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Abstract. We present methods that compute generalizations of canoepidi-
viduals described in ontologies written in the Descriplimgic ££. These gener-
alizations are the basis of methods for ontology design emtha core of concept
similarity measures. The reasoning service least commbsusaer (Ics) gener-
alizes a set of concepts. Similarly, the most specific canf®sc) generalizes
an individual into a concept description. Rat with generaléL-TBoxes, the Ics
and the msc may not exist. However, it is possible to find a ephdescription
that is the Ics (msc) up to a certain role-depth.

In this paper we present a practical approach for compukiadas and msc with
a bounded depth, based on the polynomial-time completigorithm for£L and
describe its implementation.

1 Introduction

Ontologies have become a commonly used means to describeltahvocabularies,
most prominently, in life sciences. Categories that foresthvocabularies are some-
times only described in terms of specializations, i.e. by tils-a” relation. Since the
standardization of the web ontology language OWL [25], mapplications have be-
gun using this richer modeling language for describingaratifrom their domain in a
more precise and detailed way. The formalism underlying GAé_Description Logics
(DLs) [3], which are a family of logics with formal semanticBhe formal semantics
of DLs are the basis for the definition of reasoning servieehsassubsumptioror
instance checkindgsubsumption tests whether a sub- / super-concept reshtipholds
between a pair of concept descriptions. Instance checkisgers the question whether
it follows from the ontology that a given individual must bab to a concept. The rea-
soning algorithms for these reasoning services are wedlsitigated for a range of DLs
and implemented in powerful reasoner systems. In this papexant to devise com-
putation methods for inferences that can be employed teelgeneralizations. These
inferences turn out to be useful for range of ontology-baggulications such as e.g.
the life sciences [21, 9] or context-aware systems [22].

The newest version of the OWL standard [25] offers seve’iL profiles which
correspond to DLs with varying expressivity. We are integdsn the OWL EL profile,
which corresponds to the DEL++, an extension of the DIEL where reasoning is
still tractable.£L-concept descriptions are composed from conjunctions istezxial
restrictions. Despite its limited expressivi§t has turned out to be useful to model



notions from life science applications. Most prominerttig medical ontology SnoMed
[21] and the Gene Ontology [9] are writtendif. For instance, it is possible to express
by

Myocarditis C inflammation M Jhas—location.heart

that myocarditis is a kind of inflammation that is locatedtie heart.

In fact, medical and context-aware applications deal withyvarge ontologies,
which are ofterdight-weight in the sense that they can be formulateddror one of its
extensions from the so-callé-family. Members of the&L-family allow for reasoning
in polynomial time [2]. In particular, subsumption and emste checking are tractable
for £ and&L++, which was the main reason to standardize it in an own OWiofllp
[25]. The reasoning algorithms for tt&-family are based on a completion method
and have been implemented in optimized reasoners such1agL6].

We investigate here two inferences that generalize difterstities from DL knowl-
edge bases. The first one is tleast common subsum@cs) [7], which generalizes a
collection of concept descriptions into a single conceptdegtion that is the least w.r.t.
subsumption. Intuitively, the Ics yields a new (complexhcept description that cap-
tures all the commonalities of the input concept descnigtiorhe second inference
is themost specific concefinsc) [4], which generalizes an individual into a concept
description. Intuitively, the msc delivers the most speaifdbncept description that is
capable of describing the individual.

Applying Generalization Inferences

In the following we describe some of the most prominent aapibns of the Ics and the
msc.

Similarity measures.Concept similarity measures compute, given a pair of cancep
descriptions, a numerical value between 0 and 1 that lieseclto 1 the more simi-
lar the concepts are. Similarity measures are an importaainsito discover, for in-
stance, functional similarities of genes modeled in orgi@s. In [13] and, more re-
cently, in [19] several similarity measures were evaludtedhe Gene Ontology and

it was concluded that the similarity measure from Resnil @&formed well, if not
best. This similarity measure is an edge-based approadbhvihds the most specific
common ancestor (ms&)f the concepts to be compared in the concept hierarchy and
computes a similarity value based on the number of edgesketthe concepts in ques-
tion and their msa. Clearly, the msa can only yield a namedejatrfrom the TBox and
thus captures possibly ongpmeof the commonalities of the concepts to be compared.
The Ics, in contrast, capturai commonalities and is thus a more faithful starting point
for a similarity measure. In fact, the Ics was employed forikirity measures for DLs

in [6] already. In a similar fashion a similarity measure émmparing individuals can
be based on the msc [10]

! Sometimes also callddast common ancestdica)



Building ontologies.In [11] it was observed that users working with biologicatalo-
gies would like to develop the description of the applicatiategories in an example-
driven way. More precisely, users would like to start by moagindividuals which are
then generalized into a concept description. In fact, inbibigom-up approach for the
construction of knowledge bases [4], a collection of indils is selected for which
a new concept definition is to be introduced in the ontologxclSa definition can be
generated automatically by first generalizing each sedéntéividual into a concept de-
scription (by computing the msc for each of them) and theryapgp the Ics to these
concept descriptions.

The Ics can also be employed to enrich unbalanced concejtrtides by adding
new intermediate concepts [23].

Reconciling heterogeneous sourca@$ie bottom-up procedure sketched before can also
be employed in applications that face the problem that hffeinformation sources
provide differing observations for the same state of adfaffor instance, in context-
aware systems a GPS sensor or a video camera can providendiffeformation on a
the location of a user. Alternatively, in medical applica, different diagnosing meth-
ods may yield differing results. It can be determined whatdkfferent sources agree
on by representing this information as distinct ABox indivals and then by finding a
common generalization of them by the bottom-up approach.

Information retrieval. The msc inference can be employed to obtain a query concept
from an individual to search for other, similar individuaisan ontology [15, 8].

In order to support all these ontology services for pratagplications automati-
cally, computation algorithms for the generalization nefeces infL are needed. Un-
fortunately, the Ics irfL does not always exist, when computed w.r.t. cyclic TBoxes
[1]. Similarly, the msc infL does not always exist, if the ABox is cyclic [12], mainly
because cyclic structures cannot be captureéldrconcept descriptions. In [12] the
authors propose to use an approximation of the msc by lighitie role-depth of the
concept description computed. We pursue this approachfoetbe Ics and the msc
and thus would obtain only “common subsumers” and “spectfitccepts” that are still
generalizations of the input, but not necessarily the leass w.r.t. subsumption. How-
ever, by our proposed method we obt#ie Ics orthe msc w.r.t. the given role depth
bound. We argue that such approximations are still usefoitactice.

Recently, a different approach for obtaining the Ics (ontfse) in presence of cyclic
knowledge bases was proposed in [14] by extendifigvith concept constructors for
greatest fixpoints. In the so obtained [BL" reasoning stays polynomial and the Ics
and msc w.r.t. cyclic knowledge bases can be computed. Hawie DL obtained by
adding constructors for greatest fixpoints is possibly @styg¢o comprehend for naive
users of ontologies.

For medical or context-aware applications knowledge beaes$ypically grow very
large in practice. Thus, in order to support the computatdfcthe (role-depth bounded)
Isc or the msc for such applications, efficient computatibthese generalizations for
&L is desirable. Our computation methods build directly onatwpletion method for
subsumption and instance checking & [2] for which optimizations already exists



and are employed in modern reasoner systems. This enableaglementation of the

role-depth bounded Ics and msc on top of existing reasorsterss. More precisely,

in our completion-based approach, we obtain the role-deptimded Ics by traversing
the data-structures built during the computation of thesauiption hierarchy of the

ontology. The role-depth bounded msc can be obtained frerdalta-structures gener-
ated during the computation of all instance relations ferkhowledge base. We have
recently implemented the completion-based computatidhefole-depth bounded Ics
and msc in our systemgz.

This paper is structured as follows: after introducing basitions of DLs, we dis-
cuss the completion algorithms for classification and mstachecking ir€L in Sec-
tion 3. We extend these methods to computation algorithmihéorole-depth bounded
Ics in Section 4.1 and for the role-depth bounded msc in &eeti2 and we describe
our initial implementation of the presented methods in 8ad&. We conclude the paper
with an outline of possible future work.

2 Preliminaries

We now formally introduce the DIELC. Let N;, No and Ny be disjoint sets oindi-
vidual namesconcept nameandrole namesrespectively£L-concept descriptionare
built according to the syntax rule

C:=T|A|CNnD|3rC

whereA € N¢, andr € Ng.

A general concept inclusiofGCl) is a statement of the ford C D, whereC, D
are&L- concept descriptions. AiC-TBoxis a finite set of GCls. Observe that TBoxes
can be cyclic and allow for multiple inheritance. B6-ABoxis a set of assertions of the
form C(a), orr(a,b), whereC' is anéL-concept descriptiom; € N, anda,b € Ny.
An ontologyor knowledge bask& = (7, .A) consists of a TBog and an ABOXA.

The semantics of is defined by means of interpretatidhs= (A%, -Z) consisting
of a non-emptydomainAZ and aninterpretation function” that assigns binary rela-
tions onA7 to role names, subsets af to concepts and elements 4f to individual
names. The interpretation functieh is extended to concept descriptions in the usual
way. For a more detailed description of the semantic of Dles[3¢

An interpretatior satisfiesa concept inclusiod’ C D, denoted ag = C' C D if
CT C D7, it satisfiesan assertio'(a) (orr(a, b)), denoted ag = C(a) (Z = r(a,b),
resp.) ifa’ € C* ((a%,bT) € v, resp.). An interpretatiofl is amodelof a knowledge
baseX = (T, A) if it satisfies all GCls inf” and all assertions inl.

We say that' is subsumedby D w.r.t. 7 (written C T+ D) if for every modelZ
of T it holds thatZ = C C D. The computation of the subsumption hierarchy of all
named concepts in a TBox is calletdssification

Finally, an individuala € Nj is aninstanceof a concept descriptio’ w.r.t.
(written K |= C(a)) if Z |= C(a) for all modelsZ of K. ABox realizatioris the task of
computing, for each individual in A, the set of named concepts frdGthat have: as
an instance and that are least (WIE}.



In this paper we are interested in computing generalizatiiynleast common sub-
sumers and most specific concepts, which we now formally eefifotice that our
definition is general for any DL and not necessarily specifict.

Definition 1 (least common subsumer)Let £ be a DL,K = (T, A) be aL-KB. The
least common subsuméics) w.r.t. 7 of a collection of concepté’y,...,C, is the
L-concept descriptiod’ such that

1. C;Cy Cforalll <i<n,and
2. for each£-concept descriptiorD holds: if C; &+ D forall 1 < ¢ < n, then
CC+ D.

We will mostly consider the DIEL in this paper. Although defined as arary opera-
tion, we will often write the Ics as a binary operation in tieenainder of the paper for
simplicity.

Definition 2 (most specific concept)Let £ be a DL,K = (T, A) be aL-KB. Themost
specific concepfmsc) w.r.t.KC of an individuala from A is the £-concept description
C' such that

1. K = C(a), and
2. for eachZ-concept descriptio® holds: X = D(a) impliesC T+ D.

Both inferences depend on the DL in use. For the DLs with awetjon as concept
constructor the lcs and msc are, if exist, unique up to etpriee. Thus it is justified to
speak ofthelcs orthemsc. Our computation methods for generalizations are based
the completion method, which we introduce in the followiegtson.

3 Completion Algorithms for €

In principle, completion algorithms try to construct mirdhmodels of the knowledge
base. In case of classification algorithms such a model istnaeted for the TBox and
in case of ABox realization for the whole knowledge base. \&&cdbe the completion
algorithm for ABox realization ir€L, originally described in [2], which can be easily
restricted to obtain algorithms for classification. Whhe former is the basis for com-
puting the role-depth bounded msc, the latter is used tarotita role-depth bounded
Ics.

Foran&L-KB K = (T,.A) we want to test whethe€ |= D(a) holds. The comple-
tion algorithm first adds té& a concept name for the complex concept descripfion
used in the instance check, i.&.,= (T U {4, = D}, A), whereA, is a fresh concept
name ink. The instance checking algorithm fé6£ normalizes the knowledge base
in two steps: first the ABox is transformed into a simple AB&x. ABox is asimple
ABox if it only contains concept names in concept assertions€2#Box .4 can be
transformed into a simple ABox by first replacing each complgsertionC'(A4) in A
by A(a) with a fresh named and, second, introducé = C'in the TBox.

To describe the second normalization step, we need soméamthet X be a
concept description, a TBox, an ABox or a knowledge b&3¢(X ) denotes the set



NFLCNDECE —{DCACNACE}
NF2 3rhCCD-—{CCA3IACD}
NF3 CCD-—{CCAACD}
NF4 BC3I.C — {BC3IrAACC}
NFsBCCND— {BCC,BCD}
whereC, D ¢ CN(T) U {T} andA is a new concept name.

Fig. 1. £€ normalization rules

of all concept names arRN(X) denotes the set of all role names that appeaXin
The signature of X (denotedsig(X)) is thenCN(X) U RN(X). Now, an&L-TBox

T is in normal formif all concept axioms have one of the following forms, where
C1,C5 € sig(T) andD € sig(T) U {L}:

Cl E D7 Cl M CQ E D, Cl E 37’.02 or E'T.Cl E D.

Any EL-TBox can be transformed into normal form by introducing re@mcept names
and by simply applying the normalization rules displayed-igure 1 exhaustively.
These rules replace the GCI on the left-hand side of the wi#sthe set of GCls
on the right-hand side.

Clearly, for a KBKC = (T,.A) the signature of4 may be changed only during the
first of the two normalization steps and the signaturé ehay be extended during both
of the normalization steps. The normalization of the KB cardbne in linear time.

The completion algorithm for instance checking is basecherone for classifying
EL-TBoxes introducedin [2]. LeX =(T, A) be a normalized-KB, i.e., with a simple
ABox A and a TBox7 in normal form. The completion algorithm works on four kinds
of completion setsS(a), S(a,r), S(C) andS(C,r) for eacha € IN(A), eachC €
CN(K), and eachr € RN(K). The sets of the kind(a) andS(a, r) contain individuals
and concept names. The completion algorithm for classificaises only the latter
two kinds of completion setsS(C') and S(C,r), which contain only concept names
from CN(K). Intuitively, the completion rules make implicit subsurneptand instance
relationships explicit in the following sense:

— D e S(C) implies thatC Cr D,

— D € S(C,r) implies thatC' C 3r.D.

— D € S(a) implies thata is an instance oD w.r.t. K,

— D € S(a,r) implies thatz is an instance ofr.D w.r.t. K.

Sk denotes the set of all completion sets of a normaliged he completion sets are
initialized for eachC' € CN(K), eachr € RN(K), and eacl: € IN(.A) as follows:

SE ) ;{C T}
S(a) f.{C € CN(A) | C(a) appearsind} U{T}
— S(a,r):={be€IN(A) | r(a,b) appears ind}.



CR1IfFC € S(X),CC DeT,andD ¢ S(X)
thenS(X) := S(X) U {D}

cr2If C,C2 € S(X),Ci1MC: C D e T,andD ¢ S(X)
thenS(X) := S(X)u {D}

CR3IfC e S(X),CCIr.DeT,andD ¢ S(X,r)
thenS(X,r) := S(X,r) U{D}

CR4IfY € S(X,r),CeS(Y),aIrCC DeT,and
D ¢ S(X) thenS(X) := S(X)u{D}

Fig. 2. £C completion rules

Then these sets are extended by applying the completios shi@vn in Figure 2 until
no more rule applies. In these rul€sC;, C; and D are concept names ands a role
name, whileX andY can refer to concept or individual names in the algorithm for
instance checking. In the algorithm for classificatidhandY refer to concept names.
After the completion has terminated, the following relagdold between an individual
a, a roler and named conceptsand B:

— subsumption relation betweehand B from /C holds iff B € S(A)
— instance relation betweenand B from I holds iff B € S(a),

which has been shown in [2].

To decide the initial queryC = D(a), one has to test now, whethdy, appears in
S(a). In fact, instance queries for all individuals and all nancedcepts from the KB
can be answered now; the completion algorithm does not cerfopn one instance
check, but complete ABox realization. The completion alpon for EC runs in poly-
nomial time in size of the knowledge base.

4 Computing Role-depth Bounded Generalizations

We employ the completion method now to compute first the delpth bounded Ics and
then the role-depth bounded mscif.

4.1 Computing the Role-depth Bounded LCS

As mentioned in the introduction, the Ics does not need tetdrr cyclic TBoxes.
Considerthe TBog = {AC 3r.ANC, BC 3Ir.BNC}. Thelcs ofA andB is then

cCnar(Cnar(Cnar(Cn-..

and cannot be expressed by a finite concept description.oid auch infinite nestings,
we limit the role-depth of the concept description to be catad. Therole-depthof a
concept descriptiof’ (denoted-d(C)) is the maximal number of nested quantifiers of
C. Now we can define the Ics with limited role-depth.



Definition 3 (Role-depth bounded/£-Ics). Let T be an£-TBox andCy,...,C, L-
concept descriptions ankl € IN. Then theL-concept descriptioit” is therole-depth
bounded-least common subsumef C, ..., C, w.rt. 7 and role-depth: (written
k-les(Ch, ..., Cy)) iff

1. rd(C) < F,

2. C;Cr Cforalll1 <i<mn,and

3. for eachZ-concept description® with rd(D) < k it holds that,
C;Cy Dforall 1 <i<nimpliesC C+ D.

The computation algorithm for the role-depth bounded les.wgeneralL-TBoxes,
constructs the concept description from the set of compietiets. More precisely, it
combines and intersects the completion sets in the samiefieasin the cross-product
computation in the Ics algorithm f&#£-concept descriptions (without TBoxes) from
[4]. The method we present here to compute the role-depthdemliics was described
in[17].

However, the completion sets may contain concept namestratintroduced dur-
ing normalization. The returned Ics-concept descriptiooutd only contain concept
names that appear in the initial TBox, thus we need to “denatize” the concept de-
scriptions obtained from the completion sets. Howevergtktension of the signature
by normalization according to the normalization rules freigure 1 does not affect
subsumption tests f&L-concept descriptions formulated w.r.t. the initial sigma of
T. The following Lemma has been shown in [17].

Lemma 1. Let 7 be an£L-TBox and7’ the TBox obtained frorfi by applying the

&L normalization rulesC, D be EL-concept descriptions witkig(C) C sig(7) and
sig(D) C sig(7’) and D’ be the concept description obtained by replacing all names
A € sig(T") \ sig(T) from D with T. ThenC C+ Diff C Ty D'.

Lemma 1 guarantees that subsumption relations w.r.t. threalized TBox7’ between
C andD, also hold w.r.t. the original TBoX for C' andD’, which is basically obtained
from D by removing the names introduced by normalization, i.eacept names from
sig(T") \ sig(7T).

We assume that the role-depth of each input concept of tHeakea role-depth less
or equal tak. This assumption is motivated by the applications of thefcthe one hand
and on the other by the simplicity of presentation, rathanth technical necessity. The
algorithm for computing the role-depth bounded Ics of #Bconcept descriptions is
depicted in Algorithm 1.

The proceduré-Ics first adds concept definitions for the input concept dedorigt
to (a copy of) the TBox and transforms this TBox into the ndizeal TBox 7. Next,
it calls the procedurapply-completion-rules, which applies th&€ completion rules
exhaustively to the TBog’, and stores the obtained set of completion sefs ifihen
it calls the functiork-lcs-r with the concept name4 and B for the input concepts, the
set of completion setS, and the role-depth limik. The result is then de-normalized
and returned (lines 4 to 6). More precisely, in case a compdercept description is
returned fromk-Ics-r, the procedureemove-normalization-names removes concept
names that were added during the normalization of the TBox.



Algorithm 1 Computation of a role-depth boundé&g-Ics.
Procedurek-lcs (C, D, T, k)

Input: C, D: EL-concept descriptions: ££-TBox; k: natural number

Output: k-les(C, D): role-depth bounded(-Ics of C and D w.r.t 7 andk.
1: 7' :=normalize(T U {A = C,B = D})

. S+ = apply-completion-rules(7”)

: L:=k-les-r (A, B,S+, k)

if L = Athenreturn C

else if L = B thenreturn D

: else return remove-normalization-names(L)

s end if

NoOouAWN

Procedurek-lcs-r (A, B, S, k)
Input: A, B: concept names: set of completion setg;: natural number
Output: k-lcs(A, B): role-depth boundeé(-Ics of A and B w.r.t 7 andk.
:if B € S(A)thenreturn B
: elseifA € S(B) thenreturn A
end if
: common-names := S(A) N S(B)
: if K = 0then return 1 P
P €common—names

: else return M PN

P €common—names

a rwN R

(o]

3r. k-les-r (E, F,S, k — 1))
reRN(T) (E,F) € S(A,r)xS(B,r)
7: end if

The functionk-lcs-r gets a pair of concept names, a set of completion sets and a
natural number as inputs. First, it tests whether one ofrthaticoncepts subsumes the
other w.r.t.7”. In that case the name of the subsuming concept is returrtber@ise
the set of concept names that appear in the completion sétstiofinput concepts is
stored incommon-names (line 4)? In case the role-depth bound is reachkd=( 0),
the conjunction of the elements @aommon-names is returned. Otherwise, the ele-
ments incommon-names are conjoined with a conjunction over all roles RN(7T),
where for eachr and each element of the cross-product overrtiseiccessors of the
currentA and B a recursive call t-lcs-r is made with the role-depth bound reduced
by 1 (line 6). This conjunction is then returnedktdcs.

For L = k-lcs(C, D, T, k) it holds by construction thatd(L) < k.2 We now show
that the result of the functiok-lcs is a common subsumer of the input concept de-
scriptions. It was shown in [17] that all conditions of Defion 3 are fulfilled fork-
les(C, D, T, k).

Theorem 1. Let C' and D be £L-concept descriptions] an EL-TBox,k € IN, then
k-les(C, D, T, k) = k-les(C, D).

2 Note, that the intersectiafi(A) N S(B) is never empty, since both sets contdin
8 Recall our assumption: the role-depth of each input corisdpss or equal té.



For cases wherk-Ics returns a concept description with role-depth of less thave
conjecture that it is the exact Ics.

The complexity of the overall method is exponential. Howeifea compact repre-
sentation of the Ics with structure sharing is used, thetseept descriptions can be
represented polynomially.

If a k-lcs is too general and a bigger role depth of thé:s is desired, the comple-
tion of the TBox does not have to be redone for a second coripuitd he completion
sets can simply be “traversed” further.

4.2 Computing the Role-depth Bounded MSC

The msc was first investigated f6€-concept descriptions and w.r.t. unfoldable TBoxes
and possibly cyclic ABoxes in [12]. Similar to the Ics, thean®es not need to exist,
since cyclic structures cannot be expressed&fyconcept descriptions. Now we can
define the msc with limited role-depth.

Definition 4 (role-depth bounded £-msc).Let K =(T, A) be aL-KB anda an indi-
vidual in A andk € IN. Then theL-concept descriptioit’ is therole-depth bounded
EL-most specific concetf ¢ w.r.t. K and role-depthk (written k-mscic(a)) iff

1. rd(C) <k,

2. KEC(a),and

3. for each&L-concept descriptiorD with rd(D) < k holds: K = D(a) implies
CLCrD.

In case the exact msc has a role-depth less thtre role-depth bounded msc is the
exact msc.

Again, we construct the msc by traversing the completios tgetcollect” the msc.
More precisely, the set of completion sets encodes a graipbtste, where the sets
S(X) are the nodes and the s&t6X, ) encode the edges. Traversing this graph struc-
ture, one can construct a-concept. To obtain a finite concept in the presence of
cyclic ABoxes or TBoxes one has to limit the role-depth of tbacept to be obtained.

Definition 5 (traversal concept).Let K be an&L-KB, K be its normalized fornf
the completion set obtained frokhandk € IN. Then theraversal concept of a named
conceptA (denotedk-Cs, (A)) with sig(A) C sig(K”) is the concept obtained from
executing the procedure calaversal-concept-c(A4, Sk, k) shown in Algorithm 2.

Thetraversal concept of an individual(denotedk-Cs,. (a)) with a C sig(K) is the
concept description obtained from executing the procedatetraversal-concept-i(a,
Sk, k) shown in Algorithm 2.

The ideais that the traversal concept of an individual wélimsc. However, the traver-
sal concept contains names that were introduced during almetion. The returned

msc should be formulated w.r.t. the signature of the origii thus the normalization

names need to be removed or replaced.



Algorithm 2 Computation of a role-depth boundé&d-msc.

Procedurek-msc (a, I, k)

Input: a: individual fromfC; K =(7, A) an&L-KB; k € N
Output: role-depth bounded(-msc ofa w.r.t. K andk.

1: (77, A') = simplify-ABox(T, A)

2: K" = (normalize(T"), A’)

3: Sk := apply-completion-rules(K)

4: return Remove-normalization-names ( traversal-concept-i(a, Sk, k))

Proceduretraversal-concept-i (a, S, k)
Input: a: individual name froniC; S: set of completion setd; € IN
Output: role-depth traversal concept (w.it) andk.
1 if k= Othenreturn [, c 5.,y A
2: else return [, ¢ gpy A I
M 3r. traversal-concept-c (4,S,k — 1) M
r€RN(K’") A € CN(K")nS(a,r)
Jr. traversal-concept-i (b, S,k — 1)
r€RN(K"") b € IN(K")NS(a,r)
3: endif

Proceduretraversal-concept-c (A4, S, k)
Input: A: concept name fronC”’; S: set of completion setg; € IN
Output: role-depth bounded traversal concept.

1:if k= Othenretun [ g 4) B

2:elseretun [] BN N [1 3Ir.traversal-concept-c (B,S, k — 1)
BesS(A) reRN(K") BES(A,r)
3: end if

Lemma 2. LetK be an&L-KB, K" its normalized versiorfx be the set of completion
sets obtained fofC, k € N a natural number and € IN(K). Furthermore letC' = k-
Cs, (a) andC be obtained fronC' by removing the normalization names. Then

K" = C(a) iff K = C(a).

This lemma guarantees that removing the normalization sdroen the traversal con-
cept preserves the instance relationships. Intuitiveig, emma holds since the con-
struction of the traversal concept conjoins exhaustiviiiya@amed subsumers and all
subsuming existential restrictions to a normalization eam to the role-depth bound.
Thus removing the normalization name does not change tleasixh of the conjunc-
tion. The proof can be found in [18]. We are now ready to degisemputation algo-
rithm for the role-depth bounded msc: procedkhresc as displayed in Algorithm 2.

The proceduré&-msc has an individuak from a knowledge bask, the knowledge
basel itself and numbek: for the role depth-bound as parameter. It first performs the
two normalization steps ok, then applies the completion rules from Figure 2 to the
normalized KBK and stores the set of completion setSjn Afterwards it computes
the traversal-concept af from Sx. w.r.t. role-depth bound. In a post-processing step
it appliesRemove-normalization-names to the traversal concept.



Obviously, the concept description returned from the pdacek-msc has a role-
depth less or equal tle. The other conditions of Definition 4 are fulfilled as well, iaih
has been shown in [18] yielding the correctness of the ovgratedure.

Theorem 2. LetK = (T, .A) be an€L-KB anda an individual inA andk € N.
Thenk-msc(a, K, k) = k-msci(a).

Thek-msc can grow exponential in the size of the knowledge base.

5 Implementation of GEL

The completion algorithm for classifyingC TBoxes was first implemented in theeC
reasoner [5]. We used its successor sysi€mL [16] as a starting point for our imple-
mentation for the computation of the role-depth boundeédias msc. The implemen-
tation was done in Java and provides a simple GUI for the oggoéditor RROTEGE as
can be seen in the screen-shot in Figure 3.

Flz Edt Ontologes FReasoner Tools Refactor Tebs \iew Window Help
[<] = [®mmixastiion | o J
Active Griology | Ertties | Classes | Object Properfies | Dala Properies | Idviduals | DWLViz | DL uery
| Selasted entity | Laast Common Subsumer
L cast Com, e FEEE
Input concept descriptions
(] |organism and has some big_left_ear and has some retina_degenerates and has some axon_ferminals_degenerated_in_ca2
[l |organism and has some deformed_right_ear and has some axon_terminals_degenerated_in_ca3 and has some atrophied_hippocampus
»- @ axon_terminal 0
b @ca2 (8]
B Deas o
b Bcell 0
b @ gecreased E
# dopaminergic_neuron
> o
eac ]
P O
q 3
= bam | E]
| Compute Les
Least Gommon Subsumer Resut
«| x| (has some foverlaps some narvous_system and overlaps some nauron and part_of some nervous_system and part_of soms br
= (|| ainand averlaps some axon and has_part Some (part_of Some nenous_systam and part_of Some nsuron and axon_terminals_
401 “|| | degenerated and par_of some axon and part_of some arganism and has_quality some degenerated) and part_of same organis
4 oipt m and overlaps some organism and part_of some hippocampus) and has some (part_of some nervous_system and part_of so
me brain and part_of some organism and has_quality some degenerated) and organism and has some (has_quality some mor
4 o1p2 5 i
I phology and part_of some head and ear) and part_of some organism)
4 01p3
4 o1p4
4 o1p5s
4 o1ps ~
No Reasoner set [Vl Show Inferences

Fig. 3.LCS plugin

Our implementation of the methods presented here accdssaddrnal data struc-
tures of JCEL directly, providing a full integration of &L into JCEL. The reasoning
methods in &L are in this first version realized in a naive way and are stihéed of
optimizations in order to handle the large knowledge basaisdan be encountered in
practice.

The concept descriptions returned by the Ics and the msc rcam exponentially
in the worst case. On top of that, the returned concept gegms are quite redundant
in our current implementation, which might be acceptablaesiéd as an input for a



similarity measure, but surely not if presented to a humadee It is future work to
investigate methods for minimal rewritings of concept diggions w.r.t. a generall
knowledge base in order to be able to present redundaneygdreept descriptions. Our
tool will be made available as a plug-in for the ontology edPROTEGE and an API
for the k-limited Ics and -msc is planned. The former system soni¢ iiaplemented
the Ics and msc as well, but allowed only for acyclic, unfolear Boxes.

6 Conclusions

In this paper we have presented a practical method for cdnthie role-depth bounded
Ics and the role-depth bounded mscddfconcepts w.r.t. a general TBox. We have ar-
gued that such generalization inferences are useful fal@gy-based applications in
many ways. Our approach for computing (approximationshad$¢ inferences is based
on the completion sets that are computed during classicati a TBox or realization
of an ABox. Thus, any of the available implementations offieompletion algorithm
can be easily extended to an implementation of the two génatian inferences con-
sidered here. The same idea can be adapted for the computétieneralizations in
the probabilistic DL Prot££2" [17,18].

These theoretical results complete the (approximativedbeup approach for gen-
eral £&£- (and Prob€£2'-) KBs. Continuing on the theoretical side, we want to inves-
tigate the bottom-up constructions (i.e. Ics and msc coatfmurts) in more expressive
members of the&€L-family. We want to extend the approximative methodsio-+,
which extend€L, for example, by transitive roles and role hierarchieshSarcexten-
sion would enable generalization reasoning services &0OWL 2 EL profile. Another
interesting extension is to allow for more expressive mdéangrobabilities.

Although a non-redundant representation of the conceptrigiéidns obtained by
the approximative Ics and msc is desirable when presentadhtoman reader, it is not
clear whether a minimal representation of the obtainedeptaescriptions is favorable
in every case. It might depend on the similarity measured@red whether a redundant
representation of a concept is preferable over a compact one

On the practical side, our future work will include evaloa$ of the usefulness
of the offered reasoning services for biomedical applicetiand the development and
testing of optimizations regarding the performance of thplementation.

AcknowledgmentsWe would like to thank Andreas Ecke and Julian Mendez forthei
implementation effort.
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