
ar
X

iv
:1

50
7.

03
92

0v
1

 [
cs

.A
I]

 1
4

Ju
l 2

01
5

Under consideration for publication in Theory and Practice of Logic Programming 1

Fuzzy Answer Set Computation via Satisfiability

Modulo Theories

MARIO ALVIANO

University of Calabria, Italy

RAFAEL PEÑALOZA

Free University of Bozen-Bolzano, Italy

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Fuzzy answer set programming (FASP) combines two declarative frameworks, answer set
programming and fuzzy logic, in order to model reasoning by default over imprecise infor-
mation. Several connectives are available to combine different expressions; in particular the
Gödel and Lukasiewicz fuzzy connectives are usually considered, due to their properties.
Although the Gödel conjunction can be easily eliminated from rule heads, we show through
complexity arguments that such a simplification is infeasible in general for all other con-
nectives. The paper analyzes a translation of FASP programs into satisfiability modulo
theories (SMT), which in general produces quantified formulas because of the minimal-
ity of the semantics. Structural properties of many FASP programs allow to eliminate the
quantification, or to sensibly reduce the number of quantified variables. Indeed, integrality
constraints can replace recursive rules commonly used to force Boolean interpretations,
and completion subformulas can guarantee minimality for acyclic programs with atomic
heads. Moreover, head cycle free rules can be replaced by shifted subprograms, whose
structure depends on the eliminated head connective, so that ordered completion may
replace the minimality check if also Lukasiewicz disjunction in rule bodies is acyclic. The
paper also presents and evaluates a prototype system implementing these translations.

KEYWORDS: answer set programming, fuzzy logic, satisfiability modulo theories.

1 Introduction

Answer set programming (ASP) (Gelfond and Lifschitz 1991; Niemelä 1999; Marek and Truszczyński 1999)

is a declarative language for knowledge representation, particularly suitable to

model common non-monotonic tasks such as reasoning by default, abductive reason-

ing, and belief revision (Baral 2003; Marek and Remmel 2004; Lin and You 2002;

Delgrande et al. 2008). If on the one hand ASP makes logic closer to the real world

allowing for reasoning on incomplete knowledge, on the other hand it is unable

to model imprecise information that may arise from the intrinsic limits of sen-

sors, or the vagueness of natural language. Fuzzy answer set programming (FASP)

(Nieuwenborgh et al. 2007) overcomes this limitation by interpreting propositions

http://arxiv.org/abs/1507.03920v1

2 M. Alviano and R. Peñaloza

with a truth degree in the real interval [0, 1]. Intuitively, the higher the degree as-

signed to a proposition, the more true it is, with 0 and 1 denoting totally false and

totally true, respectively. The notion of fuzzy answer set, or fuzzy stable model,

was recently extended to arbitrary propositional formulas (Lee and Wang 2014).

Lee and Wang also propose an example on modeling dynamic trust in social net-

works, which inspired the following simplified scenario that clarifies how truth de-

grees increase the knowledge representation capability of ASP.

Example 1

A user of a social network may trust or distrust another user, and these are vague

concepts that can be naturally modeled by truth degrees. These degrees may change

over time. For example, if at some point A has a conflict with B, it is likely that

her distrust on B will increase and her trust on B will decrease. These are non-

monotonic concepts that can be naturally handled in FASP. �

In practice, however, ASP offers many efficient solvers such as dlv (Alviano et al. 2010),

cmodels (Lierler and Maratea 2004), clasp (Gebser et al. 2012), and wasp (Alviano et al. 2013),

which is not the case for FASP. A preliminary FASP solver for programs with atomic

heads and Lukasiewicz conjunction, called fasp, was presented at ICLP’13 by

(Alviano and Peñaloza 2013). It implements approximation operators and a trans-

lation into bilevel programming (Blondeel et al. 2014). A more general solver, called

ffasp (Mushthofa et al. 2014), is based on a translation into ASP for computing

stable models whose truth degrees are in the set Qk := {i/k | i ∈ [0..k]}, for a fixed

k. In general, exponentially many k must be tested for checking the existene of a

stable model, which is infeasible in practice. Therefore, ffasp tests by default a lim-

ited set of values. Neither fasp nor ffasp accept nesting of negation, which would

allow to encode choice rules, a convenient way for guessing truth degrees without

using auxiliary atoms (Lee and Wang 2014). Indeed, choice rules allow to check sat-

isfiability of fuzzy propositional formulas without adding new atomic propositions.

Our aim is to provide a more flexible FASP solver supporting useful patterns like

choice rules.

Satisfiability modulo theories (SMT) (Barrett et al. 2009) extends propositional

logic with external background theories—e.g. real arithmetic (Ratschan 2006; Akbarpour and Paulson 2010)—

for which specialized methods provide efficient decision procedures. SMT is thus a

good candidate as a target framework for computing fuzzy answer sets efficiently.

This is non-trivial because the minimality condition that fuzzy stable models must

satisfy makes the problem hard for the second level of the polynomial hierarchy;

indeed, the translation provided in Section 4 produces quantified theories in gen-

eral. However, structural properties of the program that decrease the complexity

to NP can be taken into account in order to obtain more tailored translations.

For example, disabling head connectives and recursive definitions yields a compact

translation into fuzzy propositional logic known as completion (Janssen et al. 2012),

which in turn can be expressed in SMT (see Section 4.1). Since completion is un-

sound for programs with recursive definitions, the notion of ordered completion

has arisen in the ASP literature (Ben-Eliyahu and Dechter 1994; Janhunen 2004;

Niemelä 2008; Asuncion et al. 2012). In a nutshell, stable models of ASP programs

Theory and Practice of Logic Programming 3

with atomic heads can be recasted in terms of program reducts and fixpoint of the

immediate consequence operator, where the computation of the fixpoint defines a

ranking of the derived atoms. Fuzzy stable models of programs with atomic heads

can also be defined in terms of reducts and fixpoint of the immediate consequence

operator (Janssen et al. 2012), although the notion of ranking can be extended to

FASP only when recursive Lukasiewicz disjunction is disabled. Using these notions,

ordered completion is defined for FASP programs in Section 4.2.

In ASP, completion and ordered completion are also applicable to disjunctive pro-

grams having at most one recursive atom in each rule head. Such programs, referred

to as head cycle free (HCF) (Ben-Eliyahu and Dechter 1994), are usually translated

into equivalent programs with atomic heads by a so-called shift (Eiter et al. 2007).

The same translation also works for HCF FASP programs using Lukasiewicz dis-

junction in rule heads. On the other hand, Lukasiewicz conjunction and Gödel

disjunction require more advanced constructions (Section 3.2) which introduce re-

cursive Lukasiewicz disjunction in rule bodies to restrict auxiliary atoms to be

Boolean. Such rules are handled by integrality constraints in the theory produced

by the completion, while they inhibit the application of the ordered completion.

As in ASP, the shift is unsound in general for FASP programs with head cycles,

and complexity arguments given in Section 3.1 prove that it is unlikely that head

connectives other than Gödel conjunction can be eliminated in general.

The general translation into SMT, completion, and ordered completion are imple-

mented in a new FASP solver called fasp2smt (http://alviano.net/software/fasp2smt/;

see Section 5). fasp2smt uses gringo (Gebser et al. 2011) to obtain a ground rep-

resentation of the input program, and z3 (de Moura and Bjørner 2008) to solve

SMT instances encoding ground programs. Efficiency of fasp2smt is compared

with the previously implemented solver ffasp (Mushthofa et al. 2014), showing

strengths and weaknesses of the proposed approach.

2 Background

We briefly recall the syntax and semantics of FASP (Nieuwenborgh et al. 2007;

Lee and Wang 2014) and SMT (Barrett et al. 2009). Only the notions needed for

the paper are introduced; for example, we only consider real arithmetic for SMT.

2.1 Fuzzy Answer Set Programming

Let B be a fixed set of propositional atoms. A fuzzy atom (atom for short) is either

a propositional atom from B, or a numeric constant in [0, 1]. Fuzzy expressions

are defined inductively as follows: every atom is a fuzzy expression; if α is a fuzzy

expression then ∼α is a fuzzy expression, where ∼ denotes negation as failure; if

α and β are fuzzy expressions, and ⊙ ∈ {⊗,⊕,⊻,⊼} is a connective, α ⊙ β is a

fuzzy expression. Connectives ⊗,⊕ are known as the Lukasiewicz connectives, and

⊻,⊼ are the Gödel connectives. A head expression is a fuzzy expression of the form

p1 ⊙ · · · ⊙ pn, where n ≥ 1, p1, . . . , pn are atoms, and ⊙ ∈ {⊗,⊕,⊻,⊼}. A rule is of

http://alviano.net/software/fasp2smt/

4 M. Alviano and R. Peñaloza

the form α← β, where α is a head expression, and β is a fuzzy expression. A FASP

program Π is a finite set of rules. Let At(Π) denote the set of atoms used by Π.

A fuzzy interpretation I for a FASP program Π is a function I : B → [0, 1]

mapping each propositional atom of B into a truth degree in [0, 1]. I is extended to

fuzzy expressions as follows: I(c) = c for c ∈ [0, 1]; I(∼α) = 1 − I(α); I(α ⊗ β) =

max{I(α)+I(β)−1, 0}; I(α⊕β) = min{I(α)+I(β), 1}; I(α⊻β) = max{I(α), I(β)};

and I(α⊼β) = min{I(α), I(β)}. I satisfies a rule α← β (I |= α← β) if I(α) ≥ I(β);

I is a model of a FASP program Π, denoted I |= Π, if I |= r for each r ∈ Π. I is a

stable model of the FASP program Π if I |= Π and there is no interpretation J such

that J ⊂ I and J |= ΠI , where the reduct ΠI is obtained from Π by replacing each

occurrence of a fuzzy expression ∼α by the constant 1 − I(α). Let SM (Π) denote

the set of stable models of Π. A program Π is coherent if SM (Π) 6= ∅; otherwise, Π

is incoherent. Two programs Π,Π′ are equivalent w.r.t. a crisp set S ⊆ B, denoted

Π ≡S Π′, if |SM (Π)| = |SM (Π′)| and {I ∩S | I ∈ SM (Π)} = {I ∩S | I ∈ SM (Π′)},

where I ∩ S is the interpretation assigning I(p) to all p ∈ S, and 0 to all p /∈ S.

Example 2

Consider the scenario described in Example 1. Let U be a set of users, and [0..T]

the timepoints of interest, for some T ≥ 1. Let trust(x, y, t) be a propositional atom

expressing that x ∈ U trusts y ∈ U at time t ∈ [0..T]. Similarly, distrust(x, y, t)

represents that x distrusts y at time t, and conflict(x, y, t) encodes that x has a

conflict with y at time t. The social network example can be encoded by the FASP

program Π1 containing the following rules, for all x ∈ U , y ∈ U , and t ∈ [0..T − 1]:

distrust(x, y, t+ 1) ← distrust(x, y, t)⊕ conflict(x, y, t)

trust(x, y, t+ 1) ← trust(x, y, t)⊗ ∼(distrust(x, y, t+ 1)⊗ ∼distrust(x, y, t))

The second rule above states that the trust degree of x on y decreases when her

distrust degree on y increases. A stable model I of Π1∪{trust(Alice,Bob, 0)← 0.8,

conflict(Alice,Bob, 1) ← 0.2} is such that I(distrust(Alice,Bob, 2)) = 0.2, and

I(trust(Alice,Bob, 2)) = 0.6. �

ASP programs are FASP programs such that all head connectives are ⊻, all body

connectives are ⊼, and all numeric constants are 0 or 1. Moreover, an ASP program

Π implicitly contains crispifying rules of the form p ← p⊕ p, for all p ∈ At(Π). In

ASP programs, ⊻ and ⊼ are usually denoted ∨ and ∧, respectively.

2.2 Satisfiability Modulo Theories

Let Σ = ΣV ∪ ΣC ∪ ΣF ∪ ΣP be a signature where ΣV is a set of variables, ΣC

is a set of constant symbols, ΣF is the set of binary function symbols {+,−}, and

ΣP is the set of binary predicate symbols {<,≤,≥, >,=, 6=}. Terms and formulas

over Σ are defined inductively, where we use infix notation for all binary symbols.

Constants and variables are terms. If t1, t2 are terms and ⊙ ∈ ΣF then t1 ⊙ t2 is a

term. If t1, t2 are terms and ⊙ ∈ ΣP then t1⊙ t2 is a formula. If ϕ is a formula and

t1, t2 are terms then ite(ϕ, t1, t2) is a term (ite stands for if-then-else). If ϕ1, ϕ2 are

formulas and ⊙ ∈ {∨,∧,→,↔} then ϕ1⊙ϕ2 is a formula. If x is a variable and ϕ is

Theory and Practice of Logic Programming 5

a formula then ∀x.ϕ is a formula. We consider only closed formulas, i.e., formulas

in which all free variables are universally quantified. For a term t and integers a, b

with a < b, we use t ∈ [a..b] in formulas to represent the subformula
∨b

i=a t = i.

Similarly, for terms t, t1, t2, t ∈ [t1, t2] represents t1 ≤ t ∧ t ≤ t2. A Σ-theory Γ is a

set of Σ-formulas.

A Σ-structure A is a pair (R, ·A), where ·A is a mapping such that pA ∈ R for

each constant symbol p, (c)A = c for each number c, ⊙A is the binary function ⊙

over reals if ⊙ ∈ ΣF , and the binary relation ⊙ over reals if ⊙ ∈ ΣP . Composed

terms and formulas are interpreted as follows: for ⊙ ∈ ΣF , (t1 ⊙ t2)A = tA1 ⊙ t
A
2 ;

ite(ϕ, t1, t2)A equals tA1 if ϕA is true, and tA2 otherwise; for ⊙ ∈ ΣP , (t1 ⊙ t2)A is

true if and only if tA1 ⊙ t
A
2 ; for ⊙ ∈ {∨,∧,→,↔}, (ϕ1 ⊙ ϕ2)A equals ϕA

1 ⊙ ϕ
A
2 (in

propositional logic); (∀x.ϕ)A is true if and only if ϕ[x/n] is true for all n ∈ R, where

ϕ[x/n] is the formula obtained by substituting x with n in ϕ. A is a Σ-model of a

theory Γ, denoted A |= Γ, if ϕA is true for all ϕ ∈ Γ.

Example 3

Let ΣC be {p, q, s, z}, x be a variable, and Γ1 = {z ∈ [0, 1], ∀x.(x ≥ z)} be a Σ-

theory. Any Σ-model of Γ1 maps z to 0. If ite(p + q ≤ 1, p + q, 1) ≥ s ↔ (p ≥

ite(s−q ≥ 0, s−q, 0)∧q ≥ ite(s−p ≥ 0, s−p, 0)) is added to Γ1, then any Σ-model

of Γ1 maps z to 0, and p, q, s to real numbers in the interval [0, 1]. �

3 Structure Simplification

The structure of FASP programs can be simplified through rewritings that leave at

most one connective in each rule body (Mushthofa et al. 2014). Essentially, a rule

of the form α ← β ⊙ γ, with ⊙ ∈ {⊗,⊕,⊻,⊼}, is replaced by the rules α ← p⊙ q,

p← β, and q ← γ, with p and q fresh atoms. A further simplification, implicit in the

translation into crisp ASP by (Mushthofa et al. 2014), eliminates ⊼ in rule heads

and ⊻ in rule bodies: a rule of the form p1 ⊼ · · · ⊼ pn ← β, n ≥ 2, is equivalently

replaced by n rules pi ← β, for i ∈ [1..n]; and a rule of the form α ← β ⊻ γ

is replaced by α ← β, α ← γ. Moreover, a rule of the form α ← ∼β can be

equivalently replaced by the rules α← ∼p and p← β, where p is a fresh atom. Let

simp(Π) be the program obtained from Π by applying these substitutions.

Proposition 1

For every FASP program Π, it holds that Π ≡At(Π) simp(Π), i.e., |SM (Π)| =

|SM (simp(Π))| and {I ∩ At(Π) | I ∈ SM (Π)} = {I ∩ At(Π) | I ∈ SM (simp(Π))}.

Mushthofa et al. also simplify rule heads: α ⊙ β ← γ is replaced by p ⊙ q ← γ,

p← α, α← p, q ← β, and β ← q, where p and q are fresh atoms. We do not apply

these rewritings as they may inhibit other simplifications introduced in Section 3.2.

3.1 Hardness results

A relevant question is whether more rule connectives can be eliminated in order to

further simplify the structure of FASP programs. We show that this is not possible,

6 M. Alviano and R. Peñaloza

unless the polynomial hierarchy collapses, by adapting the usual reduction of 2-

QBF∃ satisfiability to ASP coherence testing (Eiter and Gottlob 1995): for n >

m ≥ 1, k ≥ 1 and formula φ := ∃x1, . . . , xm∀xm+1, . . . , xn
∨k

i=1 Li,1 ∧ Li,2 ∧ Li,3,

test the coherence of Πφ below

xTi ∨ x
F
i ← 1 ∀i ∈ [1..n] (1)

xTi ← sat xFi ← sat 0← ∼sat ∀i ∈ [m+ 1..n] (2)

sat ← σ(Li,1) ∧ σ(Li,2) ∧ σ(Li,3) ∀i ∈ [1..k] (3)

where σ(xi) := xTi , and σ(¬xi) := xFi , for all i ∈ [1..n]. ΣP
2 -hardness for FASP

programs with ⊻ in rule heads is proved by defining a FASP program Π⊻

φ comprising

(1)–(3) (recall that ∨ is ⊻, and ∧ is ⊼). This also holds if we replace ∧ with ⊗ in

(3). Another possibility is to replace ∨ with ⊕ in (1), and add p ← p ⊕ p for all

atoms in At(Πφ), showing ΣP
2 -hardness for FASP programs with ⊕ in rule heads,

a result already proved by Blondeel et al. (2014) with a different construction.

The same result also applies to ⊗, but we need a more involved argument. Let

Π⊗
φ be the program obtained from Πφ by replacing ∧ with ⊗, substituting the rule

(1) with the following three rules for each i ∈ [1..n]:

xTi ⊗ x
F
i ← 0.5 xTi ⊗ x

T
i ⊗ x

T
i ← xTi ⊗ x

T
i xFi ⊗ x

F
i ⊗ x

F
i ← xFi ⊗ x

F
i

For all interpretations I, the first rule enforces I(xTi)+I(xFi) ≥ 1.5. The second rule

enforces 3·I(xTi)−2 ≥ 2·I(xTi)−1 whenever 2·I(xTi)−1 > 0, i.e., I(xTi) ≥ 1 whenever

I(xTi) > 0.5. Similarly, the third rule enforces I(xFi) ≥ 1 whenever I(xFi) > 0.5.

Hence, one of xTi , x
F
i is assigned 1, and the other 0.5. Since conjunctions are modeled

by ⊗, and each conjunction contains three literals whose interpretation is either 0.5

or 1, it follows that the interpretation of the conjunction is 1 if all literals are 1,

and at most 0.5 otherwise. Hence, φ is satisfiable if and only if Π⊗
φ is coherent.

Theorem 1

Checking coherence of FASP programs is ΣP
2 -hard already in the following cases:

(i) all connectives are ⊗; (ii) head connectives are ⊻, and body connectives are ⊼

(or ⊗); and (iii) head connectives are ⊕, and body connectives are ⊼ (or ⊗) and ⊕.

3.2 Shifting heads

Theorem 1 shows that ⊕, ⊗, and ⊻ cannot be eliminated from rule heads in general

by a polytime translation, unless the polynomial hierarchy collapses. This situation

is similar to the case of disjunctions in ASP programs, which cannot be eliminated

either. However, head cycle free (HCF) programs admit a translation known as

shift that eliminates ∨ preserving stable models (Eiter et al. 2007). We extend this

idea to FASP connectives. The definition of HCF programs relies on the notion of

dependency graph. Let pos(α) denote the set of propositional atoms occurring in α

but not under the scope of any ∼ symbol. The dependency graph GΠ of a FASP

program Π has vertices At(Π), and an arc (p, q) if there is a rule α ← β ∈ Π

such that p ∈ pos(α), and q ∈ pos(β). A (strongly connected) component of Π is a

maximal set containing pairwise reachable vertices of GΠ. A program Π is acyclic if

Theory and Practice of Logic Programming 7

GΠ is acyclic; Π is HCF if there is no rule α← β where α contains two atoms from

the same component of Π; Π has non-recursive ⊙ ∈ {⊗,⊕,⊻,⊼} in rule bodies if

whenever ⊙ occurs in the body of a rule r of simp(Π) but not under the scope of a
∼ symbol then for all p ∈ H(r) and for all q ∈ pos(B(r)) atoms p and q belong to

different components of simp(Π).

Example 4

The program {p ← q ⊕ ∼∼p} is acyclic. Note that ∼∼p does not provide an arc to

the dependency graph. Adding the rule q⊗s← p makes the program cyclic but still

HCF because q and s belong to two different components. If also q ← s is added,

then the program is no more HCF. Finally, note that Π1 in Example 2 is acyclic. �

It should now be clear why we decided not to reduce the number of head connec-

tives in the translation simp defined at the beginning of this section. By removing

a connective in the head of a rule of an HCF program, we might produce a program

that is not HCF. Consider for example the HCF program {p ⊗ q ⊗ s ← 1}. To

reduce one of the occurrences of ⊗, we can introduce a fresh atom aux that stands

for q ⊗ s. However, q and s would belong to the same component of the resulting

program {p⊗ aux ← 1, q ⊗ s← aux , aux ← q ⊗ s}.

We now define the shift of a rule for all types of head connectives. The essential

idea is to move all head atoms but one to the body (hence the name shift). To pre-

serve stable models, this has to be repeated for all head atoms, and some additional

conditions might be required. For a rule of the form p1 ⊕ · · · ⊕ pn ← β, the shift

essentially mimics the original notion for ASP programs, and produces

pi ← β ⊗ ∼p1 ⊗ · · · ⊗ ∼pi−1 ⊗ ∼pi+1 ⊗ · · · ⊗ ∼pn (4)

for all i ∈ [1..n]. Intuitively, the original rule requires any model I to satisfy the

condition I(p1) + · · ·+ I(pn) ≥ I(β). This is the case if and only if

I(pi) ≥ I(β) +
∑

j∈[1..n],j 6=i

(1− I(pj))− (n− 1) = I(β)−
∑

j∈[1..n],j 6=i

I(pj);

i.e., if and only if (4) is satisfied, for all i ∈ [1..n]. The shift of rules with other

connectives in the head is more elaborate. For p1 ⊗ · · · ⊗ pn ← β, it produces

pi ← q ⊗ (β ⊕ ∼p1 ⊕ · · · ⊕ ∼pi−1 ⊕ ∼pi+1 ⊕ · · · ⊕ ∼pn) q ← β q ← q ⊕ q (5)

for all i ∈ [1..n], where q is a fresh atom. The last two rules enforce I(q) = 1

whenever I(β) > 0, and I(q) = 0 otherwise. For all i ∈ [1..n], I(q) = 0 implies that

the body of the first rule is interpreted as 0, and I(q) = 1 implies I(q ⊗ γ) = I(γ),

where γ is β ⊕ ∼p1 ⊕ · · · ⊕ ∼pi−1 ⊕ ∼pi+1 ⊕ · · · ⊕ ∼pn. Since the original rule is

associated with the satisfaction of
∑

i∈[1..n] I(pi) − (n − 1) ≥ I(β), which is the

case if and only if I(pi) ≥ I(β) +
∑

j∈[1..n],j 6=i(1 − I(pj)), for all i ∈ [1..n], this

translation preserves stable models for HCF programs.

The shift of p1⊻· · ·⊻pn ← β requires an even more advanced construction. Notice

first that since the program is HCF, we can order head atoms such that for every

1 ≤ i < j ≤ n, pi does not reach pj in GΠ. Assume w.l.o.g. that one such ordering

8 M. Alviano and R. Peñaloza

is given. Then, the shift of this rule is the program containing the rules

pi ← β ⊼ ∼q1 ⊼ · · · ⊼ ∼qi−1 ⊼ qi (6)

qi ← (pi ⊻ · · · ⊻ pn)⊗ ∼(pi+1 ⊻ · · · ⊻ pn) qi ← qi ⊕ qi qn ← 1 (7)

for all i ∈ [1..n], where each qi is a fresh atom. Intuitively, (7) enforces I(qi) = 1

whenever I(pi) > max{I(pi+1), . . . , I(pn)}, and I(qi) = 0 otherwise, with the excep-

tion of I(qn) which is always 1. The rule (6) enforces that I(pi) ≥ I(β) whenever

I(pi) ≥ max{I(p1), . . . , I(pi−1)}, and either I(pi) > max{I(pi+1), . . . , I(pn)} or

i = n. In the following, let shift(Π) denote the program obtained by shifting all

rules of Π.

Theorem 2

Let Π be FASP program. If Π is HCF then Π ≡At(Π) shift(Π).

4 Translation into SMT

We now define a translation smt mapping Π into a Σ-theory, where ΣC = At(Π),

and ΣV = {xp | p ∈ At(Π)}. The theory has two parts, out and inn, for producing

a model and checking its minimality, respectively. In more detail, f ∈ {out , inn}

is the following: for c ∈ [0, 1], f(c) = c; for p ∈ At(Π), f(p) is p if f = out ,

and xp otherwise; f(∼α) = 1 − out(α); f(α ⊕ β) = ite(t ≤ 1, t, 1), where t is

f(α) + f(β); f(α ⊗ β) = ite(t ≥ 0, t, 0), where t stands for f(α) + f(β) − 1;

f(α ⊻ β) = ite(f(α) ≥ f(β), f(α), f(β)); f(α ⊼ β) = ite(f(α) ≤ f(β), f(α), f(β));

f(α← β) = f(α) ≥ f(β). Note that propositional atoms are mapped to constants

by out , and to variables by inn . Moreover, negated expressions are always mapped

by out . Define smt(Π) := {p ∈ [0, 1] | p ∈ At(Π)}∪{out(r) | r ∈ Π}∪{ϕinn}, where

ϕinn := ∀{xp | p ∈ At(Π)}.
∧

p∈At(Π)

xp ∈ [0, p] ∧
∧

r∈Π

inn(r)→
∧

p∈At(Π)

xp = p. (8)

Example 5

Consider the program Π2 = {p ← q ⊻ ∼s, q ⊕ s ← ∼∼p}. The theory smt(Π2) is

{p ∈ [0, 1], q ∈ [0, 1], s ∈ [0, 1]}∪{p ≥ ite(q ≥ 1−s, q, 1−s), ite(q+s ≤ 1, q+s, 1) ≥

1 − (1 − p)} ∪ {∀xp.∀xq .∀xs.xp ∈ [0, p] ∧ xq ∈ [0, q] ∧ xs ∈ [0, s] ∧ xp ≥ ite(xq ≥

1−s, xq, 1−s)∧ite(xq +xs ≤ 1, xq+xs, 1) ≥ 1−(1−p)→ xp = p∧xq = q∧xs = s}.

Let A be a Σ-structure such that pA = qA = 1 and sA = 0. It can be checked that

A |= smt(Π2). Also note that I(p) = I(q) = 1 and I(s) = 0 implies I ∈ SM (Π2). �

For an interpretation I of Π, let AI be the one-to-one Σ-structure for smt(Π)

such that pAI = I(p), for all p ∈ At(Π).

Theorem 3

Let Π be a FASP program. I ∈ SM (Π) if and only if AI |= smt(Π).

Theory and Practice of Logic Programming 9

4.1 Completion

A drawback of smt is that it produces quantified theories, which are usually han-

dled by incomplete heuristics in SMT solvers (Ge and de Moura 2009). Structural

properties of FASP programs may be exploited to obtain a more tailored trans-

lation that extends completion (Clark 1977) to the fuzzy case. Completion is a

translation into propositional theories used to compute stable models of acyclic

ASP programs with atomic heads. Intuitively, the models of the completion of

a program Π coincide with the supported models of Π, i.e., those models I with

I(p) = max{I(β) | p ← β ∈ Π}, for each p ∈ At(Π). This notion was extended

to FASP programs by Janssen et al. (2012), with fuzzy propositional theories as

target framework. We adapt it to produce Σ-theories, for the Σ defined before.

Let Π be a program with atomic heads, and p ∈ At(Π). We denote by heads(p,Π)

the set of rules in Π whose head is p, and by constraints(Π) the set of rules in Π

whose head is a numeric constant. The completion of Π is the Σ-theory:

comp(Π) := {p ∈ [0, 1] ∧ p = supp(p, heads(p,Π)) | p ∈ At(Π)} ∪

{out(r) | r ∈ constraints(Π)},
(9)

where supp(p, ∅) := 0, and for n ≥ 1, supp(p, {p← βi | i ∈ [1..n]}) := ite(out(β1) ≥

t, out(β1), t), where t is supp(p, {p← βi | i ∈ [2..n]}). Basically, supp(p, heads(p,Π))

yields a term interpreted as max{out(β)AI | p← β ∈ Π} by all Σ-structures A.

Example 6

Since Π2 in Example 5 is acyclic, Π2 ≡At(Π2) shift(Π2). The theory comp(shift(Π2))

is {p ∈ [0, 1] ∧ p = ite(q ≥ 1 − s, q, 1 − s), q ∈ [0, 1] ∧ q = ite(t1 ≥ 0, t1, 0),

s ∈ [0, 1] ∧ s = ite(p− q ≥ 0, p− q, 0)}, where t1 is (1− (1− p)) + (1 − s)− 1, and

t2 is (1− (1− p)) + (1 − q)− 1. �

Since smt(Π) and comp(Π) have the same constant symbols, AI defines a one-

to-one mapping between interpretations of Π and Σ-structures of comp(Π). An

interesting question is whether correctness can be extended to HCF programs, for

example by first shifting heads. Notice that (5) and (7) introduce rules of the form

q ← q ⊕ q through the shift of ⊗ or ⊻, breaking acyclicity. However, q ← q ⊕ q is

a common pattern to force a Boolean interpretation of q, which can be encoded

by integrality constraints in the theory. The same observation applies to rules of

the form q ⊗ q ← q. Define bool(Π) := {p ← p ⊕ p ∈ Π} ∪ {p ⊗ p ← p ∈ Π},

and let bool−(Π) be the program obtained from Π \ bool(Π) by performing the

following operations for each p ∈ At(bool (Π)): first, occurrences of p in rule bodies

are replaced by bp, where bp is a fresh atom; then, a choice rule bp ← ∼∼bp is added.

The refined completion is the following:

rcomp(Π) := comp(bool−(Π)) ∪ {bp = ite(p > 0, 1, 0) | p ∈ At(bool (Π))}, (10)

and the associated Σ-structure Ar
I is such that pA

r
I = I(p) for p ∈ At(Π), and b

Ar
I

p

equals 1 if I(p) > 0, and 0 otherwise, for p ∈ At(bool(Π)).

Theorem 4

10 M. Alviano and R. Peñaloza

Let Π be a program such that Π \ bool(Π) is acyclic. Then, I ∈ SM (Π) if and only

if Ar
I |= rcomp(shift(simp(Π))).

Note that in the above theorem simp and shift are only required because comp

and rcomp are defined for normal programs.

4.2 Ordered Completion

Stable models of recursive programs do not coincide with supported models, making

completion unsound. To regain soundness, ordered completion (Ben-Eliyahu and Dechter 1994;

Janhunen 2004; Niemelä 2008; Asuncion et al. 2012) uses a notion of acyclic sup-

port. Let Π be an ASP program with atomic heads. I is a stable model of Π if

and only if there exists a ranking r such that, for each p ∈ I, I(p) = max{I(β) |

p ← β ∈ Π, r(p) = 1 + max({0} ∪ {r(q) | q ∈ pos(β)})} (Janhunen 2004). This

holds because the reduct ΠI is also ∼-free, and thus its unique minimal model

is the least fixpoint of the immediate consequence operator TΠI , mapping inter-

pretations J to TΠI (J) where TΠI (J)(p) := max{J(β) | p ← β ∈ ΠI}. Since

J(α∧β) ≤ J(α) and J(α∧β) ≤ J(β), for all interpretations J , the limit is reached

in |At(Π)| steps. For FASP programs, however, the least fixpoint of TΠI is not

reached within a linear number of applications (Janssen et al. 2012). For example,

2n applications are required for the program {p ← p⊕ c}, for c = 1/2n and n ≥ 0

(Blondeel et al. 2014). On the other hand, for ⊙ ∈ {⊼,⊗} and all interpretations

J , we have J(α⊙β) ≤ J(α) and J(α⊙β) ≤ J(β). The claim can thus be extended

to the fuzzy case if recursion over ⊕ and ⊻ is disabled.

Lemma 1
Let Π be such that Π has atomic heads and non-recursive ⊕,⊻ in rule bodies. Let

I be an interpretation for Π. The least fixpoint of TΠI is reached in |At(Π)| steps.

Ordered completion can be defined for this class of FASP programs. Let J be

the least fixpoint of TΠI . The rank of p ∈ At(Π) in J is the step at which J(p) is

derived. Let rp be a constant symbol expressing the rank of p. Define rank(∅) := 1,

and rank({qi | i ∈ [1..n]}) := ite(rq1 ≥ t, rq1 , t) for n ≥ 1, where t = rank({qi | i ∈

[2..n]}). Also define osupp(p, ∅) := 0, and for n ≥ 1,

osupp(p, {p← βi | i ∈ [1..n]}) :=
∨

i∈[1..n]

(p = out(βi) ∧ rp = 1 + rank(pos(βi))).

The ordered completion of Π, denoted ocomp(Π), is the following theory:

comp(Π) ∪ {rp ∈ [1..|At(Π)|] ∧ p > 0→ osupp(p, heads(p,Π)) | p ∈ At(Π)}. (11)

Example 7
The Σ-theory ocomp({p← 0.1, p← q, q ← p}) is the following:

{p ∈ [0, 1] ∧ p = ite(0.1 ≥ q, 0.1, q)} ∪ {q ∈ [0, 1] ∧ q = p}

∪ {rp ∈ [1..2] ∧ p > 0→ (p = 0.1 ∧ rp = 1 + 0) ∨ (p = q ∧ rp = 1 + rq)}

∪ {rq ∈ [1..2] ∧ q > 0→ q = p ∧ rq = 1 + rp)}.

Theory and Practice of Logic Programming 11

The theory is satisfied by A if pA = qA = 0.1, rAp = 1, and rAq = 2. �

The correctness of ocomp, provided that Π satisfies the conditions of Lemma 1,

is proved by the following mappings: for I ∈ SM (Π), let Ao
I be the Σ-model for

ocomp(Π) such that pA
o
I = I(p) and r

Ao
I

p is the rank of p in I, for all p ∈ At(Π); forA

such that A |= ocomp(Π), let IA be the interpretation for Π such that IA(p) = pA,

for all p ∈ At(Π).

Theorem 5

Let Π be an HCF program with non-recursive ⊕ in rule bodies, and whose head

connectives are ⊼,⊕. If I ∈ SM (Π) then Ao
I |= ocomp(shift(simp(Π))). Dually, if

A |= ocomp(shift(simp(Π))) then IA ∈ SM (Π).

The above theorem does not apply in case of recursive ⊕ in rule bodies. For

example, {p← p⊕0.1} has a unique stable model assigning 1 to p, while its ordered

completion is the following Σ-theory with no Σ-model: {p ∈ [0, 1]∧p = ite(p+0.1 ≤

1, p+ 0.1, 1)}∪ {rp ∈ [1..1]∧ p > 0→ p = ite(p+ 0.1 ≤ 1, p+ 0.1, 1)∧ rp = 1 + rp}.

5 Implementation and Experiment

We implemented the translations from Section 3 in the new FASP solver fasp2smt.

fasp2smt is written in python, and uses gringo (Gebser et al. 2011) to obtain a

ground representation of the input program, and z3 (de Moura and Bjørner 2008)

to solve SMT instances encoding ground programs. The output of gringo encodes

a propositional program, say Π, that is conformant with the syntax in Section 2.

The components of Π are computed, and the structure of the program is analyzed. If

Π\bool(Π) is acyclic, rcomp(shift(simp(Π))) is built. If Π is HCF with non-recursive

⊕ in rule bodies, and only ⊼ and ⊕ in rule heads, then ocomp(shift(simp(Π))) is

built. In all other cases, smt(simp(Π)) is built. The built theory is fed into z3, and

either a stable model or the string incoherent is reported.

The performance of fasp2smt was assessed on instances of a benchmark used

to evaluate the FASP solver ffasp (Mushthofa et al. 2014). The benchmark com-

prises two (synthetic) problems, the fuzzy versions of Graph Coloring and Hamil-

tonian Path, originally considered by Alviano and Peñaloza (2013). In Graph Col-

oring edges of an input graph are associated with truth degrees, and each vertex

x is non-deterministically colored with a shadow of gray, i.e., truth degree 1 is dis-

tributed among the atoms blackx and whitex. The truth degree of each edge xy, say

d, enforces d⊗blackx⊗blacky = 0 and d⊗whitex⊗whitey = 0, i.e., adjacent vertices

must be colored with sufficiently different shadows of gray. Similarly, in Hamilto-

nian Path vertices and edges of an input graph are associated with truth degrees,

and Boolean connectives are replaced by Lukasiewicz connectives in the usual ASP

encoding. The truth degree of each edge xy, say d, is non-deterministically dis-

tributed among the atoms inxy and outxy. Reaching a vertex y from the initial

vertex x via an edge xy guarantees that y is reached with truth degree inxy. Reach-

ing a third vertex z via an edge yz, instead, guarantees that z is reached with truth

degree inxy ⊗ inyz. In other words, the more uncertain is the selection of an edge

12 M. Alviano and R. Peñaloza

xy, the more uncertain is the membership of y in the selected path, which in turn

implies an even more uncertain membership of any z reached by an edge yz. In

the original encodings, Lukasiewicz disjunction was used to guess (fuzzy) member-

ship of elements in one of two sets. For example, Hamiltonian Path used a rule of

the form in(X,Y) ⊕ out(X,Y) ← edge(X,Y), which was shifted and replaced by

in(X,Y) ← edge(X,Y) ⊗ ∼out(X,Y) and out(X,Y) ← edge(X,Y) ⊗ ∼in(X,Y)

by Alviano and Peñaloza. In fact, in 2013 the focus was on FASP programs with

atomic heads and only ⊗ in rule bodies, and the shift of ⊕ for these programs was

implicit in the work of Blondeel et al. (2014). Since our focus is now on a more gen-

eral setting, the original encodings were restored, even if it is clear that fasp2smt

shifts such programs by itself. In fact, Graph Coloring is recognized as acyclic, and

Hamiltonian Path as HCF with no ⊕ in rule bodies. It turns out that fasp2smt

uses completion for Graph Coloring, and ordered completion for Hamiltonian Path.

The experiment was run on an Intel Xeon CPU 2.4 GHz with 16 GB of RAM. CPU

and memory usage were limited to 600 seconds and 15 GB, respectively. fasp2smt

and ffasp were tested with their default settings, and the performance was mea-

sured by pyrunlim (http://alviano.net/software/pyrunlim/), the tool used

in the last ASP Competitions (Alviano et al. 2013; Calimeri et al. 2014).

The results are reported in Table 1. Instances are grouped according to the gran-

ularity of numeric constants, where instances with den = d are characterized by

numeric constants of the form n/d. There are 6 instances of Graph Coloring and 10

of Hamiltonian Path in each group. All instances of Graph Coloring are coherent,

while there is an average of 4 incoherent instances in each group of Hamiltonian

Path. All instances are solved by fasp2smt (column sol), and the granularity of nu-

meric constants does not really impact on execution time and memory consumption.

The performance is particularly good for Hamiltonian Path, while ffasp is faster

Table 1. Performance of fasp2smt and ffasp (average execution time in seconds;

average memory consumption in MB).

fasp2smt ffasp ffasp (shifted enc.)

den inst sol time mem sol time mem sol time mem

g
r
a
p
h
–
c
o
l 20 6 6 94.0 174 6 5.3 302 6 1.5 69

40 6 6 102.4 178 6 19.8 1112 6 5.3 181
60 6 6 107.6 180 6 46.7 2472 6 11.8 342
80 6 6 111.1 181 6 90.1 4420 6 21.0 550

100 6 6 111.7 181 6 151.9 7025 6 33.6 812

h
a
m
–
p
a
t
h

20 10 10 1.7 25 10 17.3 410 10 3.5 101
40 10 10 1.8 25 10 20.3 462 10 2.3 105
60 10 10 2.1 25 10 13.2 481 10 2.0 107
80 10 10 2.4 25 10 32.9 868 10 3.9 188

100 10 10 2.1 25 10 69.0 1385 10 6.5 323
120 10 10 2.0 25 10 125.5 2042 10 10.5 475
140 10 10 1.9 25 10 176.8 2821 10 14.7 669
160 10 10 2.2 25 9 139.6 3769 10 20.8 960
180 10 10 2.4 26 8 203.1 4914 10 28.9 1270

http://alviano.net/software/pyrunlim/

Theory and Practice of Logic Programming 13

than fasp2smt in Graph Coloring for numeric constants of limited granularity. The

performance of ffasp deteriorates when the granularity of numeric constants in-

creases, and 6 timeouts are reported for the largest instances of Hamiltonian Path.

Another strength of fasp2smt is the limited memory consumption compared to

ffasp. If we decrease the memory limit to 3 GB, ffasp runs out of memory on 12

instances of Graph Coloring and 34 instances of Hamiltonian Path, while fasp2smt

still succeeds in all instances. For the sake of completeness, manually shifted encod-

ings were also tested. The performance of fasp2smt did not change, while ffasp

improves considerably, especially regarding memory consumption. We also tested

180 instances (not reported in Table 1) of two simple problems called Stratified

and Odd Cycle (Alviano and Peñaloza 2013; Mushthofa et al. 2014), which both

fasp2smt and ffasp solve in less than 1 second.

The main picture resulting from the experimental analysis is that fasp2smt is

slower than ffasp in Graph Coloring, but it is faster in Hamiltonian Path. The

reason for these different behaviors can be explained by the fact that all tested in-

stances of Graph Coloring are coherent, while incoherent instances are also present

among those tested for Hamiltonian Path. To confirm such an intuition, we tested

the simple program {p ⊕ q ← 1, 0 ← p ⊕ q}. Its incoherence is proved instanta-

neously by fasp2smt, while ffasp requires 71.8 seconds and 446 MB of memory

(8.3 seconds and 96 MB of memory if the program is manually shifted).

6 Conclusions

SMT proved to be a reasonable target language to compute fuzzy answer sets effi-

ciently. In fact, when structural properties of the evaluated programs are taken into

account, efficiently evaluable theories are produced by fasp2smt. This is the case

for acyclic programs, for which completion can be used, as well as for HCF pro-

grams with only ⊕ in rule heads and no recursive⊕ in rule bodies, for which ordered

completion is proposed. Moreover, common patterns to crispify atoms, which would

introduce recursive⊕ in rule bodies, are possibly replaced by integrality constraints.

The performance of fasp2smt was compared with ffasp, which performs multiple

calls to an ASP solver. An advantage of fasp2smt is that, contrary to ffasp, its

performance is not affected by the approximation used to represent truth degrees in

the input program. On the other hand, ffasp is currently faster than fasp2smt for

instances having a stable model with truth degrees in Qk, for some small k, which

however cannot be determined a priori. Such a k does not exist for incoherent in-

stances, and indeed in this case fasp2smt significantly overcomes ffasp. It is also

important to note that in general the amount of memory required by fasp2smt is

negligible compared to ffasp. Future work will evaluate the possibility to extend

the approximation operators by Alviano and Peñaloza (2013) to the broader lan-

guage considered in this paper, with the aim of identifing classes of programs for

which the fixpoints are reached within a linear number of applications.

14 M. Alviano and R. Peñaloza

Acknowledgement

Mario Alviano was partially supported by MIUR within project “SI-LAB BA2-

KNOW – Business Analitycs to Know”, by Regione Calabria, POR Calabria FESR

2007-2013, within projects “ITravel PLUS” and “KnowRex”, by the National Group

for Scientific Computation (GNCS-INDAM), and by Finanziamento Giovani Ricer-

catori UNICAL. Rafael Peñaloza was partially supported by the DFG within the

Cluster of Excellence ‘cfAED;’ this work was developed while still being affiliated

with TU Dresden and the Center for Advancing Electronics Dresden, Germany.

References

Akbarpour, B. and Paulson, L. C. 2010. Metitarski: An automatic theorem prover for
real-valued special functions. J. Autom. Reasoning 44, 3, 175–205.

Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G.,
Krennwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J., Redl,

C., Ricca, F., Schneider, P., Schwengerer, M., Spendier, L. K., Wallner, J. P.,
and Xiao, G. 2013. The fourth answer set programming competition: Preliminary
report. In LPNMR, P. Cabalar and T. C. Son, Eds. LNCS. 42–53.

Alviano, M., Dodaro, C., Faber, W., Leone, N., and Ricca, F. 2013. WASP: A native
ASP solver based on constraint learning. In Logic Programming and Nonmonotonic
Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September
15-19, 2013. Proceedings, P. Cabalar and T. C. Son, Eds. Lecture Notes in Computer
Science, vol. 8148. Springer, 54–66.

Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., and Terracina, G.

2010. The disjunctive datalog system DLV. In Datalog Reloaded - First International
Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers,
O. de Moor, G. Gottlob, T. Furche, and A. J. Sellers, Eds. Lecture Notes in Computer
Science, vol. 6702. Springer, 282–301.

Alviano, M. and Peñaloza, R. 2013. Fuzzy answer sets approximations. TPLP 13, 4-5,
753–767.

Asuncion, V., Lin, F., Zhang, Y., and Zhou, Y. 2012. Ordered completion for first-
order logic programs on finite structures. Artif. Intell. 177-179, 1–24.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C. 2009. Satisfiability
modulo theories. In Handbook of Satisfiability, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
825–885.

Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic
programs. Ann. Math. Artif. Intell. 12, 1-2, 53–87.

Blondeel, M., Schockaert, S., Vermeir, D., and Cock, M. D. 2014. Complexity
of fuzzy answer set programming under lukasiewicz semantics. Int. J. Approx. Reason-
ing 55, 9, 1971–2003.

Calimeri, F., Gebser, M., Maratea, M., and Ricca, F. 2014. The design of the fifth
answer set programming competition. CoRR abs/1405.3710.

Clark, K. L. 1977. Negation as failure. In Logic and Data Bases. 293–322.

de Moura, L. M. and Bjørner, N. 2008. Z3: an efficient SMT solver. In Tools and Al-
gorithms for the Construction and Analysis of Systems, 14th International Conference,

Theory and Practice of Logic Programming 15

TACAS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, C. R. Ramakr-
ishnan and J. Rehof, Eds. Lecture Notes in Computer Science, vol. 4963. Springer,
337–340.

Delgrande, J. P., Schaub, T., Tompits, H., and Woltran, S. 2008. Belief revision of
logic programs under answer set semantics. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney,
Australia, September 16-19, 2008, G. Brewka and J. Lang, Eds. 411–421.

Eiter, T., Fink, M., and Woltran, S. 2007. Semantical characterizations and com-
plexity of equivalences in answer set programming. ACM Trans. Comput. Log. 8, 3.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Ann. Math. Artif. Intell. 15, 3-4, 289–323.

Ge, Y. and de Moura, L. M. 2009. Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In Computer Aided Verification, 21st International Con-
ference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, A. Bouajjani
and O. Maler, Eds. Lecture Notes in Computer Science, vol. 5643. Springer, 306–320.

Gebser, M., Kaminski, R., König, A., and Schaub, T. 2011. Advances in gringo series
3. In Logic Programming and Nonmonotonic Reasoning - 11th International Conference,
LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings, J. P. Delgrande and
W. Faber, Eds. Lecture Notes in Computer Science, vol. 6645. Springer, 345–351.

Gebser, M., Kaufmann, B., and Schaub, T. 2012. Conflict-driven answer set solving:
From theory to practice. Artif. Intell. 187, 52–89.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunc-
tive databases. New Generation Comput. 9, 3/4, 365–386.

Janhunen, T. 2004. Representing normal programs with clauses. In Proceedings of
the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004, Valencia, Spain,
August 22-27, 2004, R. L. de Mántaras and L. Saitta, Eds. IOS Press, 358–362.

Janssen, J., Schockaert, S., Vermeir, D., and Cock, M. D. 2012. Answer Set Pro-
gramming for Continuous Domains - A Fuzzy Logic Approach. Atlantis Computational
Intelligence Systems, vol. 5. Atlantis Press.

Janssen, J., Vermeir, D., Schockaert, S., and Cock, M. D. 2012. Reducing fuzzy
answer set programming to model finding in fuzzy logics. TPLP 12, 6, 811–842.

Lee, J. and Wang, Y. 2014. Stable models of fuzzy propositional formulas. In Logics
in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014. Proceedings, E. Fermé and J. Leite, Eds. Lecture Notes
in Computer Science, vol. 8761. Springer, 326–339.

Lierler, Y. and Maratea, M. 2004. Cmodels-2: Sat-based answer set solver enhanced
to non-tight programs. In Logic Programming and Nonmonotonic Reasoning, 7th In-
ternational Conference, LPNMR 2004, Fort Lauderdale, FL, USA, January 6-8, 2004,
Proceedings, V. Lifschitz and I. Niemelä, Eds. Lecture Notes in Computer Science, vol.
2923. Springer, 346–350.

Lin, F. and You, J.-H. 2002. Abduction in logic programming: A new definition and an
abductive procedure based on rewriting. Artificial Intelligence 140, 1/2, 175–205.

Marek, V. W. and Remmel, J. B. 2004. Answer set programming with default logic.
In 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), Whistler,
Canada, June 6-8, 2004, Proceedings, J. P. Delgrande and T. Schaub, Eds. 276–284.

Marek, V. W. and Truszczyński, M. 1999. Stable Models and an Alternative Logic
Programming Paradigm. In The Logic Programming Paradigm – A 25-Year Perspective,
K. R. Apt, V. W. Marek, M. Truszczyński, and D. S. Warren, Eds. Springer Verlag,
375–398.

Mushthofa, M., Schockaert, S., and Cock, M. D. 2014. A finite-valued solver for

16 M. Alviano and R. Peñaloza

disjunctive fuzzy answer set programs. In ECAI 2014 - 21st European Conference on Ar-
tificial Intelligence, 18-22 August 2014, Prague, Czech Republic, T. Schaub, G. Friedrich,
and B. O’Sullivan, Eds. Frontiers in Artificial Intelligence and Applications, vol. 263.
IOS Press, 645–650.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25, 3-4, 241–273.

Niemelä, I. 2008. Stable models and difference logic. Ann. Math. Artif. Intell. 53, 1-4,
313–329.

Nieuwenborgh, D. V., Cock, M. D., and Vermeir, D. 2007. An introduction to fuzzy
answer set programming. Ann. Math. Artif. Intell. 50, 3-4, 363–388.

Ratschan, S. 2006. Efficient solving of quantified inequality constraints over the real
numbers. ACM Trans. Comput. Log. 7, 4, 723–748.

Theory and Practice of Logic Programming 17

Appendix A Proofs

Proposition 1

For every FASP program Π, it holds that Π ≡At(Π) simp(Π), i.e., |SM (Π)| =

|SM (simp(Π))| and {I ∩ At(Π) | I ∈ SM (Π)} = {I ∩ At(Π) | I ∈ SM (simp(Π))}.

Proof

Since each rule is rewritten independently, we can prove Π ≡At(Π) (Π \ {r}) ∪

simp({r}), where r is some rule in Π. We use structural induction on r. The base

case, i.e., r is of the form α ← β with α ∈ B and β ∈ B, is trivial because

simp({α ← β}) = {α ← β}. Now, consider r of the form α ← ∼β. We have to

show Π ≡At(Π) Π′, where Π′ := (Π \ {r}) ∪ {α ← ∼p, p ← β}. For I ∈ SM (Π),

define I ′ such that I ′(p) := I(β), and I ′(q) := I(q) for all q ∈ At(Π). We have that

I ′ ∈ SM (Π′). Moreover, for any J ∈ SM (Π′) it holds that J(p) = J(β) because the

only head occurrence of p in Π′ is in p← β. It turns out that J ∩At(Π) belongs to

SM (Π). The remaining cases are given in (Mushthofa et al. 2014).

Theorem 1

Checking coherence of FASP programs is ΣP
2 -hard already in the following cases:

(i) all connectives are ⊗; (ii) head connectives are ⊻, and body connectives are ⊼

(or ⊗); and (iii) head connectives are ⊕, and body connectives are ⊼ (or ⊗) and ⊕.

Proof

We start by giving the common properties that will be used to prove each part of

the theorem. We reduce the satisfiability problem for 2-QBF∃ formulas to FASP

coherence testing. Let φ be ∃x1, . . . , xm∀xm+1, . . . , xn
∨k

i=1 Lk,1∧Lk,2∧Lk,3, where

n > m ≥ 1, k ≥ 1. For each ⊙ ∈ {⊻,⊕,⊗}, our aim is to build a FASP program

Π⊙
φ such that φ is satisfiable if and only if Π⊙

φ is coherent.

In the construction of Π⊙
φ we use the mapping σ such that σ(xi) := xTi , and

σ(¬xi) := xFi , for all i ∈ [1..n]. Moreover, Π⊙
φ will have atoms sat , and xTi , x

F
i for

all i ∈ [1..n], and its models will satisfy the following properties, for a fixed truth

degree d ∈ [0, 1[:

1. I |= Π⊙
φ implies I(sat) = 1;

2. I |= Π⊙
φ implies either I(xTi) = 1 ∧ I(xFi) = d, or I(xFi) = 1 ∧ I(xTi) = d, for all

i ∈ [1..n];

3. I |= Π⊙
φ and I(sat) = 1 implies I(xTi) = I(xFi) = 1, for all i ∈ [m+ 1..n];

4. J ⊂ I and J |= (Π⊙
φ)I implies J(sat) = d and either I(xTi) = 1 ∧ I(xFi) = d, or

I(xFi) = 1 ∧ I(xTi) = d, for all i ∈ [1..n].

We will then define a mapping between assignments for x1, . . . , xm and inter-

pretations of Π⊙
φ . Let ν be a Boolean assignment for x1, . . . , xm. Define Idν to be

the interpretation such that: Idν (xTi) equals 1 if ν(xi) = 1, and d otherwise, for all

i ∈ [1..m]; Idν (xFi) equals 1 if ν(xi) = 0, and d otherwise, for all i ∈ [1..m]; Iν(xi) = 1

for all i ∈ [m + 1..n]; and Iν(sat) = 1. Moreover, for an extended Boolean assign-

ment for x1, . . . , xn, we define Iν′ to be the interpretation such that: Idν′ (xTi) equals

18 M. Alviano and R. Peñaloza

1 if ν′(xi) = 1, and d otherwise, for all i ∈ [1..n]; Idν′(xFi) equals 1 if ν′(xi) = 0, and

d otherwise, for all i ∈ [1..n]; and Iν′ (sat) = d. These mappings will allow us to

define one-to-one mappings between satisfying assignments of φ and stable models

of Π⊙
φ , and between unsatisfying assignments of φ and minimal models of reducts

(counter models of Π⊙
φ).

Proof of (ii). We adapt the construction by (Eiter and Gottlob 1995). The program

Φφ is the following:

xTi ⊻ xFi ← 1 ∀i ∈ [1..n] (A1)

xTi ← sat xFi ← sat 0 ← ∼sat ∀i ∈ [m+ 1..n] (A2)

sat ← σ(Lk,1) ⊼ σ(Lk,2) ⊼ σ(Lk,3) ∀i ∈ [1..k] (A3)

The program Π⊻

φ has the four properties given above for d = 0. Any model of

Π⊻

φ is of the form I0ν , for some assignment ν for x1, . . . , xm. If we consider the

reduct (Π⊻

φ)I
0

ν , the rule 0← ∼sat is replaced by 0← 0. Any minimal model strictly

contained in Iν will be of the form Jν′ for some assignment ν′ extending ν. Such a

Jν′ would imply that ν′(ψ) = 0, and therefore ν(φ) = 0. On the other hand, if such

a Jν′ does not exist, it means that sat is necessarily 1; iff there is i ∈ [1..k] such

that σ(Lk,1) ⊼ σ(Lk,2) ⊼ σ(Lk,3) is necessarily 1; iff all ν′ extending ν are such that

ν′(ψ) = 1; iff ν(ψ) = 1. Hence, we have that φ is satisfiable iff Π⊻

φ is coherent.

To complete this part of the proof, it is enough to replace (A3) by

sat ← σ(Lk,1)⊗ σ(Lk,2)⊗ σ(Lk,3) ∀i ∈ [1..k] (A4)

because any model and counter model of Π⊻

φ give a Boolean interpretation to

σ(Lk,1)⊗ σ(Lk,2)⊗ σ(Lk,3).

Proof of (iii). This is essentially folklore. Having ⊕ in rule bodies allows to crispify

a variable p by means of the common pattern p← p⊕ p. The program Π⊕
φ is thus

xTi ⊕ x
F
i ← 1 xTi ← xTi ⊕ x

T
i xFi ← xFi ⊕ x

F
i ∀i ∈ [1..n] (A5)

xTi ← sat xFi ← sat 0← ∼sat sat ← sat ⊕ sat ∀i ∈ [m+ 1..n] (A6)

sat ← σ(Lk,1) ⊼ σ(Lk,2) ⊼ σ(Lk,3) ∀i ∈ [1..k] (A7)

The same argument used for (ii) proves that φ is satisfiable iff Π⊕
φ is coherent. The

same holds if (A7) is replaced by (A4).

Proof of (i). This is the most sophisticated construction. The program Π⊗
φ is

xTi ⊕ x
F
i ← 0.5 ∀i ∈ [1..n] (A8)

xTi ⊗ x
T
i ⊗ x

T
i ← xTi ⊗ x

T
i ∀i ∈ [1..n] (A9)

xFi ⊗ x
F
i ⊗ x

F
i ← xFi ⊗ x

F
i ∀i ∈ [1..n] (A10)

xTi ← sat xFi ← sat 0← ∼sat sat ← 0.5 ∀i ∈ [m+ 1..n] (A11)

sat ← σ(Lk,1)⊗ σ(Lk,2)⊗ σ(Lk,3) ∀i ∈ [1..k] (A12)

Theory and Practice of Logic Programming 19

This program Π⊗
φ has the four properties given at the beginning of this proof, but

for d = 0.5. (Note that rule sat ← 0.5 was added to have a uniform proof with the

previous parts, but the construction would work also without such a rule.) In fact,

all atoms must be assigned a truth degree of 0.5 or 1. Hence, the interpretation

of σ(Lk,1) ⊗ σ(Lk,2) ⊗ σ(Lk,3) will be 1 if σ(Lk,1), σ(Lk,2), σ(Lk,3) are 1, and less

than or equal to 0.5 otherwise. We can thus rely on the argument given in the proof

of (ii).

Theorem 2

Let Π be FASP program. If Π is HCF then Π ≡At(Π) shift(Π).

Proof

Since the shift is performed independently on each rule of Π, it suffices to show

Π′′ ∪ {p1 ⊙ · · · ⊙ pn ← β} ≡At(Π) Π′′ ∪ shift({p1 ⊙ · · · ⊙ pn ← β}), where Π′′ ∪

{p1 ⊙ · · · ⊙ pn ← β} = Π, n ≥ 2, and ⊙ ∈ {⊕,⊗,⊻}. To simplify the presentation,

β is assumed to be a propositional atom. Moreover, since Π is HCF, w.l.o.g. we

can assume that, for 1 ≤ i < j ≤ n, pi does not reach pj in GΠ. In each part of

the proof, we will provide a one-to-one mapping between the (minimal) models of

the original program and the models of shifted program. Moreover, we will give a

mapping of the counter model of the original program into the counter models of

the shifted program, and vice versa.

Proof for ⊕. I |= Π′′ ∪ {p1 ⊕ · · · ⊕ pn ← β} iff I |= Π′′ ∪ shift({p1 ⊕ · · · ⊕ pn ← β})

holds because I(p1) + · · ·+ I(pn) ≥ I(β) iff

I(pi) ≥ I(β) +
∑

j∈[1..n],j 6=i

(1− I(pj))− (n− 1) = I(β) −
∑

j∈[1..n],j 6=i

I(pj)

for all i ∈ [1..n]. Let I be a model of the two programs.

For all J ⊂ I, it holds that J |= (Π′′)I ∪ {p1 ⊕ · · · ⊕ pn ← β}I implies that

J |= (Π′′)I ∪ shift({p1 ⊕ · · · ⊕ pn ← β})I because J(p1) + · · ·+ J(pn) ≥ J(β) iff

J(pi) ≥ J(β) +
∑

j∈[1..n],j 6=i

(1− J(pj))− (n− 1) = J(β) −
∑

j∈[1..n],j 6=i

J(pj),

for all i ∈ [1..n], which implies

J(pi) ≥ J(β) +
∑

j∈[1..n],j 6=i

(1− I(pj))− (n− 1) = J(β)−
∑

j∈[1..n],j 6=i

I(pj)

because by assumption J(pj) ≤ I(pj) for all pj ∈ [1..n].

For the converse direction, we show that for any interpretation J ⊂ I such that

J |= (Π′′)I ∪ shift({p1 ⊕ · · · ⊕ pn ← β})I , there is K such that J ⊆ K ⊂ I and

K |= (Π′′)I ∪{p1⊕· · ·⊕pn ← β}I . Let us assume that {p1⊕· · ·⊕pn ← β} 6= ∅, and

that J(pi) < I(pi) for some i ∈ [1..n], otherwise the proof is immediate. We define

the following non-deterministic sequence:K0 := J ; for i ∈ [0..n−1],Ki+1 is any sub-

set minimal model of (Π′′)I such that Ki ⊆ Ki+1 ⊂ I, and Ki+1 = min(I(pn−i),m),

where m = max(Ki(pn−i),Ki(β) −
∑

j∈[1..n],j 6=iKi(pj)). The sequence is well de-

fined because in Ki+1 we are possibly increasing the truth degree of pn−i, which

20 M. Alviano and R. Peñaloza

cannot cause an increase of any pj with j < n − i by assumption. Intuitively, we

possibly increase the truth degree of p1, . . . , pn in order to satisfy the original rule

p1 ⊕ · · · ⊕ pn ← β, and we do this by preferring atoms with higher indices. Hence,

we have Kn ⊂ I and Kn |= (Π′′)I ∪ {p1 ⊕ · · · ⊕ pn ← β}I .

Proof for ⊗. For an interpretation I, define I ′ to be such that: I ′(p) = I(p) for all

p ∈ At(Π); I ′(q) equals 1 if I(β) > 0, and 0 otherwise. We follow the line of the

previous proof. Let I be an interpretation such that I(β) > 0, otherwise the proof

is immediate. Then, I(q) = 1, and I is a minimal model of Π′′∪{p1⊗· · ·⊗pn ← β}

if and only if I ′ is a minimal model of Π′′∪shift ({p1⊗· · ·⊗pn ← β}) holds because

I(p1) + · · ·+ I(pn) − (n − 1) ≥ I(β) iff I(pi) ≥ I(β) +
∑

j∈[1..n],j 6=i(1 − I(pj)), for

all i ∈ [1..n]. Let I be a minimal model of Π with I(β) > 0.

For all J ⊂ I, we have that J |= (Π′′)I ∪ {p1 ⊗ · · · ⊗ pn ← β}I implies that

J ′ |= (Π′′)I
′

∪shift ({p1⊗· · ·⊗pn ← β})I
′

because J(p1)+· · ·+J(pn)−(n−1) ≥ J(β)

iff J(pi) ≥ J(β) +
∑

j∈[1..n],j 6=i(1 − J(pj)), for all i ∈ [1..n], which itself implies

J(pi) ≥ J(β) +
∑

j∈[1..n],j 6=i(1− I(pj)) since by assumption J ′(pj) = J(pj) ≤ I(pj)

for all pj ∈ [1..n].

For the converse direction, we only change the non-deterministic sequence from

the previous proof as follows: K0 := J ; for i ∈ [0..n − 1], Ki+1 is any subset

minimal model of (Π′′)I such that Ki ⊆ Ki+1 ⊂ I, and Ki+1 = min(I(pn−i),m),

where m = max(Ki(pn−i),Ki(β) +
∑

j∈[1..n],j 6=i(1−Ki(pj))). We have Kn ⊂ I ′.

Proof for ⊻. Given an interpretation I, define I ′ to be such that: I ′(p) = I(p)

for every p ∈ At(Π); I ′(qn) = 1; and for i ∈ [1..n − 1], I ′(qi) is equal to 1 if

I(pi) > max{I(pj) | j ∈ [i + 1..n]}, and 0 otherwise. Following the line of the

previous two proofs, I is a minimal model of Π′′ ∪ {p1 ⊻ · · · ⊻ pn ← β} if and only

if I ′ is a minimal model of Π′′ ∪ shift({p1 ⊻ · · · ⊻ pn ← β}). This holds because

max{I(p1), . . . , I(pn)} ≥ I(β) iff I(pi) ≥ I(β) for the index i ∈ [1..n] such that

I(pi) ≥ max{I(pj) | j ∈ [1..i− 1]}, and either I(pi) > max{I(pj) | j ∈ [i+ 1..n]} or

i = n. Let I be a minimal model of the program Π.

For J ⊂ I, define J ′′ to be such that: J ′′(p) = J(p) for every p ∈ At(Π); and

J ′′(qi) = J ′(qi) for all i ∈ [1..n]. Then J |= (Π′′)I ∪ {p1 ⊻ · · · ⊻ pn ← β}I implies

J ′′ |= (Π′′)I
′

∪ shift({p1 ⊻ · · · ⊻ pn ← β})I
′

since max{J(p1), . . . , J(pn)} ≥ J(β)

iff J(pi) ≥ J(β) for the index i ∈ [1..n] with J(pi) ≥ max{I(pj) | j ∈ [1..i − 1]},

and either i = n or J(pi) > max{J(pj) | j ∈ [i + 1..n]}. This holds because by

assumption J ′′(pj) = J(pj) ≤ I(pj) for all pj ∈ [1..n].

As for the other direction, again, we only change the non-deterministic sequence

as follows: K0 is such that K0(p) = J(p) for all p ∈ At(Π), and K0(qi) = J ′(qi)

for all i ∈ [1..n]; for i ∈ [0..n − 1], Ki+1 is any subset minimal model of (Π′′)I

such that Ki ⊆ Ki+1 ⊂ I, and Ki+1 = min(I(pn−i),m), where m equals Ki(β) if

maxj∈[1..n],j 6=n−iKi(pj) < Ki(β), and Ki(pn−1) otherwise. We have Kn ⊂ I ′.

Theorem 3

Let Π be a FASP program. I ∈ SM (Π) if and only if AI |= smt(Π).

Theory and Practice of Logic Programming 21

Proof

We use structural induction to prove that I(α) = f(α)AI holds for any expression

or term α, and for f ∈ {out , inn}.

• The base cases are immediate: for c ∈ [0, 1], I(c) = cAI = f(c)AI by definition;

for p ∈ At(Π), I(p) = pAI = f(p)AI by definition.

• For ∼, assuming that the claim holds for α, we have

I(∼α) = 1− I(α) = 1− out(α)AI = f(∼α)AI .

• For ⊕, assuming that the claim holds for α and β, we have

I(α⊕ β) = min(I(α) + I(β), 1) = min(f(α)AI + f(β)AI , 1)

= ite(f(α) + f(β) ≤ 1, f(α) + f(β), 1)AI = f(α⊕ β)AI .

• For ⊗, assuming that the claim holds for α and β, we have

I(α⊗ β) = max(I(α) + I(β)− 1, 0) = max(f(α)AI + f(β)AI − 1, 0)

= ite(f(α) + f(β)− 1 ≥ 0, f(α) + f(β)− 1, 0)AI = f(α⊗ β)AI .

• For ⊻, assuming that the claim holds for α and β, we have

I(α ⊻ β) = max(I(α), I(β)) = max(f(α)AI , f(β)AI)

= ite(f(α) ≥ f(β), f(α), f(β))AI = f(α ⊻ β)AI .

• For ⊼, assuming that the claim holds for α and β, we have

I(α ⊼ β) = min(I(α), I(β)) = min(f(α)AI , f(β)AI)

= ite(f(α) ≤ f(β), f(α), f(β))AI = f(α ⊼ β)AI .

We can thus conclude that I |= Π if and only if AI is a Σ-model of the theory

{p ∈ [0, 1] | p ∈ At(Π)}∪{out(r) | r ∈ Π}. Moreover, if I ∈ SM (Π) then there is no

J ⊂ I such that J |= ΠI , which is the case if and only if AI also satisfies formula

φinn .

Theorem 4

Let Π be a program such that Π \ bool(Π) is acyclic. Then, I ∈ SM (Π) if and only

if Ar
I |= rcomp(shift(simp(Π))).

Proof

Let Π′ be shift(simp(Π)), and Π′′ = bool−(Π′). By Proposition 1 and Theorem 2,

we know that Π ≡At(Π) Π′. Moreover, if Π \ bool(Π) is acyclic then Π′′ is acyclic.

From the correctness of the completion proved by Janssen et al. (2012), and since

supp(p, heads(Π′′))AI = max{βAI | p ← β ∈ Π′′} = max{I(β) | p ← β ∈ Π′′}

captures the notion of support of p, we have that I ∈ SM (Π′′) iff AI |= comp(Π′′).

Hence, the models of rcomp(Π) are the structures Ar
I such that I ∈ SM (Π′′) sat-

isfying the following condition: I(bp) equals 1 if I(p) > 0, and 0 otherwise. These

are exactly the stable models of Π′, which concludes the proof.

22 M. Alviano and R. Peñaloza

Lemma 1

Let Π be such that Π has atomic heads and non-recursive ⊕,⊻ in rule bodies. Let

I be an interpretation for Π. The least fixpoint of TΠI is reached in |At(Π)| steps.

Proof

We first prove the claim for programs without ⊕. Let J0 be the interpretation

mapping everything to 0, and Ji+1 := TΠI (Ji), for all i ≥ 0. For every i ≥ 0 and

p ∈ At(Π), if Ji(p) < Ji+1(p), then there is a rule p← β ∈ ΠI with Ji+1(p) = Ji(β).

In this case, for each atom q (including numeric constants) occurring β, we say that

p is inferred by q. In particular, since β can only contain ⊼ and ⊻, we have the

following property: (∗) Ji+1(p) ≤ Ji(q). Let n = |At(Π)| be the number of atoms

in Π. We prove that any chain of inferred atoms has length at most n + 1, which

implies that n applications of TΠI give the fixpoint of the operator. Suppose on

the contrary that there are p0, . . . , pn+1 such that p0 is a numeric constant and

pi+1 ∈ At(Π) is inferred by pi ∈ At(Π), for all i ∈ [0..n]. Since n = |At(Π)|, there

exist 1 ≤ j < k ≤ n + 1 such that pj = pk. Hence, from Ji(p) < Ji+1(p) we

have Ji+1(pi+1) > Ji(pi+1) for i ∈ [0..n], and thus Jk(pk) > Jk−1(pk) ≥ Jj(pk)

(where the last inequality is due to the monotonicity of TΠI). From (∗) we have

Ji+1(pi+1) ≤ Ji(pi) for i ∈ [0..n], and thus Jk(pk) ≤ Jj(pj) = Jj(pk). Therefore, we

have Jk(pk) > Jj(pk) and Jk(pk) ≤ Jj(pk), that is, a contradiction.

Let us now add non-recursive ⊕ in rule bodies. If there is i ∈ [0..n] such that

pi+1 and pi do not satisfy (∗), i.e., Ji+1(p+1) > Ji(pi), then β must contain some

occurrence of ⊕. Since ⊕ is non-recursive by assumption, {pj | i ∈ [1..i]} and

{pj | [i + 1..n + 1]} are disjoint sets. Either p1, . . . , pi or pi+1, . . . , pn+1 must have

a repeated atom, and argument used before gives a contradiction.

Theorem 5

Let Π be an HCF program with non-recursive ⊕ in rule bodies, and whose head

connectives are ⊼,⊕. If I ∈ SM (Π) then Ao
I |= ocomp(shift(simp(Π))). Dually, if

A |= ocomp(shift(simp(Π))) then IA ∈ SM (Π).

Proof

Let Π′ be shift(simp(Π)). From Proposition 1 and Theorem 2 we have Π ≡At(Π) Π′.

Moreover, Π′ has atomic heads and non-recursive ⊕ in rule bodies. We show that

stable models of Π′ and Σ-models of ocomp(Π′) are related.

First, notice that for any structure A and set of atoms A, rank(A)A equals

max{rAp | p ∈ A} if A 6= ∅, and 0 otherwise. Moreover, osupp(p, heads(p,Π′))A = 1

if there is p← β ∈ heads(p,Π) such that pA = βA and rAp = 1 + rank(pos(β))A.

(⇒) Let I ∈ SM (Π′). Let J0 be the interpretation mapping everything to 0, and

Ji+1 be TΠ′I (Ji), for i ≥ 0. By Lemma 1, Jn+1 = Jn. Let r be the ranking associated

with I, i.e., r(p) equals the minimum index i ∈ [1..n] such that Ji(p) = Jn(p).

We now use induction on the rank of inferred atoms to prove the following:

Ao
I |= p = out(β) ∧ rp = 1 + rank(pos(β))). For all p ∈ At(Π) such that Jn(p) > 0

and r(p) = 1, there is a rule p ← β ∈ Π′I such that Jn(β) = Jn(p) and β only

Theory and Practice of Logic Programming 23

contains numeric constants; in this case Ao
I |= p = out(β)∧ rp = 1 + rank(pos(β))).

For m ∈ [1..n−1], and for all p ∈ At(Π) such that Jn(p) > 0 and r(p) = m+1, there

is a rule p ← β ∈ Π′I such that Jn(β) = Jn(p) and q ∈ pos(β) implies r(q) ≤ m;

since the claim is true for all q ∈ pos(β), and at least one of them must satisfy

r(q) = m, we have Ao
I |= p = out(β) ∧ rp = 1 + rank(pos(β))).

That Ao
I |= comp(Π′) follows by the fact that the completion captures the notion

of supported model. Hence, Ao
I |= ocomp(Π′).

(⇐) Let A be a Σ-model of ocomp(Π′), and let I := IA. We shall show that

IA ∈ SM (Π′). Let J0 be the interpretation mapping everything to 0, and Ji+1 be

TΠ′I (Ji), for i ≥ 0.

We use induction on rAp to show that JrAp (p) = I(p). If pA > 0 and rAp = 1, then

there is p ← β ∈ Π′ such that pA = βA and pos(β) = ∅; in this case J1(p) = I(p).

If pA > 0 and rAp = m+ 1 for some m ∈ [1..n − 1], there is p ← β ∈ Π′ such that

pA = βA and max{rAq | q ∈ pos(β)} = m; since Jm(q) = I(q) for all q ∈ pos(β) by

the induction hypothesis, we have Jm+1(p) = I(β) = I(p).

The proof is thus complete.

	1 Introduction
	2 Background
	2.1 Fuzzy Answer Set Programming
	2.2 Satisfiability Modulo Theories

	3 Structure Simplification
	3.1 Hardness results
	3.2 Shifting heads

	4 Translation into SMT
	4.1 Completion
	4.2 Ordered Completion

	5 Implementation and Experiment
	6 Conclusions
	References
	Appendix A Proofs

