Nikolaos Petrakis 35



Objective Bayes in Graphical Model Selection

factors, namely Partial Bayes Factors. Key feature of these variations was the
use of a part of the data as a training sample to eliminate the indeterminacy arising
from ratios of arbitrary constants. The remainder of the data would be deployed to
facilitate a standard model selection procedure by constructing BFs and Posterior
odds. Most well known partial Bayes factors are the Fractional Bayes Factor of
O’Hagan (1995) and the Intrinsic Bayes Factor of Berger and Pericchi (1996).

Fractional Bayes Factor

O’Hagan (1995) introduced a partial Bayes factor whose primary aim was to op-
erate in absence of concrete prior information and deal with the main issue of the
dependence of BFs from ratios of arbitrary constants. This approach was name
the Fractional Bayes Factor (FBF ) approach and it is based on a simple and
intuitive idea. One fraction of the full sample likelihood will be used for model
specification, i.e. to specify suitable prior distributions, and the remaining part of
the full sample likelihood will be used for facilitating the model selection procedure.
Let b = b(n), where 0 < b < 1, be the fraction parameter which is a fraction of the
data. Given two models Mj and Mi of set M, we define the Fractional Bayes factor
of model Mj versus model Mi as

FBFMj :Mi
(b,Y) =

Qj(b,Y)

Qi(b,Y)
, (3.16)

where

Qj(b,Y) =

∫
f(Y|θj,Mj)π

N(θj)dθj∫
f(Y|θj,Mj)bπN(θj)dθj

, (3.17)

∀j ∈ {1, · · · , |M|}. The quantity f(Y|θj,Mj)
b represents the likelihood function

under model Mj raised to the power b. We can rewrite Qj(b,Y) as

Qj(b,Y) =

∫
f(Y|θj,Mj)π

N(θj)dθj∫
f(Y|θj,Mj)bπN(θj)dθj

=

∫
f(Y|θj,Mj)

1−bf(Y|θj,Mj)
bπN(θj)dθj

mj(Y; b)

=

∫
f(Y|θj,Mj)

1−bf(Y|θj,Mj)
bπN(θj)

mj(Y; b)
dθj

=

∫
f(Y|θj,Mj)

1−bπF (θj|Y, b)dθj. (3.18)

where mj(Y; b) represents the marginal likelihood of model Mj using the fraction b of
the likelihood, f(Y|θj,Mj)

b, and πF (θj|Y, b) is the implied the Fractional Prior
of model Mj. The fractional prior is actually the posterior distribution of θj given
the fraction b of the likelihood f(Y|θj,Mj)

b and the default prior under model Mj.
Using this form we can easier distinguish the two fractions of the likelihood function
and their respective roles on the model selection procedure. Thus, we are able to
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produce automatically prior distributions for any given model Mj ∈M without any
restrictions on model comparison, i.e. comparing only nested models.

It is evident that the Fractional Bayes factor is heavily dependent on the choice
of the fraction parameter b. Under an objective Bayes approach, b must be rela-
tively small, in order to minimize the effect of the fractional prior. O’Hagan (1995)
provided three basic choices of the fractional parameter b based on the robustness
of the Fractional Bayes factor, which are

1. b = m0/n when there is not any concern regarding robustness,

2. b = n−1 max{m0,
√
n} when there is high concern regarding robustness,

3. b = n−1 max{m0, log n} as a more common choice,

where m0 represents a minimal training sample with m0 < n such that the fractional
likelihood will be well defined.

One disadvantage of the FBF approach, besides the double usage of data, is
the absence of a formal definition for the selection of the fraction parameter b.
As Berger and Pericchi (2001) Section 5.1 indicate, one may argue that the FBF
approach does not correspond to an actual Bayes factor asymptotically. The choice
of b is determined in practice, where the most usual choice is the one provided by
O’Hagan (1995) b = m0/n, when m0 can be identified. Berger and Pericchi (2001)
also provided applications in which the FBF couldn’t cope with certain cases (see
Sections 4.1 and 4.4 of the respective paper), which eventually led to more evolved
definitional issues of the approach.

Intrinsic Bayes Factor

One of the goals of an Objective Bayes approach is to utilize fully automatic model
selection procedures, that are able to compare models of different dimensions and
non-nested models. That was achieved up to a point, with the use of conventional
prior distributions or crude approximations of BFs, without proper Bayesian basis.
Berger and Pericchi (1996) successfully tackled these issues with the development of
the Intrinsic Bayes Factor (IBF ) and variations of it. It was the first automated
model selection procedure that actually led to the development of objective prior
distributions, namely the Intrinsic Priors, which will be extensively explored in the
following section.

The IBF uses a part of the data as a training set for eliminating the indeter-
minacy that arises from the use of improper priors and the rest of the data for
employing model selection procedures. Let Y be a vector or observations and θj
be the parameter vector under model Mj ∈M. We define Y(l) as a training sam-
ple, which is actually a sub-sample of the original data Y. Then, the posterior
distribution of θj given the training sample Y(l) will be provided by

πN(θj|Y(l),Mj) =
f(Y(l)|θj,Mj)π

N(θj|Mj)

mN(Y(l))
. (3.19)

The idea is to use this posterior distribution, under the assumption that it is proper,
as a prior distribution over θj, and then calculate Bayes factors with the remaining
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data Y(−l). Thus the IBF of model Mj versus model Mi conditional on Y(l) will
be provided by

IBFMj :Mi
(Y(l)) = BFN

Mj :Mi
(Y)BFN

Mi:Mj
(Y(l)), (3.20)

where

BFN
Mi:Mj

(Y(l)) =
mN
i (Y(l))

mN
j (Y(l))

. (3.21)

It is evident that the Intrinsic Bayes factor of Equation 3.20 is not influenced by
arbitrary normalizing constants, since the two components of Equation 3.20 provide
inverse ratios that cancel out. The use of the training sample Y(l) is allowed only
if the marginal likelihood in the denominator of Equation 3.19 is proper.

This leads to the definition of a proper training sample, that is the training
sample {Y(l) : 0 < mN

j (Y(l)) < ∞,∀Mj ∈ M}. A training sample Y(l) is called
minimal training sample if there is no subset of it that is proper and they are
necessary for keeping the impact of the prior distribution at a minimum. Usually,
the size of a minimal training sample is defined by the number of the identifiable
parameters of all models in M.

Since the training sample Y(l) is consisted by a part of the original data Y, we
can define many different minimal training samples, thus we define as

YT = {Y(1),Y(2), · · · ,Y(L)} (3.22)

the set of all available minimal training samples. The IBF, as was defined in Equa-
tion 3.20, heavily depends on the choice of a minimal training sample Y(l) ∈ YT

through the Bayes factor BFN
Mi:Mj

(Y(l)). In order to alleviate the IBF from its de-
pendence on the choice of a minimal training sample and increase its stability, one
can provide averages (arithmetic and geometric) of the IBF with respect to YT . Us-
ing Equation 3.20, we define the Arithmetic (AIBF ) and Geometric (GIBF )
Intrinsic Bayes Factor of model Mj versus model Mi as

IBFA
Mj :Mi

(Y) = BFN
Mj :Mi

(Y)
1

L

N∑
l=1

BFN
Mi:Mj

(Y(l)) (3.23)

and

IBFG
Mj :Mi

(Y) = BFN
Mj :Mi

(Y)
( N∏
l=1

BFN
Mi:Mj

(Y(l)
)1/L

(3.24)

respectively. Generally, the geometric mean is always less or equal with the arith-
metic mean, which also applies in this context, i.e. IBFG

Mj :Mi
(Y) ≤ IBFA

Mj :Mi
(Y),

therefore the geometric IBF will support the simpler model to a greater extent than
the arithmetic IBF.

The Arithmetic and Geometric IBFs are applied when a considerable amount of
data is available. In cases where we operate with few data, the averages of Arith-
metic and Geometric IBF can have a large variances which leads to unstable IBFs.
Berger and Pericchi (1996) introduced the Expected Arithmetic (EAIBF) and
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Geometric Intrinsic Bayes factors (EGIBF) to deal with this complication,
which are provided by replacing the averages of Equation 3.23 and Equation 3.24 by
their expectations, evaluated at the respective MLE. Thus, the EAIBF and EGIBF
of model Mj versus model Mi will be provided by

IBFEA
Mj :Mi

(Y) = BFN
Mj :Mi

(Y)
1

L

L∑
l=1

EMj

θ̂j
[BFN

Mi:Mj
(Y(l))] (3.25)

and

IBFEG
Mj :Mi

(Y) = BFN
Mj :Mi

(Y) exp
{ 1

L

L∑
l=1

EMj

θ̂j
[logBFN

Mi:Mj
(Y(l))]

}
, (3.26)

where both o f the above expectations are provided with respect to model Mj and

θj is replaced by its respective MLE θ̂j . These versions of the IBF are useful when
one operates with larger data-sets, since the computational cost that arises with the
excessive summation terms of Arithmetic and Geometric IBF can be significantly
reduced.

The presented versions of the IBF crucial for the development of the Intrinsic
prior approach and they can be used for nested and non-nested model comparison.
Nested model comparison is favored though because the resulting IBFs correspond
to reasonable intrinsic priors. For a default and more robust IBF approach, Berger
and Pericchi (1998b) developed the Median IBF, which is defined by

IBFMED
Mj :Mi

(Y) = BFN
Mj :Mi

(Y)Med[BFN
Mi:Mj

(Y(l))] (3.27)

where Med denotes the median.

3.5 Construction of Objective Prior Distributions

The development of Partial BFs expedited the use of improper prior distributions
in model selection procedures, yet these approaches lacked a fundamental Bayesian
basis. This led researchers to invent methodologies for constructing Objective prior
distributions that correspond to actual BFs, starting from a default non-informative
prior distribution. In the following sub-section, we describe extensively three of the
most important approaches for constructing Objective prior distributions.

3.5.1 Intrinsic Priors

One of the most important features of the IBF is its correspondence to actual BFs
under an appropriate proper prior. If this prior exists, it will be called the Intrinsic
Prior (IP). The IP approach provides practical benefits, like alleviation of the
computational cost and increased stability, since one can directly use an Intrinsic
Prior in place of a default non-informative prior and provide the corresponding BF
without depending on training samples. The development of the IPs is progressed
through two conditions.
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Condition 1. As the sample size goes to infinity and for prior distributions in
an appropriate class Γ, the BF of model Mj versus model Mi can be approximated
by

BFMj :Mi
(Y) = BFN

Mj :Mi
(Y)

π(θ̂j|Mj)π
N(θ̂i|Mi)

πN(θ̂j|Mj)π(θ̂i|Mi)
(1 + o(1)) (3.28)

where θ̂j and θ̂i are the MLE’s under Mj and Mi respectively. For defining the IPs,
Berger & Perrichi equate Equation 3.20 with either Equation 3.23 or Equation 3.24,
resulting to

BFN
Mj :Mi

(Y)
π(θ̂j|Mj)π

N(θ̂i|Mi)

πN(θ̂j|Mj)π(θ̂i|Mi)
(1 + o(1)) = B̃FMi:Mj

(Y(l)) (3.29)

where B̃FMi:Mj
(Y) denotes of either arithmetic or geometric average ofBFMi:Mj

(Y(l)).
After establishing the first condition , Berger and Pericchi (1996) had to provide nec-
essary assumptions for clarifying the limiting behavior of the quantities included in
Equation 3.29

Condition 2. As the sample size n goes to infinity, the following hold

• Under model Mj, θ̂j → θj, θ̂i → ψi(θj), and B̃FMi:Mj
(Y(l))→ BF ∗Mj

(θj)

• Under model Mi, θ̂i → θi, θ̂j → ψj(θi), and B̃FMi:Mj
(Y(l))→ BF ∗Mi

(θi)

where for k = i, j

BF ∗Mk
(θk) = lim

L→∞
EMk

θk

{ 1

L

L∑
l=1

BFN
Mi:Mj

(Y(l))
}

(3.30)

for the arithmetic case, and

BF ∗Mk
(θk) = lim

L→∞
expEMk

θk

{ 1

L

L∑
l=1

logBFN
Mi:Mj

(Y(l))
}

(3.31)

for the geometric case. If Y(l) are exchangeable, then limit terms and averages over
L can be removed. The term ψj(θi) denotes the limit of the maximum likelihood

estimator θ̂j(Y) under model Mi at the point θi and similarly ψi(θj) denotes the

limit of the maximum likelihood estimator θ̂i(Y) under model Mj at the point θj
(see Dmochowski (1994)).

Then, by using Condition 2 and passing the limit in Equation 3.29 first under Mj

and then under Mi, we obtain the Intrinsic Equations

πI(θj|Mj)π
N(ψi(θj)|Mi)

πN(θj|Mj)πI(ψi(θi)|Mi)
= B∗Mj

(θj) (3.32)

and

πI(ψj(θi)|Mj)π
N(θi|Mi)

πN(ψj(θi)|Mj)πI(θi|Mi)
= B∗Mi

(θi), (3.33)

40 Chapter 3 Nikolaos Petrakis



Objective Bayes in Graphical Model Selection

whose solutions lead to the derivation of the Intrinsic priors (πI(θj|Mj), π
I(θi|Mi)).

So, if we use these priors directly to compute the respective Bayes factor, i.e.
BF I

Mj :Mi
(Y), we will obtain asymptotically equivalent results with any variation

of a respective IBF. Berger and Pericchi (1996) add that these solutions are not
necessary unique nor proper.

If one considers a nested model comparison case where model Mi is nested in
model Mj, then the solution of the Intrinsic Equations will be provided by

πI(θi|Mi) = πN(θi|Mi) (3.34)

πI(θj|Mj) = πNMj
(θj|Mj)B

∗
Mj

(θj). (3.35)

Thus, if we can order all available models of set M in terms of complexity, we can
obtain for each Mj ∈M its respective intrinsic prior when compared with the null
M0. Dmochowski (1994) provides more elaborate characterizations in the nested
model case, whilst for non-nested model comparison Moreno et al. (2014) provide a
general framework for certain cases under the assumption of exchangeable random
variables.

3.5.2 Expected Posterior Priors

Pérez and Berger (2002) introduced a new model selection procedure, with subjective
and objective implementation, namely the Expected-Posterior Prior (EPP)
which is based on a basic principle. Any prior distribution under each respective
model, will be defined through a common underlying predictive distribution using
MCMC methods. The main objective of the EPP approach is the construction of
appropriately compatible prior distributions across the set M, a trait not shared by
several established model selection schemes. The development of the EPP approach
is based on imaginary training samples, where their basic principle is to assume an
imaginary experiment with a well-defined dataset that will alleviate any arbitrary
constants involved in the construction of BFs, when improper default prior are
considered.

By imaginary observations we refer to observations generated by an artificial
experimenet based on an appropriate dataset, which will used to eliminate the de-
pedence of the Bayes factor of Equation 3.11 to the ratio of arbitrary normallizing
constants. Origins of the notion of imaginary observations can be found in Good
(1950), Spiegelhalter and Smith (1982). Imaginary data can be either fixed or ran-
domly generated. In this thesis we will focus on more recent approaches which treat
imaginary observations as stochastic components, i.e. randomly generated obser-
vations based on an appropriate dataset which will have minimal impact to the
posterior analysis.

Let Y∗ = (y∗1, · · · ,y∗n)T denote the imaginary data observations which arise
independently from a random variable Y∗ on sample space Y∗. We will assume that
both random variables Y∗ and Y are i.i.d. random variables on a common sample
space Ỹ. For a given model Mj we will denote f(Y∗|θj,Mj) the likelihood of the
imaginary observations Y∗. Starting with the default improper prior πN(θj|Mj),
the posterior distribution of θj under model Mj given Y∗ will be provided by
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πN(θj|Y∗,Mj) =
f(Y∗, |θj,Mj)π

N(θj|Mj)∫
f(Y∗|θj,Mj)πN(θj|Mj)dθj

(3.36)

Since the imaginary data are not included in the data at hand, the posterior distri-
bution of Equation 3.36 can be solely used for model specification purposes.

Given a suitable predictive measure m∗(Y∗), we define the Expected Posterior
Prior density of θj under Mj with respect to m∗(Y∗) as

πEPP (θj|Mj) =

∫
πN(θj|Y∗,Mj)m

∗(Y∗)dY∗. (3.37)

Using the EPP density of Equation 3.37 we can define the BF of model Mj versus
model Mi as

BFEPP
Mj :Mi

(Y) =
mEPP
j (Y)

mEPP
i (Y)

, (3.38)

where

mEPP
j (Y) =

∫
f(Y|θj,Mj)π

EPP (θj|Mj)dθj. (3.39)

The imaginary data Y∗ are actually used to convert a default improper prior distri-
bution to usable posterior distribution, yet certain restrictions must be introduced
to ensure that the dimension of Y∗ and the predictive distribution m∗(·) are well-
defined. Pérez and Berger (2002) in Section 2 introduced the following

0 < mN
j (Y∗) <∞ 0 < EMj

{
m∗(Y∗)

mN
j (Y∗)

∣∣∣θj} <∞, (3.40)

which must hold for all θj; the expectation EMj
is provided with respect to the

density f(Y∗|θj,Mj). Thus, if Equation 3.40 hold, then the EPP of Equation 3.37
for every model Mj ∈M exists and is well defined.

The dimension of Y∗ is considered to be the minimal dimension such that Equa-
tion 3.40 hold for each model under consideration. If the predictive density m∗(·) is
not proper then the EPP will also be improper, yet it is not prohibitive to consider
this scenario as we will be seeing later in this section.

If one considers the combined data Ỹ = (Y,Y∗) and define

mN
j (Y|Y∗) =

mN
j (Y,Y∗)

mN
j (Y∗)

, (3.41)

then we can re-write the marginal likelihood of Equation 3.39 as

mEPP
j (Y) =

∫
mN
j (Y|Y∗)m∗(Y∗)dY∗, (3.42)

which leads to a useful alternative form of the BF of Equation 3.38, i.e.

BFEPP
Mj :Mi

(Y) =
mEPP
j (Y)

mEPP
i (Y)

=

∫
mN
j (Y|Y∗)m∗(Y∗)dY∗∫

mN
i (Y|Y∗)m∗(Y∗)dY∗

(3.43)
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3.5.3 Choice of m∗(·)

It is evident that the choice of an appropriate predictive density m∗(·) is key to
the EPP approach. Pérez and Berger (2002) viewed m∗(·) as ‘arising from beliefs
as to how a training sample would behave’, in order to also be able to elicit m∗(·)
based on subjective knowledge about the problem at hand. We will describe the
most important choice as provided by Pérez and Berger (2002); for further choices
we refer the reader to Pérez and Berger (2002) Section 3.

Base-Model Approach

An intuitive and widely applicable choice for the predictive density m∗(·), is the
Base-Model approach which uses a base-model as a reference for defining every
EPP distribution. The base-model should be the simplest one available and nested
in every other model, thus we use the null model M0 as defined earlier sections of
this chapter. In reality, we will be defining EPP distributions for every model of set
M and we will proceed with pairwise model comparisons through the base model,
in a sense that

BFMj :Mi
(Y) = BFMj :M0(Y)/BFMi:M0(Y). (3.44)

Thus, as indicated by Perez and Berger, the predictive density for the imaginary
training samples Y∗ will be provided by

m∗(Y∗) = mN
0 (Y∗) =

∫
f(Y∗|θ0,M0)πN(θ0|M0)dθ0. (3.45)

Thus, the EPP for model M0 with respect to the predictive density of Equation 3.45
under the base model approach, will be provided by

πEPP (θ0|M0) =

∫
πN(θ0|Y∗,M0)m∗(Y∗)dY∗ = πN(θ0|M0) (3.46)

which is identical to the default improper prior under the null model M0. For any
other model Mj ∈M its respective EPP will be given by

πEPP (θj|Mj) =

∫
πN(θj|Y∗,Mj)m

N
0 (Y∗)dY∗ (3.47)

This approach was highly motivated by the observation that this version of the EPP
coincides with the respective version of the IPs under the AIBF as presented earlier,
providing to the EPP procedure a Bayesian justification needed to be considered as
a pure Objective Bayesian model selection technique. Given a model Mj ∈M such
that M0 is nested in Mj and Y∗ be an exchangeable imaginary training sample, the
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respective IP as in Equation 3.34 will be provided by

πI(θj|Mj) = πN(θj|Mj)B
∗
Mj

(θj)

= πN(θj|Mj)E
Mj

θj

[
mN

0 (Y∗)

mN
j (Y∗)

]
= πN(θj|Mj)

∫
mN

0 (Y∗)

mN
j (Y∗)

f(Y∗|θj,Mj)dY
∗

=

∫
πN(θj|Mj)

mN
0 (Y∗)

mN
j (Y∗)

f(Y∗|θj,Mj)dY
∗

=

∫
f(Y∗|θj,Mj)π

N(θj|Mj)

mN
j (Y∗)

mN
0 (Y∗)dY∗

=

∫
πN(θj|Y∗,Mj)m

N
0 (Y∗)dY∗ (3.48)

which actually is the EPP for θj under model Mj. Pérez and Berger (2002) indicate,
that it is not necessary for M0 to be nested in Mj, as long as M0 remains the sim-
plest available in terms of complexity e.g. comparison of Exponential with Weibull
distribution; for more information we refer to Pérez and Berger (2002) Section 3.2
Example 2.

3.5.4 Computational Aspects

By observing the form of an EPP distribution of Equation 3.37, Pérez and Berger
(2002) in Section 4 claimed that they can be viewed as a two-stage hierarchical
prior distributions, whereas the first-stage prior will be the posterior distribution
πN(θj|Y∗,Mj), and respectively the second-stage prior will be the predictive density
m∗(Y∗). Using this observation, Pérez and Berger (2002) deduced, that the EPP
approach could be integrated by MCMC schemes.

If the posterior density πN(θj|Y∗,Mj) is available in a closed-form expression
then the potential computational cost can be significantly reduced. We will present
only the most important computational strategy provided by Pérez and Berger
(2002) which will be used in a later section of this thesis.

Direct Simulation and Importance Sampling

If Equation 3.41 is available in a closed-form expression, then Equation 3.43 can be
used directly for deriving BFs with EPPs. Let m∗(·) be a proper density (e.g. under
the E-EPP approach), then consider R i.i.d. samples Y∗(r), r = 1, · · · , R generated
from m∗(·) and then approximate the BF of a model Mj versus Mi by

BF
∧

Mj :Mi
(Y)

∑R
r=1 m

N
j (Y|Y∗(r))∑R

r=1 m
N
i (Y|Y∗(r))

(3.49)

In order to provide all the BFs or Posterior odds we seek, we need to generate a
suitable size R of imaginary observations.
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If the predictive density m∗(·) is not a proper density, then we resort to an
Importance sampling scheme to approximate BFs. Let Y∗(r), r = 1, · · · , R be R
i.i.d. samples from an importance density g(Y∗), then the respective BF of Mj

versus Mi will be provided by

BF
∧

Mj :Mi
(Y) =

∑R
r=1m

N
j (Y|Y∗(r))m∗(Y∗(r))/g(Y∗(r))∑R

r=1m
N
i (Y|Y∗(r))m∗(Y∗(r))/g(Y∗(r))

. (3.50)

Under the base-model approach, we can use as importance density g(Y∗) = mN
0 (Y∗|Y).

Thus, above approximation will be given by

BF
∧

Mj :M0(Y) =
1

R

R∑
r=1

BFN
Mj :M0

(Y|Y∗(r)), (3.51)

where

BFN
Mj :M0

(Y|Y∗(r)) =
1

R

R∑
r=1

mN
j (Y|Y∗(r))

mN
0 (Y|Y∗(r))

. (3.52)

Under this importance density, we will construct all respective BFs using the same
sample of Y∗(r). In most cases the generation procedure of imaginary training sam-
ples from the predictive density mN

0 (Y∗|Y) will be feasible, yet the derivation of
Equation 3.52 may be difficult if the respective predictive densities mN

j (Y∗|Y) are
not readily computable. In cases such as these, we choose the importance density
of the numerator of Equation 3.52 to be g(Y∗) = mN

j (Y∗|Y) and for the denomi-
nator of Equation 3.52 g(Y∗) = mN

0 (Y∗|Y) since we operate under the base-model
approach. Thus, the resulting BF approximation will be provided by,

BF
∧

Mj :Mi
(Y) = BFN

Mj :M0
(Y)

1

R

R∑
r=1

BFN
M0:Mj

(Y∗(r)), (3.53)

where Y∗(r), r = 1, · · · , R are R i.i.d. samples from mN
j (Y∗|Y) and the BFs are

provided with the respective marginal likelihoods using the standard non-informative
distribution of πN(θj|Mj). The approximation part of Equation 3.53 can be provided
quite easily due to the low dimension of the training samples Y∗r and in certain cases
in can be derived in a closed form expression even for nonstandard distributions. It
may be difficult to provide BFN

Mj :M0
(Y), yet it has to be calculated only once.

A disadvantage of this approach is the accumulated computational cost which
rises with the continuous generation process of imaginary observations Y∗ under
each model Mj ∈M, since a new sample Y∗(r) from mN

j (Y∗|Y) has to be generated
for each model under consideration. If the predictive densities mN

j (Y∗|Y) are not
available in a closed-form expression, we can deploy a Gibbs sampling scheme for
generating importance samples which can be performed as follows:

Finally, the most attractive features of the EPP approach can be summarized as
follows:

• All parameter prior distributions are specified through a common predictive
distribution m∗(Y∗).
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For r = 1, · · · , R:

• Generate θ(r) from πN(θj|Y,Mj).

• Generate a sample Y∗(r) from f(Y∗|θ(r),Mj).

• Computations can be performed through MCMC schemes due to the proba-
bilistic construction of the EPP approach.

• Direct use of improper priors is allowable due to nullification of arbitrary
normalizing constants.

• As Consonni and Veronese (2008) indicate ”the EPP approach is a method
to make priors compatible across models, through their dependence on a com-
mon marginal data distribution; thus this methodology can be applied also with
subjectively specified (proper) prior distributions”.

• Multiple model comparison becomes feasible, because the EPP methodology
produces fixed prior distributions for each model, feature not shared by all
default model selection methods.

• Production of equivalent results with other established model selection ap-
proaches such as the IP approach, providing a necessary Bayesian justification.

3.5.5 Power- Expected Posterior Priors

The EPP approach of Pérez and Berger (2002) provides tempting results based
on imaginary training samples which arise from a common predictive distribution,
starting from a default improper prior. In the variable selection context of Gaussian
regression models, where one needs to consider imaginary observations for the design
matrix X∗, the EPP approach requires one or more training samples to be chosen
from the data-provided design matrix X. Thus, one must investigate the size, the
selection procedure and the influence of the imaginary observations.

These three issues led to the development of the Power-Expected Poste-
rior Prior approach (PEPP) by Fouskakis et al. (2015), where they constructed
minimally-informative prior distributions without being affected by the imaginary
training samples to the same extent as the EPP approach. The PEPP approach
is actually an evolution of the EPP approach, using ideas from the Power-Priors
of Ibrahim and Chen (2000) and the unit-information prior approach of Kass and
Wasserman (1995), tailored to the variable selection context.

For this section we will redefine some basic notions adapted to the variable
selection problem of Gaussian regression models. We define M = {M1, · · · ,Mk},
where k ≥ 2, denote a countable set of regression models. Under any model Mj ∈M

we consider the parameters θj = (βj, σ
2
j ) and likelihood

Y|Xj,βj, σ
2
j ,Mj ∼ Nn(Xjβj, σ

2
j In), (3.54)

where Y = (y1, · · · , yn) is a vector of real-valued responses, Xj is the n× dj design
matrix that contains the values of the explanatory variables, In denotes the n × n
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identity matrix, βj is a vector of length dj containing the effects of the respective
covariates in model Mj on the response Y and σ2

j is the error variance of model Mj.
We will present the Power-Expected Posterior prior approach based on the variable
selection problem, since it was developed for dealing with the issues described and
in section 4.6 we will adapt it to the graphical model selection problem of undirected
decomposable graphical models.

We denote with Y∗ the imaginary data vector of size m, and the X∗m×(p+1)

the respective design matrix of size m × (p + 1) where p denotes the number of
the available covariates. Note that the design matrix X∗m×(p+1) is not consisted of
imaginary observations and we will study how it will be structured. Under the EPP
approach, the respective EPP will depend on X∗ and not on Y∗ since the imaginary
observations will be integrated out.

The selection of a minimal training sample is crucial for constructing minimally
informative prior distributions, yet the selection of a suitable one remains an open
question, since it depends on the number of models under considerations and on the
number of covariates. Usually, it will be specified either from the dimension of the
full model i.e. the model where all covariates are present, or the larger model in
every pairwise model comparison.

If one decides to use a minimal training sample, then all possible subsets of
minimal training samples must be incorporated to the model selection procedure
through averages of BFs, resulting in even larger computational cost. As an alter-
native option, one could randomly select subsets of minimal training samples, but
this will result to extra Monte Carlo noise to the model selection procedure. The
PEPP approach efficiently tackles the side-effects of selecting a suitable training
sample using the following setup.

Following the rationale of the EPP approach, the likelihoods contained in the
EPP prior will be raised to the power 1/δ and then will be density-normalized.
Fouskakis et al. (2015) default choice is δ = m and will represent information equal
up to one data point. Thus, the resulting prior will provide the same sufficient
statistics of the fully observed data but compressed into one data point. The second
and most important suggestion by Fouskakis et al. (2015), is to consider the size of
the imaginary data vector m = n and subsequently set the design matrix X∗m×(p+1) =
Xn×(p+1), which significantly reduces the computational cost that rises from the
dependence on the imaginary training samples. Note, that Fouskakis et al. (2015)
indicate that in reality δ can have any value in [p + 2, n], which also subsequently
restricts PEPP approach to cases only where p << n.

For a given model Mj ∈ M let πN(βj, σ
2
j |X∗j ,Mj) denote the respective de-

fault improper prior for the parameters θj = (βj, σ
2
j ). Then the Power-Expected

Posterior Prior is defined by

πPEPP (βj, σ
2
j |X∗j , δ,Mj) =

∫
πN(βj, σ

2
j |Y∗, δ,Mj)m

N(Y∗|X∗0, δ,M0)dY∗, (3.55)

where

πN(βj, σ
2
j |Y∗, δ,Mj) =

f(Y∗|βj, σ2
j ,Mj; X

∗
j , δ)π

N(βj, σ
2
j |X∗j ,Mj)

mN
j (Y∗|X∗j , δ)

. (3.56)
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The likelihood f(Y∗|βj, σ2
j ,X

∗
j , δ,Mj) is the EPP likelihood raised to the power 1/δ

and density-normalized i.e.

f(Y∗|βj, σ2
j ,Mj; X

∗
j , δ) =

f(Y∗|βj, σ2
j ,Mj; X

∗
j)

1
δ∫

f(Y∗|βj, σ2
j ,Mj; X

∗
j)

1
δ dY∗

=
fNm(Y∗; X∗jβj, σ

2
j Im)

1
δ∫

fNm(Y∗; X∗jβj, σ
2
j Im)

1
δ dY∗

= fNm(Y∗; X∗jβj, δσ
2
j Im), (3.57)

where fNd(Y;µ,Σ) denotes the density of the d-dimensional Normal distribution
with mean vector µ and covariance matrix Σ evaluated at Y.

The marginal distribution mN(Y∗|X∗j , δ,Mj) appearing in Equation 3.56 for j =
0 is the prior predictive distribution evaluated at Y∗ of model Mj with the power-
likelihood as defined in Equation 3.57 under its respective default baseline prior,
i.e.

mN
j (Y∗|X∗j , δ) =

∫
fNm(Y∗; X∗jβj, δσ

2
j Im)πN(βj, σ

2
j |X∗j ,Mj)dβjdσ

2
j . (3.58)

Fouskakis et al. (2015) adopted the base-model approach of Pérez and Berger (2002),
where they consider m∗(Y∗) = mN

0 (Y∗|X∗j , δ), which is a natural choice under the
variable-selection context. Using Equation 3.55 and Equation 3.56 we can re-write
the PEPP prior of Equation 3.55 under model Mj as

πPEPP (βj, σ
2
j |X∗j , δ,Mj) = πN(βj, σ

2
j |X∗j ,Mj)

∫
mN

0 (Y∗|X∗0, δ)
mN
j (Y∗|X∗j , δ)

f(Y∗|βj, σ2
j ,Mj; X

∗
j , δ)dY

∗.

(3.59)

Therefore, using Equation 3.59 the posterior distribution of the model parameters
(βj, σ

2
j ) given Y under model Mj will be provided by

πPEPP (βj, σ
2
j |Y,Mj; Xj,X

∗
j , δ) ∝

∫
πN(βj, σ

2
j |Y,Y∗,Mj; Xj,X

∗, δ)× (3.60)

×mN
j (Y|Y∗; Xj,X

∗
j , δ)m

N
0 (Y∗|X∗0, δ)dY∗, (3.61)

where πN(βj, σ
2
j |Y,Y∗,Mj; Xj,X

∗, δ) and mN
j (Y|Y∗; Xj,X

∗
j , δ) denote the poste-

rior distribution of (βj, σ
2
j ) and marginal likelihood of model Mj respectively, under

the data Y∗ using design matrix Xj with respect to the prior πN(βj, σ
2
j |Y∗,Mj; X

∗
j , δ)

- i.e. the posterior distribution of the parameters (βj, σ
2
j ) given the imaginary data

Y∗ under the power Normal likelihood as defined in Equation 3.57 and with respect
to the default baseline prior πN(βj, σ

2
j |X∗j ,Mj).

Using the latest version of the PEPP prior of Equation 3.60, we provide the
marginal likelihood of the data Y under model Mj ∈M by

mPEPP
j (Y|Xj,X

∗
j , δ) = mN

j (Y|Xj,X
∗
j)

∫
mN
j (Y∗|Y,Xj,X

∗
j , δ)

mN
j (Y∗|X∗j , δ)

mN
0 (Y∗|X∗0, δ)dY∗,

(3.62)
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where mN
j (Y|Xj,X

∗
j) is the marginal likelihood of the actual data under model Mj

with respect to the default baseline prior πN(βj, σ
2
j |X∗j ,Mj). Therefore, we are able

to provide Posterior Odds and BFs using this expression of the marginal likelihood,
yet only when it can be analytically tractable.

Fouskakis et al. (2015) in Section 3 provide two MCMC approaches for estimating
the marginal likelihood of Equation 3.62, plus two more less successful approaches
in the Appendix of the respective paper. These approaches are the following:

1. Generate imaginary data Y∗(r), r = (1, · · · , R) from mN
j (Y∗|Y,Xj,X

∗
j , δ) and

estimate the marginal likelihood of Equation 3.62 by

m
∧PEPP
j (Y|Xj,X

∗
j , δ) = mN

j (Y|Xj,X
∗
j)

[
1

R

R∑
r=1

mN
0 (Y∗(r)|X∗0, δ)

mN
j (Y∗(r)|X∗j , δ)

]
. (3.63)

2. Generate imaginary data Y∗(r), r = (1, · · · , R) from mN
j (Y∗|Y,Xj,X

∗
j , δ) and

estimate the marginal likelihood of Equation 3.62 by

m
∧PEPP
j (Y|Xj,X

∗
j , δ) = mN

0 (Y|X0,X
∗
0)×

× 1

R

R∑
r=1

mN
j (Y|Y∗(r); Xj,X

∗
j , δ)

mN
0 (Y|Y∗(r); X0,X

∗
0, δ)

mN
0 (Y∗(r)|Y; X0,X

∗
0, δ)

mN
j (Y∗(t)|Y; Xj,X

∗
j , δ)

.

(3.64)

3. Generate imaginary data Y∗(r), r = (1, · · · , R) from mN
0 (Y∗|X∗0, δ) and esti-

mate the marginal likelihood of Equation 3.62 by

m
∧PEPP
j (Y|Xj,X

∗
j , δ) = mN

j (Y|Xj,X
∗
j)

1

R

R∑
r=1

mN
j (Y∗(r)|Y,Xj,X

∗
j , δ)

mN
j (Y∗(r)|X∗j , δ)

. (3.65)

4. Generate imaginary data Y∗(r), r = (1, · · · , R) from mN
0 (Y∗|Y,X0,X

∗
0, δ) and

estimate the marginal likelihood of Equation 3.62 by

m
∧PEPP
j (Y|Xj,X

∗
j , δ) = mN

j (Y|X0,X
∗
0)

1

R

R∑
r=1

mN
j (Y|Y∗(r),Xj,X

∗
j , δ)

mN
0 (Y|Y∗(r),X0,X

∗
0, δ)

(3.66)

Under the first two approaches, the imaginary observations are generated from the
posterior predictive distribution under Mj, thus one must repeat the generation
process according to the model under consideration. Approaches (3) and (4) are
simpler, since one imaginary sample must be generated using the prior and poste-
rior predictive distribution under the null model M0. Yet, as Fouskakis et al. (2015)
indicate, the provided estimates will have large Monte-Carlo error, since the imagi-
nary data are generated from importance functions that do not exploit completely
the information provided by the data (Approach (3)) or the stochastic structure of
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model Mj (Approaches (3) and (4)). Therefore, Approaches (1) and (2) are pre-
ferred over (3) and (4) since they produce more stable estimates of the marginal
likelihood.

Fouskakis et al. (2015) provided two basic setups based on different baseline
priors, the Jeffreys prior and Zellners g-prior. Under these approaches as pre-
sented in the Appendix Section 2 of the respective paper, the marginal likelihood
m
∧PEPP
j (Y|Xj,X

∗
j , δ) is available in a closed form expression as a multivariate Stu-

dent distribution. If we cannot identify a closed form expression, we can alterna-
tively use the Gibbs Sampling scheme as in the EPP approach, where the imaginary
observations will be generated as follows:

For r = 1, · · · , R:

• Generate θ(r) from πN(θj|Y,Mj).

• Generate a sample Y∗(r) from f(Y∗|θ(r), δ,Mj).

3.6 Priors on Model Space M

In the previous sections of this chapter, we studied extensively ways on constructing
Objective prior distributions regarding the parameter vector θj under any model
Mj ∈M. In order to provide Posterior odds, one must also define the model prior
probabilities π(Mj), ∀Mj ∈M. If we consider the M-closed view, then a standard
choice which depicts prior ignorance is to assume a uniform distribution across the
model space M , i.e.

π(Mj) =
1

|M|
, (3.67)

where |M| denotes the cardinality of set M. Though it is a simple approach, it
has received a great deal of criticism since it disregards the structural features of a
given model, such as sparsity, dimensionality or collinearity of predictors under the
variable selection context.

As Consonni et al. (2018) indicate, under the variable selection context, once
can assign a random prior probability of inclusion ω for each predictor such that
π(Mj|ω) = ωpj(1 − ω)n−pj , where pj denotes the number of covariates included
under model Mj. Then, using as hyper-prior for ω a Beta distribution such that
ω ∼ Beta(αω, bω), the resulting model prior probability will be provided by

π(Mj) =
B(αω + pij, bω + p− πj)

B(αω, bω)
, (3.68)

which is called the Beta - Binomial prior on model space M. If one sets αω =
bω = 1 then the prior distribution for ω, would be a Uniform distribution, resulting
to model prior probabilities

π(Mj) =
1

p+ 1

(
p

pj

)−1

, (3.69)
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which leads to a uniform prior probability on model size

π({Mj ∈M : pj = k}) =
1

k + 1
, k = 0, 1, · · · , p. (3.70)

Choosing a uniform prior on ω, will not penalize model complexity. One other
consideration made from Wilson et al. (2010), is setting αω = 1 and bω = λp, where
λ > 0. Under this choice, the resulting model prior will have expectation 1/λ and
similar behavior to a geometric distribution when one considers low dimensional
models. In this way, this prior provides an approximate penalization log(1 + λ) for
each covariate added to the model.
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Chapter 4

Objective Bayes in Structure
Learning

4.1 Introduction

In the chapter 2, we established the notion of graphical models and how they can be
used to describe conditional independence relationships among variables through the
means of a graph. In reality, the underlying graph’s structure is unknown and has
to be inferred by the data at hand. This procedure is known in the bibliography as
Structural Learning and it can be approached by both Frequentist and Bayesian
point of view, where the latter will be explored, since it allows for more delicate
handling of uncertainty.

For expediting a Bayesian approch to the problem of structural learning, we first
set a prior on a given graph G and then a prior distribution to the covariance matrix
Σq×q given G on q nodes. The choice of a prior distribution over Σq×q can become
an arduous task for two main reasons:

• Different graphs imply different independence structures that influence the
parameters space and improper priors cannot be directly used.

• With an increasing number of variables the parameter space to grow super-
exponentially and eliciting a prior distribution is impossible.

To alleviate these dependencies, we set our focus on Obejctive Bayes procedures
which provide prior distributions starting from improper priors. Notable contribu-
tions of OB community to structure learning can be found in Carvalho and Scott
(2009), Consonni et al. (2017) and Castelletti et al. (2018), which are based on the
Fractional Bayes Factor of O’Hagan (1995). The Fractional Bayes factor, despite its
computationally convenient setup, is uses twice the available data at hand.

In this chapter, we apply the Expected and Power-Expected Posterior Prior ap-
proaches of Pérez and Berger (2002) and Fouskakis et al. (2015) respectively, to
the structural learning problem of undirected decomposable graphical models. The
remainder of the chapter will be structured as follows. First, we describe the appli-
cation of Fractional Bayes factor to the structural learning problem, as applied by
Carvalho and Scott (2009). Then we introduce the Expected and Power-Expected
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Posterior Prior approach to the structural learning problem, followed by some stan-
dard choices for priors on graphs. Next, we discuss about computational strategies
for implementing structural learning processes, where we focus on FINCS algorithm
as developed by Carvalho and Scott (2008). Finally, we test the performance of the
proposed approaches on diverse simulation scenarios, as well as in a protein-signaling
data application.

In this chapter we introduce the notion of Gaussian graphical models. We first
provide the general setup of a Gaussian graphical model, using the notions estab-
lished in chapter 2, and we then describe the basic

4.2 Distributions

Let Y = {Y1, · · · , Yq} from which we observe n i.i.d. q-dimensional observations
which can be arranged in an n× q matrix

Yn×q = (Y1, · · · ,Yq) =

 yT1
...

yTn

 (4.1)

where yi = (yi1, · · · , yiq) denotes the i-th observation and Yj = (y1j, · · · , ynj) de-
notes the observations on the j-th variable. We model the observations as yi|Σ ∼
Nq(0,Σ) independently over i = 1, · · · , n, where Σq×q is an unconstrained semi-
positive definite matrix, and Nq(0,Σ) denotes the q-variate normal distribution
with mean vector µ = 0 and covariance matrix Σ.

We say that a random matrix Yn×q follows the matrix normal distribution with
mean matrix Mn×q, row covariance matrix Rn×n and column covariance matrix
Σq×q, when vec(Y) follows the multivariate normal distributions with mean vector
vec(M) and covariance matrix Σ⊗R; ⊗ denotes the kronecker product. Note that
vec(Y) denotes the vectorization of matrix Y i.e. its conversion to a column vector,
which is attained by stacking the columns of matrix Yn×q on top of one another and
obtaining a mn × 1 column vector. To denote that the random matrix Y follows
the matrix normal distribution, we will write

Yn×q ∼MNn,q(M,R,Σ), (4.2)

and for the scope of this thesis, we will consider M = 0n×q and R = In, where In
denotes the n×n identity matrix and 0n×q denotes an n×q matrix with zero entries
only. Therefore, given that Y ∼ MNn,q(0, In,Σ), the density of matrix Y given
matrix Σ, will be provided by

f(Y|Σ) =
det(Σ)−n/2

(2π)nq/2
exp

{
− 1

2
tr(Σ−1S)

}
, (4.3)

where det(·) denotes the determinant of a matrix, tr(·) denotes the trace of a matrix
and S = YTY. For more details on the matrix normal distribution see Gupta and
Nagar (2000).
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Now, let Σ be a q × q unconstrained s.p.d. random matrix. We will write Σ ∼
IWq(b,D) to denote that Σ follows an Inverse-Wishart distribution with density

π(Σ|b,D) = Kdet(Σ)−(b/2+q) exp
{
− 1

2
tr(Σ−1D)

}
, (4.4)

where

K =
det(D)

2bq/2Γq
(
b
2

) , (4.5)

having Σ s.p.d, and π(Σ) = 0 otherwise, Dq×q is a s.p.d matrix, b > q−1 is a scalar
and

Γq

( b
2

)
= π

q(q−1)
4

q∏
j=1

Γ
( b

2
+

1 + j

2

)
(4.6)

denotes the multivariate gamma function evaluated at b/2.

Consider the Gaussian multivariate setup provided by Equation 4.2. Following
Consonni et al. (2017), we start from the improper prior

πN(Σ) ∝ det(Σ)−
a+q−1

2 , (4.7)

which can provide several default distributions based on different values of parameter
a. For the remaining part of this thesis, consider a = q + 1, which corresponds to
the default prior also used by Carvalho and Scott (2009). Starting from the prior
of Equation 4.7, the posterior distribution of Σ given the data matrix Y will be
provided by

πN(Σ|Y) ∝ det(Σ)−(n/2+q)exp
{
− 1

2
tr(Σ−1S)

}
, (4.8)

which corresponds to the kernel of an Inverse Wishart distribution with degrees of
freedom parameter b = n and scale matrix D = S. For the posterior distribution of
Σ given the data matrix Y to be proper, we require for b = n > q − 1 and for the
scale matrix Σ to be s.p.d. This requirement provides us with a restriction which
indicates that we must consider application with at least n = q observations. With
the notation πN(Σ|Y), we will be reffering to the posterior distribution of Σ given
the data matrix Y which is provided using an improper prior.

Using Equation 4.3 and Equation 4.7, the marginal density of the data matrix
Y is provided by

mN(Y) = (2π)nq/2Γq

(n+ q − 1

2

)
det
(1

2
S
)n+q−1

2
. (4.9)

Again, we will use the notation mN(Y) to denote that the marginal likelihood is cal-
culated with respect an improper prior, in our case the prior defined in Equation 4.7,
πN(Σ); See appendix (??).
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4.3 Gaussian Graphical Models and Prior Laws

In this section we introduce to the reader the notion of gaussian graphical models
which are decomposable. For the remainder of this thesis, we consider a collection
of decomposable graphical models G = {G1, · · · , Gk}, k ≥ 2 with clique set C and
separator set S on q nodes.

Dempster (1972) introduced the notion of covariance selection models, which
assumes a zero-mean multivariate normal population specified by zero entries on
the inverse of the covariance matrix K = Σ−1. Using the pattern of the zero entries
in K, the pairwise conditional independence structure of the entertained variables
can be associated with an undirected decomposable graph G = (V,E). A Gaussian
graphical model is defined by assuming a matrix Normal distribution on Y, adhered
to the Markov property with respect to a graph G, where the underlying graph’s
structure will be represented through the non-zero elements of the precision matrix
K. A Gaussian graphical model will be formally stated as

Y|Σ, G ∼MNn,q(0, In,Σ). (4.10)

For the covariance matrix to be well-defined, we will write Σ ∈M+(G) to denote
that Σ takes values in the space M(G), whose elements are positive definite. We
will say that Σ is Markov with respect to the graph G to indicate that conditional
independence structure of the graph G is represented through the off-diagonal zero
entries of the precision matrix K. In Figure 4.1 we provide a graphical representation
of the model, for q = 10 nodes, which assumes no conditional independence structure
restrictions and will be described as the null graphical model (or as the saturated
model (Lauritzen (1996) p. 124)) and will be denoted as G0 = (V,E0). Note, that
the null graphical model will be used later on this chapter for establishing the base-
model approach of subsection 3.5.3 to the graphical model selection problem of
undirected decomposable graphical models.

Figure 4.1: Graphical representation of the null graphical model for q = 10 nodes.
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The density of a multivariate Gaussian graphical model with respect to the
undircted decomposable graph G, using the clique factorization of Equation 2.14,
will be provided by

f(Y |Σ, G) =

∏
C∈C f(YC |ΣC , G)∏
S∈S f(YS|ΣS, G)

, (4.11)

where under each clique C ∈ C we assume YC ∼ MN(0, In,ΣC) and under each
separator S ∈ S YC ∼ MN(0, In,ΣC). Each matrix YC under each clique C ∈ C

is composted by selecting the columns of matrix Y that represents the variables
contained in the respective clique C; similarly for any given separator S ∈ S. Each
matrix ΣC under each clique C ∈ C is composted by partitioning matrix Σ into
blocks corresponding to the variables contained in clique C ∈ C; similary for any
given separator S ∈ S. The precision matrix K obeys the same factorization per
cliques and separators as the covariance matrix Σ.

Prior Distributions for Gaussian Graphical Models

Following section 4.2, a common choice for prior distribution over Σ that ad-
mits a conjugate setup, is the Inverse Wishart distribution. Dawid and Lauritzen
(1993) constructed hyper Markov laws based on Wishart and Inverse Wishart dis-
tributions, to expedite a conjugate setup on the Gaussian graphical model frame-
work. We say that Σ follows a Hyper-Inverse Wishart distribution and write
Σ|b,D ∼ HIWG(b,D), when the density of Σ under any given graphical model
G ∈ G , using the clique-separator factorization of Equation 2.14, is provided by

π(Σ|b,D,G) =

∏
C∈C π(ΣC |b,DC , G)∏
S∈S π(ΣS|b,DS, G)

, (4.12)

implying that under each clique C ∈ C, ΣC follows an Inverse Wishart distribution,
such that ΣC |b,DC ∼ IW|C|(b,DC) , with density

π(ΣC |b,DC , G) = KC det(ΣC)−(b/2+|C|)exp
{
− 1

2
tr(Σ−1

C DC)
}
, (4.13)

where

KC =
det(DC)

2b|C|/2Γ|C|(
b
2
)
;

DC ,ΣC ∈M+(G), tr(·) denotes the trace of a matrix and | · | denotes cardinality of
a set.

Roverato (2000) studied the properties of the Cholesky decomposition of a matrix
observation provided by the hyper Inverse Wishart distribution. More precisely, he
provided an alternative parametrization of a decomposable graphical model based on
the pattern of zero entries on the upper triangle matrix of a cholesky decomposition.
A significant contribution of this work, was the definition of the inverse of a hyper
Inverse Wishart distribution, namely the G-conditional Wishart distribution.

Under the null graphical model G0, the covariance matrix Σ will follow an Inverse
Wishart distribution IW (b,D) as in Equation 4.4. If we consider the change of
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variable K = Σ−1 with Σ ∼ IW (δ,B), then as provided by Roverato (2000) p.102,
the distribution of K would be a Wishart distribution such that K ∼ W (δ+q−1,A)
with density

π(K|b,A) = h(b, q)
det(K)(δ−2)/2

det(A)(δ+q−1)/2
exp

{
− 1

2
tr(KA−1)

}
, (4.14)

where A = B−1 and h(δ, q) as provided in ??.

Under a decomposable graph G = (V,E), with B−1 = A ∈M+(G), by Lauritzen
(1996) we get

B−1 =
k∑
i=1

[B−1
Ci

]0 −
k∑
i=2

[B−1
Si

]0, (4.15)

det(B) =

∏k
i=1 det(BCi)∏k
i=2 det(BSi)

, (4.16)

where [B−1
Ci

]0 denotes the q × q matrix structured by filling zero entries around BC ,
in order to obtain a full dimension matrix. Using Equation 4.15 and Equation 4.16,
the density of Σ in ?? can be written as

π(Σ|δ,D, G) = hG(δ, q)

(∏k
i=1 det(ΣCj)

|Cj |+1∏k
i=2 det(ΣSj)

|Sj |+1

)−1(∏k
i=1 det(BCj)

|Cj |+1∏k
i=2 det(BSj)

|Sj |+1

)1/2

×

(4.17)

× det(Σ)−(δ−2)/2

det(B)−(δ−2)/2
exp{−1

2
tr(Σ−1B)} (4.18)

Using ?? and Equation 2.14, the normalizing constant of ??) can be re-written as:

hG(δ, q) =

∏k
i=1 h(δ, Ci)∏k
i=2 h(δ, Si)

(4.19)

=

∏k
i=2 Γ|Sj |

(
δ+|Si|−1

2

)∏k
i=1 Γ|Ci|

( δ+|Cj |−1

2

) × ∏k
i=1 2−|Ci|(δ+|Ci|−1)/2∏k
i=2 2−|Si|(δ+|Si|−1)/2

, (4.20)

This computational cost required for providing the normalizing constant h(δ, q) using
the expression in Equation 4.19 can be intense, thus Roverato (2000) p.106 provided
an alternative formulation, given by

hG(δ, q) = (2π)−v/2
p∏
i=1

2−(δ+vi)/2

Γ
(
δ+vi

2

) , (4.21)

where

v =
k∑
j=1

cj(cj − 1)/2−
k∑
j=2

sj(sj − 1)/2. (4.22)
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In order to define the inverse of the hyper Inverse Wishart distribution, it is necessary
to consider the change of variables K = Σ−1, which will actually transform the
elements σij of Σ matrix, such that (i, j) ∈ E, to non-zero entries of matrix K. The
Jacobian matrix J for this transformation is provided by Roverato and Whittaker
(1998), that is

|J | =
∏k

i=1 det(ΣCi)
|Ci|+1∏k

i=2 det(ΣSi)
|S|i|+1

. (4.23)

Thus, the density of K will be provided by substituting Σ = K−1 in Equation 4.17,
multiplied by the Jacobian matrix of Equation 4.23, resulting to

π(K|δ,A, G) ∝ det(K)(δ−2)/2 exp
{
− 1

2
tr(KA−1)

}
, (4.24)

where A = B−1 and K,A ∈M+(G). If G is the complete graph, then the density of
K will be a Wishart distribution. If G is not the complete graph, then the density
of K will be proportionate to a Wishart distribution, conditioned to the event K ∈
M+(G). This distribution is stated by Roverato (2000) as the G-’textbfconditional
Wishart distribution (or G-Wishart distribution) and is denoted by K ∼ WG(δ +
|V | − 1, A). This distribution will be useful when we will be called to generate
hyper-Inverse Wishart observations in later parts of this thesis.

4.4 Objective Bayes in Undirected Decomposable

Graphical Models

Given the data setup of Equation 4.1 and a set of undirected decomposable graphical
models G, we assume the Gaussian graphical model setup of Equation 4.10. Under
any graph G ∈ G we consider the improper prior for Σ

πN(Σ|G) ∝
∏

C∈C det(ΣC)−|C|∏
S∈S det(ΣS)−|S|

, (4.25)

where the covariance matrix Σ will live in M+(G), exploits the same factorization
over cliques and separators as in Equation 4.11 and will expedite a computationally
convenient and conjugate setup moving forward. If we wish to proceed with the
comparison of two competing models Gi, Gj ∈ G, it will be required to provide the
Bayes factor of Gj versus Gi, but it would result to indeterminate Bayes factors
as per Equation 3.11. To this end, there are several applications of the Fractional
Bayes Factor of O’Hagan for alleviating the indeterminancy cause by the ratio of
arbitrary constants, with applications to DAG models as per Consonni et al. (2017),
Castelletti et al. (2018), and to undirected decomposable graphical models as per
Carvalho and Scott (2009). We will present the latter, that is the application of
the Fractional Bayes Factor to the graphical model selection of undirected Gaussian
graphical models since it falls under the context of this thesis.

4.4.1 Fractional Bayes Factor approach

Following the setup provided in Equation 4.10 and the data structure of Equa-
tion 4.1, we consider two competing models Gi, Gj ∈ G. Starting from the improper
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prior of Equation 4.25 and letting g denoting the fraction parameter as in Equa-
tion 3.4.2, the Fractional Bayes factor of Gj versus Gi will be provided by

FBFGj :Gi(g,Y) =
Qj(g,Y)

Qi(g,Y)
(4.26)

where Qj(b,Y) represents the fractional marginal likelihood of the data matrix Y
with respect to Gj and is provided by

Qj(g,Y) =

∫
f(Y|Σ, Gj)π

N(Σ|Gj)dΣ∫
f(Y|Σ, Gj)gπN(Σ|Gj)dΣ

. (4.27)

Following Carvalho and Scott (2009), the fractional marginal likelihood of Equa-
tion 4.27 will be provided by

Qj(g,Y) = (2π)−nq/2
h(Gj, gn, gY

TY)

h(Gj, b,Y
TY)

(4.28)

where for any given graph G ∈ G, g > 0 and D ∈M+(G),

h(G, g,D) =

∏
C∈C det(

1
2
DC)

g+|C|−1
2 Γ|C|(

g+|C|−1
2

)−1∏
S∈S det(

1
2
DS)

g+|S|−1
2 Γ|S|(

g+|S|−1
2

)−1
. (4.29)

Fractional Bayes factor allows us to facilitate direct pairwise model comparison as
well as comparing models through a common baseline model. Carvalho and Scott
(2009) in section 4.2 of the respective paper, present the Fractional Bayes factor of
any given model G ∈ G versus the null graphical model G0 which can also provide
with pairwise model comparison through the null gaphical model, as we will later
perform under Expected and Power Expected Posterior prior approach.

4.5 Expective Posterior Prior Approach

The Expected Posterior prior approach is an automated prior generation procedure,
by utilizing imaginary data (see subsection 3.5.3). Let Y∗ denote be the m × q
matrix consisted by these observations, in a similar fashion as in Equation 4.1. We
let Y and Y∗ to be considered independent on a common sample space Y. Thus,
starting with the default prior of Equation 4.25 under any given graph G ∈ G, the
posterior distribution of Σ given Y∗ is provided by

πN(Σ|Y∗, G) =
f(Y∗|Σ, G)πN(Σ|G)∫
f(Y∗|Σ, G)πN(Σ|G)dΣ

, (4.30)

where where f(Y∗|Σ, G) represents the density of Y∗ under model G as in Equa-
tion 4.11. Thus, given a predictive density m∗(·), the Expected Posterior prior of Σ
under G ∈ G will be provided by

πEPP (Σ|G) =

∫
πN(Σ|Y∗, G)m∗(Y∗)dY∗. (4.31)
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For the πEPP (Σ|G) to be well defined given a density m∗(·) on the sample space
Y∗, following the conditions of Pérez and Berger (2002) that were presented in
Equation 3.40, we assume for all Σ ∈M+(G) that

0 < mN(Y∗|G) <∞, 0 < EG

[
m∗(Y∗)

mN(Y∗|G)

∣∣∣∣Σ
]

(4.32)

hold; the expectation is derived with respect to f(Y∗|Σ, G).

As we previously described in subsection 3.5.2, the size of the imaginary data
is to be maintained at a minimum to ensure that their effect to the respective
posterior analysis is to be kept at a minimum. Therefore, we need to define a
suitable size for the number of rows m of the imaginary data matrix Y∗. Given a
decomposable graph G ∈ G, the imaginary data matrix Y∗ will comply with the
same structure and laws of the observation matrix Y as in Equation 4.1. Under
each clique C ∈ C, the matrix Y∗C follows a Matrix Normal distribution such that
(Y∗C |ΣC , G) ∼ MNm×q(0, Im,ΣC). By utilizing the improper prior Equation 4.25,
the posterior distribution of ΣC given Y∗C under each C ∈ C, will be an Inverse
Wishart distribution, with degrees of freedom parameter b = m and scale matrix
D = S∗C , where S∗C = Y∗

T

C Y∗C .

For the posterior density of ΣC given Y∗C to be proper, we need to ensure the
following conditions. First, the degrees of freedom parameter b, which is represented
by the number of rows m of Y∗ must always be m ≥ |C|, ∀C ∈ C, ∀G ∈ G and
respectively, the matrix SC must be s.p.d under each C ∈ C, which is true for every
C ∈ C. Thus, by scaling up to the maximal clique that one can meet in G, that is
under the full graph (figure ?? for q = 10 node example) is |Cmax| = q. Therefore,
for obtaining a proper posterior density of ΣC given Y∗C for each C ∈ C under each
G ∈ G, we require to have degrees of freedom parameter m ≥ q.

Using the EPP of Equation 4.31 we can directly compute marginal likelihoods
by

mEPP (Y|G) =

∫
f(Y|Σ, G)πEPP (Σ|G)dΣ (4.33)

and calculate Bayes Factors and Posterior model odds.

4.5.1 Base Model Approach

As we described earlier in subsection 3.5.3, EPP approach facilitates and automates
OB model selection using a reference model. Graphical model selection as well, is
well suited for this approach, since it is easy to specify a reference model, that is
the null graphical model G0. Thus, the predictive density m∗(·) will be defined as
the marginal density of the observations under model G0, i.e.

m∗(Y∗|G0) = mN(Y∗|G0) ∝
∫
f(Y∗|Σ, G0)πN(Σ|G0)dΣ; (4.34)
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see further Appendix A.0.12.Thus, the EPP under the base-model will reduce to its
respective default prior i.e.

πEPP (Σ|G0) = πN(Σ|G0). (4.35)

Under a general Graph G ∈ G the respective EPP will be provided by

πEPP (Σ|G) =

∫
πN(Σ|Y∗, G)mN(Y∗|G0)dY∗. (4.36)

Though each respective EPP contains an arbitrary constant due to the use of the
baseline prior πN(Σ|G0), we can calculate Bayes factors and Posterior odds, since
this arbitrary constant is common for every model of set G.

The predictive density m∗(Y∗|G0) is improper, thus it cannot be directly used
to generate the imaginary data matrix Y∗. Thus, we resort to the Importance
Sampling scheme to approximate Bayes factors of any given model G ∈ G versus
G0, as previously described in subsection 3.5.4.

Following Equation 3.41, the marginal density of sample data matrix Y given
the imaginary data matrix Y∗ under a graph G ∈ G, will be provided by

mN(Y|Y∗, G) =
mN(Y,Y∗|G)

mN(Y∗|G)
, (4.37)

where the marginal densities of Equation 4.37 are derived with respect to the baseline
prior of Equation 4.25 i.e.

mN(Y,Y∗|G) ∝
∫
f(Y,Y∗|Σ, G)πN(Σ|G)dΣ (4.38)

and

mN(Y∗|G) ∝
∫
f(Y∗|Σ, G)πN(Σ|G)dΣ. (4.39)

Note that both marginal likelihoods of Equation 4.38 and Equation 4.39 are pro-
vided as a proportion of the right part of the equations described, yet Equation 4.37
can be expressed with the equal sign since both numerator and denominator con-
tain the same arbitrary normallizing constant. Thus, the marginal likelihood of
Equation 4.33 can be re-written as

mEPP (Y|G) =

∫
mN(Y|Y∗, G)m∗(Y∗|G0)dY∗; (4.40)

see further Appendix A.0.2. Now consider Y∗
(1)

, · · · ,Y∗(R)

be a sample of indepen-
dent and identically distributed observations of m× q imaginary data matrices from
an importance density g(Y∗) and let G and G

′
be two competing graphical models of

G. We approximate the Bayes factor of G versus G
′

using the generated imaginary
observations, by

BFEPP
G:G′

(Y) ≈ BF
∧EPP

G:G′ (Y) =

∑r
l=1m

N(Y|Y∗l , G)m∗(Y∗l )/g(Y∗l )∑r
l=1m

N(Y|Y∗l , G
′)m∗(Y∗l )/g(Y∗l )

, (4.41)
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where the marginal densities are provided using Equation 4.37.

Following the base-model approach, we can use as importance density g(Y∗|G0) =
mN(Y∗|Y, G0), which is provided by reverting Y with Y∗ in Equation 4.37. Having
G
′
= G0, Equation 4.41 is reduced to

BFEPP
G:G0

(Y) ≈ BF
∧EPP

G:G0
(Y) =

1

R

R∑
r=1

BFN
G:G0

(Y|Y∗(r)), (4.42)

where the Bayes factor inside the sum expression will be provided for every l =
1, · · · , R

BFN
G:G0

(Y|Y∗(r)) =
mN(Y|Y∗(r), G)

mN(Y|Y∗(r), G0)
(4.43)

and the marginal likelihoods are given by Equation 4.37; see further Appendix A.0.4.
If the computational cost of Equation 4.43 is heavy due to the computation of
mN(Y|Y∗, G), we can use as importance density in the numerator of Equation 4.42
g(Y∗|G) = mN(Y∗|Y, G) and replace the importance density of the denominator
with g(Y∗|G0) = mN(Y∗|Y, G0). So Equation 4.42 will be reduced to

BFEPP
G:G0

(Y) ≈ BF
∧EPP

G:G0
(Y) = BFN

G:G0
(Y)

1

R

R∑
r=1

BFN
G0:G(Y∗(r)), (4.44)

where

BFN
G:G0

(Y) =
mN(Y|G)

mN(Y|G0)
(4.45)

and

BFN
G0:G(Y∗(r)) =

mN(Y∗(r)|G0)

mN(Y∗(r)|G)
; (4.46)

see further Appendix A.0.3. The Bayes factors included in Equation 4.44 are calcu-
lated with respect to the marginal densities that make use of the baseline improper
prior of Equation 4.25.

Thus, the Posterior Model Odds of any given model G ∈ G versus G0, are
provided by

POEPP (G : G0) = BFEPP
G:G0

(Y)O(G : G0) (4.47)

where O(G : G0) indicate the prior Model Odds, which will be provided in latter
parts of this Section. Therefore, using Equation 4.47 we are able to provide evidence
of every model G ∈ G versus the null graphical model G0 and furthermore, we per-
form pairwise model comparisons by comparing pairwise comparisons of evidences
versus G0.

Finally, we need to define a suitable generation procedure of imaginary matrices
for facilitating the base model approach, where we resort to the Gibbs sampling
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scheme provided in subsection 3.5.4. Thus, we first need to re-write the importance
density g(Y∗|G) = mN(Y∗|Y, G) as

mN(Y∗|Y, G) =

∫
f(Y∗|Σ, G)πN(Σ|Y, G)dΣ, (4.48)

where f(Y∗|Σ, G) represents the density of Y∗ under model G and πN(Σ|Y, G)
is the posterior distribution of Σ given data Y under model G ∈ G; see further
Appendix A.0.5. Using this expression facilitates, under the graph G ∈ G, the
imaginary data generation procedure, will be structured as:

For r = 1, · · · , R

1. Generate Σ(r) from posterior πN(Σ|Y, G).

2. Generate Y∗(r) from f(Y∗|Σ(r), G).

Note that if we decide to use g(Y∗) = mN(Y∗|Y, G0) as importance density,
then every Bayes factor will be calculated with respect to an one-time generated
sample of imaginary data. Though, if we decide to use g(Y∗) = mN(Y∗|Y, G) as
importance density for each respective model G, then we must generate a different
sample under each model G.

4.6 Power Expected Posterior Prior Approach

As we previously described in subsection 3.5.5, the PEPP approach was developed
for alleviating the dependency of EPP to computationally costly averages over sub-
matrices of imaginary data. Under the graphical model selection problem we dont
face the same constraints and we can directly use an imaginary data matrix. We are
intrested to the feature of PEPP, that is reducing the effect of the imaginary data
to the posterior analysis.

Let us consider a sample data matrix Y as provided in Equation 4.1 and let
G denote the entire collection of all undirected decomposable Gaussian graphical
models on q nodes and G0 be the null graphical model. Given a graph G ∈ G we
consider the improper default prior of Equation 4.11.

Let (y∗1, · · · ,y∗m) be m independent imaginary observations and Y∗ be the m× q
matrix consisted by these observations, in a similar fashion as Equation 4.1. We let
Y and Y∗ to be considered independent on a common sample space Y, as in EPP
approach of section 4.5.

Prior to the implementetion of the PEPP approch to the graphical model selec-
tion context of undirected decomposable graphical models, we first need to define the
notion of PEPP likelihood , that is the likelihood of the imaginary data matrix Y∗.
As seen in previous section, the likelihood of the imaginary data matrix Y∗ under
the EPP approach is Matrix Normal distribution such that Y∗ ∼MNm×q(0, Im,Σ)
where Σ ∈ M+(G). So, following section subsection 3.5.5, the PEPP likelihood
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will be given by the EPP likelihood of Y∗ raised in the power of 1
δ

and density-
normalized, i.e.

f(Y∗|Σ, δ, G) =
f(Y∗|Σ, G)1/δ∫
f(Y∗|Σ, G)1/δdY∗

= MNm×q(0, Im, δΣ) (4.49)

which exploits the factorization under cliques and separators as in Equation 4.11;
see further Appendix A.0.1. Thus, under a given graph G ∈ G, for each clique
C ∈ C we obtain that Y∗C ∼MNm×|C|(0, Im, δΣC) and similarly for each separator
S ∈ S, Y∗S ∼MNm×|S|(0, Im, δΣS). As previously stated before in subsection 3.5.5,
Fouskakis et al. (2015) default choice for the size of the imaginary data is m = n,
they explicitely state that, under the variable selection context, m can have any
value between p + 2 and n, and subsequently δ ∈ [p + 2, n]. As we will describe in
subsection 5.2.2, in our context we consider the minimal value available based on
the computational cost of the respective approach.

Therefore, under any graph G ∈ G the posterior distribution of Σ given the imag-
inary data matrix Y∗ with respect to the default improper prior of Equation 4.25,
will be provided by

πN(Σ|Y∗, δ, G) =
f(Y∗|Σ, δ, G)πN(Σ|G)

mN(Y∗|δ,G)
; (4.50)

see further Appendix A.0.11. The quantity mN(Y∗|δ,G) is the marginal likelihood
of the imaginary data matrix Y∗ under model G ∈ G, which is provided by

mN(Y∗|δ,G) =

∫
f(Y∗|Σ, δ, G)πN(Σ|G)dΣ. (4.51)

Thus, the Power Expected Posterior Prior of Σ under any model G ∈ G is defined
by

πPEPP (Σ|Y∗, δ, G) =

∫
πN(Σ|Y∗, δ, G)mN(Y∗|δ,G0)dY∗, (4.52)

where πN(Σ|Y∗, δ, G) is defined by Equation 4.50 and mN(Y∗|δ,G0) by Equa-
tion 4.51 for the case of G = G0; see further Appendix A.0.13. The marginal
likelihood that is defined under model G0, acts as the predictive density m∗(·), as
similarly defined under EPP procedure. Therefore, for the implementation of the
PEPP approach to our contest, we wil be using the base model approach as in
subsection 4.5.1.

By using Equation 4.51, Equation 4.52 could be written as,

πPEPP (Σ|Y∗, δ, G) = πN(Σ|G)

∫
mN(Y∗|δ,G0)

mN(Y∗|δ,G)
f(Y∗|Σ, δ, G)dY∗, (4.53)

If we consider a data matrix Y, then the posterior distribution of Σ under model
the G with respect to the PEPP prior πPEPP (Σ|Y∗, δ, G), will be provided by

πPEPP (Σ|Y, δ, G) ∝
∫
πN(Σ|Y,Y∗, δ, G)mN(Y|Y∗, δ, G)mN(Y∗|δ,G0)dY∗,

(4.54)
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where πN(Σ|Y,Y∗, δ, G) is the posterior distribution of Σ under model G and
mN(Y|Y∗, δ, G) is the marginal likelihood of model G, respectively, using data Y
with respect to the prior distribution πN(Σ|Y∗, δ, G) as defined in Equation 4.50;
see further Appendix A.0.11.

So now we are able to proceed with the model selection procedure by deriving
Posterior model odds based on the PEPP procedure. Given a data matrix Y,
the marginal likelihood of Y under a model G with respect to the PEPP prior
of Equation 4.53, will be provided by

mPEPP (Y|δ,G) =

∫
f(Y|Σ, G)πPEPP (Σ|Y∗, δ, G)dΣ

= mN(Y|G)

∫
mN(Y∗|δ,G0)

mN(Y∗|δ,G)
mN(Y∗|Y, δ, G)dY∗ (4.55)

where these marginals are defined as in Equation 4.37; see further Appendix A.0.7.
Thus, the Bayes factor a random graph G ∈ G against the null graphical model G0

will be provided by

BF PEPP
G:G0

(Y, δ) =
mPEPP (Y|δ,G)

mPEPP (Y|δ,G0)
(4.56)

Fouskakis et al. (2015) in Section 3 propose two similar simulation schemes for
approximating the marginal likelihood of Equation 4.55. We will apply the first
proposed scheme which is compatible with the Importance Sampling procedure that
Pérez and Berger (2002) Section 4.2. Thus, the approximation of the marginal
likelihood of Equation 4.55 using as importance density g(Y∗) = mN(Y∗|Y, δ, G)
will be structured as:

• Generate Y∗(1), · · · ,Y∗(R) from mN(Y∗|Y, δ, G).

• Estimate the marginal likelihood of Equation 4.55 by:

mPEPP (Y|δ,G) ≈ m
∧PEPP (Y|δ,G) = mN(Y|G)

1

R

R∑
r=1

mN(Y∗(r)|δ,G0)

mN(Y∗(r)|δ,G)
.

(4.57)

Therefore, the Bayes factor of a graphical model G ∈ G versus the null graph
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G0 can be approximated by:

BF PEPP
G:G0

(Y|δ) ≈ BF
∧EPP

G:G0
(Y)

=
m
∧PEPP (Y|δ,G)

m
∧PEPP (Y|δ,G0)

=
mN(Y|G) 1

R

∑R
r=1

mN (Y∗(r)|δ,G0)

mN (Y∗(r)|δ,G)

mN(Y|G0) 1
R

∑R
r=1

mN (Y∗(r)|δ,G0)

mN (Y∗(r)|δ,G0)

=
mN(Y|G)

mN(Y|G0)

1

R

R∑
r=1

mN(Y∗(r)|δ,G0)

mN(Y∗(r)|δ,G)

= BFN
G:G0

(Y)
1

R

R∑
r=1

BFN
G0:G(Y∗(r), δ), (4.58)

which is identical with the approximation provided under the EPP approach in
Equation 4.44. By using Equation 4.58 we are able to provide directly Posterior
Model Odds of any given model G ∈ G against G0, by

POPEPP (G : G0) = BF PEPP
G:G0

(Y)O(G : G0) (4.59)

where O(G : G0) represent the prior Model Odds, which will be explored in a latter
section of this chapter. The generation procedure of the imaginary data matrices
Y∗(1), · · · ,Y∗(R) is identical to the Importance sampling scheme that Pérez and
Berger (2002) Section 4.2 used and we presented in subsection 4.5.1. by re-writing
the importance density g(Y∗) as

g(Y∗) = mN(Y∗|Y, δ, G) =

∫
f(Y∗|Σ, δ, G)πN(Σ|Y, δ, G)dΣ, (4.60)

the Gibbs-Sampling scheme for generating the imaginary observations Y∗(1), · · · ,Y∗(R)

from mN(Y∗|Y, δ, G) will be structured as:

For r = 1, · · · , R.

1. Generate Σ(r) from πN(Σ|Y, δ, G).

2. Generate Y∗(r) from f(Y∗|Σ(r), δ, G).

4.7 Feature-Inclusion Stochastic Search Algorithm

There are several Bayesian and non-Bayesian computational strategies for perform-
ing structure learning in real-life applications, where the choice of a suitable one is
highly dependent to the size of the problem at hand. Bayesian approaches, such
as the reversible jump MCMC of Giudici and Green (1999) or the approach of
Jones et al. (2005), provide adequate results in small to moderate sized problems.
As the number of nodes grows larger, useful alternatives can be found in Dobra
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et al. (2004) or Mohammadi and Wit (2015) where they developed the Birth Death
MCMC. Regarding non-Bayesian approaches, L1-regularization methods can be ap-
plied as developed by Meinshausen and Buhlmann (2006) or the graphical lasso of
Friedman et al. (2008).

In the bayesian field, researchers faced two conflicting issues regarding the explo-
ration of the graphical model space G. Results from Giudici and Green (1999) and
Wong et al (2003) provide that navigating throughout G using an edge-at-a-time
moves is swifter than performing multiple-edge moves. This is due to the local struc-
ture implied by the hyper-inverse Wishart distribution, which allows to evaluate a
candidate graph fast since it will differ from the previous one visited only by two
cliques and one separator at most.

On the other hand, performing one-edge-at-a-time moves that maintain decom-
posability is not sufficient. The exploration of the graphical model space G is not
adequate, since one requires a huge amount of stepwise decomposable moves to
visit an acceptable number of candidate models that will be enough to yield sat-
isfactory convergence on edge inclusion posterior probability estimates due to the
multimodality problem of graphical model space G. In reality means, that different
graphs imply different topologies of space G that are not well connected, in a sense
a decomposable graph can reach specific areas of G, a constraint which tends to get
worse with an increasing number of nodes.

The contradiction above, implies that one must cleverly combine the compu-
tational benefit of a stepwise move with a solid strategy to navigate around the
graphical model space G, using an efficient mixture of stepwise and global moves
that will explore good portions of G which will also contain promising models. This
led Carvalho and Scott (2008) to the development of a serial algorithm for applying
a stochastic search procedure over G, by combing local, resampling and global moves
based on estimates of posterior edge inclusion probabilities.

The algorithm developed was named FINCS (Feature Inclusion Stochastic Search),
with origins in the work of Berger and Molina (2004), where they applied a similar
principal for the variable selection probelm. FINCS bases its reasoning on a sim-
ple and intuitive observation: higher posterior edge-inclusion probability estimates
correspond to stronger conditional independence relationships, thus they are well
suited for guiding the stochastic search algorithm, instead of randomly moving in
the graphical model space. Therefore, if there are certain edges that increase the
estimated posterior probability of already visited models, it is highly probable that
they will guide towards other good performing models

Before establishing the stochastic search procedure operated by FINCS, we need
to define the estimated posterior probability of a visited modelG(t) and the estimated
posterior edge inclusion probabilities of Gt. Let G(T ) = {G(1), · · · , G(t)} ⊆ G, with
t ≥ 1, denote a collection of visited decomposable graphical models by a stochastic
search algorithm. The estimated posterior probability of the visited model Gt is
provided by

π̂(G(t)|Y) =
BFG(t):G0

(Y)π(G(t))∑t
j=1BFG(j):G0

(Y)π(G(j))
(4.61)

which is provided in comparison to the null model G0 and π(G(t)) represents the
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prior probability of G(t). We will report the estimated posterior probability of a
visited model based on Bayes factors of each visited model versus the null graphical
model G0, since both EPP and PEPP are facilitated using the base model approach.
Let eij denote the ijth-edge of graph G(t). The estimated posterior edge inclusion
probability of eij is provided by

q̂ij =
∑

G∈G(T )

Ieij∈G π̂(G|Y). (4.62)

Using these estimates, FINCS algorithm incorporates three different kinds of moves
across the model space G:

• Local Move: Starting from G(t) ∈ G, move to graph G(t+1) by randomly
adding or deleting an edge, given that G(t+1) will be decomposable. The
addition of edges will be applied in proportion to estimates of posterior edge
inclusion probabilities at state (t) and the deletionof edges is applied in inverse
proportion of the respective edge-inclusion probabilities.

• Resampling Move: Starting from a graphG(t) ∈ G, revisit one of {G(1), · · · , G(t−1)}
in proportion to their estimated posterior model probabilities, and then start
performing local moves from that point.

• Global Move: Move to a new area of the graphical model space using a ran-
domized median triangulation pair, using the following strategy:

1. Start from the null graph and consider the addition of every possible edge
in proportion to their posterior edge inclusion probabilities. The resulted
graph GN will usually be a non-decomposable graph. The median graph
can be alternatively used i.e. the graph including edges with posterior
edge inclusion probabilities greater than 0.5.

2. Enclose GN in G− ⊂ GN ⊂ G+, where no edge can be added to G−

or deleted from G+ in a way such that both graphs can maintain their
decomposability.

3. Move to one of the above in proportion to their estimated posterior prob-
abilities and start performing local moves from that point.

Regardless of the move performed, G(t+1) is dealt like it has not been visited before
and is being used for updating the estimated posterior edge inclusion probabilities.

FINCS algorithm has two important advantages compared to standard MCMC
approaches. First, it incorporates a mixture of moves across the model space and
not explicitly using local moves, leading to more efficient exploration of the graph-
ical model space G. The resampling move allows us to consider alternative routes
of exploration and the global moves can bridge different areas of G, which would
be difficult to link using local moves exclusively. Second, it operates as a purely
heuristic search algorithm, without requiring the convergence of the algorithm to a
stationary distribution or always maintain a certain level of acceptance probabili-
ties. Following the experimental studies performed by Carvalho and Scott (2008), in
every simulation setup considered FINCS algorithm always explored a greater area
of G compared to Metropolis approaches.
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4.8 Priors on Graphs

For the calculation of Posterior model odds of any given G ∈ G versus the inde-
pendence graph G0, besides the respective Bayes factor, we need to calculate the
prior model odds. One standard choice, is applying a uniform probability over the
graphical model space G, i.e. each graph will have the same prior probability

π(G) =
1

|G|
, ∀G ∈ G, (4.63)

which is sensible in absence of prior information. Yet, following Giudici and Green
(1999) section 1.3, this prior probability will favor middle sized graphs due to their
vast number compared to others of G.

A useful alternative, is to focus on the prior probability of an edge being included
to the graph instead of the graph itself, which is similar to the feature inclusion
probability of the variable selection problem. Let r denote the probability of an
edge being included in the graph. Following Dobra et al. (2004), if we consider a
binomial prior over the probability of inclusion r, the prior o a given graph G ∈ G

is provided by

π(G) ∝ rk(1− r)m−k, (4.64)

where k denotes the number of edges being included in G ∈ G and m = q(q − 1)/2
indicate the maximum number of possible edges. The prior is provided in proportion
to the kernel of the distributions, since the constant of proportionality is identical for
every G ∈ G, thus it can be omitted and alleviate the computational cost required for
its calculation. This approach is amenable, if we acquire prior information regarding
the number of edges included in the true graph, which is highly unlikely in real-life
application.

To avoid the incremental computational cost required for the estimation of r,
Carvalho and Scott (2009) consider applying a Beta prior over r, such that

π(G) ∝ B(α + k, β +m− k)

B(α, β)
, (4.65)

where B(·, ·) denotes the Beta function. By considering a α = β = 1, we assign a
uniform prior over the edge inclusion probability r, such that

π(G) ∝ 1

m+ 1

(
m

k

)−1

. (4.66)

As Carvalho and Scott (2009) indicate, this prior automatically penalizes the inclu-
sion of false positive edges, as the dimension grows larger. In this thesis, this prior
will be used for obtaining posterior model estimates, using EPP and PEPP.
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Chapter 5

Experiments

In this chapter we evaluate the ability of EPP and PEPP to infer an undirected
graph from simulated data and protein-signaling data. Furthermore, we compare
EPP and PEPP with the Fractional Bayes Factor approach (FBF) of Carvalho and
Scott (2009) and the Birth Death MCMC (BDMCMC), a methodology introduced
by Mohammadi and Wit (2015) and implemented by BDgraph package.

5.1 Preliminaries

Our goal is, given a graphical model space G and a data matrix Y, to obtain
insights regarding the posterior model probability π(G|Y) under any G ∈ G (see
also chapter 4). We either perform a full enumeration of G, that is the calculation of
each posterior model probability of every distinct G ∈ G, or with a stochastic search
of G, that is the exploration of the graphical model space for the most promising
models based on estimations of posterior probabilities. The decision on which of
the two will be applied, is purely based on the size of G. With fewer number of
nodes under consideration, the size of G is smaller therefore a full enumeration
framework is feasible, whereas with greater number of nodes, the size of G grows
superexponentially and a stochastic search framework is considered. We provide
examples for both frameworks.

Uncer a full enumberation framework, we consider G = {G0, · · · , GL} to denote
the graphical model space of L distinct undirected decomposable graphical models,
with G0 being the null model and nested to all other graphical models of G. The
posterior probability of a given G ∈ G, following Equation 3.7 is calculated by

π(G|Y) =
POG:G0∑

Gl∈G POGl:G0

, (5.1)

where for every G ∈ G

POG:G0 = BFG:G0(Y)OG:G0 ; (5.2)

see further Appendix A.0.9. Under a stochastic search framework, after visiting
a set of K distinct models G∗ = {G(0), · · · , G(K)} ⊆ G based on the output of a
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stochastic search algorithm of T >= K iterations, we estimate the posterior model
probabilities π̂(G|Y) of any G ∈ G∗, using Equation 5.1, by replacing G with G∗.

Under the graphical model selection framework, we will evaluate the output of
the stochastic search algorithm based on the median probability (graphical)
model, which can be constructed by including the all edges with posterior edge
inclusion probability greater that 0.5; the notion of the median probability model was
originally defined in Barbieri and Berger (2004) for the variable selection problem,
providing to better predictive performance. An edge posterior inclusion probability
of an edge eij, given the data matrix Y, is provided by

q̂ij =
∑
G∈G∗

Ieij∈Gπ̂(G|Y). (5.3)

Thus, the median probability graphical model is defined as the graph containing all
undericted edges such that q̂ij ≥ 0.5. Note, that it is not guaranteed for the median
probability graphical model to be decomposable, but it will be used throughout
this chapter for: 1) provide performance metrics of the proposed methodologies
under simulated data (see section 5.2; (2) for depicting conditional independence
relationships based on protein-signalling data (see section 5.3).

5.1.1 Posterior Odds formulations

In this subsection we provide analytical the analytical expressions required for ap-
proximation Bayes factors of any given graph G ∈ G versus the null graphical model
G0, under EPP and PEPP approach; for the FBF approach we provide the formu-
lation provided by Carvalho and Scott (2009).

Let us consider a set of decomposable graphical model G on q nodes and data
matrix as in Equation 4.1. As we previously stated in subsection 4.5.1 and sec-
tion 4.6, we adopt the base-model approach where we obtain posterior model esti-
mated through the comparison of candidate models versus the null graphical model
G0. Under the PEPP approach, the approximation of the Bayes factor of a given
model G ∈ G versus the null graphical model G0, will be provided by

BF
∧PEPP

G:G0
(Y, δ) = K(Y, G)H(Y, G)

R∑
r=1

K(Y∗, G)H(Y∗, G), (5.4)

where for a data matrix Xn×q and an undirected decomposable graph G we define

K(X, G) =

∏
C∈C Γ|C|(

n+|C|−1
2

)∏
S∈S Γ|S|(

n+|S|−1
2

)
Γ−q

(n
2

)
(5.5)

and

H(X, G, δ) =

q∏
j=1

det(
1

2δ
Sj)

n
2

∏
C∈C det(

1
2δ

SC)−
n+|C|−1

2∏
S∈S det(

1
2δ

SS)−
n+|S|−1

2

; (5.6)

see further Appendix A.0.10. For obtaining the respective Bayes factor approxima-
tion under the EPP approach, we set δ = 1 in Equations Equation 5.4, Equation 5.5
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and Equation 5.6. Last, following Carvalho and Scott (2009), the Fractional Bayes
factor of any given model G ∈ G versus the null graphical model G0, will be provide
by

FBFG:G0(Y) = K

∏q
j=1 det(

1
2
Sj)

n/2∏q
j=1 det(

g
2
Sj)gn/2

∏
C∈C det(

g
2
SC)

gn+|C|−1
2∏

S∈S det(
g
2
SS)

gn+|S|−1
2

×
∏

S∈S det(
1
2
SS)

n+|S|−1
2∏

C∈C det(
1
2
SC)

n+|C|−1
2

(5.7)

where

K =
(Γ(gn

2
)

Γ(n
2
)

)q∏
C∈C Γ|C|(

n+|C|−1
2

)∏
S∈S Γ|S|(

n+|S|−1
2

)

∏
S∈S Γ|S|(

gn+|S|−1
2

)∏
C∈C Γ|C|(

gn+|C|−1
2

)
(5.8)

We will use the quantities in Equation 5.4 and Equation 5.7 for estimating poste-
rior edge inclusion probabilities and posterior model probabilities of visited models
by a stochastic search, further explained in the following section. All scores above
will be calculated using logarithms. For the generation process of imaginary obser-
vations under both PEPP and EPP approach we use thefollowing:

For r = 1, · · · , R.

1. Generate K(r) from WG(n+ q − 1, (S/δ)−1).

2. Generate Y∗(r) from MNm×q(0, Im, δK
(r)−1

).

Note again, in order to generate imaginary observations under EPP approach,
we use the above described scheme using δ = 1

5.1.2 Our approach and FINCS setup

For applying EPP and PEPP approaches, we utilize the FINCS algorithm of Car-
valho and Scott (2008) with two modifications. First, both approaches add a layer
of computational cost due to the importance sampling scheme required for the ap-
proximation of the respective Bayes factor. Thus, following Altomare et al. (2013),
we modify the global move by deterministically selecting the median graph and
then perform a local move from that point. If the median graph is not a decom-
posable model, we use a minimal graph triangulation scheme to get a decomposable
subgraph of hypergraph of it and then perform a local move.

Second, our experience showed that we can reach to an optimal result quite fast,
thus we keep the number of iterations as small as possible, instead of performing
superfluous simulations runs. So our version of FINCS algorithm is structured as
follows:
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For t = 1, · · · , T (iterations):

1. For a given model Gt generate importance samples following Gibbs scheme.

2. Estimate Bayes factor under EPP or PEPP using Equation 5.4

3. Update posterior edge inclusion probabilities.

4. Propose a new model following FINCS logic.

For mixing local, resampling and global moves, we follow the guidelines provided
by Carvalho and Scott (2008), where every 10 iteration a resampling move is applied
and every 50 iterations a global move is applied.

Finally, for the PEPP approach described in section 4.6 we will use m = q and
subsequently δ = q. We are allowed to consider any m ∈ [q, n] as per Fouskakis
et al. (2015) and we further discuss our reasoning on section 5.2.3.

5.2 Simulations

In this section we apply EPP and PEPP to simulated datasets and compare their
performance with FBF and BDMCMC. We first provide information about the sim-
ulation framework considered and the data generation process. Then, we provide
details about the full enumeration and stochastic search simulation framework and
data generation process, and finally, we present our results based on diverse simu-
lation scenarios.

5.2.1 Simulation Framework and Data Generation Process

A simulation framework will be characterized by a pair (q, n), where u q ∈ {3, 10, 20, 30}
is the number of nodes and n ∈ {100, 300, 500} is the number of observations. For
the case of q = 3 we will perform a full enumeration approach, since the graphical
model space G contains only 8 models, and for the remaining number of nodes we
resort to a stochastic search approach using FINCS algorithm (see subsection 5.1.2).

Full Enumeration Approach

Under the full enumeration approach the graphical model space will be consisted
by 8 graphs i.e. G = {G0, G12, G13, G23, G123, G213, G231, Gfull}. In Figure 5.1 we
describe all graphs under consideration. For each simulation pair {q, n}, we generate
40 datasets having as true model G213 (see (f) Figure 5.1).
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(a) G0 (b) G12 (c) G13

(d) G23 (e) G123 (f) G213

(g) G231 (h) GFull

Figure 5.1: Model Space of Undirected Graphical Model Space G under 3 nodes.

The data generation process will be the following:

1. Generate a precision matrix K from the G-Wishart distribution having b = 10
degrees of freedom and scale matrix D = Iq + G213 ∗ 0.6, using bdgraph.sim

function of BDgraph package.

2. Generate a data matrix Yn×q ∼MNn×q(0, In,K
−1).
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Stochastic Search Approach

For each simulation pair under the stochastic search framework, we consider two
different simulation scenarios, namely the Random Scenario and the Star Scenario.
Under the Random Scenario, we generate a total of 40 datasets corresponding to 40
true undirected graphical models, not guaranteed to be decomposable. Following
Peters and Buhlmann (2014), for a given q we generate a random undirected graph
GTrue, with probability of edge inclusion pedge = 3/(2q−2). Throughout this section,
GTrue will denote the graphical model that was used to generate the data. The data
generation process under the Random Scenario will be the following:

1. Generate an undirected graph GTrue using bdgraph.sim function of BDgraph
package

2. Generate a precision matrix K from the G-Wishart distribution having b = 10
degrees of freedom and scale matrix D = Iq, using bdgraph.sim function of
BDgraph package.

3. Generate a data matrix Yn×q ∼MNn×q(0, In,K
−1).

Under the Star scenario, following Mohammadi and Wit (2015), we generate a
total of 40 datasets, where the true graph is constructed by setting all nodes adjacent
to the firest node. In Figure 5.2 we provide a graphical representation of GTrue and
the reference model, under the Star graph scenario for the cases of q ∈ {10, 20, 30}
. The data generation process under the Star Scenario will be the following:

1. Generate a precision matrix K from the G-Wishart distribution having b = 10
degrees of freedom and scale matrix D = Iq, based on the graphical structure
which complies to the Star Graph scenario. Matrix K is generated using
bdgraph.sim function of BDgraph package.

2. Generate a data matrix Yn×q ∼MNn×q(0, In,K
−1).
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(a) GTrue for q = 10. (b) Reference Model for q = 10.

(c) GTrue for q = 20. (d) Reference Model for q = 20.

(e) GTrue for q = 30. (f) Reference Model for q = 30.

Figure 5.2: Stochastic Search Approach. GTrue and Reference model under Star Graph Scenario
for q ∈ {10, 20, 30}.
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For both Random Scenario and Star Scenario, we use as reference model the null
graphical model G0, under the respective number of nodes under considerations, as
presented for Star Scenario in Figure 5.2.

5.2.2 FINCS and Computational Setup

To apply EPP and PEPP approaches for q ∈ {10, 20, 30}, we will utilize the FINCS
algorithm (see subsection 5.1.2) with two minor modifications. First, due to the
accumulating processing cost arising from the Bayes factor approximations, we per-
form the global move of FINCS, by deterministically selecting the median graph (see
section 5.1), similarly as Altomare et al. (2013).

Second, we control the number of iterations through pilot runs, in order to keep
them as small as possible, since our experimental studies show that our algorithm
can reach the optimal model choice quite fast, rendering superfluous runs. To this
end, we choose T = {3000, 6000, 9000} for q ∈ {10, 20, 30} respectively. For every
simulation pair (q, n) of the stochastic search approach, we keep fixed the amount
of iterations where a respampling and global moves are performed, following the
guidelines provided by Carvalho and Scott (2008). More specificaly, we perform a
resampling move every 10 iterations and a global move every 50. Based on several
pilot approaches of FINCS algorithm, we chose to generate R = 20 importance
samples for approximating Bayes factors of any provided G ∈ G versus G0. This
choice was based on the computational cost arising from the importance sampling
estimation of Bayes factors (see Equation 5.4) and the ability of FINCS to return
an optimal solution.

For the BDMCMC approach we follow the choices of Mohammadi and Wit (2015)
,where the total number of iterations T = 60000 with a burn-in period of 30000 iter-
ations. The remaining parameters were selected by the baseline choises developed in
the BDgraph package.The BDMCMC approach was applied using the bdgraph.sim

function of BDgraph package. Note that BDMCMC is a fully Bayesian transdimen-
sional method which performs structural learning in an explicit Bayesian context,
rather than using Bayes factors as per our approach and it is applicable to all types
of graphical model, compared to our approach which only focuses on undirected
decomposable graphical models.

Under every scenario and approach under consideration, we evaluate the per-
formance of EPP, PEPP and benchmark approaches in identifying the graphical
structure of GTrue in terms of Structural Hamming Distance (SHD), which
described the number of insertions and deletions for converting the estimated undi-
rected graph to GTrue, and F1-score, provided by

F1 =
2TP

2TP + FP + FN
, (5.9)

where TP, FP and FN denote the number of true positive, false positive and false
negative edges identified respectively. The F1-score lives in [0, 1] and is used as
a classification measure of edges identified, with values closer to 1 indicate better
classification of edges, whereas values closer to 0 indicate worse classifications. For
SHD, values closer to 0 indicate better performances.
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5.2.3 Full Enumeration Results

In this subsection we present the results from the application of EPP and PEPP to
the full enumeration simulation framework presented earlier in this section, and we
compare their performance with the benchmark methods FBF. First, in Figure 5.3
we present the posterior probability of each model of G (see Figure 5.1).

Figure 5.3: Full Enumeration Approach. Model Posterior Probability under EPP, PEPP and
FBF approach for n ∈ {100, 300, 500}.

We observe that for small sample sizes, i.e. n = 100 all three approaches return
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model posterior probabilities with high variability. More precisely, all three ap-
proaches provide posterior probabilities for modes G213, which represents GTrue and
G12, G13, which are nested in G213. As the sample size increases, i.e. n ∈ {300, 500}
all three methods under consideration, provide stronger evidence for G213 with pos-
terior probabilities over 0.9. One of the remarks in the end of section 3.1, was that
model posterior probabilities, decline over similar models and in this simulated ex-
ample, G12 and G13 are nested to G213, therefore similar, thus in some cases they
obtain higher posterior model probabilities. We also observe that for the case of
n = 300, EPP provides greater variability compared to PEPP and FBF due to the
effect of the imaginary data, compared to PEPP which contains their effect.

Next, in Figure 5.4 we provide boxplots of the posterior edge inclusion proba-
bilities under EPP, PEPP and FBF for each sample size under consideration. Re-
sults are in line with the ones provided Figure 5.3.For almost half of the simulated
datasets, for small sample sizes, i.e. n = 100, we obtain posterior edge inclusion
probabilities near 1. More precisely, we obtain these posterior edge inclusion proba-
bilites, yet with high variability, for edges 1−2 and 1−3 which are present in GTrue

and for edge 2− 3 which is absent, we obtain posterior edge inclusion probabilities
near 0. As the sample size increases, for n ∈ {300, 500}, posterior edge inclusion
probabilities for edges present in GTrue are concentrated in 1 and in 0 otherwise.
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Figure 5.4: Full Enumeration Approach. Edge Inclusionl Posterior Probabilities under EPP,
PEPP and FBF approach for n ∈ {100, 300, 500}.

Sensitivity Analysis on m under PEPP

Next, in Figure 5.5 we provide a sensitivity analysis for the size of imaginary ob-
servations m under the PEPP approach. Since we set δ = m, we are interested
in observing the behavior of edge inclusion posterior probabilities as m, and sub-
sequently δ grows. We generate an extra of 40 simulated datasets using the exact
same scheme as before, using R = 20 importance samples for approximating Bayes
factors. We first observe that when we consider small sample sizes, i.e. n = 100 and
for a small amount of imaginary observations, the posterior edge inclusion probabili-
ties behave as we previously seen in Figure 5.4. As the sample size increases and the
number of imaginary observations increases as well, edges that are included in GTrue

behave as expected, i.e. their posterior edge inclusion probabilities are concentrated
in 1.
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For edges that are not included in GTrue, specificaly for edge 2 − 3, we observe
an abnormal behavior as the size of imaginary observarions m increases. When m
is kept at a minimum, i.e. m = 3, the behavior of the posterior edge inclusion
probabilities is as expected. As the imaginary sample size increases, we observe a
huge amount of variability without a clear indication that the edge inclusion pos-
terior probabilities are trending towards 0 or 1. Furthermore, we performed the
exact same experiment using more exhaustive approximations, where we consid-
ered R = 1000 importance samples for approximating the Bayes factors of models
of G versus G0 and in Figure 5.6 we provide boxplots of edge inclusion posterior
probabilities and we observe the same behavior as in Figure 5.5.

Following the findings of this sensitivity analysis, we opt to keep the size of
imaginary observations m at a minimum for PEPP as well, for ensuring the stability
of our approach and controlling the computational cost as well. Further more, the
amount of importance samples considered, i.e. R = 20 does not seem to affect the
analysis applied by PEPP, therefore we will keep it at a minimum for controlling
the computational cost of the stochastic search approach as well.
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(a) n = 100

(b) n = 300

(c) n = 500

Figure 5.5: Full Enumeration Approach. Sensitivity Analysis for PEPP for varying imaginary
sample size m and for n ∈ {100, 300, 500} and R = 20. Edge Inclusion Posterior Probabilities

over 40 simulated datasets with real graph G213.
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(a) n = 100

(b) n = 300

(c) n = 500

Figure 5.6: Full Enumeration Approach. Sensitivity Analysis for PEPP for varying imaginary
sample size m and for n ∈ {100, 300, 500} and R = 1000. Edge Inclusion Posterior Probabilities

over 40 simulated datasets with real graph G213.
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5.2.4 Stochastic Search Approach

In this subsection we present the results from the application of EPP and PEPP
to the simulation scenarios presented earlier in this section, and we compare their
performance with the benchmark methods FBF and BDMCMC. To evaluate the
performance of each method under consideration, we measure the SHD between
the median probability graphical model and the respective GTrue. In Figure 5.7 we
report the boxplots of the SHDs over the 40 simulated datasets for every simulation
pair (q, n) considered by the Random Scenario.

We observe that the performances of every method under consideration improves
as the sample size n increases, and deteriorate as the number of nodes q increases. An
interesting finding is that PEPP distances are in all cases smaller than those provided
by EPP, which signals that the compression feature of imaginary observations that
PEPP provides, returns better estimations in terms of SHD.

Compared to the other benchmark approaches, PEPP reveals a performance
comparable to FBF, especially for sample sizes without suffering from double usage
of data as in FBF. Therefore, we believe that PEPP is a valid Bayesian alternative to
FBF approach, since it can provide similar performance using a more theoretically
sound procedure.

Finally, we observe that BDMCMC method performs worse, but it tends to
improve as the number of nodes increases. We need to note that BDMCMC performs
structure learning in an explicit Bayesian context, rather that using Bayes factors as
per our approach and it is applicable to all kinds of graphical modes, whereas we are
restricted to decomposable graphical models. Furthermore, the output of BDMCMC
is far richer MCMC output, and therefore it requires higher computational time and
higher sample sizes. In Figure 5.8 we report the boxplots of the SHDs over the 40
simulated datasets for every simulation pair (q, n) considered by the Star scenario,
with findings similar to the Random scenario provided before.
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Figure 5.7: Simulation study under Random Setup. Structural Hamming distances between the
estimated Undirected graphs and true Undirected graphs, over 50 datasets for number of nodes
q = {10, 20, 30} and sample size n = {100, 300, 500}. The performances are measured for our

intermediate output, the median probability model under EPP and PEPP, the median
probability model under FBF and BDMCMC and the final output structure under MB approach.
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Figure 5.8: Simulation study under AR-1 Setup. Structural Hamming distances between the
estimated Undirected graphs and true Undirected graphs, over 50 datasets for number of nodes
q = {10, 20, 30} and sample size n = {100, 300, 500}. The performances are measured for our

intermediate output, the median probability model under EPP and PEPP, the median
probability model under FBF and BDMCMC and the final output structure under MB approach.
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In Table 5.1 and Table 5.2 we present the mean and variance of F1 scores under
Random and Star graph simulaton scenario respectivelly, for each method under
consideration. We observe that for small sample sizes, i.e. n = 100, PEPP approach
provides better F1-score than all other approaches under consideration. As the
sample size increases, i.e. n = {300, 500}, FBF approach is the best performer and
the PEPP approach closely follows.

Case Studies Approaches
Scenario q n EPP PEPP FBF BDMCMC

100 0.31 (0.05) 0.47 (0.06) 0.51 (0.06) 0.50 (0.02)
10 300 0.54 (0.05) 0.65 (0.03) 0.71 (0.03) 0.66 (0.02)

500 0.59 (0.07) 0.68 (0.05) 0.74 (0.04) 0.70 (0.02)
100 0.25 (0.02) 0.48 (0.02) 0.41 (0.03) 0.36 (0.01)

Random 20 300 0.47 (0.02) 0.62 (0.01) 0.66 (0.02) 0.50 (0.01)
500 0.59 (0.02) 0.71 (0.01) 0.76 (0.01) 0.59 (0.01)
100 0.23 (0.01) 0.42 (0.01) 0.37 (0.02) 0.31 (0.01)

30 300 0.44 (0.02) 0.55 (0.01) 0.59 (0.01) 0.44 (0.01)
500 0.51 (0.01) 0.60 (0.01) 0.68 (0.01) 0.50 (0.01)

Table 5.1: Simulated data. Means of F1-score (variances in parentheses) under the Random
Scenario.

Case Studies Approaches
Scenario q n EPP PEPP FBF BDMCMC

100 0.33 (0.06) 0.57 (0.05) 0.57 (0.05) 0.54 (0.01)
10 300 0.55 (0.05) 0.64 (0.03) 0.66 (0.03) 0.63 (0.01)

500 0.62 (0.04) 0.71 (0.01) 0.78 (0.01) 0.73 (0.01)
100 0.25 (0.03) 0.47 (0.02) 0.41 (0.03) 0.37 (0.00)

Star 20 300 0.45 (0.04) 0.60 (0.04) 0.63 (0.04) 0.51 (0.00)
500 0.61 (0.03) 0.72 (0.02) 0.75 (0.02) 0.61 (0.01)
100 0.22 (0.03) 0.38 (0.02) 0.29 (0.04) 0.29 (0.00)

30 300 0.48 (0.02) 0.62 (0.01) 0.64 (0.01) 0.45 (0.00)
500 0.52 (0.01) 0.64 (0.01) 0.68 (0.01) 0.50 (0.00)

Table 5.2: Simulated data. Means of F1-score (variances in parentheses) under the Star Scenario.
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We next investigate the computational time required for performing FINCS al-
gorithm under EPP, PEPP and FBF, as function of sample size n and number of
nodes q. In the left panel of Figure 5.9 we report the time in seconds needed for
FINCS algorithm to perform 500 iterations for n = 500, R = 20 generated impor-
tance samples for estimating Bayes factors under EPP and PEPP and number of
nodes q varying betwen 5 and 100 nodes, whilst in the right panel of Figure 5.9 we
report the time in seconds needed for FINCS to perform 500 iterations for q = 20,
R = 20 generated importance samples and sample size n varying between 500 and
10000. Algorithms were run on a Toshiba Satellite 12GB RAM 2.6GHZ + 2.6GHS

8-processor unit (4 processors + 4 mirrors). We observe that with an in-
creasing number of nodes q, the computational time increases exponentially, whilst
with an increasing number of sample size n the computational time grows in a much
lower rate.

(a) Run-time as a function of q. (b) Run-time as a function of n.

Figure 5.9: Simulated data. Computational time (in seconds) of 500 iterations of EPP, PEPP
and FBF, as a function of q for n = 500 (left panel) and as a function of the sample size n for a

fixed number of nodes q = 20 (right panel).

5.3 Real Data Application

In this section, we apply both EPP and PEPP approaches to the protein signalling
data set provided by Sachs et al. (2005). In their original work, Sachs et al. (2005)
aimed to infer a signle DAG using these data, where Friedman et al. (2008) used
them to infer an undirected graph and Castelletti et al. (2018) used the same data for
performing structure learning of interventional essential graphs. Recently, Peterson
et al. (2015) analyzed the data for inferring multiple graphs under each experimen-
tal condition, allowing for the possibility of shared structural features among the
estimated graphs. We share the same view with Peterson et al. (2015) and our goal
will be to infer an undirected graph for each experimental condition and identify
the most common edges amongst all resulted graphs.

The data provided by Sachs et al. (2005), are based on simultaneous measure-
ments of multiple phosphorylated proteins and phospholipid componenets contained
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in individual primary human immune system cells. Our interest lies in q = 11
phosphorylated proteins and phospholipids, which are observed after applying nine
different experimental conditions, resulting to nine different datasets containing ob-
servations that share the same experimental characteristics.

We assume that the joint distribution of the data is a multivariate normal dis-
tribution as in previous works which analyzed the same data. In Figure 5.10 we
provide the estimated graphs under each experimental condition from Peterson et
al, where indices (i)− (ix)

Figure 5.10: Estimated undirected graphs per dataset under Peterson et al. (2015).

We apply EPP and PEPP approaches on each dataset provided using the setup
established in the simulation studies for q = 10, where we consider T = 3000
iterations of FINCS algorithm, applying resampling moves every 10 iterations and
global moves every 50 iterations, and returning the median probability graph (see
subsection 5.2.2). In Figure 5.11 and Figure 5.12 we report the inferred undirected
graphs under each experimental conditions under EPP and PEPP respectivelly. We
perform sixteen rounds of FINCS algorithm and we then consider the average of the
posterior edge inclusion probabilities among these 16 runs.
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

(g) Dataset 7 (h) Dataset 8 (i) Dataset 9

Figure 5.11: Protein Signalling data. Estimated median probability graphs using EPP approach.
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

(g) Dataset 7 (h) Dataset 8 (i) Dataset 9

Figure 5.12: Protein Signalling data. Estimated median probability graphs using PEPP
approach.

Furthermore, in Table 5.3 and Table 5.4, we report the amount of edge appear-
ances in the nine datasets for EPP and PEPP respectivelly. The maximum amount
an edge can appear is nine times. We consider an edge as significant if it appears in
8 or 9 datasets. We observe that PEPP approach returns the same significant edges
as per Peterson et al. (2015), that is the edges praf - pmek, PIP2 - PIP3, pakts473 -
p44/42, pakts473 - PKA and P38 - PKC. EPP approach returns one edge less than
PEPP approach, namely the connection between pakts473 -PKA, yet it occurs more
frequently than the other non-significant edges.
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Variables praf pmek plcg PIP2 PIP3 p44/42 pakts473 PKA PKC P38 pjnk

praf 0 8 0 0 0 0 0 0 0 0 0

pmek 8 0 0 0 0 0 0 0 0 0 0

plcg 0 0 0 4 6 0 0 0 0 0 0

PIP2 0 0 4 0 8 0 0 0 0 0 0

PIP3 0 0 6 8 0 0 0 0 0 0 0

p44/42 0 0 0 0 0 0 9 6 0 0 0

pakts473 0 0 0 0 0 9 0 8 0 0 0

PKA 0 0 0 0 0 6 8 0 0 0 0

PKC 0 0 0 0 0 0 0 0 0 9 7

P38 0 0 0 0 0 0 0 0 9 0 7

pjnk 0 0 0 0 0 0 0 0 7 7 0

Table 5.3: Edge apperances per dataset under PEPP approach.

Variables praf pmek plcg PIP2 PIP3 p44/42 pakts473 PKA PKC P38 pjnk

praf 0 8 0 0 0 0 0 0 0 0 0

pmek 8 0 0 0 0 0 0 0 0 0 0

plcg 0 0 0 4 4 0 0 0 0 0 0

PIP2 0 0 4 0 8 0 0 0 0 0 0

PIP3 0 0 4 8 0 0 0 0 0 0 0

p44/42 0 0 0 0 0 0 9 6 0 0 0

pakts473 0 0 0 0 0 9 0 7 0 0 0

PKA 0 0 0 0 0 6 7 0 0 0 0

PKC 0 0 0 0 0 0 0 0 0 9 3

P38 0 0 0 0 0 0 0 0 9 0 6

pjnk 0 0 0 0 0 0 0 0 3 6 0

Table 5.4: Edge apperances per dataset under EPP approach.

In Table 5.5, we report the SHD of the infered graphs between PEPP and EPP,
FBF and BDMCMC, using PEPP as the benchmark method. We observe that
besides dataset 5, all approaches return similar inferred graphs and more specifically
they return identical graphs for datasets 3 and 8.
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Dataset EPP FBF BDMCMC # PEPP # EPP # FBF # BDMCMC
1 2 1 1 8 6 9 9
2 0 2 3 8 8 10 11
3 0 0 0 9 9 9 9
4 2 1 1 6 6 7 7
5 1 5 5 6 5 11 11
6 1 1 1 8 7 9 9
7 2 1 1 8 6 9 9
8 0 0 0 10 10 10 10
9 2 1 1 9 7 10 10

Table 5.5: Protein Signaling data. Structural Hamming distances between the estimated
undirected graph under Power-Expected Posterior prior versus every alternative method and

total number of edges under each approach.

Following the findings of Table 5.5, in Table 5.6 we provide the estimated pos-
terior probability of MAP model under PEPP, EPP and FBF for datasets 3 and
8, where all three methods resulted to the same graph. We observe that PEPP
and EPP associate a higher estimated posterior probability to the estimated MAP
model, i.e. the model with the highest posterior probability, compared to the FBF
approach. Thus, we deduce that PEPP and EPP can more easily distinct the opti-
mal model relative to FBF. Results of BDMCMC are ommited since the output of
the bdgraphsim function returns only estimations of posterior edge inclusion prob-
abilities, rather than model estimated posterior probabilities.

Dataset EPP PEPP FBF

3 0.96 0.97 0.3

8 0.96 0.96 0.3

Table 5.6: Protein Signalling data. Estimated Posterior Probability of the MAP model for EPP,
PEPP and FBF, for datasets 3 and 8.
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Conclusions and further research

Graphical models are used for depicting conditional independence relationships
among a given set of variables. In real-life situations, we do not know the structure
of the underlying graph and we use the data at hand to infer the graph’s structure.
Objective Bayes approaches are well-suited for the structure learning problem of
undirected decomposable gaussian graphical models, since it is difficult to subjec-
tively specify a prior over vast parametric spaces, constrained by graphical structure.

In this thesis we introduced the Expected and Power Expected Posterior prior
approaches to the structure learning problem of undirected Gaussian graphical mod-
els, using a specific class of models, that is the decomposable models. Furthermore,
we applied a modified version of FINCS algorithm of Carvalho and Scott (2008)
for exploring a given graphical model space G of decomposable graphical models
on q nodes. We applied the proposed methodologies, namely EPP and PEPP, to
artificially simulated datasets and in protein-signaling data (Sachs et al. (2005)) and
compared their performance with the FBF approach ( Carvalho and Scott (2009))
and BDMCMC approach ( Mohammadi and Wit (2015)).

The output of both EPP and PEPP, returns posterior estimates of edge in-
clusion probabilities and in small settings in can return graphical model posterior
probabilities. In the simulated scenarios illustrated in chapter 5 we observed that
PEPP approach is highly competitive with the FBF approach and outperforms both
EPP and BDMCMC approaches. More specifically, for the 3-node example, EPP
and PEPP perform the same as FBF approach and PEPP returns slightly higher
posterior edge inclusion probabilities.

When we scale-up to higher dimensions, i.e. for q ∈ {10, 20, 30}, in both simula-
tion scenarios considered, PEPP approach performs similarly to the FBF approach
and again outperforms EPP and BDMCMC in terms of SHD. When it comes to
classification ability, PEPP performs better than the other three approaches when
considering small sample sizes. As the sample size increases, PEPP follows-up closely
FBF approach and outperforms EPP and BDMCMC.

The protein-signaling data provided by Sachs et al. (2005) were observed under
nine different experimand conditions. They have been analyzed as one common
dataset (Friedman et al. (2008)) or seperately as per Peterson et al. (2015) for
identifying shared features among graphs. We shared the view of Peterson et al.
(2015) and inferred a singe graph per dataset, for identifying common edges among
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the nine datasets. Results showed that PEPP returns the exact same common
edges as per Peterson et al. (2015) and EPP returns one edge less. Furthermore,
we observed that under a stochastic search approach, both EPP and PEPP support
the optimal identified model with greater evidence than FBF, resulting to shorter
algorithmic runs and subsequently lower computational cost.

Key difference between EPP-PEPP and the Fractional Bayes Factor approach
proposed in the literature is that both are based on the use of imaginary observations,
thus avoiding double use of available data. In their core, they utilize improper
parameter prior distributions when it is difficult to successfully elicit a subjective
one, alleviating the indeterminacy in Bayes factors arising from the existence of
arbitrary normalizing constants. For both EPP and PEPP, the base-model approach
is considered since it can efficiently adapt to the field of graphical model selection.
The advantage of PEPP over EPP is that the former reduces the effect of imaginary
data , leading to more accurate estimation, compared to EPP.

EPP and PEPP are restrictive in terms of applications since they both operate
in examples where we have n > q. In their current state, both are not feasible for
higher dimensions, since the computational cost required for their implementation
is grows exponentially as the number of variables increase. We further investigate a
full transition of C++ routines for obtaining cliques and separators.

In all simulation scenarios under considerations, EPP and PEPP provided high
variability in the results, when we studies small datasets i.e. n = 100. More specif-
ically, in the full enumeration approach we observed huge variabilities in posterior
model probabilites and posterior edge inclusion probabilities under EPP, PEPP. For
PEPP, and eventually EPP, increasing the number of importance samples for the
estimation of Bayes factors, did not result to reducing the variability (Figure 5.5).
Regarding the variability of FBF approach, one can alternatively consider more re-
strictive fraction parameter. In our study we consider g = q/n, whereas we a more
conservative choice is g = 1/n. Robustifying both EPP and PEPP approach in the
graphical model selection context is currently under investigation.

Another open issue is the instability of parameter δ under PEPP approach, as
presented in section 5.2.3. Fouskakis et al. (2015) provide evidence that the choice
of δ does not influence the posterior analysis in the variable selection context, where
PEPP was originally created for. Yet, in the graphical model selection context
thats not the case and as we described in our sensitivity analysis, with greater size
of imaginary observations, we obtain greater instability on posterior edge inclusion
probabilities of non-significant edges. We are currently investigating alternative
expressions of parameter δ for robustifying the posterior analysis.

After resolving the open issues stated above, following Consonni et al. (2017),
we are interested in futher expanding EPP and PEPP to the covariate-adjusted
graphical model selection framework of undirected decomposable graphical models.
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Appendix A

Appendix

A.0.1 Likelihood of Equation 4.49

The PEPP Likelihood of Y∗ under a model G ∈ G will be provided by

f(Y∗|Σ, δ, G) =
f(Y∗|Σ, G)1/δ∫
f(Y∗|Σ, G)1/δdY∗

.

Then

f(Y∗|Σ, G)1/δ =

(∏
C∈C f(Y∗C |ΣC , G)∏
S∈S f(Y∗S|ΣS, G)

)1/δ

=

∏
C∈C f(Y∗C |ΣC , G)1/δ∏
S∈S f(Y∗S|ΣS, G)1/δ

.

Under each clique C ∈ C (and separator S ∈ S) we have that Y∗C ∼MNm×|C|(0, Im,ΣC),
then

f(Y∗C |ΣC , G)1/δ =

(
det(ΣC)−n/2

(2π)m|C|/2
exp
{
− 1

2
tr(Σ−1

C SC)
})1/δ

=
det(ΣC)−

m/δ
2

(2π)
m|C|/δ

2

exp
{
− 1

2
tr((δΣC)−1SC)

}
.

The integral expression will be provided by∫
f(Y∗|Σ, G)1/δdY∗ =

∏
C∈C

∫
f(Y∗C |ΣC , G)1/δdY∗C∏

S∈S
∫
f(Y∗S|ΣS, G)1/δdY∗S

.

So we have that∫
f(Y∗C |ΣC , G)1/δdY∗C =

∫
det(ΣC)−

m/δ
2

(2π)
m|C|/δ

2

exp
{
− 1

2
tr((δΣC)−1SC)

}
dY∗C

=
det(ΣC)−

m/δ
2

(2π)
m|C|/δ

2

(2π)m|C|/2

det(δΣC)−m/2

∫
det(ΣC)−m/2

(2π)m|C|/2
exp
{
− 1

2
tr((δΣC)−1SC)

}
dY∗C

=
det(ΣC)−

m/δ
2

(2π)
m|C|/δ

2

(2π)m|C|/2

det(δΣC)−m/2
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Thus we obtain that

f(Y∗C |ΣC , G)1/δ∫
f(Y∗C |ΣC , G)1/δdY∗C

=
det(ΣC)−

m/δ
2

(2π)
m|C|/δ

2

exp
{
− 1

2
tr((δΣC)−1SC)

}det(ΣC)
m/δ
2

(2π)−
m|C|/δ

2

(2π)−m|C|/2

det(δΣC)m/2

=
det(δΣC)−m/2

(2π)m|C|/2
exp
{
− 1

2
tr((δΣC)−1SC)

}
.

Thus we conclude that under each clique C ∈ C (and separator S ∈ S), the PEPP
likelihood of the imaginary data matrix Y∗C is a Matrix Normal Likelihood such that
Y∗C ∼MNm×|C|(0, Im, δΣC). Therefore, Y|Σ ∼MNn×q(0, I.δΣ).

A.0.2 Proof of Equation 4.40

mEPP (Y|G) =

∫
f(Y|Σ, G)πEPP (Σ|G)dΣ

=

∫
f(Y|Σ, G)

∫
πN(Σ|Y∗, G)m∗(Y∗|G0)dY∗dΣ

=

∫
f(Y|Σ, G)

∫
f(Y∗|Σ, G)πN(Σ|G)

mN(Y∗|G)
m∗(Y∗|G0)dY∗dΣ

=

∫ ∫
f(Y|Σ, G)f(Y∗|Σ, G)πN(Σ|G)

mN(Y∗|G)
m∗(Y∗|G0)dY∗dΣ

=

∫ ∫
f(Y,Y∗|Σ, G)πN(Σ|G)

mN(Y∗|G)
m∗(Y∗|G0)dY∗dΣ

=

∫ ∫
f(Y,Y∗|Σ, G)πN(Σ|G)dΣ

mN(Y∗|G)
m∗(Y∗|G0)dY∗

=

∫
mN(Y,Y∗|G)

mN(Y∗|G)
m∗(Y∗|G0)dY∗

=

∫
mN(Y|Y∗, G)m∗(Y∗|G0)dY∗

A.0.3 Proof of passage from Equation 4.41 to Equation 4.44

Consider relation Equation 4.41 where we set the importance density of the numera-
tor to be g(Y∗) = mN(Y∗(r)|Y, G) and the importance density of the denominator to
be g(Y∗(r)) = mN(Y∗(r)|Y, G0). Thus, for m∗(Y∗(r)) = mN(Y∗(r)|G0) and G

′
= G0
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(15) will be structured as

B̂F
∗
G:G0

(Y) =

∑R
r=1m

N(Y|Y∗(r), G)mN(Y∗(r)|G0)/mN(Y∗(r)|Y, G)∑R
r=1m

N(Y|Y∗(r), G0)mN(Y∗(r)|G0)/mN(Y∗(r)|Y, G0)

=

∑R
r=1

mN (Y,Y∗(r)|G)

mN (Y∗(r)|G)
mN(Y∗(r)|G0) mN (Y|G)

mN (Y∗(r),Y|G)∑R
r=1

mN (Y,Y∗(r)G0)

mN (Y∗(r)|G0)
mN(Y∗(r)|G0) mN (Y|G0)

mN (Y∗(r),Y|G0)

=
1

R

mN(Y|G)

mN(Y|G0)

R∑
r=1

mN(Y∗(r)|G0)

mN(Y∗(r)

= BFN
G:G0

(Y)
1

R

r∑
r=1

BFN
G0:G(Y∗(r)).

A.0.4 Proof of passage from Equation 4.41 to Equation 4.42

Consider Equation 4.41 where the predictive density will be provided by m∗(Y∗i ) =
mN(Y∗i |G0) and the importance density will be provided by g(Y∗i ) = mN(Y∗i |Y).
Thus, by letting G

′
= G0 Equation 4.41 will be structured as

B̂F
∗
G:G0

(Y) =

∑R
r=1 m

N(Y|Y∗(r), G)m∗(Y∗(r))/g(Y∗(r))∑r
r=Rm

N(Y|Y∗(r), G0)m∗(Y∗(r))/g(Y∗(r))

=

∑R
r=1m

N(Y|Y∗(r), G)mN(Y∗(r)|G0)/mN(Y∗(r)|Y, G0)∑R
r=1m

N(Y|Y∗(r), G0)mN(Y∗(r)|G0)/mN(Y∗(r)|Y, G0)

=

∑R
r=1m

N(Y∗(r)|G0) mN (Y|Y∗(r),G)

mN (Y∗(r)|Y,G0)∑R
r=1

mN (Y,Y∗(r)|G0)

mN (Y∗(r)|G0)
mN(Y∗(r)|G0) mN (Y|G0)

mN (Y∗(r),Y|G0)

=
1

R

∑R
r=1 m

N(Y∗(r)|G0) mN (Y|Y∗(r),G)

mN (Y∗(r)|Y,G0)

mN(Y|G0)

=
1

R

R∑
r=1

mN(Y∗(r)|G0)

mN(Y|G0)

mN(Y|Y∗(r), G)
mN (Y∗(r),Y|G0)

mN (Y|G0)

=
1

R

r∑
r=R

mN(Y|Y∗(r), G)
mN (Y,Y∗(r)|G0)

mN (Y∗(r))

=
1

R

R∑
r=1

mN(Y|Y∗(r), G)

mN(Y|Y∗(r), G0)
=

1

R

R∑
r=1

BFN
G:G0

(Y|Y∗(r)).
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A.0.5 Proof of Equation 4.60

∫
f(Y∗|Y,Σ, G)πN(Σ|Y, G)dΣ =

=

∫
f(Y∗|Σ, G)

f(Y|Σ, G)πN(Σ|G)∫
f(Y|Σ, G)πN(Σ|G)dΣ

dΣ

=

∫
f(Y∗|Σ, G)f(Y|Σ, G)πN(Σ|G)dΣ∫

f(Y|Σ, G)πN(Σ|G)dΣ

=

∫
f(Y∗,Y|Σ, G)πN(Σ|G)dΣ∫
f(Y|Σ, G)πN(Σ|G)dΣ

=
mN(Y∗,Y|G)

mN(Y|G)

= mN(Y∗|Y, G).

Note that we exploited the property that Y and Y∗ arise independently on a common
sample space.

A.0.6 Proof of Equation 4.54

πPEPP (Σ|Y, δ, G) ∝ f(Y∗|Σ, G)πPEPP (Σ|Y∗, δ, G)

∝ f(Y|Σ, G)πN(Σ|G)

∫
mN(Y∗|δ,G0)

mN(Y∗|δ,G)
f(Y∗|Σ, δ, G)dY∗

∝
∫
f(Y|Σ, G)

f(Y∗|Σ, δ, G)πN(Σ|G)

mN(Y∗|δ,G)
mN(Y∗|δ,G0)dY∗

∝
∫
f(Y|Σ, G)πN(Σ|Y∗, δ, G)mN(Y∗|δ,G0)dY∗

∝
∫
πN(Σ|Y,Y∗, δ, G)mN(Y|Y∗, δ, G)mN(Y∗|δ,G0)dY∗.
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A.0.7 Proof of Equation 4.55

mPEPP (Y|δ,G) =

∫
f(Y|Σ, G)πPEPP (Σ|Y∗, δ, G)dΣ

=

∫
f(Y|Σ, G)πN(Σ|G)

∫
mN(Y∗|δ,G0)

mN(Y∗|δ,G)
f(Y∗|Σ, δ, G)dY∗dΣ

=

∫
mN(Y∗|δ,G0)

mN(Y∗|δ,G)

∫
f(Y|Σ, G)f(Y∗|Σ, δ, G)πN(Σ|G)dΣdY∗

=

∫
mN(Y∗|δ,G0)

mN(Y∗|δ,G)

∫
f(Y|Σ, G)πN(Σ|Y∗, δ, G)mN(Y∗|δ,G)dΣdY∗

=

∫
mN(Y∗|δ,G0)mN(Y|Y∗, δ, G)dY∗

=

∫
mN(Y,Y∗|δ,G)

mN(Y∗|δ,G)
mN(Y∗|δ,G0)dY∗

=

∫
mN(Y,Y∗|δ,G)

mN(Y|G)

mN(Y|G)

mN(Y∗|δ,G)
dY∗

= mN(Y|G)

∫
mN(Y∗|Y, δ, G)

mN(Y∗|δ,G)
mN(Y∗|δ,G0)dY∗.

A.0.8 Posterior distribution of Equation 4.30

The posterior distribution of Equation 4.30 under a graph G ∈ G will be provided
by

πN(Σ|Y∗, G) ∝ f(Y∗|Σ, G)πN(Σ|G)

∝
∏

C∈C f(Y∗C |ΣC , G)πN(ΣC |G)∏
S∈S f(Y∗S|ΣS, G)πN(ΣS|G)

∝

∏
C∈C det(ΣC)−m/2 exp

{
− 1

2
tr
(
Σ−1
C S∗C

)}
det(ΣC)−|C|∏

S∈S det(ΣS)−m/2 exp
{
− 1

2
tr
(
Σ−1
S S∗S

)}
det(ΣS)−|S|

∝

∏
C∈C det(ΣC)−(m/2+|C|) exp

{
− 1

2
tr
(
Σ−1
C S∗C

)}
∏

S∈S det(ΣS)−(m/2+|S|) exp
{
− 1

2
tr
(
Σ−1
S S∗S

)} .

Given the form of an Inverse-Wishart distribution, we deduce that the kernel of
the distribution in the nominator represents an Inverse-Wishart distribution with
parameters b = m , p = |C| and DC = S∗C . Similarly the kernel of the distribution
of the denominator will be an Inverse-Wishart with parameters b = m, p = |S| and
DS = S∗S. Thus, the posterior distribution of Σ given Y∗ under an graph G will be

a HIWG(m,S∗) where S∗ = Y∗
T

Y∗ and b = m.
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A.0.9 Proof of Equation 5.1

Let G ∈ G and G0 be the independence graph. Then the Posterior Odds of G versus
G0 will be given by

PO(G : G0) = BFG:G0(Y)O(G : G0).

The Posterior Model Probability of any G ∈ G will be provided by

π(G|Y) =
π(G)m(Y|G)∑

Gl∈G π(Gl)m(Y|Gl)

=
π(G)m(Y|G)∑

Gl∈G π(Gl)m(Y|Gl)

π(G0)m(Y|G0)

π(G0)m(Y|G0)

=
OG:G0BFG:G0(Y)∑

Gl∈GOGl:G0BFGl:G0(Y)

=
PO(G : G0)∑

Gl∈G PO(Gl : G0)
.

A.0.10 Bayes Factor of Equation 5.4

The Bayes factor of Equation 5.4 (fpr the case of δ = 1) is provided by

BFG:G0(Y) ≈ BF
∧EPP

G:G0
(Y) = BFN

G:G0
(Y)

1

r

r∑
l=1

BFN
G0:G(Y∗l ).

The logarithm of the above-mentioned Bayes factor will be provided by

log(BF
∧EPP

G:G0
(Y)) = log(BFN

G:G0
(Y)) + log

( r∑
l=1

BFN
G0:G(Y∗l )

)
− log(r)

= log
( mN(Y|G)

mN(Y|G0)

)
+ log

( r∑
l=1

mN(Y∗l |G0)

mN(Y∗l |G)

)
− log(r).

Note that Yn×p ∼ MNn×q(0, In,Σ),Y∗m×q ∼ MNm×q(0, In,Σ).The posterior dis-
tribution of Σ|Y, G is a HIW (n,S). The marginal density of the data matrix Y
under any given undirected decomposable graph G ∈ G, with respect to the setup
provided in this report, will be provided by

mN(Y|G) =
f(Y|Σ, G)πN(Σ|G)

πN(Σ|Y, G)

=

∏
C∈C

f(YC |ΣC ,G)πN (ΣC |G)
πN (ΣC |YC ,G)∏

S∈S
f(YS |ΣS ,G)πN (ΣS |G)

πN (ΣS |YS ,G)

.
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Under each clique C ∈ C we obtain that

f(YC |ΣC , G)πN(ΣC |G)

πN(ΣC |YC , G)
=

=
det(ΣC)−n/2(2π)−n|C|/2 exp

(
− 1

2
tr(Σ−1

C SC)
)
det(ΣC)−|C|

2−
n+|C|−1

2
|C|Γ−1

|C|(
n+|C|−1

2
)det(SC)

n+|C|−1
2 det(ΣC)

n+|C|−1+|C|+1
2 exp

(
− 1

2
tr(Σ−1

C SC)
)

=
Γ|C|(

n+|C|−1
2

)

(2π)n|C|/2(1
2
)
n+|C|−1

2
|C|det(SC)

n+|C|−1
2

=
Γ|C|(

n+|C|−1
2

)

(2π)n|C|/2det(1
2
SC)

n+|C|−1
2

= Γ|C|(
n+ |C| − 1

2
)(2π)−n|C|/2det(

1

2
SC)−

n+|C|−1
2 .

Similarly, we have the same expression for each separator S ∈ S, thus the marginal
likelihood of Y under the decomposable graph G will be provided by

mN(Y|G) =

∏
C∈C Γ|C|(

n+|C|−1
2

)(2π)−n|C|/2det(1
2
SC)−

n+|C|−1
2∏

S∈S Γ|S|(
n+|S|−1

2
)(2π)−n|S|/2det(1

2
SS)−

n+|C|−1
2

= (2π)−nq/2
∏

C∈C Γ|C|(
n+|C|−1

2
)det(1

2
SC)−

n+|C|−1
2∏

S∈S Γ|S|(
n+|S|−1

2
)det(1

2
SS)−

n+|C|−1
2

.

Given the array of imaginary data, we get in a similar fashion the marginal likelihood
of each matrix Y∗l by

mN(Y∗l |G) =

∏
C∈C Γ|C|(

m+|C|−1
2

)(2π)−m|C|/2det(1
2
S∗C)−

m+|C|−1
2∏

S∈S Γ|S|(
m+|S|−1

2
)(2π)−m|S|/2det(1

2
S∗S)−

m+|C|−1
2

= (2π)−mq/2
∏

C∈C Γ|C|(
m+|C|−1

2
)det(1

2
S∗C)−

m+|C|−1
2∏

S∈S Γ|S|(
m+|S|−1

2
)det(1

2
S∗S)−

m+|C|−1
2

.

Under the independence graph G0, the marginal likelihood of the data matrix Y
will be provided by

mN(Y|G0) = Γq(
n

2
)(2π)−nq/2

q∏
j=1

det(
1

2
Sj)
−n

2

and the marginal likelihood of the imaginary data matrix Y∗l will be provided by

mN(Y∗l |G0) = Γq(
m

2
)(2π)−mq/2

q∏
j=1

det(
1

2
S∗j)
−m

2 .
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Thus by, using log terms we obtain

log(BF
∧EPP

G:G0
(Y)) = log(BFN

G:G0
(Y)) + log

( r∑
l=1

BFN
G0:G(Y∗l )

)
− log(r)

= log
( mN(Y|G)

mN(Y|G0)

)
+ log

( r∑
l=1

mN(Y∗l |G0)

mN(Y∗l |G)

)
− log(r)

=
∑
C∈C

[
log
(

Γ|C|
(n+ |C| − 1

2

))
− n+ |C| − 1

2
log(det(

1

2
SC))

]
−

−
∑
S∈S

[
log
(

Γ|S|
(n+ |S| − 1

2

))
− n+ |S| − 1

2
log(det(

1

2
SS))

]
−

− qlog(Γ(
n

2
)) +

n

2

q∑
j=1

det(
1

2
Sj) + log

( r∑
l=1

mN(Y∗l |G0)

mN(Y∗l |G)

)
− log(r).

A.0.11 Posterior distribution of Equation 4.50

πN(Σ|Y, δ, G) =

∏
C∈C π

N(ΣC |YC , δ, G)∏
S∈S π

N(ΣS|YS, δ, G)
.

Then, under each clique C ∈ C (and separator S ∈ S) we obtain that

πN(ΣC |YC , δ, G) ∝ f(YC , δ, G)πN(ΣC |G)

∝ det(δΣC)−m/2exp
{
− 1

2
tr((δΣC)−1SC)

}
det(ΣC)−|C|

∝ det(ΣC)−(m/2+|C|)exp
{
− 1

2
tr(Σ−1

C δ−1SC)
}

which is an Inverse Wishart Kernel with p = |C|, b = m and D = δ−1SC . Thus, the
posterior distribution of Σ given Y under a graph G will be a Hype-Inverse Wishart
with degrees of freedom parameter b = m and scale matrix δ−1S.

A.0.12 Marginal likelihood of Equation 4.34

Let Y∗m×q be the data matrix consisted by m independent vectors of q-dimensional
imaginary data as in (1) and G0 = (V,E0) where E0 = {∅} will represent the
indepedence graph. Thus, the marginal distribution of Y∗ under the independence
graph G0 will be derived by,

mN(Y∗|G0) =

∫
f(Y∗|Σ, G0)πN(Σ|G0)dΣ

=
∏
C∈C0

∫
f(Y∗C |ΣC , G0)πN(ΣC |G0)dΣC∫
f(Y∗S|ΣS, G0)πN(ΣS|G0)dΣS

.
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Now we change our focus on the integral expression, where the likelihood of Y∗C
will be provided my a MN|C|×q(0, In,ΣC) and πN(ΣC |G0) will be provided by (7).
Thus, under each clique C ∈ C0 the integral will be provided by,∫

f(Y∗C |ΣC , G0)πN(ΣC |G0)dΣC =

=

∫
det(ΣC)−m/2

(2π)m|C|/2
exp

{
− 1

2
tr
(
Σ−1
C S∗C

)}
det(ΣC)−|C|dΣC

=
1

(2π)m|C|/2

∫
det(ΣC)−(m/2+|C|) exp

{
− 1

2
tr
(
Σ−1
C S∗C

)}
dΣC .

We deduce that the kernel inside the integral expression represents and Inverse-
Wishart distribution with parameters b = m, p = |C| and DC = S∗C (similarly for
each separator S ∈ S0). So we obtain,∫

f(Y∗C |ΣC , G0)πN(ΣC |G0)dΣC =
1

(2π)m|C|/2
2(m+|C|−1)|C|/2Γ|C|(

m+|C|−1
2

)

det(S∗C)(m+|C|−1)/2

= (2π)−m|C|/2
Γ|C|(

m+|C|−1
2

)

det(1
2
S∗C)(m+|C|−1)/2

,

where ΓC(·) is the multivariate Gamma function. Since we operate under the in-
dependence graph, it is evident that each node will be a clique of its own, i.e.
C0 = {Y∗1, · · · ,Y∗q}. As indicated by Lauritzen (1996) pp. 90, if the empty set is a
separator, it should be included in the set S0, so under the independence graph G0 we
have that S0 = {∅}. Also, by using Lauritzen (1996) we have that f(Y∗S|ΣS, G0) ≡ 1
and we let πN(ΣS|G0) ≡ 1. Thus the marginal distribution of Y∗ under the inde-
pendence graph G0 will be provided by

mN(Y∗|G0) =

q∏
j=1

(2π)−m/2
Γ(m

2
)

det(1
2
S∗j)

m/2

= (2π)−mq/2Γq(
m

2
)

q∏
j=1

det(
1

2
S∗j)
−m/2,

where Sj is structured by the the j-the column of Y∗ matrix, i.e. Sj = YT
j Yj.

Finally, we will write

mN(Y∗|G0) ∝ (2π)−mq/2Γq(
m

2
)

q∏
j=1

det(
1

2
S∗j)
−m/2

because this expression will be restricted by the arbitrary normalizing constant which
arises from the use of the baseline prior πN(Σ|G0).

A.0.13 Marginal likelihood of Equation 4.6 for G = G0

The marginal likelihood of Y∗ under a graph G ∈ G will be provided by

mN(Y∗|δ,G) =
f(Y∗|Σ, δ, G)πN(Σ|G)

πN(Σ|Y∗, δ, G)
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where πN(Σ|Y∗, δ, G) is the posterior distribution of Σ given the imaginary data
matrix Y∗ under model G, as provided by Section 4.4 of the present Appendix.
Under each clique C ∈ C (and separator S ∈ S) we have that

f(Y∗C |ΣC , δ, G)πN(ΣC |G)

πN(ΣC |Y∗C , δ, G)
=

=
det(δΣC)−m/2

(2π)m|C|/2
exp
{
− 1

2
tr((δΣC)−1S∗C)

}
det(ΣC)−|C|×

×
2
m+|C|−1

2
|C|Γ|C|(

m+|C|−1
2

)

det(δ−1S∗C)
m+|C|−1

2 det(ΣC)−(m/2+|C|)exp
{

Σ−1
C δ−1S∗C

}
=
δ−m|C|/22

m+|C|−1
2

|C|Γ|C|(
m+|C|−1

2
)

(2π)m|C|/2det(1
δ
S∗C)

m+|C|−1
2

= (2πδ)−m|C|/2
Γ|C|(

m+|C|−1
2

)

det( 1
2δ

S∗C)
m+|C|−1

2

.

As indicated byLauritzen (1996), if the empty set is a separator, it should be included
in the set S0, so under the independence graph G0 we have that S0 = {∅}. Also, by
usingLauritzen (1996) we have that f(Y∗S|ΣS, G0) ≡ 1 and we let πN(ΣS|G0) ≡ 1.
Thus the marginal distribution of Y∗ under the independence graph G0 will be
provided by

mN(Y∗|δ,G0) =

q∏
j=1

(2πδ)−m/2
Γ(m

2
)

det( 1
2δ

S∗j)
m
2

= (2πδ)−mq/2Γq(m/2)

q∏
j=1

det(
1

2δ
S∗j)
−m

2

and we will write

mN(Y∗|δ,G0) ∝ (2πδ)−mq/2Γq(m/2)

q∏
j=1

det(
1

2δ
S∗j)
−m

2

due to the arbitrary normalizing constant that arises from the use of the improper
baseline prior πN(Σ|G0).

A.0.14 Marginal Likelihood of Equation 4.39 under any G ∈
G

The marginal likelihood of the data matrix Y under a graph G ∈ G, will be provided
by

mN(Y|G) =
f(Y|Σ, G)πN(Σ|G)

πN(Σ|Y, G)

=

∏
C∈C

f(YC |ΣC ,G)πN (ΣC |G)
πN (ΣC |YC ,G)∏

S∈S
f(YS |ΣS ,G)πN (ΣS |G)

πN (ΣS |YS ,G)

.
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Under each clique C ∈ C we obtain that

f(YC |ΣC , G)πN(ΣC |G)

πN(ΣC |YC , G)
=

=
det(ΣC)−n/2(2π)−n|C|/2 exp

(
− 1

2
tr(Σ−1

C SC)
)
det(ΣC)−|C|

2−
n+|C|−1

2
|C|Γ−1

|C|(
n+|C|−1

2
)det(SC)

n+|C|−1
2 det(ΣC)

n+|C|−1+|C|+1
2 exp

(
− 1

2
tr(Σ−1

C SC)
)

=
Γ|C|(

n+|C|−1
2

)

(2π)n|C|/2(1
2
)
n+|C|−1

2
|C|det(SC)

n+|C|−1
2

=
Γ|C|(

n+|C|−1
2

)

(2π)n|C|/2det(1
2
SC)

n+|C|−1
2

= Γ|C|(
n+ |C| − 1

2
)(2π)−n|C|/2det(

1

2
SC)−

n+|C|−1
2 .

Similarly, we have the same expression for each separator S ∈ S, thus the marginal
likelihood of Y under the decomposable graph G will be provided by

mN(Y|G) =

∏
C∈C Γ|C|(

n+|C|−1
2

)(2π)−n|C|/2det(1
2
SC)−

n+|C|−1
2∏

S∈S Γ|S|(
n+|S|−1

2
)(2π)−n|S|/2det(1

2
SS)−

n+|C|−1
2

= (2π)−nq/2
∏

C∈C Γ|C|(
n+|C|−1

2
)det(1

2
SC)−

n+|C|−1
2∏

S∈S Γ|S|(
n+|S|−1

2
)det(1

2
SS)−

n+|C|−1
2

.

A.0.15 Marginal Likelihood of Equation 4.6

The marginal likelihood of Y∗ under a graph G ∈ G will be provided by

mN(Y∗|δ,G) =
f(Y∗|Σ, δ, G)πN(Σ|G)

πN(Σ|Y∗, δ, G)

where πN(Σ|Y∗, δ, G) is the posterior distribution of Σ given the imaginary data
matrix Y∗ under model G. Under each clique C ∈ C (and separator S ∈ S) we
have that

f(Y∗C |ΣC , δ, G)πN(ΣC |G)

πN(ΣC |Y∗C , δ, G)
=

=
det(δΣC)−m/2

(2π)m|C|/2
exp
{
− 1

2
tr((δΣC)−1S∗C)

}
det(ΣC)−|C|×

×
2
m+|C|−1

2
|C|Γ|C|(

m+|C|−1
2

)

det(δ−1S∗C)
m+|C|−1

2 det(ΣC)−(m/2+|C|)exp
{

Σ−1
C δ−1S∗C

}
=
δ−m|C|/22

m+|C|−1
2

|C|Γ|C|(
m+|C|−1

2
)

(2π)m|C|/2det(1
δ
S∗C)

m+|C|−1
2

= (2πδ)−m|C|/2
Γ|C|(

m+|C|−1
2

)

det( 1
2δ

S∗C)
m+|C|−1

2

.
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Thus, the marginal of Y∗ under any model G ∈ G will be provided by

mN(Y∗|G) = (2πδ)−mq/2
∏

C∈C Γ|C|(
m+|C|−1

2
)det( 1

2δ
S∗C)−

m+|C|−1
2∏

S∈S Γ|S|(
m+|S|−1

2
)det( 1

2δ
S∗S)−

m+|S|−1
2

and we will write

mN(Y∗|G) ∝ (2πδ)−mq/2
∏

C∈C Γ|C|(
m+|C|−1

2
)det( 1

2δ
S∗C)−

m+|C|−1
2∏

S∈S Γ|S|(
m+|S|−1

2
)det( 1

2δ
S∗S)−

m+|S|−1
2

due to the arbitrary normalizing constant that arises from the use of the improper
default prior πN(Σ|G).
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