
Debugging EL+ Ontologies through
Horn MUS Enumeration

Alexey Ignatiev1, Joao Marques-Silva1, Carlos Menćıa2, and Rafael Peñaloza3

1 University of Lisbon, Portugal ({aignatiev,jpms}@ciencias.ulisboa.pt)
2 University of Oviedo, Spain (cmencia@gmail.com)

3 Free University of Bozen-Bolzano, Italy (penaloza@inf.unibz.it)

Abstract. In description logics (DLs), axiom pinpointing refers to the
problem of enumerating the minimal subsets of axioms from an ontology
that entail a given consequence. Recent developments on axiom pin-
pointing for light-weight DLs are based on translating this problem into
the enumeration of all minimally unsatisfiable subformulas (MUSes) of
a propositional formula, and using advanced SAT-based techniques for
solving it. Further optimizations have been obtained by targeting the
MUS enumerator to the specific properties of the formula obtained.
In this paper we describe different improvements that have been con-
sidered since the translation was first proposed. Through an empirical
study, we analyse the behaviour of these techniques and how it depends
on different characteristics of the original pinpointing problem, and the
translated SAT formula.

1 Introduction

Description logics, in particular those from the EL family, have been successfully
used to represent the knowledge of many application domains, forming large
ontologies. And their popularity is continuously increasing. Ontology develop-
ment, however, is very error-prone and it is not uncommon to find unwanted (or
unexpected) consequences being entailed. To understand and correct the causes
of these consequences on existing ontologies—some of which have hundreds of
thousands of axioms—without the help of any automated tools would be impos-
sible. Axiom pinpointing refers to the task of finding the precise axioms in an
ontology that cause a consequence to follow [28], or that need to be corrected
for avoiding it.

Recent years have witnessed remarkable improvements in axiom pinpointing
technologies, specially for logics in the EL family [2,3,6–8,22,23,36,37]. Among
these, the use of SAT-based methods [2,3,36] has been shown to outperform other
alternative approaches very significantly. These methods reduce the axiom pin-
pointing problem to a propositional Horn formula, and apply highly-optimized
SAT tools, along with some ad-hoc optimizations to enumerate all the (minimal)
subontologies that entail the consequence. Recently, it was shown that the use of
techniques developed specifically to handle Horn formulas can further improve
the performance of these methods [1].

In this paper, we propose an integrated tool for analysing ontologies that
integrates different methods for solving axiom pinpointing and other related
problems. Specifically, we show that by considering the shape of the Horn for-
mula obtained, we can explain and repair consequences from ontologies, and
also find justifications of a desired size, among other tasks. An experimental
analysis shows the behaviour of these techniques, and how it depends on the
characteristics of the input problem, and in particular of the output it produces.

2 Preliminaries

We assume some basic knowledge of the DL EL+ [5] and propositional logic [10],
but we briefly recall the main notions needed for this paper.

2.1 The Lightweight Description Logic EL+

In the DL EL+, concepts are built from two disjoint sets NC and NR of concept
names and role names through the grammar rule C ::= A | > | C u C | ∃r.C,
where A ∈ NC and r ∈ NR. The knowledge of the domain is stored in a TBox :
a finite set of general concept inclusions (GCIs) of the form C v D, where C
and D are EL+ concepts, and role inclusions (RIs) of the form r1 ◦ · · · ◦ rn v s,
where n ≥ 1 and ri, s ∈ NR. We will often use the term axiom to refer to both
GCIs and RIs.

The semantics of this logic is based on interpretations, which are pairs of the
form I = (∆I , ·I) where ∆I is a non-empty set called the domain and ·I is the
interpretation function that maps every A ∈ NC to a set AI ⊆ ∆I and every
r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . The interpretation I satisfies the
GCI C v D iff CI ⊆ DI ; it satisfies the RI r1 ◦ · · · ◦ rn v s iff rI1 ◦ · · · ◦ rIn ⊆ sI ,
where ◦ denotes the composition of binary relations. I is a model of T iff I
satisfies all its GCIs and RIs.

The main reasoning problem in EL+ is to decide subsumption between con-
cepts. A concept C is subsumed by D w.r.t. T (denoted C vT D) if for every
model I of T it holds that CI ⊆ DI . Classification refers to the task of deciding
all the subsumption relations between concept names appearing in T . Rather
than merely deciding whether a subsumption relation follows from a TBox, we
are interested in understanding the causes of this consequence, and repairing it
if necessary.

Definition 1 (MinA, diagnosis). A MinA for C v D w.r.t. the TBox T is
a minimal subset (w.r.t. set inclusion) M⊆ T such that C vM D. A diagnosis
for C v D w.r.t. T is a minimal subset (w.r.t. set inclusion) D ⊆ T such that
C 6vT \D D.4

It is well known that MinAs and diagnoses are closely related by minimal hitting
set duality [21,35]. More precisely, the minimal hitting sets of the set of all MinAs
is exactly the set of all repairs, and vice versa.

4 MinAs are also often called justifications in the literature [17,34].

Example 2. Consider the TBox Texa = {A v ∃r.A,A v Y, ∃r.Y v B, Y v B}.
There are two MinAs for A v B w.r.t. Texa, namely M1 = {A v Y, Y v B},
and M2 = {A v ∃r.A,A v Y, ∃r.Y v B}. The diagnoses for this subsumption
relation are {A v Y }, {A v ∃r.A, Y v B}, and {∃r.Y v B, Y v B}.

2.2 Propositional Satisfiability

In propositional logic, we consider a set of Boolean (or propositional) variables
X. A literal is either a variable x ∈ X or its negation (¬x). The former are
called positive literals, and the latter are negative. A finite disjunction of literals
is called a clause. Finally, a CNF formula (or formula for short) is a finite
conjunction of clauses. One special class of formulas are Horn formulas. These
are CNF formulas whose clauses contain at most one positive literal.

Clauses and formulas are interpreted via truth assignments. A truth assign-
ment is a mapping µ: X → {0, 1}. This truth assignment is extended to literals,
clauses, and formulas in the obvious manner. If µ satisfies the formula F , then
µ is called a model of F . Propositional satisfiability refers to the problem of
deciding whether a given formula F has a model or not. If it does not have a
model, then F is called unsatisfiable. As it is well known, this problem is in gen-
eral NP-complete. However, when considering only Horn formulas, satisfiability
is decidable in polynomial time [13,16,27].

Just as in the case of description logics, one is sometimes interested in un-
derstanding (and correcting) the causes for inconsistency of a formula. For this
reason, the following subsets are usually considered [21,25].

Definition 3 (MUS, MCS). Let F be an unsatisfiable formula. A subformula
M⊆ F is called minimally unsatisfiable subset (MUS) of F iff M is unsatisfi-
able and for all c ∈M,M\ {c} is satisfiable. The formula C ⊆ F is a minimal
correction subset (MCS) iff F \ C is satisfiable and for all c ∈ C,F \ (C \ {c}) is
unsatisfiable.

MUSes and MCSes are related by hitting set duality [9, 11, 32, 39]. Notice that
MUSes and MCSes are closely related to MinAs and diagnoses from Definition 1,
respectively. Indeed, although EL+ and propositional logic differ in expressivity
and in the inferences of interest, in both cases the goal is to find minimal infor-
mation that explains, or removes, the inference.

A generalization of the notion of a MUS is that of a group-MUS [21]. In this
case, the clauses of the unsatisfiable formula F are partitioned into groups, and
the goal is not to find the specific clauses that cause unsatisfiability, but the
groups to which they belong. This notion is formalized next.

Definition 4 (Group-MUS). Given an explicitly partitioned unsatisfiable CNF
formula F = G0 ∪ ...∪Gk, a group-MUS of F is a set of groups G ⊆ {G1, ...,Gk},
such that G0∪G is unsatisfiable, and for every Gi ∈ G, G0∪ (G \Gi) is satisfiable.

Notice that MUSes are a special cases of group-MUSes in which the group G0 is
empty, and all other groups are singletons, containing a clauses from F . One can

also define the generalization of MCSes to group-MCSes in the obvious way. In
the following, we will often call a formula whose clauses have been partitioned
in groups as in Definition 4 a group formula.

During the last years, highly-optimized methods for the enumeration of
(group-)MUSes of propositional formulas have been developed and implemented.
Taking advantage of these developments, it has been proposed to translate the
problem of enumerating MinAs and diagnoses in DLs—and in particular in
EL+—to MUS and MCS enumeration in propositional logic. In the following
section we briefly recall the basic ideas of this translation and present a few
further insights for improving the overall efficiency of MinA enumeration.

3 The SAT Encoding

The main problem we consider in this section is the enumeration of the MinAs
and diagnoses for a given subsumption relation w.r.t. an EL+ TBox T . Our
approach consists of three main components: The first one classifies the TBox
T and encodes the classification procedure into a set of Horn clauses H. Given
a subsumption relation entailed by T , which we aim to analyze, the second
component creates and simplifies an unsatisfiable Horn formula, and partitions
it in a suitable manner to reduce the DL enumeration problems into group-MUS
and group-MCS enumerations. Finally, the third component computes group-
MUSes and group-MCSes, corresponding to MinAs and diagnoses, respectively.
Each of its components is explained in more detail next.

3.1 Classification and Horn Encoding

During the classification of T , a Horn formula H is created according to the
method introduced in EL+SAT [36, 37]. To this end, each axiom ai ∈ T is
initially assigned a unique selector variable s[ai]. The classification of T is done
in two phases (see [5, 7] for more details).

First, T is normalized so that it only contains GCIs of the forms

(A1 u ... uAk) v B A v ∃r.B ∃r.A v B,

where A,Ai, B ∈ NC ∪{>} and k ≥ 1, and RIs of the form

r1 ◦ ... ◦ rn v s

with r, ri, s ∈ NR and n ≥ 1. The normalization process runs in linear time
and results in a TBox T N where each axiom ai ∈ T is substituted by a set of
axioms in normal form {ai1, ..., aimi

}. At this point, the clauses s[ai] → s[aik],
with 1 ≤ k ≤ mi, are added to the Horn formula H.

Then, the normalized TBox T N is saturated through the exhaustive applica-
tion of the completion rules shown in Table 1, resulting in the extended TBox T ′.
Each of the rows in Table 1 constitute a so-called completion rule. Their appli-

Table 1: EL+ Completion Rules

Preconditions Inferred axiom

A v Ai, 1 ≤ i ≤ n A1 u uAn v B A v B
A v A1 A1 v ∃r.B A v ∃r.B

A v ∃r.B, B v B1 ∃r.B1 v B2 A v B2

Ai−1 v ∃ri.Ai, 1 ≤ i ≤ n r1 ◦ ... ◦ rn v r A0 v ∃r.An

cation is sound and complete for inferring (atomic) subsumptions [5]. Whenever
a rule r can be applied (with antecedents ant(r)) leading to inferring an axiom
ai, the Horn clause (

∧
{aj∈ant(r)} s[aj])→ s[ai] is added to H.

The completion algorithm—and hence the construction of the formula H—
terminates after polynomially many rule applications. The result of this con-
struction is a Horn formula that encodes all possible derivations that can be
obtained through applications of the completion algorithm, to infer any atomic
subsumption relation; that is, any entailment X vT Y , with X,Y ∈ NC.

3.2 Generation of Group Horn Formulas

After classifying T , the extended TBox T ′ contains all atomic subsumptions
that can be derived from T . For a given such entailment A v B ∈ T ′, we might
be interested in computing their MinAs or diagnoses. Each of these queries will
result in a group Horn formula defined as: HG = {G0,G1, ...,G| T |}, where G0 =
H∪{(¬s[AvB])} and for each axiom ai (i > 0) in the original TBox T , the group
Gi = {(s[ai])} is defined with a single unit clause defined by the selector variable
of the axiom. By construction, HG is unsatisfiable. Moreover, its group-MUSes
correspond to the MinAs for A vT B (see [2,3] for the full details). Equivalently,
due to the hitting set duality between MinAs and diagnoses, which also holds
for group-MUSes and group-MCSes, the group-MCSes of HG correspond to the
diagnoses for A vT B.

To improve the efficiency of these enumeration problems, the formula HG

is often simplified through different techniques. In particular, two simplification
techniques based on syntactic modularization were proposed in [36, 37]. These
techniques have been shown to reduce the size of the formulas to a great extent.

3.3 Computation of Group-MUSes and Group-MCSes

The last step in the process is to enumerate all the group-MUSes or group-MCSes
of the formulaHG constructed in Section 3.2. Previous work has proposed the use
of a general purpose MUS enumerator, or other techniques focused on propo-
sitional formulas, together with some ad-hoc optimizations [23, 24, 36, 37]. In
contrast, we exploit the fact that HG is a Horn formula, which can be treated

Algorithm 1: eMUS [30] / MARCO [20]

Input: F a CNF formula
Output: Reports the set of MUSes (and MCSes) of F

1 〈I,Q〉 ← 〈{pi | ci ∈ F}, ∅〉 // Variable pi picks clause ci
2 while true do
3 (st, P)← MaximalModel(Q)
4 if not st then return
5 F ′ ← {ci | pi ∈ P} // Pick selected clauses

6 if not SAT(F ′) then
7 M← ComputeMUS(F ′)
8 ReportMUS(M)
9 b← {¬pi | ci ∈M} // Negative clause blocking the MUS

10 else
11 ReportMCS(F \ F ′)
12 b← {pi | pi ∈ I \ P} // Positive clause blocking the MCS

13 Q ← Q∪ {b}

more efficiently via optimized unit propagation techniques. Thus, we enumer-
ate group-MUSes and group-MCSes using the state-of-the-art HgMUS enu-
merator [3]. HgMUS exploits hitting set dualization between (group-) MCSes
and (group-) MUSes and, hence, it shares ideas also explored in MaxHS [12],
EMUS/MARCO [19,30], and many other systems.

As shown in Algorithm 1, these methods rely on a two (SAT) solvers ap-
proach. The formula Q is defined over a set of selector variables corresponding
to the clauses in F . This formula is used to enumerate subsets of F . Iteratively,
the algorithm computes a maximal model P of Q and tests whether the subfor-
mula F ′ ⊆ F containing the clauses associated to P is satisfiable. If this formula
is satisfiable, then F \ F ′ is an MCS of F . Otherwise, F ′ can be reduced to an
MUS, and the result of this reduction is reported. To avoid observing the same
MUS or MCS in a later iteration, all such sets found are blocked by adding the
respective clauses to Q.

HgMUS shares the main organization of Algorithm 1, with F = G0 and
Q defined over selector variables for groups Gi of HG, with i > 0. However, it
also includes some specific features for handling Horn formulas more efficiently.
First, it uses linear time unit resolution (LTUR) [27] to check satisfiability of the
formula in linear time. Additionally, HgMUS integrates a dedicated insertion-
based MUS extractor as well as an efficient algorithm for computing maximal
models. The latter is based on a recently proposed reduction from maximal
model computation to MCSes computation [26].

3.4 Additional Features

Although the main goal of this work is to enumerate the MinAs and diagnoses
of a given consequence, it is important to notice that the construction of the

Horn formula HG described earlier in this section can be used, together with
other advanced techniques from propositional satisfiability, to provide additional
services to axiom pinpointing. We describe some of these next.

Diagnosing Multiple Subsumption Relations Simultaneously Defini-
tion 1 considers only one subsumption relation that needs to be understood
or removed. However, in a typical knowledge engineering workflow one will often
be interested in looking at several consequences simultaneously. For example, if
several errors are detected, then one wants to find a maximal subset of the TBox
that removes all of those errors. Once that the formula HG is constructed, it is
possible to look at several atomic subsumptions as follows. Given a set of atomic
subsumptions Ai v Bi ∈ T ′, 1 ≤ i ≤ n, one needs simply to add all the unit
clauses (¬s[AivBi]) to G0 in HG. In this case, the formula becomes unsatisfiable
as soon as any of the atomic subsumptions is derivable. Thus, a group-MCS for
this formula corresponds to a diagnosis that eliminates all these subsumption
relations. Analogously, a group-MUS corresponds to axioms that entail at least
one of these consequences.

Computing Smallest MinAs Alternatively to enumerating all the possible
MinAs, one may want to compute only those of the minimum possible size.
This would be the case, for instance, when the MinA will be reviewed by a
human expert, and retrieving large subsets of the TBox T would make the
task of understanding them harder. To enable this functionality, one can simply
integrate a state-of-the-art solver for the smallest MUS (SMUS) problem such
as Forqes [15]. Notice that the decision version of the SMUS problem is known
to be Σp

2-complete for general CNF formulas [14,18], but this complexity bound
is lowered to NP-completeness for Horn formulas [7, 28]. As HgMUS, Forqes
is based on the hitting set dualization between (group) MUSes and (group)
MCSes. The tool iteratively computes minimum hitting sets of a set of MCSes
of a formula detected so far. While these minimum hitting sets are satisfiable,
they are grown into an MSS, whose complement is an MCS which is added to the
set of MCSes. The process terminates when an unsatisfiable minimum hitting
set is identified, representing a smallest MUS of the formula.

All these features have been implemented in the system BEACON [1], which
is available at http://logos.ucd.ie/web/doku.php?id=beacon-tool. The per-
formance of this system has been analyzed, in comparison to other existing ax-
iom pinpointing tools, in previous work [1]. In the following section we perform
an empirical analysis aiming at understanding the behaviour of BEACON in
relation to different characteristics of the input problem and the propositional
formula obtained.

http://logos.ucd.ie/web/doku.php?id=beacon-tool

Table 2: Summary of Instances

Full-Galen Not-Galen GO NCI Snomed-CT
fu

ll # clauses 3880668 148104 294783 342826 36530904
axioms 36544 4379 20466 46800 310024

C
O

I

clauses (avg) 637680 17888 3900 7693 3722424
clauses (max) 1234308 35787 40857 44294 11325511
axioms (avg) 118 24 13 15 80
axioms (max) 242 78 30 43 199

x
2

clauses (avg) 3834 378 109 67 6261
clauses (max) 10076 1580 348 314 33643
axioms (avg) 118 24 13 15 80
axioms (max) 242 78 30 43 199

4 Experimental Results

In this section, we present some experimental results aimed to understand-
ing the properties of our approach and its behaviour on different kinds of in-
stances. To this end, we took the instances originally proposed by Sebastiani
and Vescovi [37], which have become de facto benchmarks for axiom pinpointing
tools in EL+. The experimental setup considers 500 subsumption relations that
follow from five well-known EL+ bio-medical ontologies. These are GALEN [31]
(FULL-GALEN and NOT-GALEN), the Gene Ontology (GO) [4], NCI [38], and
SNOMED-CT [40]. Specifically, for each of these ontologies, 100 subusmption
relations were chosen: 50 were randomly selected from the space of all entailed
subsumption relations, and 50 were selected as those that appear most often in
the head of a Horn clause in the encoding. This choice was made as a heuristic
for instances that should contain more MinAs and be harder to solve (see [37])
for the full details.

For each of these 500 instances, we considered three variants: the full formula,
as obtained through the construction described in Section 3, and the smaller for-
mulas obtained after applying the cone of influence (COI) and x2 optimizations
from [37]. Intuitively, the COI technique traverses the formula backwards, con-
sidering the clauses containing assertions that were used for deriving the queried
subsumption relation. The COI module consists of the set of (original) axioms
that were found in the computation of the COI formula. The x2 technique en-
codes the subontology represented by the COI module, which usually results in
a smaller Horn formula, containing the same axiom variables. Overall, this gives
us a corpus of 1500 Horn formulas of varying size and structure, and providing
a large range of hardness (see Table 2). For our experiments, all these formulas
were fed to the back-end engine used by BEACON; that is, to HgMUS. The
experiments were run on a Linux cluster (2Ghz) with a time limit of 3600s and
4Gbytes of memory.

1e
−

01
1e

+
01

1e
+

03

1e+02 1e+04 1e+06 1e+08
#Clauses

T
im

e
(s

)

#Axioms

Fig. 1: Plot comparing the size of the Horn formula (x-axis) and the number of
axioms (gradient) to the time needed to solve an instance. Notice that all scales
are logarithmic.

As explained before, our goal is not to compare the performance of HgMUS
against other proposed approaches. Such a comparison can be found in previous
work [1,3]. Likewise, the effect of the two proposed optimizations (COI and x2)
has been analysed in detail in [37] (albeit, in a different system). One conclusion
obtained from the latter analysis is that the COI optimization improves the
results over the full formula, and x2 performs better than COI.

A simple analysis shows that the same behaviour is observed when HgMUS
is used as the underlying Horn MUS enumeration tool. One possible explanation
for the improvements obtained through COI and x2 is that these optimizations
produce smaller formulas with smaller axioms, which are easier to handle by
HgMUS. Recall, in addition, that ontology size is a very good predictor for
hardness of inferences in DLs [33]. Through Figure 1, we observe that this in-
tuition is correct, but there are other factors influencing the performance of the
enumerator. The figure compares the time required to solve an instance (y-axis)
against the size of the formula and number of axioms used in that instance
(shown in the gradient). While it is true that time tends to increase as either of
these factors grows, the correlation is not very high. See for example the cluster
of instances with over 50,000 clauses and 1000 axioms that are solved in no time
(bottom line of the figure).

A better predictor for the time needed to find all MinAs seems to be the
size of the output. As seen in Figure 2, the time required to solve an instance
increases with both, the number of MinAs found in that instance (shown through
the gradient, where a colder color means a larger number of MinAs), and the
average size of the MinAs found (shown through the size of the dots in the plot).
Notice that there is a large concentration of big, cold dots at the top line of the

1e
−

01
1e

+
01

1e
+

03

1e+02 1e+05 1e+08
#Clauses

T
im

e
(s

)

#MinAs

Avg. MinA size

Fig. 2: Plot comparing the size of the Horn formula (x-axis), the number of
MinAs (gradient), and the average MinA size (size) to the time needed to solve
an instance. Notice that the scales of the axes are logarithmic.

plot. Some of these correspond to the 73 instances that timed-out. Interestingly,
in one instance we were able to enumerate over 3200 MinAs before the allocated
time of 3600s. was spent. For comparison, notice that the average number of
MinAs found over all the instances is below 20, and when restricted to only
those instances fully solved, this average drops down to 6.5.

Finally, we verify whether the theoretical output-complexity hardness of MinA
enumeration is observed also in practice. In a nutshell, it is known that as more
MinAs are found, it becomes harder to find a new one, or to decide whether
no additional solutions exist [29]. As shown in Figure 3, the maximum delay
between solutions increases with the number of MinAs. However, the relation to
the average delay is not so direct.

In order to understand these relationships in more detail, we will need to
design experiments aimed at finding the differentiating properties of the hard
and simple instances observed. In addition, we will need to develop better op-
timizations that will allow us to fully solve the missing instances, at least over
the reduced formulas. Both of these steps will be the focus of future work.

5 Conclusions

In this paper, we have presented a new approach for enumerating MinAs in
the light-weight DL EL+ through the enumeration of Horn group-MUSes. The
approach is based on a previously explored translation from EL+ to Horn formu-
las. One of the differentiating features of our proposal is that it uses a dedicated
Horn enumeration tool, which is able to exploit the linear time unit resolution
algorithm available for this logic.

0
25

50
75

10
0

10 1000
#MinAs

A
ve

ra
ge

 D
el

ay
 (

s)

MaxDelay

Fig. 3: Plot comparing the number of MinAs (x-axis) to the average and maxi-
mum delay observed between solutions.

By using the properties of propositional Horn formulas, we show that it is
possible not only to efficiently enumerate all MinAs for large EL+ ontologies, but
also solve other associated problems, like repairing an error, or finding justifi-
cations of minimal size. Interestingly, the effectiveness of our methods depends
only on the existence of a Horn formula, and not on the properties of EL+; thus,
it should be possible to produce efficient axiom pinpointing and repair methods
for other DLs as well.

Through an empirical evaluation, we observe that the size of the output is
an important contributing factor to the total time spent by our method. Since
we cannot avoid generating this output, it is unclear how our methods can be
improved to avoid such a bottleneck. However, we plan to further analyse the
behaviour of the MinA enumeration, and extend it with an analysis of the other
related reasoning tasks, to identify potential improvements, or cases that can be
solved easily.

References

1. M. F. Arif, C. Menćıa, A. Ignatiev, N. Manthey, R. Peñaloza, and J. Marques-
Silva. BEACON: an efficient sat-based tool for debugging EL+ ontologies. In
N. Creignou and D. L. Berre, editors, Proceedings of the 19th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2016), volume
9710 of Lecture Notes in Computer Science, pages 521–530. Springer, 2016.

2. M. F. Arif, C. Menćıa, and J. Marques-Silva. Efficient axiom pinpointing with
EL2MCS. In KI, pages 225–233, 2015.

3. M. F. Arif, C. Menćıa, and J. Marques-Silva. Efficient MUS enumeration of Horn
formulae with applications to axiom pinpointing. In SAT, pages 324–342, 2015.

4. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, and et al. Gene ontology: tool for
the unification of biology. Nat. Genet., 25(1):25–29, 2000.

5. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In IJCAI, pages
364–369, 2005.

6. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL - A polynomial-time reasoner
for life science ontologies. In IJCAR, pages 287–291, 2006.

7. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description
logic EL+. In KI, pages 52–67, 2007.

8. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pin-
pointing in the description logic EL+. In KR-MED, 2008.

9. J. Bailey and P. J. Stuckey. Discovery of minimal unsatisfiable subsets of con-
straints using hitting set dualization. In PADL, pages 174–186, 2005.

10. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiabil-
ity, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

11. E. Birnbaum and E. L. Lozinskii. Consistent subsets of inconsistent systems:
structure and behaviour. J. Exp. Theor. Artif. Intell., 15(1):25–46, 2003.

12. J. Davies and F. Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In CP, pages 225–239, 2011.

13. W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program., 1(3):267–284, 1984.

14. A. Gupta. Learning Abstractions for Model Checking. PhD thesis, Carnegie Mellon
University, June 2006.

15. A. Ignatiev, A. Previti, M. Liffiton, and J. Marques-Silva. Smallest MUS extraction
with minimal hitting set dualization. In CP, 2015.

16. A. Itai and J. A. Makowsky. Unification as a complexity measure for logic pro-
gramming. J. Log. Program., 4(2):105–117, 1987.

17. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In ISWC, pages 267–280, 2007.

18. P. Liberatore. Redundancy in logic I: CNF propositional formulae. Artif. Intell.,
163(2):203–232, 2005.

19. M. H. Liffiton and A. Malik. Enumerating infeasibility: Finding multiple MUSes
quickly. In CPAIOR, pages 160–175, 2013.

20. M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUs
enumeration. Constraints, 2015. Online version: http://link.springer.com/

article/10.1007/s10601-015-9183-0.
21. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable

subsets of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.
22. M. Ludwig. Just: a tool for computing justifications w.r.t. ELH ontologies. In

ORE, 2014.
23. N. Manthey and R. Peñaloza. Exploiting SAT technology for axiom pinpointing.

Technical Report LTCS 15-05, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden, April 2015. Available from
https://ddll.inf.tu-dresden.de/web/Techreport3010.

24. N. Manthey, R. Peñaloza, and S. Rudolph. Efficient axiom pinpointing in EL using
SAT technology. In M. Lenzerini and R. Peñaloza, editors, Proceedings of the 29th
International Workshop on Description Logics, (DL 2016), volume 1577 of CEUR
Workshop Proceedings. CEUR-WS.org, 2016.

25. J. Marques-Silva, F. Heras, M. Janota, A. Previti, and A. Belov. On computing
minimal correction subsets. In IJCAI, pages 615–622, 2013.

http://link.springer.com/article/10.1007/s10601-015-9183-0
http://link.springer.com/article/10.1007/s10601-015-9183-0
https://ddll.inf.tu-dresden.de/web/Techreport3010

26. C. Menćıa, A. Previti, and J. Marques-Silva. Literal-based MCS extraction. In
IJCAI, pages 1973–1979, 2015.

27. M. Minoux. LTUR: A simplified linear-time unit resolution algorithm for Horn
formulae and computer implementation. Inf. Process. Lett., 29(1):1–12, 1988.

28. R. Peñaloza. Axiom pinpointing in description logics and beyond. PhD thesis,
Dresden University of Technology, 2009.

29. R. Peñaloza and B. Sertkaya. On the complexity of axiom pinpointing in the EL
family of description logics. In KR, 2010.

30. A. Previti and J. Marques-Silva. Partial MUS enumeration. In AAAI, pages 818–
825, 2013.

31. A. L. Rector and I. R. Horrocks. Experience building a large, re-usable medical
ontology using a description logic with transitivity and concept inclusions. In
Workshop on Ontological Engineering, pages 414–418, 1997.

32. R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95,
1987.

33. V. Sazonau, U. Sattler, and G. Brown. Predicting performance of OWL reasoners:
Locally or globally? In C. Baral, G. D. Giacomo, and T. Eiter, editors, Proceedings
of the Fourteenth International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 2014). AAAI Press, 2014.

34. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. pages 355–362. Morgan Kaufmann, 2003.

35. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. In IJCAI, pages 355–362, 2003.

36. R. Sebastiani and M. Vescovi. Axiom pinpointing in lightweight description logics
via Horn-SAT encoding and conflict analysis. In CADE, pages 84–99, 2009.

37. R. Sebastiani and M. Vescovi. Axiom pinpointing in large EL+ ontologies via SAT
and SMT techniques. Technical Report DISI-15-010, DISI, University of Trento,
Italy, April 2015. Under Journal Submission. Available as http://disi.unitn.

it/~rseba/elsat/elsat_techrep.pdf.
38. N. Sioutos, S. de Coronado, M. W. Haber, F. W. Hartel, W. Shaiu, and L. W.

Wright. NCI thesaurus: A semantic model integrating cancer-related clinical and
molecular information. J. Biomed. Inform., 40(1):30–43, 2007.

39. J. Slaney. Set-theoretic duality: A fundamental feature of combinatorial optimisa-
tion. In ECAI, pages 843–848, 2014.

40. K. A. Spackman, K. E. Campbell, and R. A. Côté. SNOMED RT: a reference
terminology for health care. In AMIA, 1997.

http://disi.unitn.it/~rseba/elsat/elsat_techrep.pdf
http://disi.unitn.it/~rseba/elsat/elsat_techrep.pdf

	Debugging EL+ Ontologies through Horn MUS Enumeration

