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I N T R O D U C T I O N

The development of cutting-edge micro and opto-electronic devices requires
increasingly high standards on the material quality. Indeed, up to nowadays,
the advancement of the microelectronic industry has relied on the aggressive
downscaling of the size typically featured by devices in the silicon-based
technology. However, since the miniaturization of the "standard" MOS tran-
sistor design cannot go beyond a certain size, the microelectronic industry
has pursued different solutions, ranging from different transistor architec-
tures [1, 2, 3] to the heterointegration of different semiconductors on Si sub-
strate to be used as base material for MOSFET channels [4]. The appealing
aspect of this heterointegration is the possibility to exploit the superior mate-
rial qualities of a wide range of semiconductor materials while maintaining
the manufacturability in the Si foundries [5], the standard of the microelec-
tronics industry.

One of the major issues that has to be addressed while attempting an het-
erointegration is controlling the effect of the difference in lattice parameter
between the epi-layer and the substrate. Indeed, the first deposited mono-
layers, grow pseudomorphically, resulting in an in-plane deformation of the
film lattice parameter to match the substrate one, leaving the epilayer in
a strained condition. The elastic energy accumulated due to this reticular
misfit can be released in two possible ways, elastically through the defor-
mation of the planar morphology into three dimensional structures (named
islands) or plastically with the loss of its in-plane lattice coherence with that
of the substrate, via nucleation of misfit dislocations (MDs) [6]. MDs are
terminated by threading arms, which do not contribute to the relaxation but
extend up to the free surface. These defects, known as threading disloca-
tions (TDs) are the most detrimental for the applications, since they reach
the active area of the final devices. Lowering the density of these defects
represents one of the main obstacle in view of further exploitation of het-
eroepitaxial systems, since, with the technological node approaching the 6
nm limit for 2020 roadmaps (see e.g. Ref. [7]), even the presence of a sin-
gle defects can severely reduce the desired performance of the devices, in-
hibiting any expected advantage from the superior material quality. Such
requirement calls for a tight synergy between experimental and theoretical
investigations, since the parameter space for a heteroepitaxial process is too
large to be sampled by a trial and errors approach.

This Thesis is devoted to the modeling of the heteroepitaxial growth, with
the main focus on Ge (or SiGe alloys) on Si substrates. Ge has shown to have
superior optoelectronic properties and higher carrier mobility with respect
to Si and indeed it has been exploited in many applications in the Si-based
technology as high-performance transistors [8], solar cells [9, 10] or photode-
tectors [11]. Furthermore, the SiGe/Si system has been widely investigated
in literature, being frequently proposed as a prototypical system to study
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2 introduction

the hetereoepitaxial process, and thus most of the developed methodology
can be applied to other lattice-mismatched systems.

In this work the various aspect of heteroepitaxy described above, ranging
from the elastic relaxation with the formation of three-dimensional islands,
to the plastic relaxation of thin films and heterostructures are investigated
by means of theoretical models based on continuum approaches. Working
at the continuum level conveniently allows to match typical experimental
sizes of interest (up to several tens of µm) and time scales (up to several
minutes). Obviously, however, such models only describe average behavior
on sufficiently large scales (tens of Å). As we shall show, such limitations do
not prevent the description of several key phenomena in semi-quantitative
agreement with experiments.

Modeling heteroepitaxy requires the proper description of several differ-
ent phenomena. Purely elastic relaxation requires to describe the free surface
diffusion of material responding to local gradients in the strain field and has
been implemented by means of a computational code able to solve the differ-
ential equation for surface diffusion by means of the Finite Element Method
(FEM). This was done by implementing a two and three dimensional code
based on the FEniCs [12, 13] framework for solving partial differential equa-
tions. The generality of the developed code has also permitted the descrip-
tion of the solid-state dewetting of strained films, a topic that was not ini-
tially considered, by the implementation of the wetting potential proposed
in Ref. [14] to described the behavior of thin layer exhibiting a finite contact
angle with their substrate.

Modeling the plastic relaxation in heteroepitaxial systems, instead, re-
quires the use of a code able to describe the behavior of single defects,
still keeping the description of the spatial scale of interest described above.
This was done by means of a discrete Dislocation Dynamics (DD) code, mi-
croMegas, exploiting a 6-month visit to the group of Prof. Devincre and
Dr. Gatti at the Laboratoire d’etudes des Microstrucures (LEM) at the CNRS-
Onera laboratory in Chatillon, where the code was the developed. During
this period of collaboration an extension of the DD code able to tackle the
presence of free-surfaces, called the Discrete Continous Model (DCM) [15],
was implemented in the same FEniCs environment presented before.

Once the required methodology was implemented, a very extensive com-
parison with experimental results was carried out. The goal was not limited
to providing interpretation of available data, but also to suggest to various
experimental partners better growth condition to achieve the desired results.
Particularly useful in model development and application were the close
collaboration with research group at SILTRONIC (one of the world-leading
company for the growth of hetereopitaxial substrates), and with more aca-
demic research group. These will be cited when presenting their experimen-
tal results during this manuscript.

This Thesis is organized as follows. Chapters 1 and 2 are devoted to
provide the main physical background for the systems under consideration,
dealing respectively with heteroepitaxial growth and dislocations. They pro-
vide a brief introduction to the topics and insights on the modeling tools
used in the remaining of the Thesis. Chapter 3 deals with the implementa-
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tion of the above described physical models into the numerical codes devel-
oped in this Thesis.

Chapters 4, 5 and 6 report the results obtained during this Thesis work.
Specifically, in Chapter 4 entitled "From plastic to elastic relaxation" are pre-
sented the results obtained for the modeling of the competition between elas-
tic and plastic relaxation. The results presented range from systems exhibit-
ing a purely elastic behaviors, as in the modeling of the the solid-state dewet-
ting of thin strained films, to phenomena that clearly shows the competing
effects of these two possible relaxation paths, with a clear transition from
a predominantely-elastic regime (formation of heteroepitaxial islands and
cyclic growth) to a plastic regime (growth of nearly flat, plastically-relaxed
thin films).

In Chapter 5 entitled "Misfit dislocation distribution in heteroepitaxy"
specifically moves in details towards the plastic relaxation of heteroepitaxial
thin films, providing a detailed analysis of the network of misfit dislocations
formed during the growth of a low-misfit SiGe/Si film and showing its rela-
tion with the formation of Cross-hatch patterns, a well-known phenomena
consisting in the formation of regular surface undulations.

Finally, Chapter 6 "Threading dislocation in heteroepitaxy" deals with the
unavoidable formation of threading defects involved in the plastic-relaxation
process. First, thanks to an extension of the DD code described above a sim-
ulation reproducing the progressive plastic relaxation during the deposition
of a thin film is reported. Then, an unexpected phenomena leading to a
quasi-unidirectional relaxation in macroscopic regions of a SiGe/Si wafer
will be analyzed in detail and explained by means of DD simulations. Fi-
nally, the end of the Chapter will presents some combined experimental
and theoretical characterization of the dislocation distributions in Vertical
Heterostructures (VHEs) recently proposed as a viable path to reduce the
number of threading defects [16].

Finally, analytical expression for the displacement, strain and rotational
fields produced by array of dislocations, including the derivations of the
strain fields for the case of dislocations near a free surface and for non-
singular strain expressions, are reported in Appendix A.





1 M O D E L I N G G E / S I H E T E R O E P I TA X Y

In this first chapter, we shall provide an introduction to the physical system
under consideration in this Thesis together with the basis for the modeling
tools that will be implemented in the remainder of the manuscript.

Section 1.1 presents a brief overview of heteroepitaxial and a discussion of
aspects specific to Ge/Si heteroepitaxy. Then, in section 1.2 we shall provide
an introduction to the Linear Elasticity Theory as the framework for all the
models developed in this Thesis. Direct applications of the linear elasticity
theory to the topic of thin strained films are briefly treated here.

Section 1.3 introduces the equation for surface diffusion and its applica-
tion tp the modeling of elastic relaxation in heteroepitaxial growth. In sec-
tion 1.4 the model is further developed with the introduction of a wetting
potential specifically designed to model Ge/Si heteroepitaxy.

Finally, section 1.5 provides a first insight on the mechanism of plastic re-
laxation in heteroepitaxy via misfit dislocations. The treatment of the elastic
theory of dislocations will be further expanded in the whole chapter 2.

1.1 heteroepitaxial growth

Heteroepitaxial growth refers to the process of growing a crystalline film
over a substrate with a different lattice parameter. In this process the epi-
layer tends to cover coherently the substrate, resulting in a strained-state
due to the reticular mismatch. From the energetic point of view the main
contribution playing a role during an heteroepitaxial growth are the surface
energies per unit area of the film and the substrate, γf and γs respectively,
the substrate-epilayer interface energy per unit area, γi and the lattice elastic
energy density ρel due to the lattice mismatch ε between them. This latter
quantity can be defined as:

ε =
as − af

af
(1)

where as and af are respectively the lattice constants of substrate and film
in their unmodified sate. The possible growth modalities that can take place
in an heteroepitaxial proccess are usually schematized in different regimes.
The first possibility corresponds to a layer-by-layer growth where the film is
coherent with the substrate and remains flat without altering its morphology.
This is known as Frank-van der Merve (FM) growth. Another growth regime,
known as Volmer-Weber (VW) consists in 3D island formation on the sub-
strate. The last modality, known as Stranski-Krastanov (SK) is intermediate
between those two, with the formation of islands after the completion of a
thin wetting layer. These growth modalities are schematically illustrated in
Fig. 1.
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Figure 1: Heteroepitaxial growth regimes. The Frank-van der Merwe growth cor-
responds to a low misfit between film and substrate, and can sustain a
flat growth without altering the morphology of the film. The Stranski-
Krastanov is an intermediate case where the growing of islands can begin
after the deposition of a few monolayers of wetting layer. The Volmer-
Weber regime corresponds to and high misfit condition in which the 3D
islands growth begins immediately with the deposition.

This general schematization can be rationalized by considering the ener-
getic contributions acting during an heteroepitaxial growth. Considering the
surface energy densities it is easy to understand that, if γs > γf +γsf the com-
plete wetting of the substrate is favored and a layer-by-layer growth occurs.
On the opposite side, if γs < γf +γsf, covering the substrate with the film has
a net energy cost and so the film tends to immediately retract forming 3D
islands and exposing the substrate. Adding the effect of the elastic energy
to this description can also explain the SK growth. Indeed, the elastic term
tends to deform the flat geometry of the film by forming islands. The energy
gain corresponding to island formation depends on the island volume, thus
when the total energy balance ∆Etot = ∆Eelastic +∆Esurface becomes negative,
islanding is favored as in the Stranski-Krastanow (SK) growth. The presence
of the wetting layer in the SK growth has a physical meaning since it allows
for an high energy gain during the deposition of the first mono-layers, which
covers the dangling bonds of the exposed substrate surface. After this stage
the energy balance returns favorable to islands formation.

1.1.1 Ge/Si heteroepitaxy

In this Thesis we consider the deposition of SiGe layers on silicon substrates.
This is a typical example of heteroepitaxial system well studied in literature
[17, 6] both for the importance of SiGe devices themselves [8, 9, 10, 11], both
as representative case study for the SK growth. Indeed, other common het-
eroepitaxial systems such as InGaAs layers grown on GaAs [18], GaAsP on
GaAs substrate [19] or InP on silicon [20] exhibit SK growth. While the spe-
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cific details of the growth process should be considered for each case, some
general aspects can be still be drawn from the modeling tools developed for
Ge/Si systems.

Figure 2: STM image of germanium islands grown on Si(001). On the right is possi-
ble to observe two different island shapes, larger dome and smaller pyra-
mids. Image adapted from Ref. [21].

Ge and Si have the same diamond-like crystal structure and thus can
be grown heteroepitaxially producing a high-quality single crystalline film.
However, they have different lattice parameters, as reported in the following
table for pure Si and Ge:

Si Ge

5.43Å 5.65Å

Given these values the resulting misfit strain can be calculated starting from
Eq. 1:

ε0 =
aSi − aGe

aGe
= −3.99%

The effect of this lattice mismatch is a compression of the Ge film grown
on Si, because during the deposition the germanium adatoms are forced
to the lattice sites on top of the exposed silicon surface. So the deposited
germanium, distorted to match the value of silicon lattice constant is forced
to expand in the free surface direction, producing a tetragonal distortion.
This strained condition can be sustained only for the first few monolayers,
thanks to the high energy gain when germanium covers the dangling bonds
on the silicon surface. After this stage the film tends to relax elastically
forming in 3D islands. The critical thickness condition for the onsets of
island formation depends on the germanium concentration in the film, but
is typically just a few mono-layers [22]. Furthermore in a SiGe/Si(001) film
the islands morphology generally depends on the volume and, as reported
in Fig. 2, different shapes can be observed, with smaller islands forming
pyramids while larger domes exposing a higher number of crystallographic
facets [21, 22]

Germanium and Silicon can be mixed producing SiGe alloys at various Ge
concetration x. The resulting alloy is considered to be a perfect mixture of sil-
icon and germanium with a resulting lattice parameter that can be expressed
with good approximation by means of the Vegard’s law:

aSi1−xGex = (1− x)aSi + x · aGe (2)
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Varying the concentration of germanium thus modifies the total reticular
misfit between the SiGe layer and the substrate, leading to completely differ-
ent behaviors for the relaxation of the deposited film.

1.1.2 Growth techniques

The heteroepitaxial growth process consists in the deposition of a chemical
species on a substrate in controlled condition of temperature and deposi-
tion flux. Physical vapor deposition (PVD) and Chemical Vapor Deposi-
tion (CVD) are the most common methods for transferring material atom by
atom from a source to a substrate. Vapor deposition describes any process
in which a solid immersed in a vapor can grow due to reactions from vapor
phase to the solid phase. The deposition normally occurs in a vacuum cham-
ber to finely tune the partial pressures of the vapors of the chemical species
being deposited. In the PVD the vapor is created by physical means, while
in the CVD the deposited material is the product of a chemical reaction.

Chemical vapor deposition provides a method for growing semiconduc-
tors or a wide class of thin film materials in which a chemical reaction be-
tween a gaseous precursor and a volatile compound of the material from
which the film have to be grown occurs. This produces an atmosphere with
a gaseous compound of the material to be deposited (as SiH4 or GeH4 for
the case of Si and Ge). This vapor phase can condensate to the solid sur-
face exposed, fine-tuned by the temperature of the substrate or by means
of a plasma phase. The control of the parameters of the growing film can
be made by tuning the vapor supersaturation and the substrate tempera-
ture. Low vapor supersaturation and high substrate temperature can favor
the growth of a coherent single crystalline film on the substrate, while high
supersaturation and low temperature tend to grow amorphous films.

On the other side, among the possible PVD methods the most used for
the growth of semiconductors is the Molecular Beam Epitaxy (MBE) that
can provide crystalline film materials of very high quality, but generally
with a slow growth rate compared to other CVD reactors. This technique
achieves a near equilibrium growth, opposed to the CVD method presented
above, widely in industrial applications due to their high deposition flux. In
a MBE reactor a substrate wafer is placed in an ultra-high vacuum chamber,
(p ' 10−8 Pa). The substrate typically heated at a temperature of T ' 500
- 1000K. The growth occurs by directing collimated atomic beams of the
film materials, obtained from a Knudsen evaporation cell that is heated well
above the substrate temperature, to induce evaporation and condensation.
The peculiarity of this growth technique is the precise control on the deposi-
tion: it is possible to reach very low rates, up to fractions of monolayer (ML)
10−1 - 10−2MLs−1. It also permits the deposition of different species on
the same substrate, by using multiple evaporation cells. The relative compo-
sition can be finely tuned controlling the deposition flux and time for each
cell. Another feature associated to this deposition method is the possibility
to monitor in situ the complete history of the film during growth [23, 24, 25].

As mentioned above, the condition for a vapor deposition is that the sub-
strate temperature Ts must be low enough for the vapor phase to be over-
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satured, so that atoms in the gas can attach to the substrate and become
adatoms. The conditions for growing crystalline films are that the deposition
flux must be low enough and the substrate temperature high enough to per-
mit the adatoms to explore different atomic sites at the surface. This cause
a net flux of material at the surface toward the local energy minimum. This
can be regarded as a local process because the adatoms have only a limited
diffusion length, dependent on the temperature. Furthermore, the deposi-
tion of a new layer of atoms freezes the preceding adatoms at the atomic
sites reached, because they become bulk atoms with a higher number of
chemical bonds.

1.2 linear elasticity theory

In this Thesis the topic of heteroepitaxial growth is treated by continuum
models with the linear elasticity theory as a framework. This description
allows to tackle the evolution of large system (up to tens of microns) at long
time scales (up to several minutes), not accessible with atomistic models. In
this section an overview of linear elasticity theory drawn from references [26,
27, 28] is presented.

Let x = xiei, (i = 1, 2, 3) be the vector that describe the position of a point
inside an undeformed medium. We can denote the forces per unit area act-
ing on this body as σij, where σij is the i-th component of the force acting
on a plane whose outward normal is parallel to the positive xj direction. At
rest each infinitesimal volume of the solid must be in mechanical equilib-
rium, and we assume that no net torque can act on the body so the stress
matrix must be symmetric:

σij = σji (3)

If the medium undergoes a deformations the positions in the new state are
given by x′ = x ′iei. We can define the displacement vector as:

u(x) = x′− x

u, is a vector field, and in the elastic theory the displacements and their
derivatives are assumed to be small, so |u| 6 1 and |∇u| 6 1. Given these
definitions we can define a strain tensor and a rotation tensor by a Taylor
expansion of u(x):

ui(x) = u
0
i +

∂ui
∂xj

dxj

= u0i +
1

2

(
∂ui
∂xj

+
∂uj

∂xi

)
dxj +

1

2

(∂ui
∂xj

−
∂uj

∂xi

)
dxj

= u0i + εij dxj +Ωij dxj

where we have indicated with ε the symmetrical part of this expansion,
known as strain tensor:

εij =
1

2

(
∂ui
∂xj

+
∂uj

∂xi

)
(4)
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and with Ω the anti-symmetrical part, the rotational tensor:

Ωij =
1

2

(
∂ui
∂xj

−
∂uj

∂xi

)
(5)

When a stress field is applied on the physical system, it responds to it by
means of a deformation associated to a strain field, described by means of a
linear relation through the elastic constants of the material. In general this
relation can be written as:

σij = Cijklεkl (6)

that is known as the Hooke’s law. The tensorC collects all the elastic constants
of the system. From equation (3) and from the immediate condition εij = εji,
it follows directly that:

Cijkl = Cjikl = Cijlk = Cjilk

Furthermore, because of crystal symmetry, the number of independent con-
stants is reduced further and in crystals with cubical symmetry the tensor
C has only three independent constants, C11, C12, C44. Equation (6) can be
written under this assumption in the Voigt representation, in which only the
independent components of tensor ε and σ appear:

σxx
σyy
σzz
σxy
σxz
σyz


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


·



εxx
εyy
εzz
εxy
εxz
εyz


If the system is also isotropic in three dimensions, we can also introduce the
last condition that C11 = C12 + 2C44. It is thus necessary to provide only
two independent constants to describe the elastic behavior of this class of
solids, λL = C12 and µL = C44. The two constants λL and µL are called the
Lamé constants.

1.2.1 Elastic energy

In the isotropic case the energy is given by the work done by the forces that
act deforming the body. So, if the strain increment caused by a stress σij is
dεij the infinitesimal work done in the system is:

dρε = σij dεij

whose integration gives the energy density for a strained film, ρε, that under
our assumptions can be written in term of explicit elastic constants:

ρε =
1

2
(λL + 2µL)(ε11 + ε22 + ε33)

2

+ 2µL(ε
2
12 + ε

2
23 + ε

2
13 − ε11ε22 − ε11ε33 − ε22ε33)

(7)
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Or an equivalent expression with stress components is:

ρε =
1

2E
(σxx + σyy + σzz)

2

+
1+ ν

E

(
σ2yz + σ

2
xz + σ

2
xy − σxxσyy − σxxσzz − σyyσzz

) (8)

where E and ν are the Young’s modulus and the Poisson’s constant of the
material.

1.2.2 Eigenstrain

Misfit strain in heteroepitaxial films and/or plastic strain induced by dis-
locations should be added to this description. This strain fields cannot be
describes as the linear response of the system to an applied loading by the
Hooke’s law of Eq. (6). To treat them within elasticity theory the concept of
eigenstrain introduced by Mura [28] is required. The total strain in this ap-
proach is considered as the sum of an elastic ε and inelastic strain ε∗, called
eigenstrain. The eigenstrain ε∗ will then be defined as the strain required by
the system assumes to restore its zero-force condition:

σ = C(ε− ε∗) = 0 =⇒ ε = ε∗

Following this formalism, the strain ε correspond to the response of the sys-
tem defined by this new strained reference state. The definition of the quan-
tity as elastic energy of the system must include now also the eigenstrain as
an additional term, so it becomes:

ρε = (εij − ε
∗
ij)Cij(εij − ε

∗
ij) (9)

1.2.3 Biaxially strained film

The system under consideration in this work is, as already discussed, a thin
film of SiGe grown on a substrate of silicon. The deposited film is forced
to cover the lattice sites at the top of the exposed silicon surface, resulting
in an in-plane deformation of the SiGe lattice constant. In linear elasticity
this condition can be modeled as a thin film subject to a biaxial compressive
strain. The condition imposed on the free surface (with normal along the y
direction n̂=ŷ) is then:

σ ·n =

σxyσyy
σzy

 = 0 (10)

This condition at the free surface must hold in the whole homogeneous sys-
tem for the continuity of stress field, so this correspond to the value of the
stress tensor in the entire film. Furthermore, in a biaxial strained system the
strain tensor reads:

εxx = εzz = ε εij = 0 for i 6= j
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The value of the response strain along the free surface direction can be ob-
tained starting from the condition (10) and from the definition of σ in equa-
tion (6):

σxx = C11εxx +C12εyy +C12εzz

0 = C12εxx +C11εyy +C12εzz

σzz = C12εxx +C12εyy +C11εzz

solving this system of equation we obtain

εyy = −
C12
C11

(εxx + εzz)

Finally, calculating from (7) the energy density of this biaxial strained
system results in:

ρε = Yε
2 (11)

where Y is the biaxial Young’s modulus, defined with respect to the other
constants as:

Y =

(
C11 +C12 − 2

C212
C11

)
=

E

(1− ν)

1.3 diffusion limited growth

As discussed in section 1.1.2 in usual growth conditions an heteroepitaxial
system exhibit diffusion of material mostly at its free surface. Indeed, bulk
diffusion is negligible at the typical growth temperatures due to high activa-
tion barriers [29].

In this section we shall introduce the equation of surface diffusion and
discuss how this can be used to model the elastic relaxation of heteroepi-
taxial films. Indeed, as presented first in Refs. [30, 31, 32] a strained film is
unstable with respect to a perturbation that alters its surface morphology.

1.3.1 Thermodynamical concepts

In order to derive a continuum equation that on average describes the driv-
ing force for the diffusion of adatoms on a surface we need to consider
the thermodynamical process that drives the system toward its equilibrium
state. In our condition this evolution is considered as a near-to-equilibrium
process, as expected in growth at high-temperatures and/or slow deposition
fluxes. The appropriated thermodynamical potential used to describe a sys-
tem at constant temperature and pressure is the Gibbs potential, defined by
a Legendre transformation of the Helmoltz free energy F:

G = F−
∂F

∂V
dV = E− TS+ pV (12)

where p is the pressure, V the volume, S the entropy and E the energy. With
this definition we can write the differential form of G, and use of the first
law of thermodynamics, dE = T dS− pdV +

∑
i µi dni:

dG = V dp− SdT +
∑
i

µi dni
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Starting from this last expression we can obtain the definition of the chemical
potential µi from the comparison of the differential form of G, and for the
i-th chemical species ni:

µi =

(
∂G

∂ni

)
T ,P,nj

In the case of an heteroepitaxial growth such as an MBE or CVD at very low
pressure, the pressure-volume contribution can be neglected so the Gibbs
free energy and the Helmholtz free energy coincide. Furthermore, in our
system we consider the diffusion of only one chemical species so also the
sum over the index i can be dropped. With these definitions we have thus
obtained that, at constant temperature T , the only thermodynamical poten-
tial required to describe the evolution of our system toward its equilibrium
is the chemical potential µ.

As discussed in chapter 1 in our model diffusion can occur only for adatoms
at the surface, so the definition of the chemical potential is required only for
these atoms and consists of two contributions, one from the elastic energy of
the strained body, and the other one from the surface energy

µ = µε + µγ

The first term in this sum is the contribution to the chemical potential due
to the elastic energy of the system. This can be easily derived from the
elastic theory presented in section 1.2 and in particular from equation (7).
So the elastic chemical potential is the variation in elastic energy ρε with the
addition (or removal) of an atom of volume Va in the considered position.
Since Gε =

∫
V ρε dx we obtain:

µε =
δGε

δn
= Vaρε (13)

The other term in the sum is the surface chemical potential contribution and
must be defined with respect to the surface energy.

1.3.2 Surface energy

The surface contribution to chemical potential corresponds to the energy
cost that must be accounted for the creation of a free surface. This term
tends to stabilize the surface perturbation as the growing of a fluctuation
has a net energy cost for the system. This is due to the work that must be
done to break the chemical bonds and create new surface atoms, and can
be represented by a parameter γ that accounts for the surface free energy
density. The total surface free energy in term of this value γ is:

Gγ =

∫
S

γdS (14)

The evaluation of γ is a complex task since it can be function of various pa-
rameters. The surface energy is indeed modified when the considering the
region close to the film-substrate interface. Furthermore, a crystal has dif-
ferent values of surface energies depending on facet orientations. In general
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an estimation of the value of the surface energy density can be derived from
ab-initio calculation as reported in Refs. [33, 34, 35]. For the scope of this
work, γ is considered isotropic and with a thickness dependence added to
account for wetting effects as we shall discuss in section 1.4.1.

From Eq. 14 we obtain the surface contribution to the chemical potential
introduced above:

µγ =
δGγ

δn
= Vaκγ (15)

where κ is the curvature of the profile and accounts for the energy cost
associated to variations in its length: κ = δ

δn

∫
C dl and for a function written

as h = h(x), reads:

κ = −h ′′(1+ h ′2)−3/2

1.3.3 Diffusion Equations

For finite diffusion coefficients, i.e. in the situation considered in this work
as discussed in section 1.1.2, diffusion is a local process driven by gradi-
ents in chemical potential. By imposing material conservation, the following
continuity equation holds:

∂n

∂t
+∇ · J = Φ (16)

where J is the material current and Φ is the external flux of atoms. The
material current J can be defined in term of the chemical potential according
to the Onsager’s law [36, 37], that yields:

J = −M∇Sµ

with the coefficient M describing the mobility of the system and ∇S is the
surface gradient operator. So, expliciting this term in the continuity equation
(16), we obtain:

∂n

∂t
= −∇ · J+Φ = ∇ · (M∇µ) +Φ (17)

1.3.4 Asaro-Tiller-Grinfeld instability

With this framework we can now follow the theory presented by Asaro, Tiller
and Grinfeld [30, 38, 31] that accounts for a possible way of island formation
in an heteroepitaxial system. This is caused by the competition between sur-
face and elastic energies. The surface contribution accounts for an energy
cost for the formation of new surfaces, so it tends to oppose to the corru-
gation of the flat geometry. The elastic term on the other side favors the
formation of islands since they are elastically more relaxed with respect to
the flat film.

The ATG theory consists in a linear stability analysis of the surface of a
semi-infinite film under stress in a flat-island approximation, so the ampli-
tude of the perturbation is assumed to be small. Let us consider a cosine
perturbation on the surface of a film:

h(x) = a cos(qx)
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where a and q are the amplitude and wave number for the perturbation, and,
in the flat-island approximation, they are taken to be q · a � 1. Following
Refs. [30, 32], the stress distributions at a distance d from the surface are:

σxx = σ0 − σ0
(
q2d− 2q

)
e−qda cos (qx)

σyy = −σ0q
2e−qda cos (qx)

σxy = −σ0q(1− qd)e−qda sin (qx)

In addition, the film can be modeled as infinite in the third dimension by in-
troducing an additional constant eigenstress in the z direction, so σzz = σ0.
The constant σ0 is defined as σ0 = E

(1−ν2)
ε0 the stress for the flat morphol-

ogy. According to eq. (13):

µε = Vaρε(−qa cos(qx)) with ρε = 2σ0ε0

In our approximation κ ≈ −h ′′ so that, for isotropic surface energy density
γ, we have from eq. (15)

µγ = −Vaγh
′′(x) = Vaγq

2a cos(qx)

Summing these two contributions, the chemical potential is obtained:

µ = Va(ρεq− γq
2)a cos(qx)

The profile law evolution by surface diffusion then reads:

∂h

∂t
=M∇2µ =MVa

(
ρεq

3 − γq4
)
a cos(qx) (18)

Searching a solution for Eq. (18) with the form: h(x, t) = a(t) cos(qx) we
can define the evolution of the surface profile in term of only the amplitude
factor a:

a(t) = ae−MVaγq
3(q−qc)t where qc =

2π

λc
∼ ρε/γ. (19)

The sign of the amplification factor, i.e. the exponent of equation 3 in
this expression depends on q− qc. If q > qc the amplitude decays so that
the flat surface is stable. If q < qc, the film is unstable as the amplitude
of the perturbation grows exponentially. This behavior as function of q is
shown in Fig. 3, where each curve corresponds to a different value for the Ge
composition x in a Si1−xGex/Si system. Notice that a fastest perturbation
exists at qmax = 3/4qc. The typical length scale for the evolution of the
perturbation is ` = q−1c . The stability results also show a characteristic time
scale τ = `4/(MVaγ), strongly dependent on the misfit (∼ ε−8m ). Since M
is expected to obey an Arrhenius law, M ≈ e−A/kbT with A an effective
energy barrier and kb the Boltzmann constant, τ is extremely sensitive to
temperature and decreases exponentially when T is raised.

The previous arguments are developed for a single q mode. When consid-
ering a generic perturbation, decomposed in a Fourier series, in the limit of
linear elasticity, each q component behaves independently from the others
according to Eq. (19). The resulting profile will be dominated by the fastest q
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Figure 3: Amplification factor defined as the exponent of equation (19) as function
of q for different germanium composition x in a Si1−xGex film.

and for a white noise (ideally comprising all q values) the rise of the fastest
perturbation with q = qmax is expected. With this respect, the ATG model
states that a stressed film is always unstable with respect to long-enough
perturbation wavelengths λ > λc = 2π/qc. However, when considering low
misfits εm and/or high surface energy costs γ, too long λc, corresponding
to extremely slow evolution τ, are expected but may be physically unreason-
able leaving the film in a metastable state.

1.4 wetting effects in heteroepitaxial films

The ATG model provides an analysis of the growing of a perturbation of
small amplitude and can be used to describe the first stages of growth. An
enhanced description must account for the solution of the equation (17) with-
out the flat-island approximation introduced above. In this case the full
expression for the curvature must be used: κ = −h ′′(1+ h ′2)−3/2. Further-
more, an numerically exact description of the elastic field at the surface can
be done by means of the Finite Element Method (FEM) in the solution of the
mechanical equilibrium [39, 40, 41, 42]. This will be presented in Chapter 3

In this extended approach the simulation of the growth of a perturbation
agrees with the solution obtained from the linear stability analysis of the
ATG model in the first stages of evolution, in which the flat island approxi-
mation qa � 1 holds with the amplification of the initial sinusoidal profile.
After the first stages the tendency is grow tips in the film forming cusp-like
structures, breaking up the film in sharp trenches. These tips dig in the film
and tend to form singularities in the surface profile, thus requiring a regu-
larization to provide a realistic description of heteroepitaxial growth. This
problem is studied in literature [43, 44, 45, 46] and a possible way reported
is the modification of the surface energy in proximity of the substrate to ac-
count for the presence of a wetting layer in the Stranski-Krastanov growth.
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In fact, in a Ge/Si system it is known that Si has an higher surface energy
density than Ge. This property causes the formation of the Ge wetting layer,
which covers all the Si surface, lowering the surface energy of the system.

1.4.1 Wetting potential for SiGe/Si(001)

The formation of a wetting layer in the SK growth can be modeled in our
approach by a modification of the expression for the surface energy density
γ considered so far [46, 47]. Results obtained from ab-initio calculations [48]
show indeed a variation of the value of γ for the first few mono-layers close
to the interface between a film and its substrate. The calculations reported
in Fig. 4 are performed for the same Ge/Si system under consideration in
this Thesis and can be used to quantify this surface energy modification.
In our treatment the additional dependence of γ on the distance h from

Figure 4: Surface energy densities of Ge/Si(001) and Ge/Si(105) as a function of
the number of deposited Ge layers, obtained from ab-initio calculations.
Image adapted from Ref. [48].

the interface is included in an additional term called wetting potential. The
expression for the surface energy density of a Ge layer on Si then becomes
γ(h) = γGe +W(h), where W is the wetting potential, expressed as:

W(h) = (γSi − γGe) · exp
(
−
h

δ

)
(20)

where γGe = 60 meV/Å2, γSi = 87 meV/Å2 and δ, fitted from the data
of Fig. 4, results to be δ = 0.27 nm. When SiGe layers are considered, the
surface energy density of the alloy will be considered as the linear combina-
tion of Si and Ge surface energies with the same approximation of perfect
mixture discussed for the Vegard’s law of Eq. (2).
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The non-uniform definition of γ leads to an additional term in the sur-
face chemical potential defined by (15). Considering also the free energy
as function of h, G = G(h), Eq. (15) gives an additional wetting term:
µs = Va (γκ+W

′). The term W ′ is the derivative of the wetting potential
and for the surface energy expressed by Eq.(20) yields:

W ′sige(h) =
γGe − γSi

δ
exp

(
−
h

δ

)

1.4.2 Dewetting potential

The surface diffusion equation presented above offers the possibility to treat
also phenomena different from heteroepitaxy, but still determined by mate-
rial transport at the surface of a solid. For example, some thin film systems
can be deposited in a metastable condition and tend to dewet to form islands
or solid droplets if heated to a sufficient temperature. This can happen at
temperatures below the solid-liquid transition, thus producing a solid-state
dewetting of the film via mass transport at its free surface. Some examples
of materials showing this behavior are Ni thin films deposited on MgO sub-
strate [49], Au films on graphite [50] or Au on silicon [51].

The results of the dewetting of a solid film is the formation of solid
droplets and in analogy with the common treatment of liquids on sub-
strate, a contact angle ϑ can be defined as the intersection between the film-
substrate interface and the film-vacuum interface as in figure 5. The contact

γ
ϑ

Figure 5: Contact angle ϑ defined by means of the equilibrium condition between
the surface tensions of the droplet, γf, of the substrate, γs, and of the
film-substrate interface, γi.

angle is entirely defined by the equilibrium condition for the surface tensions
acting on the droplet: the film surface tension γf, the substrate surface ten-
sion γs and their interfacial surface tension γi, resulting in the equilibrium
condition:

γs = γi + γf cos ϑ (21)

In our treatment, the description of a contact angle between the film and the
substrate will be modeld by means of a wetting potential able to reproduce
the equilibrium condition of Eq. 21 when the retracting film edge touches
the substrate. This wetting potential follows the description introduced by
the work of Tripathi and O. Pierre-Luis [14] and reads:

W(h) = γ0(1− cos ϑ)(1+
5

h∗
h)(

h

h
∗−1)5 (22)
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with γ0 the surface energy density of the film and h∗ a parameter defining
a characteristic thickness for the wetting potential.

1.5 misfit dislocations in heteroepitaxial systems

Elastic relaxation is not the only viable mechanism to obtain strain relaxation.
Indeed, after a certain critical thickness, the film can lose its coherence with
of the substrate. This mechanism consists in the plastic relaxation via inser-
tion of defects in the lattice topology of the film, called misfit dislocations and
sketched in figure 6.

Misfit Dislocations

Film

Substrate

Figure 6: Sketch of the modified lattice topology in an heteroepitaxial film after the
introduction of misfit dislocations.

Dislocations are line defects and in the direction of the dislocation line
(normal to the paper in the figure) a whole plane of atoms is missing. The
introduction of dislocations in a crystal produces a non-uniform strain field.
However, on average, multiple dislocation partially relax the misfit strain,
thanks to the extra space accommodated with the loss of the in-plane coher-
ence between the film and the substrate.

Furthermore, even under conditions where elastic relaxation begins, the
nucleated coherent islands tend to enlarge their height-to-base aspect ratio
(AR) during the growth until a critical volume is reached. At this point the
introduction of misfit dislocations is energetically favored and misfit defects
are injected to further relax the misfit strain [23, 24, 25, 52, 53]. An introduc-
tion to the classical elastic theory of these defects will be the subject of the
following chapter.





2 I N T R O D U C T I O N TO D I S LO C AT I O N S

Dislocations are crystalline defects unavoidably introduced in the relaxation
of a hetereopitaxial system. As we will see in chapters 4, 5 and 6 the nucle-
ation and motion of dislocations will be the fil rouge linking all the systems
considered in this Thesis. Thus, this chapter is entirely devoted to an intro-
duction to the topic of dislocations in heteroepitaxy.

A number of different modeling approaches have been developed to study
the nature of these defects depending on the space and time-scale under
consideration, ranging from ab initio technique for the electronic structure to
crystal plasticity approaches to predict the plastic flow of crystalline solids.
As stated in the Introduction, in this Thesis the chosen approach is the dis-
crete Dislocation Dynamics (DD) approach that is based on the linear elas-
ticity theory. This model permits the description of dislocations behavior at
the mesoscale, still mantaining the description of single defects. In this chap-
ter we shall introduce the classical continuum theory of dislocations based
on linear elasticity, while the description of the implementation of the DD
model will be presented in Chapter 3.

2.1 burgers vector

A dislocation is a line defect in the crystal lattice topology in which a line of
atoms is mis-connected with respect to the perfect periodic structure of the
crystal. The dislocation produces a displacement on the atoms near the miss-
ing plane, defined by a displacement vector known as Burgers vector, b. The
vector b can be defined geometrically by a construction known as Burgers
circuit, depicted in figure 7, by drawing in a real crystal a closed clockwise
circuit, which encloses the dislocations. Then we draw an equivalent circuit
in a perfect crystal, with atoms in the ideal reference lattice. The vector
required to close this second circuit is defined as the Burgers vector b.

The orientations of these circuits are taken to be right-handed with respect
to an oriented unit-vector normal to the page that defines the dislocation line
ξ. A formal generalization of the definition of the vector b in a continuum
approach can be done by taking the line integral of the derivative of the
displacement field u over a circuit C oriented right-handed with respect to
ξ:

b =

∮
C

∂u

∂l
dl (23)

With these definitions it is now possible to distinguish two kind of disloca-
tions. A defect with the Burgers vector perpendicular to the dislocation line
is called an edge dislocation, while one with the Burgers vector parallel to the
dislocation line is called screw dislocation. In a solid crystal a dislocation line

21
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b

Figure 7: Two equivalent Burgers circuits. (a) Crystal with a dislocation present
and (b) a perfect crystal. The vector b that closes the open circuit in (b) is
defined as the Burgers vector of the dislocation.

and its corresponding Burgers vector belongs to specific crystalline orienta-
tion. Nevertheless, the Burgers vector can be decomposed in a component
normal to the dislocation line, called the edge component of the dislocation
and one component parallel to the dislocation line called the screw compo-
nent of the dislocation.

2.2 volterra dislocations

The derivation of the stress fields produced by dislocations is straightfor-
ward in an infinite isotropic medium. For this special case the displacement
induced by the presence of a dislocation in a solid can be derived from
simple geometrical considerations as reported in [54]. The strain and stress
fields associated with this displacement are easily calculated by means of
the linear elastic theory of section 1.2. Let us consider for examples a right-
handed screw dislocation in a solid bulk, as shown in Fig. 8(a). This defect
corresponds to one of the dislocation types studied by Volterra during the
19th century to describe deformations in continuum solid mechanic.

As we can see the Burgers vector of such a dislocation produces a shear
displacement in the positive z direction. The result is that the displacement
in z direction has a discontinuity at the cut surface shown in figure. In x
and y directions the displacements are null, so ux = 0 and uy = 0, but the
discontinuity in uz yields:

limy→0
x>0

uz(x,−y) − uz(x,+y) = bz

and we can assume, in an isotropic material, that this discontinuity is pro-
duced by a uniform increase of uz with the polar angle ϑ. So the resulting
expression for the displacement induced by this screw dislocation is:

uz = b
ϑ

2π
=
b

2π
arctan

y

x

The stress fields associated with this displacement are easily derived from
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Figure 8: Dislocations as studied by Volterra to describe deformations of continuum
solids. Dislocation line ξ is parallel to the z axis, while the dislocations
Burgers vector b is parallel to ξ for the screw dislocation in (a) and or-
thogonal for the edge dislocation in (b).

equations (4) and (6) yielding:

σxz = −
µb

2π

sin ϑ
r

= −
µb

2π

y

x2 + y2

σyz =
µb

2π

cos ϑ
r

=
µb

2π

x

x2 + y2

σxx = σyy = σyy = σzz = 0

The other possible kind of dislocation is the edge one, for which ξ ·b = 0.
This is another kind of dislocation studied by Volterra and can be repre-
sented as in figure 8(b). In figure we can see that the displacement in the

direction of the dislocations line is null, so uz = 0 and
∂ui
∂z

= 0. The deriva-
tion of the remaining terms belongs to the class of problem of plane strain.
The solution can be give in term of a stress function ψ known as Airy func-
tion (see [54] pag. 43 for reference). This function can be defined by noting
that, for the condition of mechanical equilibrium:

∂σxx

∂x
+
∂σxy

∂y
= 0

∂σxy

∂x
+
∂σyy

∂y
= 0

and that these equations are immediately satisfied if σxx, σyy and σxy are
defined in terms of function ψ as:

σxx =
∂2ψ

∂y2
σyy =

∂2ψ

∂x2
σxy =

∂2ψ

∂x∂y
(24)

the function ψ can be derived from the conditions imposed above for an
edge dislocation and yields:

ψ = −
µb

4π(1− ν)
log(x2 + y2)
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So, the stresses derived from definition of ψ as in (24) are

σxx = −
µb

2π(1− ν)

y
(
3x2 + y2

)
(x2 + y2)

2

σyy =
µb

2π(1− ν)

y
(
y2 − x2

)
(x2 + y2)

2

σzz = ν(σxx + σyy) = −
µν

π(1− ν)

by

x2 + y2

σxy =
µb

2π(1− ν)

x
(
x2 − y2

)
(x2 + y2)

2

σxz = σyz = 0

Considering now a dislocation with Burgers vector generally oriented
with respect to the dislocation line, we can provide the expressions for the
stress field as linear superposition of the components derived before. So, by
choosing a reference system with the z axis oriented along the dislocation
line we can decompose the Burgers vector by projection on the axis of the
reference system, b = (bx,by,bz). With this notation, the stress field for a
dislocation with a generic Burgers vector are:

σxx = −
µbx

2π(1− ν)

y
(
3x2 + y2

)
(x2 + y2)

2
+

µby

2π(1− ν)

x
(
x2 − y2

)
(x2 + y2)

2

σyy = −
µbx

2π(1− ν)

y
(
y2 − x2

)
(x2 + y2)

2
+

µby

2π(1− ν)

x
(
x2 + 3y2

)
(x2 + y2)

2

σzz = ν(σxx + σyy) =
µν

π(1− ν)

(byx− bxy)

x2 + y2

σxy =
µbx

2π(1− ν)

x
(
x2 − y2

)
(x2 + y2)

2
−

µby

2π(1− ν)

y
(
y2 − x2

)
(x2 + y2)

2

σyz =
µbz

2π

x

x2 + y2

σxz = −
µbz

2π

y

x2 + y2

(25)

This stress fields are plotted in figure 9 for a dislocation with Burgers vector
oriented at 60◦ with respect to the dislocation line.

2.2.1 Image effects on dislocations

Let us consider now a screw dislocation near the free surface of a system.
The introduction of the surface requires, as seen for heteropitaxial systems in
section 1.2.3, a condition of zero stress at the free surface. This requirement
is easily obtained by means of an image construction in which the stress field
in the system is obtained by the sum of stress fields of the dislocation itself
and of an image dislocation placed symmetrically with respect to the free
surface and opposite b of that of the dislocation, as shown in figure 10. This
construction gives the required field in the physical region of the system, i.e.
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(a) (b)

(c) (d)

(e) (f)(e)

5 nm

Figure 9: Components of a 60◦ dislocation stress field reported in equation (25) and
plotted on the xy plane: (a) σxx, (b) σyy, (c) σzz, (d) σxy, (e) σyz and (f)
σxz
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Figure 10: Scheme for the dipole construction used in this section. The image dis-
location is in a position h above the free surface and with Burgers vector
−b opposite to that of the real dislocation.

below the free surface, and meets the requirement of σ · n on y = 0, as we
can show explicitly:

σyz + σ
imm
yz =

µb

2π

x

x2 + (−h)2
−
µb

2π

x

x2 + h2

=
µb

2π

[
x

(x2 + h2)
−

x

(x2 + h2)

]
= 0

The same holds for the other stress component σxz. Thus the stress fields of
a screw dislocation near a free surface can be obtained by this simple dipole
construction.

The correction of the bulk expressions must be accomplished also for the
case of an edge dislocation near a free surface. For these dislocations there
are two possibility for the orientation of the Burgers vector. The first one
corresponds to b · n = 0, i.e. b is perpendicular both to the dislocation
line and to the free surface normal. The other possibility is b · n = b, so
the Burgers vector is parallel to the surface normal. In both these cases the
condition for the zero stress at the free surface gives:

σyy = 0 σxy = 0 at y = 0 (26)

This requirements can’t be satisfied by the same dipole construction shown
for a screw dislocation. Indeed, for the case with b ·n = 0 the sum of σyy of
the real dislocation and its image yields:

σxy + σ
imm
xy = 0

σyy + σ
imm
yy =

µb

2π(1− ν)

[
h
(
x2 − h2

)
(x2 + h2)

2
+
h
(
x2 − h2

)
(x2 + h2)

2

]
= 2σyy
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Also the other kind of edge dislocation, with b · n = b can’t satisfy the
condition (26) with the addition of a dipole term, and indeed it gives:

σyy + σ
imm
yy = 0

σxy + σ
imm
xy =

µb

2π(1− ν)

[
h
(
h2 − x2

)
(x2 + h2)

2
−

(−h)
(
h2 − x2

)
(x2 + h2)

2

]
= 2σxy

This results show that the dipole construction does not give the exact stress
field for a system with a free surface when edge dislocations are considered,
while it is exact for a screw one. In the following section is shown an exact
solution also for the edge component of a dislocation near of a free surface.

2.2.2 Head correction for a free surface

As seen in the previous section, the effect of the presence of a free surface
on a dislocations cannot be described by a simple dipole image construction,
because the edge components of the dislocation stress field don’t satisfy the
requirement of zero normal stress at the surface σ ·n = 0. This problem was
resolved by Head in the 50’s and the corrected stress functions are reported
in literature [55]. The exact solution requires a correction to the dipole con-
struction, so that the total field results in:

σtotal = σij + σ
dipole
ij + σHead

ij

Figure 11: Comparison between the stress field of an edge dislocation near a free
surface with a dipole construction on the left and the Head correction
on the right. The region with physical meaning is only that below the
dashed line.

This third term depends on the distance of the dislocation from the free
surface and added to the other two solves the problems discussed in the
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previous sections for the edge dislocations, both for the case b · n = 0 and
b ·n = b. The resulting complete stress fields are:

σxx =
Ebx

4π(1− ν2)

[
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[
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][
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(27)

As we can see in figure 11, the resulting stress field differs from the case of
the image construction particularly in the region of the free surface.

2.3 dislocation arrays near a free surface

The stress field for a single dislocation running along z direction, including
the corrections evaluated by Head in Ref. [55] to account for the presence of
the free surface, is reported in Eq. (27). A closed solution for the stress field
of an array of such dislocation can be obtained by summing the contribution
coming from infinite dislocations displaced by a distance L from each other.
The complete derivation of this sum is reported in Appendix A. Here we
report the final solution in terms of the stress field. Using the same notation
of Eq. (58), the analytical expressions for the stress fields of an array of
dislocation with periodicity L, at a distance h from the free surface and a
generic Burgers vector b = (bx,by,bz) are:
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The above formulae define the stress field of an array of dislocations run-

ning along the z direction. The stress field produced by a net of dislocations
as in figure 59 can be obtained by summing this contribution with the one
arising from a second array of dislocations running along the x direction.
This can be achieved by a simple rotation of the reference system around
the y axis of the functions reported above. The results is plotted in Fig. 12

where the hydrostatic stress field produced by a 2D network of dislocations
σxyz =

∑
i σii is reported. Here also the effect of a biaxial stress field is

added in the region above the plane containing the dislocation network, in
order to mimick an heteroepitaxial system.

2.4 force on dislocations

Let us now consider a solid in mechanical equilibrium which contains a dis-
location and with an external stress field applied. The total free energy of the
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Figure 12: 3D plot of the hydrostatic stress field σxyz produced by a two dimen-
sional net of edge dislocations with periodicity of 10 nm and placed at
the interface of a biaxially stressed heteroepitaxial system.

system depends on the total elastic energy stored by the dislocation and the
solids itself. According to a general thermodynamical principle the disloca-
tion will move accordingly in order to minimize the total free energy. Thus,
defining η as a general coordinate describing the dislocation line position,
the force F acting on the dislocation will be given by the negative gradient
of the total elastic energy:

F = −∇ηEtot (28)

This expression is commonly written as the Peach-Koehler [54] equation:

F = (b ·σ)× ξ (29)

From Eq. (29) we can see that the force acting on a dislocation is always
normal to the dislocation line ξ. F can be further decomposed in a glide
component along the plane containing the dislocations and a climb compo-
nent normal to that. While under certain conditions it is possible to observe
climb motion in heteroepitaxial systems [56], this has a much higher energy
barrier than glide motion. Thus, in the remainder when treating dislocation
motion we will focus exclusively on glide motion of dislocation segments on
their glide planes.

2.4.1 Line tension

In the absence of an applied external stress a dislocation will straighten out
in order to minimize its line lengths and strain energy. For the same reason
a closed loop of dislocation will tend to collapse. The concept of line tension
of a dislocation is defined in analogy with the line tension of a stretched
elastic string. Formally the line tension is defined as the derivative of the
dislocation self-energy Eel with respect to its line length L:

Γ =
dEel

dL
(30)
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Eel can be defined as the elastic energy associated to the deformation field
of the dislocation itself.

This concept implies that a dislocation loop of radius R will collapse if not
equilibrated by an external stress field. It is thus possible to define a critical
stress τa as the resolved shear stress needed to maintain an equilibrium
between the force exerted on the loop by the external field and the line
tension of the loop itself. This quantity can be evaluated once an expression
for the line tension of Eq. (30) is provided. Different analytical procedures,
based on an approximate expression of Eq. (30) can be found in literature.
Here we report the results of the derivation described by Friedel [57]:

τa(R) =
µb

4πR
ln
(
R

r0

)
(31)

where r0 is a cut-off radius and µ is the shear modulus of the material.
This expression is plotted in Fig. 13 against corresponding results obtained
from Dislocation Dynamics simulations that will be described in section 3.1.
These results provide a condition for the insertion of a dislocation loops in a
DD simulation of an heteroepitaxial system. Indeed, for a given magnitude
of the biaxial stress caused by the lattice mismatch, only dislocation loops
with radius equal or bigger than a certain critical value can open during the
simulation.
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Figure 13: Critical resolved shear stress τa as function of the radius R of the dislo-
cation loop. The predicion of the analytical model of Friedel is plotted
against results obtained from DD simulations as described in section 3.1.

2.4.2 Dislocation velocity

As seen above, the force per unit length acting on a dislocation element due
to an external stress field is given by the Peach-Koheler expression (29). If
we are interested in evaluating the resulting glide velocity we can further
decompose this force into an effective glide force, that is the component pro-
jected in the slip plane along the direction of the Burgers vector.
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Modeling the velocity of single dislocation can be done in different ways
according to the magnitude of the applied stress field and to the environ-
ment where it is moving, as the symmetry of the lattice or the presence of
other crystal defects. Considering the mean effects of the crystal friction on
the dislocation segment, its motion can be described as in the presence of a
viscous coefficient B by the equation:

m0
dv
dt

+Bv = τab (32)

where m0 = ρ0b
2 represents the effective mass of the dislocaiton, with ρ0

being the density of the medium. B and the solutions of this equation have
the form:

v = vs[1− exp−t/ts] (33)

This last equation show that after a steady-state velocity vs is reached in a
caracteristic time ts:

vs = τab/B ts = m0/B = ρ0b
2/B

the typical order of magnitude for the transient time ts is about 10−10 ≈
10−11s that results in a traveled distance spanned by the dislocation line of
the order of the nanometer in this transient regime. If this initial accelarated
motion can be neglected the velocity equation (33) simply becomes:

vs =
τab

B
(34)

this is the free-flight velocity for a straight dislocation segment moving under
an effective stress τa.The implementation of this equation in the Dislocation
Dynamics approach will be described in chapter 3.

2.5 dislocations in heteroepitaxial systems

As we have already introduced the system under study in this Thesis is
composed of a thin film of germanium grown on a substrate of silicon. This
represents an example of heteropitaxial growth in which both the film and
the substrate have a diamond-like crystal structure. In crystals the most
favorable Burgers vectors associated to a dislocation depends on the space
arrangements of the atoms in the crystal. So, as we can see in figure 14, the
possible directions for the Burgers vectors in FCC crystals lie on the edges
of a tetrahedron, known as the Thompson tetrahedron. The facets of this
tetrahedron corresponds to {111} planes, known as the glide planes of the
dislocations. These are translation vectors for the lattice and by moving on
the corresponding glide plane the dislocation can glide through the crystal
onely by means of a rearrangement of atomic bonds.

The process of injection of a dislocation in a heteroepitaxial film is the
subject of several investigation [58]. Despite the details about the nucleation
procedure are still not totally clarified, a generic picture can be drawn as in
Fig. 15. Starting from a closed loop (or a semi-loop) on a {111} plane in the
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Figure 14: Possible orientations for the Burgers vector of a dislocation in a fcc crys-
tal. The nearest neighbour points represents the directions of the most
probable Burgers vectors for a dislocation and lie on the edge of a tetra-
hedron. If AB is the dislocation line, a Burger vector along AB itself
represent a screw dislocation, one along DC an edge dislocation and
one along AD, AC, BC or BD an edge dislocation.

film, the dislocation opens under the influence of the biaxial misfit strain.
During this process the loop will eventually encounter the free surface and
thus will open forming a semi-loop with two threading arms running through
the layer. Furthermore, the loop will encounter the film-substrate interface
and will deposit a dislocation segment that is called a misfit dislocation (MD).
From this picture it is easy to understand that the direction of the misfit
segments lies at the intersection of the {111} planes with the growth plane.
For the case of growth on (001) substrates, MDs are thus oriented along
〈110〉 directions. With Burgers vector belonging to 〈011〉 directions, the loop
will then deposit MD known as 60◦ dislocations, due to the angle between
their Burgers vector and their dislocation line.

110

{111}

Figure 15: Schematic illustration showing the opening of a dislocation loop in a
heteroepiaial system. The loop glides on the {111} plane and opens when
it reaches the free surface. The misfit segment deposited at the interface
lies along a 〈110〉 direction.
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2.5.1 Critical thickness

Critical thickness is defined as the film thickness at which the energy dif-
ference in the system before and after the introduction of the dislocation is
negative. So when:

∆E(hc) = Edislocation(hc) − Efilm(hC) = 0 (35)

the system has reached its critical thickness. By disregarding the difference
in elastic constants between SiGe and Si, it is sufficient to add a trivial biaxial
misfit stress in the SiGe film to the stress expressions defined in section 2.3
to obtain the complete stress field in a dislocations in a SiGe/Si system. In-
tegrating the total elastic energy in the system with and without the disloca-
tion yields the possibility to evaluate Eq. 35. Results for various Ge content
x are reported in figure 16 for the representative cases of an edge and a 60◦

dislocation and compared to the well-known Matthews and Blakeslee for-
mulation [59, 60]. Notice that this procedure yields results pretty similar to
the very simple Matthews and Blakeslee model. In this approach the critical
thickness is describe as the condition at which the total resolved shear stress
on a threading dislocation is sufficient to start bending it. At this point the
moving threading will deposit a segment at the interface and thus producing
the formation of a misfit dislocation.
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Figure 16: Comparison between calculated critical thickness layer hc using a nu-
merical integration of the elastic energy in the system and Matthews
and Blakeslee criterion presented in Refs. [59, 60].

By exploiting the expression for an array of dislocation present in Ap-
pendix 2.3 we can further develop this evaluation. Defining the optimal
distance d0 between MDs in an array as the one that gives on average full
strain relaxation:

d0 =
bx

〈εxx〉
(36)

we can now evaluate the distance d between edge dislocations in an array
minimizing the total energy at an assigned film height h. In figure 17 we
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plot this value normalized to d0 for different Ge concentrations x. As we
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Figure 17: Optimal dislocation spacing d for different values of Ge composition x is
plotted against film thickness h. Above the critical thickness this curves
rapidly converge to the optimal dislocation spacing.

can see the transition between a non critical film, i.e. when the film can
not sustain the presence of a single dislocation and so the spacing d in the
array tends to infinity, and the fully relaxed film, when d = d0 is sharper
with increasing Ge concentration, as the driving force for the introduction of
dislocations depends on the elastic energy stored in the film.

2.5.2 Dislocations in constant composition and graded layers

The distribution of dislocations in plastically-relaxed flat film is a rather
complex topic and generally depends on the composition of the film and
the growth parameters. A generalized theory of dislocations distribution in
heteroepitaxial systems cannot be drawn since dislocations are high energy
defects and their nucleation is usually the result of an irreversibile process.
Thus, a thermodynamical equilibrium theory for their description do not ex-
ist. However, for the notable cases of constant composition and linear graded
systems some general considerations can be made. These two systems are
widely studied in literature (see Refs. [61]) and will be the subject of several
investigations reported in this Thesis, as we shall see in chapters 5 and 6.

In constant composition films, the Matthews and Blakslee analysis for the
critical thickness presented can be used to predicted the critical thickness
for nucleation of dislocations. However, as soon as the film thickness exceed
the critical thickness every position in the film would be equally favored for
the introduction of a dislocation. In real systems injection of dislocation fol-
lows kinetic considerations and the presence of local defects or sources can
favor the insertion of dislocations in specific positions [58]. However, when
multiple sources are activated the nucleation of dislocations starts simultane-
ously in different positions resulting in the deposition of a two-dimensional
network of misfit dislocations as can be aprreciated in Fig. 18.
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(a) (b)

Figure 18: Examples of heteroepitaxial films relaxed by dislocations. In (a) a top
view TEM image reveals a two-dimensional net of edge dislocations.
Image adapted from Ref. [56]. In (b) a cross-sectional TEM of a het-
eroepitaxial film reveals the typical pileup of dislocation generated by
the Frank-Read mechanism as sketched in the inlay. Image adapted
from Ref. [62]

The linear grading of the Ge composition is another common growth
modality in heteroepitaxy. This procedure is reported to have an effect on
dislocations position and threading arms [62, 61]. The usual picture of the
relaxation process in graded layers is considered to be an heterogenous nu-
cleattion of dislocations from specific sources. This is due to the paucity
of activated nucleation sources with respect to a constant composition film.
The result is the injection of multiple identical defects from just a few nu-
cleation sources. This process corresponds to the Frank-Read or the modified
Frank-Read mechanism [63, 62, 61, 64]. In this case dislocations tend to form
structures known as pileups, depicted in figure 18(b), where all dislocations
are injected as loops from the source and start to extend themselves on their
glide plane as shown in the inlay of figure 18(b). The result of this mecha-
nism is the formation of structures of dislocations disposed on a single glide
plane, known as pileups of MDs, well illustrated in the cross-sectional TEM
image of Fig 18(b).

An explanation of the vertical distribution of dislocations in graded layers
is provided by Tersoff in Ref. [65]. There, the author modeled the dislocation
distribution in terms of a mean dislocation density ρdisl and was able to
derive by thermodynamical considerations the equilibrium configuration for
this density as:

ρdisl =
ε(y) ′

b
(37)

where ε(y) ′ refers to the derivative of strain with respect to the vertical
position y. So, for a linearly increasing graded layer the predicted density is
expected to be constant.
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In this chapter we shall present the models developed during this Thesis to
tackle elastic and plastic relaxation. These are continuum models developed
on the framework of the Linear Elasticity Theory introduced in section 1.2.
All the models here presented require the possibility to numerically solve
Partial Differential Equations (PDEs). This is accomplished by exploiting
the Finite Element Method (FEM).

The description of the plastic relaxation is performed by means of the
Dislocation Dynamics (DD) approach that is discussed in section 3.1. In this
Thesis we exploited the microMegas DD code [66]. In the same section an ex-
tension required to tackle the presence of free-surfaces, called Discrete Con-
tinuos Model (DCM) [15] is also introduced. When presenting the DCM, a
discussion on the numerical solution of the PDE for mechanical equilibrium
by means of the FEM approach is also reported.

The development of a model able to tackle elastic relaxation in heteroepi-
taxy requires the possibility to solve the PDE for surface diffusion discussed
in section 1.3. Coupling this equation with the mechanical equilibrium con-
dition permits to describe the evolution of the surface morphology of the
epilayer during the growth. The implementation of this model is presented
in section 3.2.

3.1 dislocation dynamics

In the Dislocation Dynamics (DD) [66, 67] approach the description of the
evolution of a given dislocation configuration is made by means of a spa-
tial discretization of each dislocation line into small segments with a given
resolution ∆l as in Fig. 19. Exploiting this discretization, the evolution of
the dislocation line can be modeled by the movement of all its composing
segments, where each one experience a driving force F given by the Peach-
Koheler equation introduced in section 2.4:

F = (σ ·b)× ξ (38)

where b is the dislocation Burgers vector, ξ the direction of the considered
segment and σ the local stress tensor. The latter can be due to the self-
interactions with other segments composing the same dislocation line, to
the interaction with other dislocations and to applied external stress loads
like the heteroepitaxial biaxial stress field. The interaction between adjacent
segments belonging to the same dislocation line is evaluated by means of a
line tension approximation of Eq. 30. This is done in order to avoid numer-
ical artifacts due to the divergence of the stress fields close to the segment
positions. At each timestep t of the simulation, once all the acting forces
have been evaluated, the dynamics is described (in the assumption of free-

37
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flight dislocation movement, i.e. temperature high enough to activate glide
motion [1]) by evaluating the velocity vs of each segment starting from the
equation discussed in section 2.4.2:

vs =
τab

B
(39)

where τa is the resolved shear stress obtained by projecting the force F of
Eq. (38) on the glide plane of the considered dislocation loop, b is the mod-
ulus of the Burgers vector (0.3841 nm for Si) and B is a friction coefficient
typical of the considered material (5.5× 10−5Pa · s for Si). In this way the
code can displace each segment individually, eventually handling the possi-
bility of local interactions between them. At this stage of the simulation also
the discretization of the dislocation lines is recomputed if needed. Then the
above described procedure is iterated starting from the resulting configura-
tion of dislocations and recomputing the forces by means of Eq. (38) in order
to describe the evolution for the following time-steps.

b

ξj

Fi

Figure 19: Discretization of a dislocation loop of Burgers vector b into small seg-
ments of dimension ∆l and line direction ξj. The Peach-Kohler forces Fi
can be evaluated on each of the discretized segments individually.

An example of a DD simulation showing the opening of a dislocation loop
under the influence of a biaxial stress field is reported in Fig. 20. In this sim-
ulation a dislocation loop of radius 50 nm and Burgers vector oriented along
the [011] direction is opening under the effect of a resolved shear stress of
200MPa. The results of this kind of simulations have been already discussed
in section 2.4.1 in order to provide a comparison with the analytical model
of Friedel [57] for the critical stress required to open dislocation loops.

In order to correctly simulate the stress field of a dislocation in a thin film,
the requirement of zero normal stress at the surface (σ · n = 0) must be
satisfied in order to compute the correct stress field to be used in Eq. (29).
Analytical solutions are known for the case of straight dislocations segments
lying parallel to the free surface (see section 2.2.2), but a general treatment
of the dislocation line cannot be done without numerically evaluating the
stress field by means of a Finite Element (FE) solver. Indeed, the stress field
produced by dislocation segments are known analytically only for bulk sys-
tems [54]. Furthermore, accounting for the presence of non-homogenous
loadings resulting from a generic geometry of the system, as in the het-
erostructures that we will present in section 6.2, cannot be done analytically
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Figure 20: Dislocation Dynamics simulation showing the opening of a loop on a
{111} plane under the influence of a biaxial stress field.

and again requires the numerical evaluation of the stress field by a FE solver.
The next section will present the approach followed in this Thesis to couple
the DD approach here described to an external FE code.

3.1.1 Discrete Continous Model

In this section we will present a methodology developed to couple the DD
code described above to an external FE solver. In this Thesis this was im-
plemented in the open-source FE framework, FEniCs [12, 13], following the
approach called Discrete Continuous Model (DCM) presented in Ref. [15].
In this description, the problem of mechanical equilibrium is set in terms
of a partial differential equation linking the unknown displacement field
u, to a generic applied deformation ε∗, called eigenstrain and introduced in
section 1.2.2, through the relation:


−∇σ(u) = 0 on Ω \ ∂Ω

σ(u) = C(ε− ε∗) on Ω \ ∂Ω

u = 0 on ΩD

σ ·n = 0 on ΩN

(40)

where Ω is the integration volume and ∂Ω its external boundary.The bottom
boundary ∂Ωd is kept fixed by applying Dirichlet boundary conditions (zero
displacement), while ∂Ωn is the top free surface with Neumann boundary
conditions (zero normal stress). On the lateral boundaries periodic boundary
conditions are applied.

The PD problem defined in Eq. (40) is generally formulated in order to
describe the response of a system to an applied deformation ε∗. This gen-
eralization can be easily used to describe the plastic deformation induced
by a dislocation exploiting a modified version of the eigenstrain formalism,
originally formulated by Elsheby to describe inclusions in solids [68] and dis-
cussed by Mura in Ref. [28]. This was done by following the DCM approach.
Here the elementary plastic deformation dεp produced by the motion of dis-
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location segment is regularized by a distribution function w̃ as introduced
by Wei Cai and coworkers in Ref. [69]:

dεp = w̃(h)
b⊗ dA+ dA⊗b

2
(41)

where dA is the (oriented) area swept by the dislocation segment during
its motion and h is a characteristic thickness for the regularization function
w̃. By integration of the dεp term over all the swept area dA and by sum-
ming this contributions for all the moving dislocation segments at a given
time-step t of the simulation we obtain the applied plastic deformation for
the whole dislocation microstructure, εp. The procedure described above is
schematized in Fig. 21.

dA w
~ dεp

Figure 21: Regularization procedure for the DCM approach. The movement of each
dislocation segment in the DD code produces an elementary swept area
dA that is traduced in a regularized plastic eigenstrain by means of
Eq. (41) and finally passed to the FEM code to compute the resulting
stress field. Image adapted from Ref. [15]

3.1.2 Weak formulation for mechanical equilibrium

Explicitating the mechanical equilibrium equation (40) in terms of the dis-
placement field u by means of equations (6) and (4) we obtain:

−∇ · [µL(∇u+∇uT ) + λL(∇ ·u)I] = 0 (42)

with µL and λL the Lamé constant for the material under consideration. In
order to apply the FEM to approximate the solution u ∈ V we shall express
it in the weak formulation by multiplicating Eq. 42 by a test function v ∈ V
that satisfies the same boundary conditions of u, and then by integration
over Ω. V is generally defined as an Hilbert space and is called function
space in the context of the Finite Element Method. Within this approach we
can explicitate the weak formulation for Eq. 40. This can be expressed as the
problem of finding a function u such that:∫

Ω

µL

2
(∇u+∇uT) · (∇v+∇vT )+

∫
Ω

λL(∇ ·u)(∇ · v) = 0, ∀v ∈ V (43)

This equation can now be reduced to a finite dimensional subspace Vn ⊂ V
of dimension n∫
Ω

µL

2
(∇un+∇uT

n) · (∇vn+∇vnT )+
∫
Ω

λL(∇·un)(∇·vn) = 0, ∀vn ∈ Vn

(44)
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The finite function space Vn will be taken as the space of Lagrange piecewise
polynomials of order 1, defined at the nodes of the FE mesh. The correspond-
ing basis set is indicated by ψk, k = 1, . . . ,N. Now the unknown solution
can be expanded on this basis set, un =

∑N
k=1 ukψk, and the test functions

can be chosen as the basis functions vk = ψk. Thus, for the orthogonality
of the dot product between basis functions, Eq. (44) can be reduced to n
indipendent equations:

∑
k

uk

∫
Ω

µL

2
(∇ψk +∇ψT

k) · (∇ψj +∇ψjT )

+

∫
Ω

λL(∇ ·ψk)(∇ ·ψj) = 0, for j = 1, . . . ,N
(45)

This set of equations can be now rewritten as a linear problem of the form

A ·u = L (46)

with u = (u1, . . . ,un), the unknown of the problem. A is usually called the
stiffnes matrix and once the discretization is defined by means of a meshing
algorithm it only depends on the material constants. L is a vector defining
the imposed loadings and in our description depends on the eigenstrain ε∗.
Thus, it should be updated at each time step of the simulation whenever the
configuration of dislocation changes.

The solution of the linear problem defined in Eq. (46) will provide the
unknown displacement field u. Once this problem is solved, the stress field
can be evaluated back from equations (4) and (6) and plugged into Eq. (38)
in order to find the displacements of the dislocation segments at the next
time-step of the simulation. By iterating this procedure a simulation of the
evolution of the dislocation configuration is possible.

3.2 surface diffusion

The model implemented in this Thesis for the surface diffusion relies on an
explicit description of the film profile. The film free surface is traced by
a function h = h(x) with x = (x,y) for a 2+1D description and x = (x)

for a 1+1D description as the one schematically illustrated in Fig. 22. The
equation determining the evolution of the profile h is the diffusion equation
introduced in section 1.3. For a 1+1D description the diffusion equation
takes the form:

∂h

∂t
= Φ+M

∂

∂x

[
1√

1+ h ′2
∂µ

∂x

]
(47)

where prime means differentiation with respect to x. M is the mobility coef-
ficient, setting the time scale for the evolution. Deposition can be included
by assuming a vertical material flux Φ, mimicking typical Molecular Beam
Epitaxy conditions. Once defined µ, the evolution is determined by integrat-
ing in time Eq. (47). At each time-step t, the profile evolution is defined by
the solution of Eq. (47), tracing the motion of each point of the profile.
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Figure 22: (a) Definition of the surface profile. (b) Example of locally refined mesh
used in the simulations when describing the presence of dislocations.
The region near defect cores is finely refined in order to better describe
the high variation in the stress/strain field close to dislocations.

The chemical potential µ comprises three major contributions: surface,
wetting and elastic energy. It takes the form:

µ = κγ+
1√

1+ z ′2
dW
dh

+ ρε (48)

The first term accounts for the cost of exposing free surfaces and, for isotropic
surface energy density γ, it is proportional to the local profile curvature κ.
The second term accounts for film/substrate wetting [47, 46], as discussed
in section 1.4.1. The last contribution in eq. (48) corresponds to the elastic
energy density ρε at the surface, calculated in the assumption of mechani-
cal equilibrium. This is performed by solving the PD problem of Eq. (40)
at each time-step on the entire simulation volume Ω. The resulting elastic
energy density can be evaluated, once the stress and strain fields are known,
starting from Eq. (7), and then plugged into Eq. (48) by restricting ρε at the
free surface. This procedure is shown for the 2+1D implementation of the
model in Fig 23. The surface dynamics requires the modification of the sur-
face profile during the simulation and this implies that the entire integration
volume Ω follows the evolution. Thus, at each time-step the free-surface is
updated together with the Neumann boundary conditions of Eq. (40).

Solving the mechanical equilibrium by means of the PD problem of Eq. 40

permits also to take into account inelastic effects by means of the eigenstrain
term ε∗ as already described in section 3.1. This allows for the description
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of a heteroepitaxial misfit strain but also for the description of dislocation in
our diffusion model.

In principle, in order to take into account the presence of dislocations ε∗

should be defined as in Eq. (41). However, another possibility consists in
following the approach discussed in Refs. [70, 71], setting the eigenstrain as
the initial approximated solution provided by the analytic functions of the
strain field produced by dislocations. The appealing aspect of this approach
is that convenient local mesh refinement can be defined only for regions
close to dislocation positions. These are indeed the regions where a higher
precision is required, in order to correctly describe the highly non-uniform
stress field close to dislocation cores. An example of a meshing procedure
showing this approach is reported in the bottom part of Fig. 22.

In this work, whenever considering the stress field of a dislocation in a
simulation cell with periodic boundary conditions (PBCs), we exploited the
analytic function reported in Appendix A. Furthermore, the stress field in
the proximity of the dislocation core is regularized by exploiting the conve-
nient procedure suggested in Ref. [69]. Again, analytic expressions for the
regularized stress field of arrays of dislocations are reported in Appendix A.
In this model these expressions are exploited in order to avoid numerical
divergence during the integration of the elastic energy.

The previously described model is implemented in the same FEniCS envi-
ronment described in section 3.1. This is a tool that provide an interface to
solve PDEs. The coupled problem of elasticity and surface diffusion is setted
by projecting the free surface of a 3D cell on a plane that is the support for the
2D finite element space needed to solve the diffusion equation. The parallel
capabilities of the code exploits a spatial discretization by decomposing the
domain into separate regions as can be seen in Fig. 23. The assembly of the
matrix element defining the FEM model, Eq. (46), can thus be performed in
parallel. The required communications for evaluating mesh elements shared
by two adjacent volumetric regions made possible by openMPI calls between
the parallel processes.

3.2.1 Weak formulation for surface diffusion

The weak formulation of the diffusion equation is analogous to the deriva-
tion described in section 3.1.2 for the mechanical equilibrium equation. How-
ever, Eq. (47) implies fourth-order spatial derivatives and cannot be solved
by means of first order Lagrange polynomials. Eq. (47) is thus re-written as
two coupled second order equation defined on a mixed finite element space
Vn×Vn where Vn is a standard Lagrange finite element space of dimension
n. The two PDEs that we need to solve can thus be written as:

∂h

∂t
−∇M∇µ = 0 (49)

µ−
∂W

∂h
− ρε = 0 (50)

The resulting derivation for the weak form of these equation follows the
approach described in section 3.1.2.

The time integration of Eq. (47) is performed by means of a semi-implict
approach. The timescale of the simulations reported in this work are al-
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Figure 23: Considered system, Ω is the full 3D volume under consideration, while
the top plot ∂Ω defines the 2D mesh used for solving the diffusion equa-
tion.

ways left in arbitrary units unless indicated. However, the mobility co-
efficient M can, in principle, be estimated from the diffusion coefficient
M = hlVaD0(kT)

−1 exp[Eb/(kT)], with hl the thickness of a monolayer, Va

the volume per atom, D0 the material diffusion coefficient, Eb the energy
barrier for site hopping, kb the Boltzmann constant, and T the temperature.
Typical values for the Ge/Si system can be set as hl = 0.146 nm, Va = 0.02

nm3, D0 = 8.5×10
8 nm2/s [72], Eb = 1.1 eV [73].



4 F R O M E L A S T I C TO P L A S T I C
R E L A X AT I O N

As described in the Introduction, there exist two qualitatively different paths
leading to strain relief in heteroepitaxial systems. The first possibility is the
elastic relaxation by deformation of the flat geometry of the growing film
into three-dimensional islands, partially relaxing the in-plane strain thanks
to the exposure of lateral free surfaces. This is the path followed by systems
displaying the Stranski-Krastanow (SK) growth mode, after the completion
of a wetting layer (WL), as the Ge/Si system considered in this Thesis. Al-
ternatively, the stress load can be released by misfit-dislocation injections.
However, these two qualitatively different relaxation paths are competing to-
gether in the overall relaxation of the heteroepitaxial film and thus a model
able to tackle both this effect simultaneuosly is required in order to describe
some of the peculiar effects widely investigated in the literature.

In this chapter are presented some applications of the model for surface
diffusion introduced in section 3.2. First, we will study the elastic relax-
ation of a strained film. We will present some simulations of the formation
and coarsening of heteroepitaxial islands for a SiGe/Si system following the
Stranski-Krastanow growth regime. This was done by implementing in the
surface diffusion model the wetting potential introduced in section 1.4.1, fit-
ted on ab-initio simulations for Ge/Si systems. Furthermore, by exploiting
the wetting potential discussed in section 1.4.2 we were able to model the
behavior of thin films exhibiting a finite contact angle with their substrate
whithin the very same model. A brief collection of simulation results about
this topic is reported in section 4.2.

Finally, in section 4.3 and 4.4 we will analyze more in details the behavior
of SiGe/Si systems, by accounting also for the possibility of inserting misfit
dislocations on the fly during the growth simulations. We will show that
this permits to identify two different growth regimes, one reproducing the
well known effects of cyclic growth for heteroepitaxial islands [62], the other
leading to nearly-flat, plastically-relaxed thin films [56].

4.1 elastic relaxation of heteroepitaxial films

As treated extensively in Section 1.3 the competing effects of surface and
elastic energy minimization, with the former leading to a flattening of the
surface, while the latter favoring the formation of islands to release the elas-
tic energy of the film, results in unstable solutions of the diffusion equa-
tion (17). This lead to the growth of a perturbation with typical time-scale
and dimension dependent on the misfit strain between the film and the sub-
strate. The typical example of this is the growth of high concentration SiGe
films on Si(001) substrates. As reported in Fig. 24 for the deposition of a pure
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germanium film on Si(001), the elastic relaxation results in the formation of
three dimensional islands.

Figure 24: STM image showing germanium germanium islands grown on Si(001).
Image adapted from Ref. [74].

The initial stages of the islands growth can be modeled by the Asaro-
Tiller-Grinfeld (ATG) instability [30, 31, 38], described in section 1.3. The
ATG model considers the evolution process of a semi-infinite Ge film, under
the influence of a biaxial stress, in a linear approximation. This description
can be used to explain the growth of islands in a continuum model where
an initial perturbation of the profile whose wavelength is above the critical
wavelength defined in equation (19) can be amplified by this mechanism.
The model developed in this Thesis, thanks to the FEM solver described
in section 3.2, takes into considerations both linear and non-linear contri-
butions for the elastic energy, therefore it is also able to simulate evolution
stages that go beyond the initial linear ATG approximation. This is well illus-
trated in figure 25 where the amplification of an initial cosine perturbation
of λ = 15nm and initial amplitude of 0.01nm representing the free-surface
of a thick Ge layer on a Si substrate is shown. The initial stages show the
behavior predicted by the linear ATG model, with the amplification of the
initial cosine perturbation. As soon as the linear approximation of the ATG
model ends, a deviation from this simple amplifications can be seen. In-
deed, later stages show a modification from the cosine shape. This happens
when the top tends to be more relaxed, so the surface energy cost tends
to round it [75]. On the contrary, the trenches between islands are more
elastically-stressed and so tend to form higher curvature regions. The evo-
lution thus tends to increase these cusp singularities until the divergence of
the profile. Although this cycloid shape can be actually observed in exper-
iments [76, 77] as reported in Fig. 26, this behavior of the model will lead
unavoidably to a divergence, that does not permit the description of later
stages of the evolution. Furthermore, this description explains the growth of
heteroepitaxial islands as the amplification of an initial perturbation and so
does not account for a complete description of nucleation process of islands,
particularly important in the case of high Ge content [78].
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Figure 25: Evolution of a cosine perturbation following the law of surface diffusion.
Here are shown stages that go beyond the ATG linear stability analysis,
thanks to the exact solution implemented for the elastic field. Time is in
arbitrary units.

4.1.1 Long time process: Coarsening of Islands

A more realistic approach to model the growth process requires to start from
a few-monolayers thick thin film and to account for the modification of the
surface energy that affects this wetting-layer compared to the rest of the film.
This leads to a growth mode similar to the Stranski-Krastanov regime, with
a finite wetting layer that separates the surface islands from the substrate. In
a Ge/Si system, it is known that Si has an higher surface energy density than
Ge: this property causes the formation of the Ge wetting layer, which covers
all the Si surface, lowering the surface energy of the system. The surface
energy density function used to reproduce this behavior is the γ of Eq. (20).
This function, as discussed in section 1.4.1, is an exponential function of the
distance from the film/substrate interface.

The best way to carry out a simulation limiting the influence of the initial
profile is to use a random perturbation. The idea of the random method
is to include all the possible wavelengths, but using a very small ampli-
tude. Therefore, depending on the elastic energy in the film, and thus on the
amount of misfit strain, one mode, corresponding to the λmax derived in the
linear ATG theory, grows faster than all the others dominating the resulting
island profile.

Figure 27 shows a two-dimensional simulation of the evolution of a ran-
dom perturbation on a Si0.2Ge0.8 thin layer. The simulation starts with a
thin film of a few mono-layers (1nm) and a deposition flux is included in or-
der to simulate a growth process. The relaxation of the film into islands can
begin only when the film has reached a certain critical thickness [79]. This
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Figure 26: TEM cross-section image showing the development of the ATG instabil-
ity in a SiGe/Si heteroepitaxial systems. Image adapted from Ref. [76]

behavior depends also on the deposition flux, as a strong rate has the ef-
fect of shifting this thickness producing thick out of equilibrium film before
elastic relaxation can begin. Instead, a lower flux compared to the diffu-
sion timescale, let the system free to relax elastically while only adds new
material. This is an example of a near-equilibrium growth process. The
first stages of this simulation show the growth of perturbation with locally
random wavelengths, but instead of continuing the growth up to reach the
wetting layer, smaller islands prefers to coalesce with larger ones, in order
to adjust the local wavelengths to more favored ones as explained by the
ATG model. After the deposition of a sufficient amount of material the flux
stops and the system is let evolve by annealing. At this point, at variance
from the standard ATG model description, all the islands have reached the
substrate and they start exchanging material. This is a long time process
known as coarsening. It is due to little differences in islands size that favor
the transfer of material between a slightly less relaxed islands to one more
relaxed. The result of this process is that smaller islands disappear and
larger ones tend to grow in dimensions attracting more material. At the last
stage represtented only a small number of the initial islands remains, those
randomly more relaxed with respect to the other and so favorable in terms
of attraction of material. Further coarsening process among them requires
much longer time-scale and the limiting result is the surviving of only one
large volume islands [46, 80, 81, 82].

The same kind of behavior can be appreciate in Figure 28 where the same
simulation is reproduced in three dimension by exploiting the approach de-
scribed in Section 3.2. Here again we see a thin layer of a few monolayers
of Ge deposited on a silicon substrate. The simulation cell is 500× 500 nm
of lateral sizes and 50 nm in the vertical direction. During the simulation
the surface of the deposited films starts to deform from the planar geometry
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Figure 27: Representative stages of a growth simulation illustrating long-time coars-
ening process of islands. In the first three stages a deposition flux is
imposed to simulate a growth, in the last three the system evolves by
annealing. Color map refers to the in-plane component εxx of the strain
field.

and elastically relax by the formation of islands. In the later stage of the
simulation the differences in relaxation between islands leads to coarsening
phenomena where the bigger ones tend to attract material from the smaller
neighbour due to the fact that they are elastically more relaxed.

The resulting organization and shape uniformity of these randomly nucle-
ated island is however very poor. This limit the applicability of these simple
form of self-organization since in most of applications the key requirement
is control over these parameters. Various possibility have been developed
to address this drawback, such as pre-patterning the substrate via etch-pits
in order to guide island formation [83], or exploiting stressors. Another re-
cently proposed approach is the exploitement of pre-patterned film patches.
This allows a precise control over the self-assembled process and thus can
be a viable path to overcame the limitations of self-assembled islands. In the
next section we will present results showing how this process can be tuned
for the dewetting of a strained film. This is done by applying the very same
model exploited in this section but replacing the wetting potential with the
one introduced in section 1.4.2.

4.2 solid-state dewetting of strained films

As anticipated in the introduction of this chapter the model developed to
study the elastic relaxation of heteroepitaxial systems proved to be general
enough to be applied also to the description of the solid-state dewetting of
thin strained films. In order to take into account the presence of a contact
angle ϑ we replaced the wetting potential mimicking the SiGe/Si interface
with the potential introduced in section 1.4.2. This section will show simula-
tions performed with the code described in section 3.2 aimed at inspecting
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Figure 28: Representative stages of a 3D simulation of the elastic relaxation of a
stressed film into islands. Starting from a few nanometer-thick wetting
layer the system evolves under annealing and tends to deform the flat
morphology into islands in order to elastically relieve the imposed misfit
strain.

the competition between the phenomena of dewetting and ATG instability,
however, the treatment reported here is not intended to be exhaustive of the
topic and further details can be found in Refs. [84, 85, 86, 87].

The simulation presented here are performed in adimensional units for the
time and space scale considered. Here the focus is on showing the general
behavior of the competition between elastic relaxation of an imposed elastic
energy density ρε and the dewetting instability in thin solid films, without
attempts to reproduce the parameters of a specific system.

As extensiveley treated in section 1.3 the ATG model predicts the mode
of the fastest growing mode q in terms of the elastic energy density in the
film. This defines a characteristic length λATG that as can be seen in Eq. (19)
is inversely proportional to the elastic energy density ρel. The same is true
for the so-called pinching instability. This is an instability that lead to the
retraction of a film edge via mass transport at its surface, eventually leading
to the exposition of the substrate and the formation of a solid "droplet" or is-
land separated from the retracting film. In Ref. [14] the authors showed how
the characteristic length of the pinching instability can be realated to forth
inverse power of the contact angle ϑ. Thus, it is possible for a strained film
exhibiting a contact angle with its substrate to find a set of parameters for
which the characteristic length (and time) of ATG and pinching instabilities
are close enough to see the co-existence of these two phenomena.

An example of a 2D simulation showing this effect is reported in Fig. 29.
This is a simulation of a thin film of thickness h = 8 and with parameters
for the wetting potential h∗ = 6 and ϑ = 10. The elastic energy density
is set to ρ = 0.2, and a small random perturbation (of average amplitude
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Figure 29: Simulation competition between the dewetting and ATG instabilities.

The mass shredding starts at the edges of the thin layer by producing
islands with a characteristic size λpinch. In later stages of the simulation
the ATG instability starts also to develop arund the center of the thin
layer.

10−5 is added to film profile as trigger for the ATG instability. As can be
seen in the figure, the mass shredding starts at the edges of the thin layer
and islands are produced by the pinching of the retracting film. In later
stages the ATG instability starts also to develop around the center of the
simulation cell. A detailed analysis of the results of these simulations for
different combinations of the (ρ, ϑ) parameters showing can be found in
Ref. [84].

Finally, the competition between the elastic relaxation of the misfit strain
in the layer and the pinching instability can be appreciated by the three-
dimensional simulations as reported in Fig. 30. Here the starting condition
of the simulations are square patches of a thin film deposited on a substate.
The thickness of the film is set at h = 4 and the characteristic length for the
dewetting potential is h∗ = 3. The contact angle parameter ϑ is set to 45◦ and
the lateral sizes of the square patches are choosen to be integer multiples of
the characteristic length λpinch. This means that for each pair of parameters
(ρ, ϑ) simulations similar to the one reported in Fig. 29 were performed in
order to find the corresponding λpinch. This was then used as parameter
for the 3D simulations. In Fig. 30 are reported the results for the largest
considered simulation cell, corresponding to a lateral patch size of 4λpinch.
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Figure 30: 3D simulations showing the evolution under the combined effects of elas-
tic ATG instability and dewetting intability. The starting condition are
square patches of a thin film deposited with lateral size corresponding
to 4λ. The top row correspond to simulation performed with ρε = 0, the
center row with ρε = 0.2 and the bottom ρε = 0.4.

As can be seen from the figure the effects of increasing the elastic energy
is to force a lateral and size. However these results are still preliminar and
should be further investigated.

4.3 cyclic growth

Experimental evidence by LeGoues et al. [88], dating more than 20 years
ago, has shown the peculiarity of heteroepitaxial-growth dynamics under
the simultaneous effect of elastic and plastic relaxation. By in-situ electron
microscopy, the authors showed oscillations in island shapes, attributed to
successive insertion of misfit dislocations in SK Ge islands on Si(001). Be-
side the dramatic evidence of such cyclic growth supplied in Refs. [88], the
influence of dislocations on SK islands has been inferred by simple height-to-
base aspect ratio (AR) vs. volume (V) plots. As highlighted in several papers
[52, 53, 89], the onset of plasticity is signaled by a transition, beyond a critical
volume, from a monotonous AR increase vs. V, to a less well-defined (due
to fluctuations) behavior, almost a plateau.

In this Section we will further develop the simulations reported in sec-
tion 4.1 by modeling the plastic relaxation of partially relaxed SiGe islands.
For this, a suitable approach to determine the conditions for the insertion of
a dislocation on the fly during a growth simulation was developed. Inser-
tion of a defect within an island lowers the need for strain relaxation, so that
a flatter configuration becomes energetically favorable. Static calculations
investigating the onset of plasticity and the shape of dislocated islands have
been reported in several papers [88, 89, 90].
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Figure 31: During the evolution of the film profile, lateral scans are made to check
whether the presence of a further dislocation lowers the energy of the
system (∆E < 0). (a) Energy difference between the system with and
without dislocation for a small (dashed curve) and a large island (con-
tinuous line). (b) Morphology of the two islands and corresponding εxx
strain map, including the effect of the dislocation for the larger one.

All simulations here reported were run by setting parameters for the same
parameters as those of section 4.1, A Ge0.8Si0.2 is grown on a Si(001) sub-
strate, considering an exponential wetting potential. The ratio M/Φ of
Eq. (17) was set equal to 10

4 when considering close-to-equilibrium con-
ditions and decreased to 10

2 for simulations far-from-equilibrium of sec-
tion 4.4.

The introduction of dislocation in these simulations follows the approach-
proposed in Refs. [70, 71] and discussed in chapter 3, setting the eigenstrain
as the initial approximated solution provided by the analytic functions avail-
able for arrays of dislocations [54], as required by PBCs. A dipole construc-
tion is also exploited to suppress spurious lateral interactions resulting from
the long-range (r−1) dependence of the dislocation strain field. Furthermore,
the stress field in the proximity of the dislocation core is regularized by ex-
ploiting the convenient procedure suggested in Ref. [69], in order to avoid
numerical divergence (this is especially needed in order to integrate the elas-
tic energy).

The introduction of dislocations into the system is performed on the fly
during the growth simulation. In particular, the variation in the total elas-
tic energy is probed by placing the dislocation at different sites along the
film/substrate interface. In case a position leading to energy lowering is
found, the dislocation is placed there and the corresponding stress field (see
Ref. [70]) is added to the purely elastic one. The procedure is illustrated
in Fig. 31. It is worth noting that this energetic criterion totally neglects
the process of nucleation of dislocations discussed in section 2.5, and the
associated activation energies. This approximation typically leads to an un-
derestimation of the critical thickness for the growth of flat epilayers, as
reported in several experimental observations [91]. However, when dealing
with the plastic relaxation of islands, it has been shown that a purely purely
thermodynamic criterion fits the experimental critical sizes with consider-
able agreements [90, 70]. This is likely due to the highly inhomogeneous
distribution of the stress field in the island, exceeding some GPa close to the
island edges, thus favoring the process of dislocation injection, as soon as
the thermodynamic limit has been overcome [91].
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Figure 32: Temporal evolution of the film profile for different amounts of material
deposition hd (directly proportional to time), corresponding to the injec-
tion of the first (hd=2.4 nm) and second (hd=2.6 nm) dislocation and to
a later stage (hd=2.9 nm) where the island hosting the dislocations has
quickly grown while the two adjacent coherent islands disappear.

Simulation results corresponding to quasi-equilibrium growth are displayed
in Fig. 32. Film profiles at different times are shown, starting from the stage
where our automatic procedure first leads to insertion of a dislocation. Previ-
ous stages, including WL formation, onset of the Asaro-Tiller-Grinfeld (ATG)
instability, are as reported in section 4.1, and the long time coarsening pro-
cess in the absence of defects has already been widely discussed in the liter-
ature (see e.g. Ref. [46]). Following Ref. [90], we considered only 60

◦ disloca-
tions, whose lowest-energy position is laterally displaced with respect to the
island center [90]. As a result only one side of the island strongly benefits
from plastic relaxation. Thus, a second defect is quickly added to the other
side. Then, the system evolves for significant time without introducing fur-
ther dislocations. As the chemical potential of the defected island is much
lower with respect to the one of the coherent islands, coarsening is observed,
the dislocated island enlarging at the expenses of the two lateral ones which
disappear. The presence of large plastically relaxed islands surrounded by a
depletion zone was clearly reported in several experiments (see, e.g., Fig. 1

of Ref. [53]).

Let us now follow the long-time evolution of a single dislocated island sur-
rounded by a flat substrate. As more material is deposited, the island keeps
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Figure 33: Evolution of the island AR as a function of the deposited material. A
sharp change in behavior is seen when the first dislocation is introduced.
From this stage the evolution substantially deviates from the correspond-
ing one obtained by suppressing the injection of defects (dashed curve).
Inset: Strain map (εxx component) at the latest stage of evolution.

on growing and dislocations are added each time a critical-volume condi-
tion is met. The full development of the island is conveniently followed by
the heigth-to-base Aspect Ratio (AR) vs. V curve reported in Fig. 33. Until
the island is coherent, the AR grows with V, as expected from simple static
models [70]. When the first dislocation is introduced the behavior changes.
A sudden drop in the AR is observed: the effective lattice mismatch in the is-
land is lowered, and flattening occurs to reduce the exposed surface. As the
volume increases, however, the tendency towards increasing the AR to bet-
ter release the strain dominates again, until a new dislocation is introduced.
Our simulation predicts an oscillatory behavior of the AR and, thus, cyclic
growth. This sudden change in behavior in the AR vs. V curve has been
reported in several experiments [52, 53, 89]. Actual oscillations are compati-
ble with the observations, despite not being evident in curves derived from
experiments due to the scatter among measures on several islands. The in-
situ observations by LeGoues et al. [88], however, leave little doubts on the
presence of shape oscillations. Notice that islands profiles in the presence of
an odd number of dislocations are typically non-symmetric (panel b), as a
direct consequence of the strain field (inset in panel a). The lack of lateral
symmetry of some dislocated islands is quite evident in the experimental
results of Ref. [53].
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4.4 growth of planar films

Let us now show that the very same model also predicts the possibility to
grow flat films by kinetically suppressing island formation. The evolution
reported in Fig. 55 was obtained by decreasing the mobility by a factor 100

with respect to the previous case, thereby mimicking the low-temperature
growth stage used in experiments to stimulate dislocation injection prior to
island growth [92, 56].

The reduced mobility slows down the development of the ATG instability,
so that the film grows almost flat until it reaches the critical thickness for dis-
location injection (around ∼1.2 nm with our parameters). When this occurs a
first dislocation is introduced (an array of dislocations distanced by the cell
size is actually introduced, due to PBCs). Others follow at larger thicknesses.
No islands are formed. As evident from the strain maps of Fig. 55, in these
simulations we have considered 90

◦ and not 60
◦ dislocations. This is because

in flat Ge/Si(001) films 60
◦ dislocations tend to combine in 90

◦ Lomer pairs
[93, 94]. Importantly, it is not the change in the defect character to cause the
different behavior with respect to the close-to-equilibrium case: we directly
verified (not shown) that the qualitative behavior is unchanged by replac-
ing 60

◦ (90
◦) dislocations with 90

◦ (60
◦) dislocations in close-to-equilibrium

(out-of-equilibrium) conditions.

Some undulations, as also reported in the low-T experiments of Ref. [93],
are seen in Fig. 34(a), and can be appreciated by the plot in Fig. 34(b). They
are indeed caused by the modulation in chemical potential induced by the
presence of the dislocations. At variance with SK islands, such undulations
are suppressed when the film is thick enough (leading to a uniform chemical
potential at the free surface), and dislocations relax the misfit strain [95].
Under these conditions there is no further need of forming islands, and the
kinetic constraints can be removed while growing a thicker flat film.

Figure 34: (a) Relevant simulation stages for the evolution observed during out-
of-equilibrium growth. Undulations are caused by the underlying dis-
locations. When full plastic relaxation is achieved the film becomes flat
again. (b) Temporal evolution of the film roughness evidencing the onset
of undulations, slowing disappearing with thickness. Once dislocated,
the film is stable against annealing as shown by the simulation contin-
uation without deposition (dashed line on the right). The number of
dislocations is reported in the top colored bar.
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Finally, we notice that also dislocation-induced undulations can be sup-
pressed by reducing the temperature further. In that extreme regime dif-
fusion would be totally frozen and our model would predict conformal
growth. However, the validity of the approach would be questionable as
mono-atomic surface steps created by dislocations are not included in our
model, while known to influence the film roughness in the absence of sur-
face diffusion [96].





5 M I S F I T D I S LO C AT I O N S
D I S T R I B U T I O N I N H E T E R O E P I TA X Y

The growth of planar heteroepitaxial films and the surface roughness devel-
oped at their free surface, simulated at the end of the previous chapter, is
a widely investigated topic per se due to the possible exploitment of these
systems as substrates for technological application in the microelectronics
industry. The growth of flat films is usually performed with heteroepitaxial
systems exhibiting relatively small misfit strain f / 0.02. Indeed, under these
conditions the elastic relaxation is slow with respect to the growth rate (in
the terms discussed in the previous chapter) and the film grows with a nearly
flat-morphology until plastic relaxation sets in. At this point the formation
of regular surface undulations at its free surface, known as crosshatch pat-
tern (CHP), are commonly observed. References to this phenomenon can be
found in literature for a wide variety of heteroepitaxial systems [97, 98, 99].
Indeed CHPs are typically recognized as a fingerprint of the plastic relax-
ation itself. However, despite its popularity, the fundamental parameters
linking the CHP to the underlying network of misfit dislocation is still not
entirely understood. This is due to several competing phenomena occurring
at the same time and to the inability of too simple models in capturing the
main features of the CHPs dynamics as we will show later in section 5.2.1.

In this chapter we will show that the CHP dynamics can be understood
and reproduced on the theoretical ground once the underlying distribution
of misfit dislocations is known. First in section 5.1 we will analyze in de-
tail, by linking several experimental observations by means of a theoretical
model, the network of misfit dislocations formed during the relaxation of a
low-misfit Si0.92Ge0.08 film. This will permit us to generalize the functional
form describing the position of MDs. Then, in section 5.2 we will exploit
this result to develop realistic model able to reproduce the main features of
CHPs evolution, providing direct comparison of the model predictions with
dedicated experiments.

5.1 tilting angles maps

The characterization of the distribution of misfit dislocations inside an het-
eroepitaxial film represents a great challenge for the experimental techniques
available nowadays. X-Ray diffraction (XRD) permits a precise evaluation of
the lattice distortions and thus can be used to un-directly reconstruct the
presence of misfit dislocations in a thin layer [100]. However, even the high-
resolution micro-XRD obtained by high-energy synchrotron beam cannot be
used to detect individual defects when the average separation of these be-
comes of a few tens of nanometers. On the contrary, TEM investigations
are capable of detecting single misfit dislocations but presents two major
drawbacks: they require a destructive processing, since the sample must be
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thinned to a thin lamella before the analysis, and they cannot explore large
area without a time-consuming procedure of image alignment, thus limiting
the statistical power of these characterization. In this section we will show
how these two analysis can be combined together by means of a theoreti-
cal model, finally providing an explanation of the spatially-resolved tilting
angles maps obtained from micro-XRD analysis in terms of single-defects
contributions.

5.1.1 Experimental characterization

The system under consideration in this Section is a 600 nm-thick Si0.92Ge0.08

film grown by SILTRONIC on a 300 mm Si(001) wafer using a high temper-
ature (1050◦C) CVD process. Details about the growth process can be found
in Ref. [101].

The experimental characterization was performed at IHP where, by means
of Focused Ion Beam (FIB) a 40× 40 µm2 area was marked into the layer
to define a region for Scanning X-Ray Diffraction Microscopy (SXDM). The
micro-XRD analysis showed an average Ge content of x ≈ 0.08 and a 35% of
strain relaxation. Both the limited thickness of the film, yielding only partial
strain relaxation, and the low Ge content were chosen in order to avoid a too
dense (and too complex) dislocation network which would have make the
following analysis more complex. The results were also analyzed in order
to produce the spatially-resolved tilting angle map reported in Fig. 35(a). In
the figure we display the Ω(x,y) = Ωxz(x,y)+Ωyz(x,y) tilt-angle map over
the marked 40× 40 µm2 film region. In tilt-angle maps, the contributions
coming from dislocations running along mutually perpendicular directions
can be easily separated [102], and the resulting map for only the Ωxz(x,y)
component produced only by the dislocations running along the y direc-
tion is reported in Fig. 35(b). The pattern is particularly simple, presenting
a negligible dependence on the y coordinate. Indeed, due to the low mis-
fit, the heterostructure here considered is expected to display long misfit
segments [91], leading to the (quasi) one-dimensional tilt-angle distribution
observed. Notice that threading arms, in any case rather unlikely to be
present in the sampled area (we measured a threading dislocation density
of the order of 105 cm−2), would produce no detectable signal in the X-ray
diffraction [103].
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Figure 35: Tilt maps recorded by SXDM. Panel (a) Total tilt angle Ω = Ωxz +Ωyz.
Panel (b) Ωxz tilt angle. (c) Schematic representation of the alignment
between the 40 µ-long TEM lamella, imaged by SEM microscope, and
the X-Ray map, obtained through FIB markings on the sample.
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Figure 36: (a) Full lamella used to individuate dislocation positions, and zoom-in
on a 10 µm region, better revealing the presence of dislocations. (b)
Positions of the dislocations as inferred from analysis of the highlighted
region of panel (a).

Afterwards, the sample was prepared for TEM analysis by cutting a thin
lamella (final thickness of about 200 nm) inside the FIB-marked area of inter-
est, obtaining a 40 µm long lamella exactly in the region previously analyzed
by SXDM. A schematic representation of the resulting alignment between the
X-ray map and the TEM lamella is depicted in Fig. 35(c). The lamella was
tilted about 10◦ to visualize misfit dislocation lines at the SiGe/Si interface
as streaks. Thus, misfit dislocations running along the beam direction could
be identified and distinguished from defects running parallel to the lamella.
About 80 TEM images were taken along the whole 40 µm long lamella, ob-
taining a continuum TEM image still maintaining the required precision to
detect single defects. The final image is reported in Fig. 36.

5.1.2 Modeling tilting angle maps

In this section we demonstrate how the two experimental characterizations
described above can be linked together on theoretical grounds. We recall
here that tilt angles, as introduced in section 1.2, can be evaluated from the
anti-symmetric part of the displacement field u using the relation:

Ωαβ =
1

2

(
∂uα

∂rβ
−
∂uβ

∂rα

)
(51)

Where α,β = x,y, z; rx, ry, rz = x,y, z and Ωxz (Ωyz) represents a rotation
about the y (x) axis. As we have seen in Fig. 35(b) the tilt angles can be
easily separated into contributions coming from dislocations running along
only one of the two 〈110〉 directions of the dislocations network. Thus in
the following we will develop a two dimensional model with dislocations
modeled as infinite straight line running perpendicular to the simulation
cell. As an example, the tilt angle distribution produced by a 60◦ dislocation
placed at the interface of a 600 nm-thick layer is reported in Figure 37(a).
The complete expression of the displacement field induced by dislocations
can be found in Appendix A.
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In order to model the actual SXDM signal at a specific point of the ac-
quired map, the tilt-angle field must be averaged in the full film volume
sampled by the beam defined by the film thickness h (600 nm), the beam
impinging angle (35.3◦ for our experimental setting), the position x, and the
FWHM of the beam (120 nm). By scanning over all x positions, a sampling
of the Ωxz tilt angle is obtained. The volumetric region contributing to the
locally recorded Ωxz value is shaded in gray and the corresponding value is
highlighted in the upper plot.
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Figure 37: (a) Tilt-angle field produced by a single dislocation with dislocation line
along the [110] direction and Burgers vector along the 〈011〉 direction.
Panel (b) Tilting angles produced by a pair of dislocations with lines
along the [110] direction but with Burgers vector with opposite out-of-
plane components, placed at a distance d = 1000 nm between each other.
In the upper plot are reported the signals for this configuration with
d = 1000 nm and 400 nm. The experimental resolution limit is shaded
in gray.

Reproducing the full experimental signal of Figure 35(b) is more difficult
as the above-described averaging procedure must be applied to the local tilt
angles produced by all contributing dislocations, which requires the knowl-
edge of their individual (x) positions and Burgers vectors. Furthermore, the
experimental resolution poses another limit to the possibility to detect sin-
gle defects. As can be see in Fig. 37(b) the tilt angles signal produced by 60◦

dislocations with opposite z (growth direction) components of the Burgers
vector produces individual tilt angles of opposite sign. Thus, when two dis-
location of this kind are too close together (at a spacing of 400 nm for the
reported example) their contributions overlap and the resulting signal can
become impossible to detect given our experimental resolution limit.

Thus the task of determining the position of individual dislocations was
carried out by means of an image analysis of the TEM lamella of Fig. 36(a)
carved, as explained above, in the same region previously scanned by SXDM.
The informations on the dislocation positions are extracted as in Fig. 36(b),
with the possibility of detecting every single MDs running in the direction
perpendicular to the lamella. The analysis of the very long (40 µm) lamella
revealed the presence of more than 200 dislocations. The abundance of ana-
lyzed defects allowed us to directly evaluate, in a statistically significant way,
the distribution of distances between adjacent dislocations, which, as clearly
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Figure 38: Histogram of the distance between adjacent misfit dislocations and best
fit obtained via a log-normal distribution.

shown in Figure 38, is nicely described by a log-normal distribution, defined
from the expression:

f(r) =
1

r
√
2πσ

exp−
(ln r−α)2

2σ2
(52)

In Eq. (52) α represents the logarithm of the mean distance between adjacent
MDs, while σ represents the dispersion of the distribution. We point out here
that the same distribution was obtained by Kaganer et al. [104] for the de-
scription the nearest neighbor dislocation distribution in Si0.4Ge0.6/Si(001)
films. Furthermore, we observed the same kind of behavior in even lower
misfit Si0.98Ge0.02 system, that will be described in chapter 6. All of these
observations give independent and directly measured proofs of the same
behavior for systems with different misfit, suggesting a possible general be-
havior of the defect network.

In order to calculate the complete lattice tilt field and compare it with
its distribution reported in Fig. 35(b), we should consider the contribution
of all the misfit dislocations located in the position determined by TEM.
However, each 60◦ dislocation can feature one of the two possible Burgers
vector orientations (as represented in the example of Figure 37(b)), leading
to stress relaxation (called "+" and "−" in the following). Unfortunately, the
assessment of the individual Burgers vectors of more than 200 dislocations
by high-resolution TEM is an extremely challenging task. To overcome this
problem, we have exploited a modeling procedure, based on a Monte-Carlo
(MC) algorithm.

In Figure 39(a) the distribution of the tilt angles produced by an array of
dislocations positioned precisely as revealed by the TEM analysis and with
randomly assigned "+" or "−" Burgers vector is compared with the experi-
mental results (after averaging over the weak dependence on the y coordi-
nate). The agreement is rather poor. Indeed, the tilt-angle maps are very
sensitive to local sign of the Burger vectors. To obtain a better correspon-
dence between theory and experiments, we implemented an Ising-like MC
procedure where a pair of dislocations is randomly chosen and their Burgers
vectors are exchanged ("flipped"). The corresponding theoretical tilt-angle
map is re-computed and compared, in norm, with the experimental map.
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The total error between the theoretically-predicted and the experimental tilt
angles is simply defined as:

Σ =

√∫
(Ωtheor(x) −Ωexp(x))2 dx (53)

and, if this quantity is lowered after the switch, this one is accepted by the
algorithm, otherwise the previous configuration is restored. By iterating the
procedure a perfect fit of the experimental data is obtained, as evidenced in
Figure 39(b).
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Figure 39: Panels (a) and (b) Comparison between the experimental (blue points
with error bars) and the theoretical (black line) tilting angles. Panel (a)
Theoretical prediction based on randomly assigned Burgers-vector signs.
Panel (b) Theoretical distribution after the Monte Carlo fitting procedure
converges. (c) Plot of the total error as function of the simulation step
for the converge for a few independent MC simulations.
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Figure 40: Total Burgers vector computed by summing individual contributions on
800 nm-wide regions. Error bars are estimated based on 100 indepen-
dent MC simulations.
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The convergence of the MC procedure to a tilt-angle map in good agree-
ment with the experiments can be better appreciated by comparing the start-
ing guess map of Fig. 41(a) with the ones corresponding to the converged so-
lution (Fig. 41(c) and to the actual experimental SXDM map of Figure 41(b).
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Figure 41: Comparison between theoretically predicted and experimental tilting
maps. (a) Starting guess map with random distribution of Burgers vector.
(b) Experimental SXDM map and (c) converged solution.

Once a distribution of dislocations and Burgers vector reproducing the
tilt-angle maps has been found, it is important to check whether the MC
solution is unique. To this goal, we ran a set of 100 independent MC simu-
lations, starting with different initial random distribution of Burgers vectors.
A few examples of the converging procedure for some of the MCs runs are
reported in Fig. 39(c). From their analysis, it turned out that the best-fit so-
lution in terms of attribution of the Burgers vector sign to all dislocations is
not unique, since simulations converging to very similar total error value Σ
do not have the same distributions in terms of Burgers vector of the disloca-
tions. This could have been suspected already from Figure 37(b), where it is
evident that the signal coming from closely-spaced dislocations with differ-
ent Burgers vector is mutually canceled [105]), so that inverting their relative
position does not change the resulting tilt angle. However, it is sufficient to
sum the +/− signs of the Burgers vector over ≈ 800 nm (corresponding, on
average, to only 4 adjacent dislocations) to obtain a unique best-fit solution.
This is well clear from Figure 40, where such sums were performed over
the 100 independent converged fitting procedures, and considering all the
defects falling inside lateral regions of 800 nm. As can be observed from the
error bars in the histograms, with the average performed over independent
MC runs, we can assign with good reliability the mean polarization in terms
of Burgers vector. In these terms Figure 35(b) uniquely reveal the "local" sign
of the Burger vectors distribution, where "local" means ≈ 800 nm [106].

5.2 crosshatch patterns

One common phenomena observed during the growth of plastically-relaxed
thin films, as the one described in the previous section, is the appearance of
a CHP at their free surface. These patterns are particularly simple, featur-
ing two arrays of lines oriented along two orthogonal [110]-equivalent direc-
tions. As this reflects the symmetry of the MD network, a link between the
epi-layer morphology and plastic relaxation could be easily argued. How-
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ever, this one-to-one correlation of the CHP geometry with the MD network
is far to be understood, with several experimental observations still remain-
ing unclear. For instance, the distance between adjacent undulations of the
CHP, which is not truly periodic, can be orders of magnitude larger than
the average distance between dislocations [107]. Even the origin of the un-
dulations is still debated. Both bunching of the surface steps produced by
the nucleation and gliding of dislocation loops [107, 104], and the redistri-
bution of surface adatoms induced by inhomogeneities of the strain field
at the free surface [108, 109] have been proposed as the root cause for the
CHP formation. In this section we will apply the understanding of the misfit
dislocation network described above to model the phenomena of CHP for-
mation exploiting the model of surface diffusion presented in Chapter 3 and
we will provide direct comparisons with dedicated experiments.

5.2.1 Ideal distribution of dislocations

The approach exploited to describe the CHPs formation is based on surface
diffusion, where the flux of adatoms is determined by the gradients in the
surface chemical potential µ. The evolution of the surface profile h is de-
termined by the same surface diffusion equation introduce in section 1.3.3:

∂h

∂t
= ∇M∇sµ (54)

with M the adatoms mobility. This equation is numerically solved by means
of the 1+1D model presented in Chapter 3. The introduction of misfit dis-
locations with assigned Burgers vector and position is made possible by the
eigenstrain formalism exploiting the periodic function for the stress/strain
fields produced by infinite misfit dislocations reported in Appendix A.

First, this model is applied to a 600 nm-thick Si0.92Ge0.08/Si(001) film,
fully relaxed by an array of 60◦ dislocations located at the heterointerface
and evenly spaced. In Fig. 42 are reported the results for ideal distributions
of dislocations, one with identical Burgers vectors, the other consisting in
an array of dislocations with alternated Burgers vector between the two al-
lowed for strain relaxation. The dislocation-dislocation separation is fixed at
d ≈ 70 nm, as required for the complete plastic relaxation of the strain. The
simulation cell was set to L = 1200 nm with periodic boundary conditions.
The initial profile is taken to be perfectly flat, so that the only source of in-
homogeneities in the chemical potential is due to the presence of the strain
field associated with the network of MD itself, which generates a gradient
in the chemical potential. The latter induces a deformation of the surface
profile, which is controlled by the balance between elastic and surface en-
ergy. As can be observed in Fig. 42(a), undulations develop and evolve in
time until the surface reaches a final equilibrium configuration. Under these
ideal conditions the final periodicity matches the one of the underlying MD
arrays. This is in accordance with the static model of Ref. [109]. Notice that
simulations strongly underestimate the roughness. Actually, the predicted
value has no physical meaning, being much smaller than a single lattice
parameter. Furthermore, as stated in the introduction of this section, the
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typical roughness observed in these low-misfit SiGe films is at the micron
scale, with a periodicity several orders of magnitude greater than the typical
dislocation-dislocation spacing. In summary the experimental observations
cannot be reproduced if an ideal distribution of dislocations is considered.

5.2.2 Design of Experiments

The simulations presented above based on ideal distribution of dislocations
even if being too to capture the main features of the CHP clearly show a
convergence in evolution from the starting flat geometry to a rough sur-
face profile. Therefore we have designed experiments carefully, in order to
analyze the temporal evolution of CHPs, following its evolution during an
annealing procedure.

In order to keep, on average, the same distribution of dislocations, we en-
sured to growth a series of samples already achieving full relaxation. Thus,
series of Si0.92Ge0.08/Si layer were grown up to a thickness of 3000 nm, en-
suring full relaxation. After the growth, we thinned the three sets to different
thickness by Chemical Mechanical Polishing (CMP). The first set was negli-
gibly polished reducing the film thickness of less than 20 nm, the second
set was thinned down to a thickness of 1500 nm and the third one down
to 600 nm. After the CMP process, the roughness of all the samples was in
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Figure 42: Results for an ideal array of 60
◦ dislocations. (a) Surface profile obtained

after the annealing of the initially flat film for t = 5 a.u. and t = 50

a.u. The system has reached an equilibrium: the surface morphology
does not evolve anymore upon further annealing. (b) Strain field (εxx)
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the sub-nm scale, allowing us to rule out any significant role played by step
bunches initially present at the free surface in the subsequent evolution. The
dependence of the CHP on annealing time was analyzed by annealing these
three sets of samples for 10 and 60 min at T = 1050◦C.

In Fig. 43 we display Atomic Force Microscopy (AFM) images acquired
on the various samples. The surface of all the samples presents a clear CHP,
with two sets of perpendicular features aligned along two [110]-equivalent
directions. This is interesting per se as CHPs were, so far, observed only after
the growth. Here we demonstrate that even if one removes the CHP formed
during growth, an annealing following the CMP restores the pattern.

5.2.3 Modeling CHP dynamics

In order to try to reproduce the results of Fig. 43, we replaced in the surface
evolution model of section 5.2.1 the ideal distribution with the lognormal
distribution (Eq (52)) derived from the analysis of a similar system presented
in section 5.1.2. We used the same σ value found in that analysis (σ = 0.7)
and we fixed α based on the present dislocation-dislocation distance giving
on average full relaxation of the SiGe film (α = 4.2). The orientation of the
individual Burgers vectors was randomly assigned.

Simulation results corresponding to the three different sample thicknesses
analyzed (600 nm, 1500 nm, and 3000 nm) and for different annealing times
are reported in Fig. 44. It is evident that by considering a realistic distribu-
tion of dislocations both the typical roughness and the average separation
between surface undulations become fully consistent with the experimental
findings. Notice that the time scale in the simulations is controlled by the
M value of Eq. (54), depending on T [110]. As all samples were annealed at
the same temperature, a single rescaling factor should be in principle suffi-
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Figure 43: Cross-hatch patterns. AFM images obtained for the three groups of A, B
and C. (a)-(c) AFM after 10 min of annealing for the 600, 1500 and 3000

nm-thick samples respectively. (d)-(f) AFM after 60 min of annealing
min at 1050◦C.
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cient to match experimental and simulation times. Indeed, we forced such
matching using the two roughness points of the 1500 nm-thick sample, and
obtained all other results displayed in Fig.44(a) with no further readjustment.
The overall quantitative, time-dependent agreement between experimental
data and simulations is excellent.

With the validation of the proposed model, we can now exploit it to di-
rectly interpret the interesting physical behavior of the CHP. For instance,
the lower ρ value observed for increasing film thickness is readily explained:
the dynamics of CHP formation is entirely determined by the magnitude
of strain inhomogeneities at the free surface, which is obviously lowered
by increasing the film thickness, when the sources of the strain field at the
heterointerface get more "buried".

Besides the value of the roughness, the other important feature charac-
terizing the CHP is the typical distance between surface undulations. In
Fig. 44(b)-(c) we report the surface profiles by AFM taken along one of the
two equivalent [110] CHP directions, for the 3000 nm-thick sample thinned
down to 600 nm and the 3000 nm-thick sample after 60 min of annealing.
This can be directly compared with the simulated profiles in panels (d) and
(e) for the corresponding two film thicknesses. Albeit qualitatively, we can
clearly see that our model correctly describe the increase of the typical dis-
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surface chemical potential for after the same two annealing time. Panel
(d) strain field (εxx) calculated in the same 2000 nm region shaded in
panels (a)-(c).

tance between CHP peaks, related to the fading-out of the strain field mod-
ulation induced by the MD network in thicker epi-layer.

The dynamics of the earlier stages of CHP formation for the 600 nm sam-
ple can be better appreciated by looking at Fig. 45. The initial response of
the system consists in fast-growing high-frequency undulations (panel (a))
that tend to disappear in later stages of the evolution, when larger λ and
larger amplitude oscillations develop, as shown in panel (b). This behavior
is consistent with the evolution of the surface chemical potential µ reported
in panel (c). Furthermore, we report in panel (d) the strain field produced
by the MD network in the same 2 µm area shaded in panels (a)-(c). The
difference with respect to the ideal dislocations distribution can be easily ap-
preciated by comparing it with Fig. 42. It is evident that the non-uniform dis-
tribution of the dislocation locations give rise to superpositions of the strain
field resulting in the more complex dynamical evolution of the surface pro-
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file, finding an equilibrium wavelength λ much larger than the dislocation-
dislocation distance.

The above reported analysis was based on annealing of initially flat, fully-
relaxed epilayers. This procedure yields clear advantages. We notice, indeed,
that CHPs in the literature are usually analyzed directly after growth. As
a consequence the observed pattern corresponds to some unknown stages
(depending on the deposition conditions) of evolution towards equilibrium,
making it very hard to rationalize quantitative estimates in a broader context.





6 T H R E A D I N G D I S LO C AT I O N S I N
H E T E R O E P I TA X Y

The characterization of the misfit dislocation networks and their effect on the
surface morphology, subject of the previous chapter, represent a first build-
ing step towards the understanding of the mechanism of strain relaxation in
thin heteroepitaxial layers. However the active defects in the relaxation pro-
cess (misfit dislocations) are unavoidably linked to the presence of threading
arms, which do not take part in relieving the misfit strain but are particularly
detrimental for technological applications since they run through the layer
up to the free surface. Thus, an understanding of the entire relaxation pro-
cess requires also the description of the behavior of the TD and the physical
parameters that can help in controlling their densities. This analysis poses
different challenges since the post mortem characterization provided in the
previous chapter is not able to give information on the dynamical process
of plastic relaxation and thus on the mechanisms leading to the observed
density of defects. In this chapter we shall exploit the Dislocation Dynamics
approach described in chapter 3 in order to follow the plastic relaxation dur-
ing its evolution and provide an interpretation to the observed distribution
of threading arms.

6.1 low-misfit limit: uniaxial relaxation

In this section we shall provide an explanation of experiments performed
on very low-misfit SiGe layers. Results show that it is possible to promote
the gliding of the dislocation for very long paths (up to tens of centimeters)
by starting from a pre-existing distribution of TDs at the rim of the wafer.
This finally produces uniaxial distribution of dislocations where the TDs can
glide before encountering a deposited MD. By dedicated DD simulations we
will enlighten the importance of the blocking mechanism between TDs and
MDs and we will show how the experimental results can be interpreted in
terms of their interactions.

6.1.1 Experimental characterization

A series of very low-misfit SiGe layers with nominal content of 2% in Ge
were grown by SILTRONIC in a CVD reactor on 300 mm Si wafers in an
atmospheric pressure high temperature process. A high deposition temper-
ature was used to maximize glide of dislocations. After layer deposition, the
samples were annealed for 60 min at 1050◦C. Two thickness series (ranging
from 250 nm to 10 µm) were grown on different substrates to study the onset
of relaxation: In series A the substrate is a polished Si wafer. In Series B a
high-defective region at the rim edge of the Si(001) wafer was created before
the deposition of the Si0.98Ge0.02 epi-layer as schematically depicted in Fig-
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ure 46. Details about the rim fabrication and composition did not obtained
clearance for publication at the moment of this Thesis submission and they
cannot be revealed.

Series B

Figure 46: Schematic samples design. Two thickness series of Si0.98Ge0.02 layers
were grown on top of standard 300 mm Si wafers for Series A, and on
substrates with a high defective rim deposited at the wafer edge before
epilayer growth (series B).

For revelation of threading dislocations, in situ vapor phase etching was
carried out after annealing of the samples. The resulting etch pits were
counted in the central region of the wafer. Additionally, modified Secco
etching was carried out on some wafers. It has been shown that etching
can reveal the misfit segment associated with the TD’s. For this, the etch
removal was chosen to be higher than the layer thickness, to etch through
the SiGe/Si interface and make misfit dislocations visible. Composition and
strain analysis of the layers was carried out by High-Resolution X-ray Diffrac-
tion (HRXRD). The center positions of the wafers were analyzed to calculate
the in-plane and out-of-plane lattice constant of the epitaxial layers. For anal-
ysis of misfit dislocation distribution on the global wafer scale, X-ray diffrac-
tion topography (XRT) was carried out by scanning the whole wafer. Misfit
dislocations weaken the intensity of the diffracted beam as lattice planes
around the dislocation are slightly bent and therefore don’t contribute to
the diffracted intensity. Misfit dislocations or bundles of misfit dislocations
appear as dark lines in XRT images.

The relaxation behavior with increasing layer thickness of samples grown
on standard substrates (Series A) is presented in Figure 47. HRXRD analysis
shows, that samples below 1µm thickness are growing pseudomophically
to the Si substrate. However, the 1 µm sample already contains threading
dislocations (≈ 1× 103 cm−2), showing that the layer has already started
to relax, but the degree of relaxation is below the resolution capability of
HRXRD.

With increasing thickness, the degree of relaxation as well as the TDD rises
quickly. Full relaxation is only achieved for samples thicker than 5µm, the
final TDD level was found to be around 2− 3× 104 cm−2. During the relax-
ation process, formation of typical surface roughening (cross-hatch pattern)
can be observed [111]. For Series B the relaxation behavior is also displayed
in Figure 47(a). Here, relaxation sets in at lower thickness (350 nm). Again,
the critical thickness from XRD is only an apparent value, as samples with a
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Figure 47: Degree of relaxation measured by HRXRD (a) and TDD from HCl etch-
ing (b) with increasing layer thickness on substrates with and without a
backside deposition: The relaxation increases with increasing thickness
for both substrate types, but is shifted to lower thicknesses in series B.
The TDD level for Series B is approximately one order of magnitude
lower.

degree of relaxation of 0% already exhibit a TDD. The degree of relaxation
increases with increasing layer thickness, similar to series A. The TDD is
near its final level (2− 4× 103 cm−2) as soon as relaxation of the layers sets
in, saturating at a level about one order of magnitude lower the samples
from series A.

Additionally in the very early stages of relaxation (350 nm thickness),
long, extended "stair-case"-like pile-ups of threading dislocations run over
the whole wafer in the 〈100〉 diagonals as can be seen in Fig. 48. The step
height of these pile-ups is ranging from a few nm to hundreds of µm.

Secco etching to the SiGe/Si interface reveals the misfit dislocation seg-
ments associated to the TD’s (figure 49). The pile-up forms the border
between two perpendicular arrays of misfit dislocations. The misfit dislo-
cations ending in a threading arm at the location of the staircase pile-up
extend across the whole wafer and end at the wafer edge. In addition to

Figure 48: Schematic distribution of staircase pile-ups (a) and micrographs of the
etched 350 nm sample of series B (b) and (c): Staircase pile-ups of etch
pits run across the whole wafer in the <100> axis of the wafer indicating
multiple blocking events in these areas. (c) and (d) X-ray Topographs of
samples of series B with thickness of 350 and 500 nm, respectively.
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misfit dislocations connected to the edge of the wafer, very short segments
can be found within the unidirectional arrays (Figure 49(c)).

Figure 49: Dark field micrographs from Secco etched samples. The secco etch re-
veals the corresponding misfit segment of the threading dislocation. In
(a) the blocking mechanism for the 350 nm sample is displayed. Each
etch pits has its individual line segment, which can be followed across
the whole wafer to the edge. At higher thickness (b) the pile-up begins to
resolve as the dislocations can overcome the glide barrier. In (c) random
nucleation of half loops can be witnessed.

6.1.2 Modeling uniaxial relaxation

The results reported in Fig. 47(a) clearly show how the plastic relaxation pro-
cess for the samples of series B is shifted to lower thickness with respect to
the ones of series A. Indeed, the starting point of relaxation is really close to
the Matthews and Blakslee critical thickness (see section 2.5.1). This results
can be interpreted as due to the presence of a high-defective region at the
edge of the substrate that provides a "reservoir" of threading arms ready to
relax as soon as the growing film reach the critical thickness. Furthermore,
the uniaxial distribution of MDs developed during these early stages of re-
laxation ( see Fig. 48(b)), demonstrate that nucleation of new loops has not
yet started. The final effects of providing this reservoir of preexisting TDs
is to significantly reduce the TDD by eliminating the random nucleation
of loops for the first stages of the relaxation (as happens in the "standard"
biaxial relaxation). Arrays of parallel dislocations without a perpendicu-
lar counterpart are formed in the different quarters of the wafer, enforced
by geometric constrains of the circular wafer. The interaction and blocking
between dislocations can be confined to the 〈100〉 diagonals, where perpen-
dicular dislocation arrays meet, forming extended staircase-like groupings
of etch pits as in figure 48, which resolve as soon as the thickness increases.

The witnessed blocking and resolving process between single dislocations
has been simulated by means of the DD model presented in Chapter 3. The
simulations mimick the early-stages of the process experimentally observed
by assuming that pre-existing TDs move in a nearly-unrelaxed Si0.98Ge0.02

film until they encounter an already deposited MD in the direction orthogo-
nal to its motion. Two examples of simulation results are reported in Fig. 50

for the 350 nm (a) and 500 nm (b) cases. In the thinner layer, the TD (red
line in the figure) glide towards the already deposited MD (blue line in the
figure), but as soon as the TD start feeling the interaction with the MD it
slow down its motion until it eventually stops, thus leading exactly to the
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blocking behavior observed in Fig. 49(a) where a single MD is sufficient to
block an array of running threadings. The lateral sizes of the (periodic) cell
are chosen to be of 5µm in dimension in order to closely reproduce the initial
stages of an unrelaxed epi-layer (resulting in a degree of relaxation ≈ 2%).

Fig. 50(b) shows the results of a simulation with the same parameters but
a thickness for the SiGe layer of 500 nm. Here it is possible to see how
the running TD, after encountering the deposited MD does not stop but is
able to overcame the barrier and thus proceed in its motion through the
layer. This corresponds to the experimental observation that the "staircase"
groupings of TDs and the uniaxial behavior tend to resolve with increasing
thickness of the deposited film, as seen in Fig. 48(e).

However, this transition is not abrupt and indeed, the presence of closely-
spaced deposited misfit segments can again provide a blocking barrier for
the running TDs. This behavior is exemplified in Fig. 51. This figure reports
the blocking conditions, as extracted by DD simulation in terms of Ge con-
centration (and thus total strain in the epi-layer) and film thickness. Below
the line marked as "MB" no relaxation can happen since this corresponds to
a system below the Matthews-Blakslee critical thickness. Here even the pres-
ence of pre-existing TDs at the rim of the wafer cannot provide relaxation
because there the total resolved shear stress is not sufficient to start bending
them. This happens when the thickness overcome the MB critical value and
specifically the uniaxial behavior observed is expected in the region delim-
ited by the line marked as "1 MD". This correspond to the strain/thickness
conditions where a single deposited MD is sufficient to block the running
TDs. This blocking conditions tend to resolve moving to higher thicknesses,
where more than one, closely-spaced MDs (here simulated as overlapped
exactly at the same position) are necessary to provide a barrier for the TDs.
Thus, the uniaxial behavior turns to be statistically less significant and even-
tually reducing to the "standard" biaxial relaxation of thin heteroepitaxial
films, condition represented in the upper right corner of Fig. 51.

Figure 50: Dislocation Dynamics simulations of the interaction between a deposited
misfit segment and a running threading dislocation. (a) Result for a 350
nm Si0.98Ge0.02 layer, the threading dislocation (in red) runs towards
the deposited misfit segment (in blue) and get stopped by the resulting
interaction. (b) Same initial configuration of defects simulated in 500 nm
thick Si0.98Ge0.02 layer. Under this conditions the running threading
dislocation can overcame the barrier produced by the MD and continue
to run through the layer.
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1 MD

2 MD

MB

Figure 51: Diagram showing the condition for the uniaxial relaxation condition as
obtained by DD simulations. The limiting thickness for the blocking of
a TD encountering a MD was evaluated as function of the Ge content in
the epilayer. The lines represents the results for MBs critical thickness
(marked MB), for a single deposited misfit segment (marked 1 MD), and
for two deposited misfit segments (marked 2 MD).

In summary, the combined effect of the low Ge content and the presence
of pre-existing TD at the edge of the wafer provides the system a viable
path for starting the plastic relaxation of the epi-layer with ordered arrays
of defects running in the same direction. This has the effect of elongating
the mean path traveled by dislocations before encountering a blocking event,
up to centimeters for initial TDs moving from the edge towards the center.
The concept of a rim reservoir may be applied to higher Ge-content layers
to improve the TDDs and quality of buffer layers for industrial applications.
Although the TDD can be lowered by this technique, random heterogeneous
nucleation of dislocation loops still occurs, limiting the reduction of the TDD.
Controlling this process is challenging, but could lead to an even lower TDD.

6.2 sige pillars

So far we have only considered growth on planar substrates, which is highly
desirable for applications. However, recent attention has been dedicated to
more complex morphologies, offering further control over relaxation and
TDD and showing promising results for applications where only selected
area are required to be defect-free. Between these, 3D heteroepitaxy [16, 112,
113] has been recently shown as a promising technique. This consists in the
growth of Ge (or SiGe) onto an ordered array of micrometric, square Si pil-
lars. The combined effect of largely strong out-of-equilibrium growth condi-
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tions (high deposition rate of ≈ 5 nm/s, low growth temperatures 6 750◦C)
and mutual shadowing among neighbouring pillars, leads to the formation
of vertical heterostructures (VHEs), whose upper region is fully dislocation-
free as defects are laterally expelled. By combining the 3D heteroepitaxy ap-
proach with the compositional grading (see section 2.5.2), 100% dislocation-
free, micron-sized SiGe crystals were recently demonstrated [114]. Here,
grading allows to release completely the lattice-mismatch strain by exploit-
ing lateral elastic relaxation [71]). As a result neither misfit dislocations nor
TDs, are introduced.

Vertical compositionally graded heterostructures, however, still need fur-
ther optimization before being easily exploited in applications. Indeed, for
a fixed final Ge content target (xf), 100% dislocation-free crystals can be
obtained only by a proper choice of the crystal width and/or Ge composi-
tional grading rate R [71]. In this section we will show how by changing
the Si pillar shape via a suitable under-etching procedure [115], it can be
experimentally shown that the dislocation density can be further lowered
(bringing it back down to zero, in some cases) even for large crystal widths.
These results will be directly compared with DD simulations, proving again
the good agreement between experiments and the proposed modeling.

6.2.1 Experimental characterization

The SiGe epitaxial growth was performed by Low-Energy Plasma-Enhanced
Chemical Vapour Deposition (LEPECVD) (see Ref. [116]) on 4-inch patterned
Si(001) wafers. The Si(001) wafers were patterned in two different ways
(Figure 52(a) and Figure 52(b), respectively). Both types of patterns are based
on optical lithography and reactive ion etching. The first one (see Figure 52

(a)) consists of fabrication by the Bosch process of regular arrays of square,
vertical Si pillars with a height h of 8 µm. Further details about substrate
patterning and preparation are reported in Ref. [16]. The resulting pillar
width w ranges from 2 to 50 µm, and the sides are aligned with the 〈110〉
crystal directions. The second type (see Figure 52 (b)) involves two different
dry etching steps. Initially, 0.6− 1 µm thick square mesas are produced by
vertical etching, after which 3 µm of isotropic etching is performed. This
approach results in Si pillars consisting of a thin square mesa and an under-
etched neck. The width of the pillar neck is determined by the width of the
mesa (ranging from w = 7 to 50 µm), assuming that the isotropic etching
always removes 3 µm. For further details see Ref. [115].

The epitaxial growth consists of three different steps. First, a 50 nm thin
Si1−xGex layer with xl = 0.5% is deposited at 750◦C and 5.9 nm/s. Sec-
ond, the compositionally graded alloy is grown at the Ge grading rate of
1.5% µm−1 up to the final Ge content xf = 0.4. The Ge content is increased
stepwise by ∆x = 0.5%. The growth temperature is kept constant at 750◦C
for x 6 0.1, while for larger Ge content, it linearly decreases to the final
value of 590◦C reached at xf = 0.4. Third, a 1 µm thick capping layer at
xf = 0.4 is deposited at 590◦C and 6.2 nm/s. As illustrated in Figure 52 (c)
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Figure 52: Perspective SEM view of a Si pillars array with vertical {110} sidewalls.
(b) Perspective SEM image of an array of under-etched Si pillars width
w = 7 µm and patterned height h = 7 µm. (c), (d) Perspective view
SEM images of SiGe crystals grown on vertical (c) and under-etched (d)
Si pillars, respectively.

and (d), the epitaxial depositions results in several micrometers tall, isolated
SiGe crystals. The SiGe crystals are constituted by {110} sidewalls and on
top a central (001) surface bounded by {113} facets [117].

The dislocation analysis is performed by etching the samples and by ex-
tensive SEM imaging to count etch pits related to dislocations (see Ref. [118]).
The dislocation density is calculated by taking into account a total {110} side-
wall surface equivalent to the area of at least 20 pillars to ensure a reliable
statistics. Dislocations are present both in the SiGe crystal and in the Si pillar.
We denote the corresponding two distinct dislocation densities in the SiGe
crystal and the Si pillar as DDSiGe and DDSi, respectively.

The experimentally determined distribution of dislocations within the SiGe
and Si regions of the crystal is elucidated in Figure 53. Panel (a) shows the
average DDSiGe as a function of the width of the Si pillars and their geometry
(vertical or under-etched). As already reported in Ref. [114, 118], narrow and
vertical Si pillars allow for a strong elastic relaxation of the epitaxial strain,
preventing the nucleation of dislocations. Indeed, the DDSiGe (black spheres)
is 0 for 2 µm wide Si pillars, while it reaches a value of ≈ 4 · 107cm−2 for
w = 50 µm. In under-etched Si pillars a much lower DDSiGe is measured
in a wide range of Si pillar widths w (red triangles) [115]. The additional
compliance effect provided by under-etching becomes less and less effective
with increasing w, and practically vanishes for w = 50 µm. This is due to the
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Figure 53: (a) Average dislocation density in SiGe crystals (DDSiGe) deposited on
vertical (black spheres) and under-etched (red triangles) Si pillars with
different widths. (b) Average dislocation density inside the Si substrate
(DDSi) for vertical (black spheres) and under-etched (red triangles) Si
pillars.

fact that the under-etching is constantly 3 µm for every pillar width, while
the Si neck becomes wider proportionally to w.

On the contrary, Figures 53 (b) indicate that the density of dislocations
located in silicon (DDSi) is larger in the case of underetched pillars as com-
pared to the case of vertical Si pillars. Panel (b) shows that the DDSi in
vertical Si pillars increases with their width, being 0 for w = 2 µm, since
in this case all the strain is elastically released (DDSiGe = 0 as well), and
reaching a value of ≈ 3 · 107cm−2 for w = 50 µm. Surprisingly, the DDSi

of under-etched Si pillars (red triangles) is higher for every Si pillar width,
increasing from ≈ 1 · 107cm−2 to 1 · 108cm−2 between w = 7 and 50 µm. A
quantitative modeling of this phenomenon is given in Section 6.2.3, however,
from the experimental results reported in Figure 53, it is already clear that
for small Si pillar widths, where elastic strain relaxation plays a fundamental
role, the dislocation dynamics is strongly influenced by the Si pillar geome-
try. Indeed, for narrow Si pillars (w 6 10 µm) the DDSiGe is much lower for
deposition on under-etched Si pillars, while the DDSi behave in the opposite
way. This is not the case for wide Si pillars (i.e. w = 50 µm) where DDSiGe

and DDSi are not geometry dependent.
In order to understand the different dislocation behavior, we take a closer

look at the spatial distribution of dislocations within the narrow SiGe crys-
tals. Figure 54 (a) and (b) shows cross-sectional SEM images of SiGe/Si crys-
tals deposited on narrow vertical and under-etched Si pillars, respectively.
The dashed light blue line indicates the SiGe/Si heterointerface. In (a) the
thickness of the layer with xl = 0.5% is 8 µm. This ensures vertical growth of
the compositionally graded material by reducing the gap between adjacent
crystals, without altering the mechanical properties of the system. It is evi-
dent that the etch pits related to emerging dislocations are distributed very
differently in the two panels. Importantly, dislocations are predominantly
located in the SiGe crystal for vertical Si pillars (white arrow in panel (a)),
while they are predominantly located in the Si region in the case of under-
etched pillars and piled-up along the same {111} glide plane (indicated by
the red dashed ellipses in panel (b)). Indeed the measured angle in Figure 54

(b) between the [110] direction and the dislocation pile-up indicated by the
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Figure 54: (a) and (b) Cross-sectional SEM images of SiGe crystals deposited on
vertical and under-etched Si pillars, respectively, after selective defect
etching (width w = 5 and 7 µm). The dashed light blue line shows the
SiGe/Si heterointerface. The white arrow indicates a dislocation in the
SiGe crystal. The the red dashed ellipses in (b) highlight dislocations
piled up along a {111} plane. (c) Probability distribution of having a
certain number of dislocations per pile-up along {111} planes in under-
etched Si pillars (w = 7 µm).
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orange arrows is about 54◦, as expected from the intersection between the
{111} glide planes of the dislocations and the [110] direction. By looking at
dozens of different under-etched Si pillars, as those of Figure 54 (b), it is pos-
sible to measure the probability of having a certain number of dislocations
per pile-up. Figure 54 (c) shows the probability distribution of dislocations
per pile-up in under-etched Si pillars indicating that 3 dislocations per pile-
up is the most likely.

6.2.2 Modeling Underetched SiGe Pillars

Let us now provide a theoretical explanation for the observed decrease (in-
crease) of the number of dislocations in SiGe crystals (underlying Si pillar)
as caused by under-etching. The approach exploited in this section to model
the plastic relaxation is a 2D implementation of the DD approach coupled
to a FEM solver presented in section 3.1. In order to understand the distri-
bution of dislocations revealed in the experiments and how this is affected
by under-etching the Si pillar we started by investigating the plasticity on-
set, i.e. the introduction of the very first dislocation in the system during
growth. This was done by evaluating the total elastic energy and by taking
the energy difference between the system with and without the dislocation
as a function of the pillar height H. The onset of plasticity is found when
introducing a dislocation brings the total energy to a net reduction, corre-
sponding to negative values of ∆E.

In these calculations dislocations are placed at the SiGe/Si interface, prob-
ing different lateral positions, for each different H, in order to find the
minimum-energy position. The difference between the energy with the dis-
location placed at that position and the defect-free system is called ∆Emin.
The evaluations are done by considering the geometry of a pillar grown on
an under-etched Si pattern of base 7 µm. As clearly visible in Figure 52

(c), the experimentally-grown pillars show a degree of taper in the vertical
directions resulting from a certain degree of lateral growth. In our model
we considered a simplified geometry with constant pillar width (Fig. 55) for
both vertical and under-etched Si pillars. In order to take care of the de-
pendence of the onset of plasticity with the pillar width we repeated the
calculation for the two limiting values of width measured at the SiGe/Si in-
terface (Lm = 6.6 µm) and at the pillar top (LM = 11 µm), see also Fig. 52

(c), maintaining a constant neck for the under-etched region of 2 µm.

We started by considering the two possible 60◦ dislocation Burgers vectors,
i.e. b = [101]aSi/2 or b = [101]aSi/2, (where aSi is the lattice parameter of Si)
which features a compressive lobe mainly positioned in the silicon substrate
and a tensile lobe in the SiGe epilayer. Such dislocations are typically en-
countered in SiGe/Si heteroepitaxy of standard 2D films and also in vertical
pillars grown with the same parameters of the samples considered in this pa-
per (see Refs. [112, 114]) and are introduced to relax the compressive strain
in the SiGe epilayer. However, contrary to what happens in standard vertical
pillars, the introduction of a dislocation with one of these two Burgers vec-
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Figure 55: Hydrostatic stress maps (σxyz) and considered geometry for the vertical
(a) and under-etched (b)-(c) Si pillars. The SiGe/Si interface is marked
with a black line. The two considered pillar bases Lm (b) and LM (c) for
the under-etched pillar are taken to mimick the extreme values of bases
measured on the tapered geometry of the grown pillar as reported in Fig.
2 (c). In panel (d) is reported the stress map for an under-etched pillar
with the first dislocation introduced. The filled black circle report its
optimal position along the interface while the black arrow represents the
result of the energy minimization by means of a dislocation dynamics
simulation.

tors inside an under-etched pillar is never energetically favored, as shown
in the red region of Fig. 56. Surprisingly, the introduction of dislocations
with the opposite sign of the Burgers vector (and opposite orientation for
the compressive/tensile lobes) becomes energetically favorable after a cer-
tain critical thickness for both the considered values of pillar base (purple
region in Fig. 56). In order to understand this evidence it is convenient to
look at the stress field reported in Fig. 55 (b)-(c). As it is evident by compar-
ing with Fig. 55 (a), in the presence of under-etching a strongly compressed
region is created in the underneath Si pillar close to the free surfaces of the
neck. In order to release such stress it is required to introduce a dislocation
which adds space in silicon, i.e. the opposite of what happens in the vertical
geometry or in standard SiGe/Si heteroepitaxial films.

As we already emphasized, the values displayed in Fig. 56 were obtained,
for simplicity, by placing the dislocation at the SiGe/Si interface, in the hor-
izontal position minimizing the energy. Such a position is indicated, for
LM = H = 11 µm, by a black filled circle in Fig. 55 (d). By running disloca-
tion dynamics simulations starting from such a position we found out that
a slightly lower-energy position located under the interface exists (tip of the
black arrow in Fig. 55 (d)). However the energy difference between the two
produces negligible changes in terms of the estimate of the critical thickness.

The above described approach, purely based on an energy minimization
criterium and used to estimate the onset of plasticity, cannot be reliably
extended to treat more advanced stages of relaxation (e.g. by looking at
the minimum energy position for a larger number of dislocations) as nucle-
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Figure 56: Energy gain for the introduction of the first dislocations in an under-
etched pillar with base L with respect to the pillar height H. The forma-
tion energy is negative only for dislocations with the opposite Burgers
vector b.

ation processes are known to dominate in low-misfit graded layers [61, 91].
The experimental images of Fig. 33 (a) (vertical) and (b) (under-etched) are
therefore exploited to proceed with further modeling. They show that dis-
locations tend to pile-up on the same glide plane, a clear sign of multiple
nucleation from the same source. Under this hypothesis we tried to model
the observed distribution of dislocations exploiting the dislocation dynamics
approach described in section 3.1. Results are discussed and compared with
experiments in the next Section.

6.2.3 Comparison between theory and simulations

In order to predict the dislocation distribution, under the hypothesis of dis-
location nucleation from the same source, we have placed a first dislocation
at the SiGe/Si interface, with both the Burgers vector and the lateral posi-
tioning derived in the previous section for both vertical and under-etched Si
pillars. Then an iterative procedure is performed by adding a singular dislo-
cation to the same glide plane and finding the resulting stable configuration
by means of dislocation dynamics simulations. In the simulations, the first
dislocation is kept fixed to the initial position as it is treated as the origin of
the source (possibly originated in the 3D system by crossing between disloca-
tions running in perpendicular direction and leading to multiplication [119]).
Iterations are repeated until the total energy of the system is lowered by the
addition of a further dislocation. Results are shown in Fig. 57 where the en-
ergy gain is plotted against the number of dislocations per pileup. As we can
see the minimum of this curve corresponds to a number of four dislocations,
fully compatible with the experimental results of Fig. 33 (c).
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Figure 57: Plot of the energy gain versus the number of dislocations per pileup in
an under-etched pillar. The optimal number of dislocations can be de-
duced to be four by the minimum in this curve because the introduction
of a further one will increase the total elastic energy.

At the end of these simulations we are able to predict the optimal position
of a pileup inside a pillar along with the total number and the positions
of the individual dislocations inside the pileup. The final results of these
computations are shown in Fig. 58. In (a) we can see how in under-etched
pillars dislocations are pushed inside the silicon region underneath and this
is well comparable to the simulation results. In the (b) the simulation is
reproducing the behavior observe in standard vertical pillar where, instead,
the pile-ups tend to float in the SiGe region, again showing a behavior well-
comparable with the experimental results of Fig. 54. Some differences in
the theoretical vs experimental distributions can be spotted. This is not
surprising taking into account some simplifications considered in the model
where the system is described only in 2D and the first dislocation is kept
fixed at the exact minimum energy position. As we can see the simulations
can well reproduce the behavior shown in experiments with dislocations in
vertical pillars floating in the SiGe region, while those in the under-etched
ones are pushed into the silicon pillar underneath.

Finally, we wish to comment about another difference in the defects of
vertical vs under-etched pillars, revealed by the SEM images of Fig. 54. We
recall that misfit and threading dislocations can be distinguished by the etch
pits symmetry [118]. Indeed, misfit dislocations with line along the 〈110〉 di-
rections generate four-fold symmetric etch pits, while the inclined threading
dislocation line results in elongated and asymmetric etch pits. It is clearly
visible in Fig. 54 (a) and (b), that the etch pits in the vertical pillars are the
result of a threading arm extending toward the lateral surface of the crystal,
while in the under-etched ones they result from misfit segments running all
across the pillar. We ascribe this difference to the different positioning of
the dislocations. In the under-etched case multiplication takes place closer
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Figure 58: Comparison between experimental SEM images and hydrostatic stress
maps from the final stages of the dislocations dynamics simulations for
an under-etched pillar, panel (a) - (b), and a vertical one (c) - (d). Experi-
mental images of figure Fig. 55

to the free surfaces. Therefore, dislocation (semi-)loops can more easily fully
open, threading arms being expelled in the process.





7 C O N C L U S I O N S

In this Thesis the process of strain relaxation during the heteroepitaxial
growth was modeled by continuum approaches in order to provide a deep
understanding of the underlying physical mechanisms and suitable model-
ing tools for their description. The study was focused on the technology
relevant SiGe/Si system. Both the elastic and plastic relaxation processes
have been discussed, together with examples of their competing effects. This
modeling required the development and applications of different numerical
codes able to describe the specific phenomena of interest. The description
of plastic relaxation and evolution of dislocation distribution was performed
by exploiting a Dislocation Dynamics (DD) [66] approach coupled with the
Discrete Continous Model (DCM) [15]. On the other hand, the description
of the elastic relaxation required the development of a code able to describe
the surface diffusion of material by means of a diffusion equation. This was
done by means of a numerical exploiting the Finite Element Method (FEM)
to numerically solve the partial differential equation of surface diffusion.
Within this approach it was also implemented the possibility of including
dislocations on the fly during the simulations.

In chapter 4 we have shown the competing effects of plastic and elas-
tic relaxation by simulations of the growth process of a SiGe layer on Si.
The introduction of dislocations during the process of relaxation of het-
eroepitaxial islands permitted the reproduction of the phenomenon known
as cyclic growth [120], already well documented in literature by experimen-
tal observation [62]. The very same approach was also exploited to repro-
duce the growth of plastically-relaxed flat films, with the identification of
the physical parameters describing the transition between these two growth
regimes [120].

In chapter 5 we performed a detailed analysis of the distribution of mis-
fit dislocations in low misfit SiGe/Si layers. Here, by combining advanced
experimental characterization by means of a suitable theoretical model we
were able to interpret the tilting angle maps obtained from X-ray analysis in
terms of contributions coming from single defects [106]. Furthermore, in this
chapter we demonstrated also how the understanding of the distribution of
misfit dislocations permitted to reproduce the well-known phenomena of
crosshatch patterns formation by implementing. This was done by imple-
menting this realistic distribution of dislocations inside the surface diffusion
model discussed above [111].

Finally in chapter 6 we have shown the application of the DD approach
to study the plastic relaxation of low misfit thin films and heterostructures.
Particular attention was focused here to study the mechanisms leading to
a reduction in the density of threading dislocations. For the case of low-
misfit planar films simulations have shown how an unexpected observed
phenomenon of uniaxial relaxation can be interpreted in terms of interaction
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between misfit and threading dislocations. Furthermore, in the study of the
relaxation of vertical heterostructures (VHEs) we have shown the interaction
of dislocations with local elastic fields. This latter was due to the shape of the
substrate for the growth of the heterostructures on top of deeply patterned
substrates. The presence of this local elastic fields produced a drastic change
in the dislocation distribution, changing the kind of defects nucleated and
pushing them away from the top active area of the heterostructures [121,
122].

The aforementioned results opens interesting perspective for future stud-
ies. Indeed, the optimization of the growth process oriented at lowering the
number of threading dislocations is one of the key research topic in the field
of heteroepitaxial growth. This optimization procedure cannot be done by a
trials and errors procedure and thus the exploitation of the codes developed
in this Thesis can provide convenient support to the experiments. Examples
could be the shape optimization of substrates to be used for the growth of
VHEs or the optimization of the process providing the observed uniaxial
relaxation in low-misfit flat films.

From the modeling point of view the codes here proposed can be further
developed. The inclusion of additional contributions to the surface energy
in the diffusion model can move the description towards more realistic sys-
tems. For example, accounting for surface orientation can be used to model
the formation of crystallographic facets. Finally, despite we provided a first
application of a 2D code able to tackle simultaneously elastic and plastic
relaxation, the methodology can be extended further by considering 3D sys-
tems. The development of the DCM in the same Finite Element environment
for solving PDEs (FEniCs) represents a first step in this direction.



A A N A LY T I C A L S O L U T I O N S F O R
D I S LO C AT I O N A R R AY S

This appendix reports some analytical expressions for the displacement and
stress fields of dislocation arrays near a free surface. These expression
were exploited in all the models presented in this Thesis whenever periodic
boundary conditions (PBCs) were required when treating systems with the
presence of dislocation near a free surface.

a.1 displacements

The expressions for the displacements of dislocations near a free surface are
reported here from Ref. [100]:
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a.2 anlaytic solution for dislocations array near
a free surface

In this section a complete derivation of the σxx component of the stress field
generated by a periodic array of dislocations is reported. The considered
system is illustrated in Fig. 59 where two ordered arrays of parallel straight
dislocations of Burgers vector b = (bx,by,bz) are present, laying in a plane
displaced by a value h from to the top free surface. As the expression for
the total stress field can be achieved by a superposition between the stress
generated by the dislocations running along the x and z directions we can
focus our attention only on the latter.

Figure 59: Schematic representation of the system. Two set of periodic parallel
dislocations (one set being perpendicular to the other) run along the
xz plane at a distance h from the free surface. The distance between
adjacent dislocations is set equal to L in both directions.

The stress field for a single dislocation running along z direction, includ-
ing the corrections evaluated by Head in Ref. [55] to account for the presence
of the free surface, is an expression dependent on bx and by:
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(55)

where µ = E/2(1+ ν), with E and ν respectively the Young’s modulus and
the Poisson’s ratio of the medium. The stress field σxPBC

xx generated by the
array can be obtained summing the stress fields of infinite individual dislo-
cations displaced from each others by L. In order to perform the calculations
let us consider separately the contributions from the bx component of the
Burgers vector, i.e. terms A-B and those from the by component, i.e. terms
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C-D. Note that for dislocations running along z direction bz represents the
screw component of the Burgers vector which does not contribute to σxx.

a.2.1 Contributions from bx

Let us focus firstly on the terms depending on bx. The two terms in A rep-
resent the dipole construction, σD

xx, with the bulk and image contributions,
and in order to find their periodic expression we have to evaluate a sum like:

σD-xPBC
xx (x,y;L) =

+∞∑
n=−∞σ

D
xx(x−nL,y) (56)

The sum in Eq. (56) can be evaluated following the derivation reported
in [54], and results in:
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where we used the following notation:

X = x/L, Y = y/L,
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L
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L
,
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cX = cos (2πX) , sX = sin (2πX)

(58)

The term B in equation (55) is the Head correction for the presence of the
free surface, σH

xx, and we have to find its sum:
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The sum (59) can be exactly evaluated:
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The evaluation of the three addenda in Eq. (60), exploits the known mathe-
matical results (see e.g. [54]):
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Indeed, the first term in Eq. (60) reads:
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with the substitution p = −xL , and q = y−h
L . This sum can be evaluated

starting from Eq. (62) and considering the following identity:
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Substituting back the values for p = −xL and q = y−h
L in this expression we

obtain the result for this series.
The second addendum in Eq. (60) is:
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The sum in equation (65) can be evaluated starting again from Eq. (62) and
exploiting the identity:
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Exploiting the known series reported in Eq. (62), Eq. (66) yields:
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Finally, the third term in the expression of σH
xx is:
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This term can be summed using again the results from the series in Eq. (61), (62)
and (63).

a.2.2 Contributions from by

Now we can come back to equation (55) and consider the terms dependent on the
by component of the Burgers vector. The two addenda in C again correspond to the
dipole construction and the sum of this two terms is known and reported in [54],
yielding (using the notation reported in Eq. (58)):
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[
CY+ − cX − 2πY+SY+

(cX −CY+)
2

−
CY− − cX − 2πY−SY−

(cX −CY−)
2

]

Finally, the term D is the contribution to the Head correction for the σxx stress
field arising from the by component of the Burgers vector. To evaluate its expression
we have to compute a sum like that in Eq. (59):

σH-xPBC
xx =

+∞∑
n=−∞−

4h(x−nL)
[
(x−nL)2(2h− 3y) + (y− h)2(2h+ y)

][
(x−nL)2 + (y− h)2

]3
=− 4h(2h− 3y)

+∞∑
n=−∞

(x−nL)3[
(x−nL)2 + (y− h)2

]3+
− 4h(y− h)2(2h+ y)

+∞∑
n=−∞

(x−nL)[
(x−nL)2 + (y− h)2

]3
(68)
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the first series in Eq. (68) can be rewritten using again the substitution p = −xL and
q = y−h

L , and summed exploiting the identity:

+∞∑
n=−∞

(n+ p)3[
(n+ p)2 + q2

]3 =−
1

4

{
∂

∂p

{
−
1

2

{
∂

∂p

[
(n+ p)

(n+ p)2 + q2

]
−

1

(n+ p)2 + q2

}}
+

− 2
n+ p

[(n+ p)2 + q2]2

}
=−

1

4

{
∂

∂p

{
−
1

2

{
∂

∂p

[
π sin (2πp)

cosh (2πq) − cos (2πp)

]
+

−
π

q

sinh (2πq)

cosh (2πq) − cos (2πp)

}}
− 2

π2 sinh (2πq) sin (2πp)

q(cosh (2πq) − cos (2πp))2

}
where we have exploited the results from the series (61), (62) and (63).

The second sum in Eq. (68) can be evaluated, using the same notation, exploiting
the identity:

+∞∑
n=−∞

(n+ p)[
(n+ p)2 + q2

]3 =

+∞∑
n=−∞

1

4

∂

∂p

{
1

2q

∂

∂q

[
1

(n+ p)2 + q2

]}
=
1

4

∂

∂p

{
1

2q

∂

∂q

[
π

q

sinh (2πq)

cosh (2πq) − cos (2πp)

]}
This result can be obtained by series (62). Again, substituting back the values for p
and q we can obtain the final result for the sum in equation (68).

a.3 stress field convergence

In order to check the expressions obtained, we can compare the analytical expres-
sions with numerical calculations of the series as reported in Eq. 59. At the same
time, we also check that the summed expressions do verify the condition of zero nor-
mal stress at the free surface σ ·n = 0. In figure 60 the convergence of stress fields
at the free surface for the only two non-zero stress components, that, as expected,
are σxx and σxz is reported.
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Figure 60: Plot of the only two non-zero components of the stress functions at the
free surface. The solid blue lines represent the analytic solution found
as sum of an infinite number of dislocations, the other lines show the
convergence with an increasing number of image dislocations.
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a.4 non-singular stress functions
Once the problem of finding the periodic stress field is solved, it is necessary to
remove the numerical divergence at dislocations cores, e.g. to numerically intea-
grate the elastic energy in a heteroepitaxial system. Notice that the only divergent
contribution in the integration domain is the bulk one, so this is the only one that
requires the correction of its divergence.

The solution for a periodic array of bulk dislocations is known and for example
the yz stress component is:

σx-PBC
yz =

µbz

2π

sin
(
2πxL

)
cosh

(
2πyL

)
− cos

(
2πxL

) (69)

This can be regularized starting by the procedure proposed by Wei Cai et al. in [69]
for a single dislocation, i.e. by considering the non-divergent expression:

σyz =
µbz

2π

x(x2 + y2 + 2t2)

(x2 + y2 + t2)2

with t > 0 representing a typical core dimension (1− 2 Å).
Starting from this expression we want to find the sum:∞∑

n=−∞
µbz

2π

(x−nL)[(x−nL)2 + y2 + 2t2]

[(x−nL)2 + y2 + t2]2

∞∑
n=−∞

µbz

2π

[
(x−nL)(((

((((
(((

[(x−nL)2 + y2 + t2]

[(x−nL)2 + y2 + t2]�2︸ ︷︷ ︸
I

+ t2
(x−nL)

[(x−nL)2 + y2 + t2]2︸ ︷︷ ︸
II

]

I yields:∞∑
n=−∞−

1

L

(n− x
L )[

(n− x
L )
2 + y2+t2

L2

]2 =

∞∑
n=−∞−

1

L

n+ p[
(n+ p)2 + q2

]2
This series again can be summed exactly, yielding:

−
1

L

π sin (2πp)

cosh (2πq) cos (2πp)
=
1

L

π sin
(
2πxL

)
cosh

(
2π

√
y2+t2

L2

)
− cos

(
2πxL

)
The second term (II) is:∞∑

n=−∞ t
2 (x−nL)

[(x−nL)2 + y2 + t2]2
=

∞∑
n=−∞−

t2

L3
(n+ p)[

(n+ p)2 + q2
]2

And from [54] eq. 19-74 the result of this sum is:

−
t2

L3
π2 sinh (2πq) sin (2πp)

q(cosh (2πq) − cos (2πp))2
=
t2

L3

π2 sinh
(
2π

√
y2+t2

L2

)
sin
(
2πxL

)
√
y2+t2

L2

[
cosh

(
2π

√
y2+t2

L2

)
− cos

(
2πxL

) ]2
So, putting all terms together we find:

σyz =
µbz

2L
sin
(
2π
x

L

)[ 1

cosh
(
2π

√
y2+t2

L2

)
− cos

(
2πxL

)

+
t2

L

π sinh
(
2π

√
y2+t2

L2

)
sin
(
2πxL

)
√
y2 + t2

[
cosh

(
2π

√
y2+t2

L2

)
− cos

(
2πxL

) ]2
]
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All other stress functions can be regularized in a similar way. Using the

notation Yt =
√
y2+t2

L2
and X = x

L :

σxx =−
µbx

2L

[
3yπ

LYt

sinh (2πYt)[
cosh (2πYt) − cos (2πX)

]
−

2y3

4L3Y3t

−4πYt + 2 cos (2πX) [2πYt cosh (2πYt) − sinh (2πYt)] + sinh (4πYt)[
cosh (2πYt) − cos (2πX)

]2
]

+
µby

2(1− ν)L
sin (2πX)

[
cosh (2πYt) − cos (2πX) + 2πy2

L2Yt
sinh (2πYt)[

cosh (2πYt) − cos (2πX)
]2

]

σyy =−
µbxπy

(1− ν)L2
cosh (2πYt) cos (2πX) − 1[
cosh (2πYt) − cos (2πX)

]2
+

µby

2(1− ν)L
sin (2πX)

[
cosh (2πYt) − cos (2πX) + 2πYt sinh (2πYt)[

cosh (2πYt) − cos (2πX)
]2

]

σxy =
bxµ

2L3(1− ν)
sin (2πX)

[
2πt2 sinh (2πYt)

Yt [cosh (2πYt) − cos (2πX)]2

+
L2 (cosh (2πYt) − cos (2πX) − 2πYt sinh (2πYt))

[cosh (2πYt) − cos (2πX)]2

]

−
µbyπy

2(1− ν)L2
cosh (2πYt) cos (2πX) − 1[
cosh (2πYt) − cos (2πX)

]2
σxz =−

µbz

2L

[
y

LYt

sinh (2πYt)[
cosh (2πYt) − cos (2πX)

]
+

yt2

4L3Y3t

−4πYt + 2 cos (2πX) (2πYt cosh (2πYt) − sinh (2πYt)) + sinh (4πYt)[
cosh (2πYt) − cos (2πX)

]2
]

σyz =
µbz

2L
sin (2πX)

[
cosh (2πYt) − cos (2πX) + πt2

L2Yt
sinh (2πYt)[

cosh (2πYt) − cos (2πX)
]2

]
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