
J. Group Theory 21 (2018), 83–100
DOI 10.1515/ jgth-2017-0030 © de Gruyter 2018

Normal subgroups in limit groups of prime index

Thomas S. Weigel and Jhoel S. Gutierrez

Communicated by Dessislava H. Kochloukova

Abstract. Motivated by their study of pro-p limit groups, D. H. Kochloukova and
P. A. Zalesskii formulated in [15, Remark after Theorem 3.3] a question concerning the
minimum number of generators d.N / of a normal subgroup N of prime index p in a non-
abelian limit group G (see Question*). It is shown that the analogous question for the
rational rank has an affirmative answer (see Theorem A). From this result one may con-
clude that the original question of Kochloukova and Zalesskii has an affirmative answer if
the abelianization Gab of G is torsion free and d.G/ D d.Gab/ (see Corollary B), or if G
is a special kind of one-relator group (see Theorem D).

1 Introduction

In recent years limit groups (or !-residually free groups) have received much
attention (see [1, 3, 5, 6, 8, 9, 13, 16]). To the authors’ knowledge B. Baumslag was
one of the first who studied these groups – in these days under the more traditional
name of fully residually free groups (see [2]). Indeed, this notion reflects the fact
that for any limit group G and any finite subset T of G there exists a homomor-
phism from G to a free group F that is injective on T . Then, around twenty years
ago, O. G. Kharlampovich and A. M. Myasnikov proved several structure theo-
rems for this class of groups, which are still the principal tools for working in this
area (see [10,11]). Soon afterwards Z. Sela published his groundbreaking work on
limit groups (see [17,18] and the references therein) and also introduced the name
limit group. More recently, O. G. Kharlampovich and A. M. Myasnikov established
many properties of limit groups in [12]. Examples of limit groups include all
finitely generated free groups, all finitely generated free abelian groups, and all
the fundamental groups of closed oriented surfaces. Moreover, the class of limit
groups is closed with respect to finitely generated subgroups and free products.
This fact can be used to construct many examples. More sophisticated examples
can be found in some of the articles cited above.

Recently, D. H. Kochloukova and P. A. Zalesskii introduced and studied in [15]
a class of pro-p groups which might be considered as the pro-p analogue of the
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84 T. S. Weigel and J. S. Gutierrez

class of limit groups and called it the class of pro-p limit groups. Motivated by one
of their main results on pro-p limit groups they raised the following question.

Question*. Let G be a non-abelian limit group, and let U be a normal subgroup
of G of prime index p. Does this imply that d.U / > d.G/?

Here d.G/ denotes the minimum number of generators of a finitely generated
group G. For a pro-p group QG the minimum number of (topological) genera-
tors d. QG/ of QG is closely related to the cohomology group H 1. QG;Fp/, where
Fp denotes the finite field with p elements, i.e., d. QG/ D dimFp

.H 1. QG;Fp// (see
[19, Section I.4.2, Corollary of Proposition 25]). For an abstract group G such
a close relation does not hold. There are two homological invariants of a finitely
generated group G which can be seen as a homological approximation of d.G/:
The rational rank of G given by

rkQ.G/ D dimQ.G
ab
˝Z Q/ D dimQ.H1.G;Q//;

where Gab D G=ŒG;G� denotes the abelianization of G, and

d.Gab/ D rkZ.G
ab/ D rkZ.H1.G;Z//:

In particular, rkQ.G/ � d.G
ab/ � d.G/. The main purpose of this paper is to give

an affirmative answer to the analogue of Question* for the rational rank (see Theo-
rem 3.2).

Theorem A. Let G be a non-abelian limit group, and let U be a normal subgroup
of G of prime index p. Then rkQ.U / > rkQ.G/.

From Theorem A one concludes the following affirmative partial answer to
Question* (see Corollary 3.3).

Corollary B. Let G be a non-abelian limit group such that Gab is a torsion free
group and that d.G/ D d.Gab/. If U is a normal subgroup of G of prime index p,
then d.U / > d.G/.

It should be mentioned that there exist limit groupsG for which d.Gab/ 6D d.G/

(see Remark 4.4), and also for which Gab is not torsion free (see Remark 4.5). So
Corollary B gives only a partial affirmative answer to Question*.

Since every open subgroup of a pro-p group is subnormal, the affirmative
answer to the analogue of Question* for pro-p limit groups has many interest-
ing consequences. Obviously, subgroups of finite index in a discrete limit group
do not have to be subnormal. Hence one may not expect that a positive solution of
Question* has a similar impact as in the pro-p case. Nevertheless, Theorem A has
also the following consequence (see Corollary 3.5).
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Corollary C. LetG be a non-abelian limit group, and letN be a normal subgroup
of G such that G=N is infinite and nilpotent. Then rkQ.N / D1. In particular, if
˛WG ! Z is a non-trivial homomorphism, then rkQ.ker.˛// D1.

The proof of Theorem A can be modified in order to obtain an affirmative
answer to Question* also for certain types of one-relator limit groups (see Theo-
rem 4.3).

Theorem D. LetG be a non-abelian cyclically pinched or conjugacy pinched one-
relator limit group, and let U be a normal subgroup of G of prime index p. Then
d.U / > d.G/.

2 Limit groups

By N we will denote the set of positive integers, and by N0 the set of non-negative
integers, i.e., N0 D ¹0; 1; 2; : : :º. We will use the symbol “?” for free products with
amalgamation in the category of groups.

2.1 Extension of centralizers

By starting from a limit group G, there is a standard procedure to construct a limit
group G.C;m/, where C � G is a maximal cyclic subgroup of G and m 2 N.
This procedure is known as extension of centralizers, i.e., if G is a limit group,
then

G.C;m/ D G ?C .C � Zm/

is again a limit group (see [11, Lemma 2 and Theorem 4]). For short we call a limit
group G an iterated extension of centralizers of a free group (= i.e.c.f. group), if
there exists a sequence of limit groups .Gk/0�k�n such that

(EZ1) G0 D F is a finitely generated free group, and Gn ' G,

(EZ2) for k 2 ¹0; : : : ; n � 1º there exists a maximal cyclic subsgroup Ck � Gk
and mk 2 N such that GkC1 ' Gk.Ck; mk/.

If G is an iterated extension of centralizers of a free group, one calls the minimum
number n 2 N0 for which there exists a sequence of limit groups .Gk/0�k�n sat-
isfying (EZ1) and (EZ2) the level of G. This number will be denoted by `.G/. For
example, a finitely generated free group is an iterated extension of centralizers of
a free group of level 0, and a finitely generated free abelian group is an iterated
extension of centralizers of a free group of level 1.
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86 T. S. Weigel and J. S. Gutierrez

2.2 The height of a limit group

By the second embedding theorem (see [13, Section 2.3, Theorem 2], [11, Theo-
rem 4]), every limit group G is isomorphic to a subgroup of an i.e.c.f. group H .
The height ht.G/ of G is defined as

ht.G/ D min¹`.H/ j G � H; H an i.e.c.f. group º:

E.g., a limit group G is of height 0 if, and only if, it is a free group of finite rank,
and non-cyclic finitely generated free abelian groups are of height 1.

2.3 Limit groups as fundamental groups of graph of groups

Let G be a limit group of height ht.G/ D n � 1, and let H be an i.e.c.f. group of
level `.H/ D n such that G � H . Then H acts on a tree � without inversion (of
edges) with two orbits on V.�/ and two orbits on E.�/, where V.�/ is the set of
vertices of � , andE.�/ is the set of (oriented) edges of � (see [20, Section I.4.4]).
Moreover, for v 2 V.�/ its stabilizer Hv is either free abelian or an i.e.c.f. group
of level n � 1. For e 2 E.�/ its stabilizer He is infinite cyclic.

As G is acting on � without inversion of edges, the fundamental theorem of
Bass–Serre theory (see [20, Section I.5.4, Theorem 13]) implies that G is iso-
morphic to the fundamental group �1.G ; ƒ; T / of a graph of groups G based on
a connected graph ƒ and T is a maximal subtree of ƒ. For simplicity we assume
that G D �1.G ; ƒ; T /. Since G is finitely generated, E D E.ƒ/ nE.T / must be
finite. Otherwise, G would have an infinitely generated free group as a homomor-
phic image. Similarly, asG is finitely generated, there exists a finite set� � V.ƒ/
such that

G D he;Gv j e 2 E; v 2 �i: (2.1)

Let T0 D spanT .� [ ¹o.e/; t.e/ j e 2 Eº/ be the tree spanned by the set � and
the origins and termini of the edges in E, and let ƒ0 be the subgraph of ƒ satis-
fying V.ƒ0/ D V.T0/, and E.ƒ0/ D E.T0/ tE. By construction, ƒ0 is a finite
connected graph, and T0 is a maximal subtree ofƒ0. Let G 0 D G jƒ0

be the restric-
tion of G toƒ0. Then, by definition, one has a canonical homomorphism of groups
iT W�1.G

0; ƒ0; T0/! �1.G ; ƒ; T /. For P0 2 V.ƒ0/, one has a commutative dia-
gram

�1.G
0; ƒ0; P0/

iP0
//

��

�1.G ; ƒ; P0/

��

�1.G
0; ƒ0; T0/

iT
// �1.G ; ƒ; T /,
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where the vertical maps are isomorphisms (see [20, Section I.5.1, Proposition 20]).
As the canonical map is mapping generalized reduced words to generalized
reduced words, iP0

is injective (see [20, p. 50, Example (c)]), and hence iT is
injective. Thus, by (2.1), iT is an isomorphism. As a consequence, one concludes
the following property which is slightly more precise than [11, Theorem 6].

Proposition 2.1. Let G be a limit group of height n � 1. Then G is isomorphic to
the fundamental group �1.G 0; ƒ0; T0/ of a graph of groups G 0 satisfying

(i) ƒ0 is finite,

(ii) for all v 2 V.ƒ0/, G 0v is finitely generated abelian or a limit group of height
at most n � 1,

(iii) for all e 2 E.ƒ0/, G 0e is infinite cyclic or trivial.

Proof. By the previously mentioned argument, it suffices to show that G 0v is finitely
generated for all v 2 V.ƒ0/. This follows by the argument used in [11, Proof of
Theorem 6, p. 567] in connection with [4, Satz 5.8] and the equivalent statement
for HNN-extensions (see [4, Satz 6.3]).

2.4 Limit groups of small rank

As limit groups are (fully) residually free, they must be torsion free. From this
property one concludes the following useful fact.

Fact 2.2. Let G be a limit group with rkQ.G/ D 1. Then G ' Z.

Proof. Suppose that G is non-abelian, i.e., there exist a; b 2 G with Œa; b� ¤ 1.
Since G is a limit group, there exists a free group F of finite rank and an epi-
morphism �WG �! F satisfying �.Œa; b�/ ¤ 1. As �abWGab ! F ab is surjective,
its induced map �ab

Q WG
ab ˝Z Q! F ab ˝Z Q is also surjective. Hence we have

1 D rkQ.G/ � rkQ.F /, and so rkQ.F / D 1. As rkQ.F / D d.F
ab/ D d.F / D 1,

F must be cyclic, and, in particular, abelian. Thus �.Œa; b�/ D Œ�.a/; �.b/� D 1,
a contradiction. Hence G is a finitely generated free abelian group. In particular,
d.G/ D rkQ.G/ D 1, and G is cyclic.

The following property has been shown by D. H. Kochloukova in [14].

Proposition 2.3 (Kochloukova). For a limit groupG its Euler characteristic �.G/
is non-positive. Moreover, �.G/ D 0 if, and only if, G is abelian.

Limit groups with minimum number of generators less than or equal to 3 are
well known. In [6] the following was shown.
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88 T. S. Weigel and J. S. Gutierrez

Theorem 2.4 (Fine, Gaglione, Myasnikov, Rosenberger and Spellman). Let G be
a limit group. Then:

(a) d.G/ D 1 if, and only if, G is infinite cyclic.

(b) d.G/ D 2 if, and only if, G is a free group of rank 2 or a free abelian group
of rank 2.

(c) d.G/ D 3 if, and only if, G is a free group of rank 3, a free abelian group of
rank 3, or an extension of centralizers of a free group of rank 2, i.e., G has
a presentation

G D hx1; x2; x3 j x
�1
3 vx3 D vi;

where v D v.x1; x2/ 2 F.¹x1; x2º/ is non-trivial.

3 The rational rank of a limit group

The following fact will turn out to be useful for our purpose.

Lemma 3.1. LetG1 andG2 be groups, and let C D hci be an infinite cyclic group
or the trivial group.

(a) If G D G1 ?C G2 is a free product with amalgamation in C , then

rkQ.G/ D rkQ.G1/C rkQ.G2/ � �.G/;

where �.G/ 2 ¹0; 1º. Moreover, if C D 1, then �.G/ D 0.

(b) IfG D HNN�.G1; C; t/ D hG1; t j tct�1 D �.c/i is an HNN-extension with
equalization in C � G1, then

rkQ.G/ D rkQ.G1/C �.G/; (3.1)

where �.G/ 2 ¹0; 1º. One has an exact sequence

C ˝Z Q
˛
�! Gab

1 ˝Z Q
ˇ
�! Gab

˝Z Q �! Q �! 0; (3.2)

where ˛.c ˝ q/ D .c�.c/�1G01/˝ q, q 2 Q. Moreover,

(1) �.G/ D 0 if, and only if, ˛ is injective,

(2) �.G/ D 1 if, and only if, ˛ is the 0-map.

Proof. (a) Let G D G1 ?C G2, and let �i WC ! Gi , i 2 ¹1; 2º denote the associ-
ated embeddings. The Mayer–Vietoris sequence associated to �˝Z Q specializes
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Normal subgroups in limit groups of prime index 89

to an exact sequence

H1.C;Q/
˛
// H1.G1;Q/˚H1.G2;Q/

ˇ
// H1.G;Q/



��

0 H0.G;Q/oo H0.G1;Q/˚H0.G2;Q/oo H0.C;Q/,oo

(3.3)

where ˛.c˝ q/ D ..�1.c/G01/˝ q;�.�2.c/G
0
2/˝ q/, q 2 Q. In particular, 
 D 0,

and this yields (a).
(b) In this case the Mayer–Vietoris sequence specializes to

H1.C;Q/
˛
// H1.G1;Q/

ˇ
// H1.G;Q/

��

0 H0.G;Q/oo H0.G1;Q/oo H0.C;Q/
ı
oo

with ˛ as described in (b) of the statement of the lemma. In particular, ı D 0
which yields (3.2), and thus also (3.1). The final remarks (1) and (2) follow from
the fact that dim.im.˛// 2 ¹0; 1º, and that dim.im.˛// D 1 if, and only if, ˛ is
injective.

From Lemma 3.1 one concludes the following.

Theorem 3.2. LetG be a non-abelian limit group, and letU be a normal subgroup
of G of prime index p. Then rkQ.U / > rkQ.G/.

Proof. We proceed by induction on n D ht.G/ (see Section 2.2). If n D 0, then G
is a finitely generated free group satisfying d.G/ � 2, and the Nielsen–Schreier
theorem yields

rkQ.U / D d.U / D p � .d.G/ � 1/C 1 > d.G/ D rkQ.G/

and hence the claim. So assume that G is a limit group of height ht.G/ D n � 1,
and that the claim holds for all limit groups of height at most n � 1. By Propo-
sition 2.1, G is isomorphic to the fundamental group �1.‡;ƒ; T / of a graph of
groups‡ based on a finite connected graphƒwhose edge groups are either infinite
cyclic or trivial, and whose vertex groups are either limit group of height at most
n � 1 or free abelian groups. By applying induction on s.ƒ/ D jV.ƒ/j C jE.ƒ/j
it suffices to consider the following two cases:

(I) G D G1 ?C G2 and Gi is either a limit group of height at most n � 1 or
abelian, and C is either infinite cyclic or trivial, i 2 ¹1; 2º.

(II) G D HNN�.G1; C; t/, where G1 is either a limit group of height at most
n � 1 or abelian, and C is either infinite cyclic or trivial.
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90 T. S. Weigel and J. S. Gutierrez

Case (I). Let G D G1 ?C G2. If C is non-trivial, then either G1 or G2 is non-
abelian. Otherwise, by a result of I. Chiswell, one would conclude that we have
�.G/ D �.G1/C �.G2/ � �.C / D 0 andG must be abelian (see Proposition 2.3)
which was excluded by hypothesis. The groupG acts naturally on a tree T without
inversion of edges with two orbits V1 and V2 on V.T / and two orbits E1 and E2
on E.T / satisfying NE1 D E2. We may assume that for e 2 E1 one has o.e/ 2 V1
and t .e/ 2 V2. By hypothesis,

jG W UGi j 2 ¹1; pº and jG W UC j 2 ¹1; pº; (3.4)

and one may distinguish the following cases:

(I.1) jG W UC j D 1, i.e., U has one orbit on E1 and E2.

(I.2) jG W UC j D p, i.e., U has p orbits on E1 and E2.

Case (I.1). The hypothesis implies that G D UG1 D UG2, and U has one orbit
on V1 and one orbit on V2. Thus, by the fundamental theorem of Bass–Serre theory
(see [20, Section I.5.4, Theorem 13]), one has U ' .U \G1/ ?.U\C/ .U \G2/.
The hypothesis implies also that jC W C \ U j D p, i.e., C 6D 1. Hence without
loss of generality we may assume that G1 is non-abelian, and, by induction, that
rkQ.U \G1/ � 1C rkQ.G1/. If G2 is also non-abelian, then we have, by induc-
tion, rkQ.U \G2/ � rkQ.G2/C 1. Hence, by applying Lemma 3.1 (a), one con-
cludes that

rkQ.U / � rkQ.U \G1/C rkQ.U \G2/ � 1

> rkQ.G1/C rkQ.G2/ � rkQ.G/:

On the other hand, if G2 is abelian, C is a direct factor in G2, i.e., G2 ' Z � B ,
whereB is a free abelian group of rank d.G2/ � 1. Thus the map ˛ in (3.3) is injec-
tive, and rkQ.G/ D rkQ.G1/CrkQ.G2/�1. Moreover, rkQ.U \G2/ D rkQ.G2/

and Lemma 3.1 (a) yields

rkQ.U / � rkQ..U \G1/C rkQ.U \G2/ � 1

� rkQ.G1/C rkQ.G2/ > rkQ.G/:

Case (I.2). In this case U has p orbits on E1 and p orbits on E2. Moreover,
jG W UGi j 2 ¹1; pº. Hence, by (3.4), it suffices to consider the following three
cases:

(a) jG W UG1j D jG W UG2j D p.

(b) jG W UG1j D p and G D UG2.

(c) G D UG1 D UG2.
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Normal subgroups in limit groups of prime index 91

Let ƒ D GnnT and �ƒ D U nnT be the quotient graphs of T modulo the left G-
and U -action, respectively. In particular, ƒ D .¹v;wº; ¹e; Neº/ is a line segment
of length 1 and thus a tree, and �ƒ is connected. Moreover, one has a surjective
homomorphism of graphs � W�ƒ! ƒ.

Case (a). By hypothesis,UG1 D UG2 D U , i.e.,G=U acts regularly on the ver-
tex fibres and edge fibres of � . For f 2 E.�ƒ/ one has either o.f/ 2 ��1.¹vº/ or
t .f/ 2 ��1.¹vº/. If f1 and f2 satisfy the first condition, and Qv D o.f1/ D o.f2/,
then Qg:f1 D f2 for Qg 2 stabG=U . Qv/ D 1. Hence f1 D f2. In the latter case the same
argument applies, and this shows that � is a fibration, i.e., for every z 2 V.�ƒ/ the
map �z W st�ƒ.z/! stƒ.�.z// is a bijection. As ƒ is a tree and hence simply-
connected, this implies that � is a bijection, a contradiction, showing that Case (a)
is impossible.

Case (b). We may assume that G1 D stabG.v/ and G2 D stabG.w/. Hence, by
hypothesis, j��1.¹vº/j D p and j��1.¹wº/j D 1. Let Qw 2 V.�ƒ/with �. Qw/ D w.
Then E.�ƒ/ D st�ƒ. Qw/ t st�ƒ. Qw/ is a star with p geometric edges.

Put U2 D U \G2. By hypothesis, jG2 W U2j D p and G1 � U . Choosing a set
of representatives R � G2 for G2=U2, the Mayer–Vietoris sequence associated
to TorU� .�;Q/ specializes toa

r2R

H1.
rC;Q/

˛
�!

a
r2R

H1.
rG1;Q/˚H1.U2;Q/! H1.U;Q/! 0: (3.5)

This yields
rkQ.U / D p � rkQ.G1/C rk.U2/ � ı; (3.6)

where ı D dim.im.˛//. We distinguish two cases.

(1) C D 1. So ı D 0. Then, by (3.5),

rkQ.U / D p � rkQ.G1/C rkQ.U2/:

As rkQ.U2/ � rkQ.G2/ with equality in case that G2 is abelian, one concludes
that rkQ.U / D p � rkQ.G1/C rkQ.U2/ > rkQ.G1/C rkQ.G2/ � rkQ.G/.

(2) C 6D 1. Then, by (3.6),

rkQ.U / � p � .rkQ.G1/ � 1/C rkQ.U2/

� 2 � .rkQ.G1/ � 1/C rkQ.U2/: (3.7)

As d.G1/ D 1 implies that G D Z ?Z G2 ' G2, which was excluded by (I), we
may assume that d.G1/ � 2. Hence

rkQ.U / � rkQ.G1/C rkQ.U2/: (3.8)
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92 T. S. Weigel and J. S. Gutierrez

IfG2 is non-abelian, then, by induction, rkQ.U2/ � 1CrkQ.G2/. Hence we obtain
the inequality rkQ.U / � 1C rkQ.G1/C rkQ.G2/ > rkQ.G/. If G2 is abelian,
then G D G1 ?Z .Z � B/ for some free abelian group B of rank d.G2/ � 1. In
particular, rkQ.G/ D rkQ.G1/C d.B/. As rkQ.U2/ D d.B/C 1, estimate (3.8)
yields the claim also in this case.

Case (c). By hypothesis, �ƒ is a graph with two vertices v and w and p geo-
metric edges. We may assume that G1 D stabG.v/ and G2 D stabG.w/, and we
put U1 D U \G1 and U2 D U \G2. By the same argument used in Case (b),
one obtains an exact sequence`

r2RH1.
rC;Q/

ˇ
// H1.U1;Q/˚H1.U2;Q/ // H1.U;Q/

��

0 Qp�1,oo

(3.9)

where R � G is a set of representatives of G=U . Again we distinguish two cases.

(1) C D 1. Then ˇ is the 0-map, and as rkQ.Ui / � rkQ.Gi / for i 2 ¹1; 2º,
one has

rkQ.U / D rkQ.U1/C rkQ.U2/C .p � 1/

� rkQ.G1/C rkQ.G2/C 1 > rkQ.G/:

(2) C ¤ 1. Then, by (3.9),

rkQ.U / � rkQ.U \G1/C rkQ.U \G2/ � 1: (3.10)

If G1 and G2 are non-abelian, then, by induction, rkQ.U \G1/ � 1C rkQ.G1/

and rkQ.U \G2/ > rkQ.G2/. Hence

rkQ.U / > rkQ.G1/C 1C rkQ.G2/ � 1

D rkQ.G1/C rkQ.G2/ � rkQ.G/:

In case that one of the groups G1, G2 is abelian, not both of them can be abelian.
Otherwise, the Euler characteristic �.G/ D �.G1/C �.G2/ � �.C /must equal 0,
and G must be abelian, which was excluded by hypothesis (see Proposition 2.3).
So without loss of generality we may assume thatG1 is a non-abelian, and thatG2
is abelian. ThenG2 ' Z�B , whereB is a free abelian group of rank rkQ.G2/�1,
andG ' G1?Z .Z�B/. Hence rkQ.G/ D rkQ.G1/CrkQ.G2/�1. Furthermore,
rkQ.U \G2/ D rkQ.G2/, and, by induction, rkQ.U \G1/ � 1C rkQ.G1/. Thus,
by (3.10),

rkQ.U / � rkQ.G1/C 1C rkQ.G2/ � 1 D rkQ.G1/C rkQ.G2/ > rkQ.G/:
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Normal subgroups in limit groups of prime index 93

Case (II). Suppose that G D HNN�.G1; C; t/ D hG1; t j tct�1 D �.c/i is an
HNN-extension with C D hci. By (3.1), one has

rkQ.G1/ � rkQ.G/ � rkQ.G1/C 1: (3.11)

If C D 1, then G D G1 ? hti is isomorphic to a free product. Hence the claim
follows already from Case (I). So we may assume that C 6D 1. Note that G1 must
be non-abelian. Otherwise, one has �.G/ D �.G1/ � �.C / D 0, and G must be
abelian (see Proposition 2.3), a contradiction.

As in Case (I), the group G has a natural vertex transitive action on a tree T
with vertex stabilizer isomorphic to G1, and edge stabilizer isomorphic to C . In
particular,

jG W UG1j 2 ¹1; pº and jG W UC j 2 ¹1; pº:

Hence one may distinguish the following two cases:

(II.1) G D UC .

(II.2) jG W UC j D p.

Case (II.1). By hypothesis, G D UG1. In particular, U is acting vertex transi-
tively on T , and has two orbits on the set of edges, i.e.,U nnT is a loop with one ver-
tex. Thus one hasU ' HNN�.U\G1; Cp; t / D hU\G1; t j t .cp/t�1 D �.c/pi,
and as in (3.11), one concludes that

rkQ.U \G1/ � rkQ.U / � rkQ.U \G1/C 1: (3.12)

Since G1 is non-abelian and jG1 W U \G1j D p, it follows with induction that
rkQ.G1 \ U/ � rkQ.G1/C 1. Hence

rkQ.U / � rkQ.G1 \ U/ � rkQ.G1/C 1 � rkQ.G/: (3.13)

Suppose that rkQ.U / D rkQ.G/. Then it follows that rkQ.U / D rkQ.G1 \ U/ D

rkQ.G1/C1 D rkQ.G/. In particular, by Lemma 3.1(b), �.U / D 0 and �.G/ D 1,
i.e., ˛ is the 0-map, and ˛1 is injective. However, as the map tr1 in the diagram

� � � // H1.C;Q/
˛

//

tr1

��

H1.G1;Q/

tr2

��

// H1.G;Q/

tr3

��

// � � �

� � � // H1.C
p;Q/

˛1
// H1.U \G1;Q/ // H1.U;Q/ // � � �

– which is given by the transfer – is an isomorphism, this yields a contradiction.
Thus rkQ.U / < rkQ.G/.
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94 T. S. Weigel and J. S. Gutierrez

Case (II.2). In this caseU has 2p orbits onE.T /, and again one may distinguish
two cases:

(a) U acts vertex transitively on T .

(b) U has p orbits on V.T /.

Case (a). In this case U nnT is a bouquet of p loops, jG1WU \G1j D p and
C � U . The Mayer–Vietoris sequence for H�.�;Q/ yields a commutative and
exact diagram

C ˝Z Q
˛

//

tr1

��

Gab
1 ˝Z Q //

tr2

��

Gab˝Z Q //

tr3

��

Q //

��

0

p̀

iD1

giC ˝Z Q
˛1
// .U \G1/

ab˝Z Q // U ab˝Z Q // Qp // 0,

where ¹g1; : : : ; gpº � G1 is a set of representatives for G=U , tr2=3 is induced by
the transfer, and for c 2 C , q 2 Q, one has tr1.c˝q/ D

Pp
iD1

gi c˝q. Moreover,

˛1..
gi c/˝ q/ D

�
gic�.c/

�1g�1i .U \G1/
0
�
˝ q for c 2 C .

Thus, one has

rkQ.U /C dimQ.im.˛1// D rkQ.U \G1/C p; (3.14)

and induction implies that rkQ.U \G1/ � rkQ.G1/C 1. Hence

rkQ.U / � rkQ.U \G1/ � rkQ.G1/C 1 � rkQ.G/: (3.15)

Suppose that rkQ.U / D rkQ.G/. Then equality holds throughout (3.15). In par-
ticular, (3.14) implies that dimQ.im.˛1// D p, i.e., ˛1 is injective. Hence, as tr1 is
injective, ˛1 ı tr1 is injective. From Lemma 3.1 (b) one concludes that �.G/ D 1
and ˛ D 0, a contraction. Thus rkQ.U / > rkQ.G/ must hold.

Case (b). In this case one has G1 � U and C � U . As G=U is acting vertex
transitively onƒ D U nnT ,ƒmust be k-regular. Hence jE.ƒ/j D k � jV.ƒ/j, forc-
ing k D 2. So ƒ is a 2-regular connected graph, and thus a circuit with p vertices.

Let ¹g1; : : : ; gpº � G be a set of representatives for G=U . The Mayer–Vietoris
sequence for H�.�;Q/ then yields a commutative and exact diagram

C ˝Z Q
˛

//

tr1

��

Gab
1 ˝Z Q //

tr2

��

Gab˝Z Q //

tr3

��

Q //

��

0

p̀

iD1

giC ˝Z Q
˛1
//
p̀

iD1

giGab
1 ˝Z Q // U ab˝Z Q // Q // 0,
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where tr1=2 are the diagonal maps and tr3 is the transfer. Hence

rkQ.U / D 1C p � .rkQ.G1/ � 1/C dimQ.ker.˛1//: (3.16)

Therefore, as .p � 1/ � .rkQ.G1/ � 1/ � 1,

rkQ.U / � rkQ.G1/C 1 � rkQ.G/: (3.17)

Suppose that rkQ.U / D rkQ.G/. Then equality has to hold throughout (3.17), and
dimQ.ker.˛1// D 0, p D 2, rkQ.G1/ D 2. In particular, ˛1 is injective, and by
Lemma 3.1 (b), �.G/ D 1, i.e., ˛ D 0. Hence, as tr1 is injective, one obtains a con-
tradiction as in Case (a) showing that rkQ.U / > rkQ.G/.

Theorem 3.2 has the following consequence.

Corollary 3.3. Let G be a non-abelian limit group such that Gab is torsion free
and that d.G/ D d.Gab/. Then, if U is a normal subgroup of G of prime index p,
one has that d.U / > d.G/.

Proof. By Theorem 3.2, d.U / � rkQ.U / > rkQ.G/ D d.G
ab/ D d.G/.

Obviously, if G is a free group, an abelian free group or an iterated extension of
centralizers group of a free group, then rkQ.G/ D d.G/. In particular, in connec-
tion with Theorem 2.4 one concludes the following.

Corollary 3.4. LetG be a non-abelian limit group with d.G/� 3 and U a normal
subgroup of G of prime index p. Then d.U / � rkQ.U / > rkQ.G/ D d.G/.

Another consequence of Theorem 3.2 is the following.

Corollary 3.5. Let G be a non-abelian limit group, and let N be a normal sub-
group of G such that G=N is infinite and nilpotent. Then rkQ.N / D1. In partic-
ular, d.N / D1.

Proof. Suppose that rkQ.N / D n <1. Let h D h.G=N/ be the Hirsch num-
ber of the finitely generated nilpotent group G=N . Then h.U=N/ D h.G=N/ for
every subgroup of finite index U in G satisfying N � U . In particular, one has
rkQ.U=N/ � h.U=N/ D h, and thus rkQ.U / � rkQ.N /C rkQ.U=N/ � nC h,
contradicting Theorem 3.2.

Remark 3.6. Obviously, the statement of Corollary 3.5 remains valid replacing
“nilpotent” by “minimax”.
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96 T. S. Weigel and J. S. Gutierrez

4 One-relator limit groups

For a limit group G it is not necessarily true that d.G/ D d.Gab/. The following
lemma shows that there exists a class of limit groups containing groups G satis-
fying d.G/ ¤ d.Gab/ (see Remark 4.4) for which Question* has an affirmative
answer.

Lemma 4.1. Let G D G1 ?C G2 be a non-abelian limit group, where G1 and G2
are free groups of finite rank r.G1/ and r.G2/, respectively, and let C D hci be an
infinite cyclic group or trivial. Then, if U is a normal subgroup of prime index p
in G, one has rkQ.U / > d.G/. In particular, d.U / > d.G/.

Proof. IfC D 1,G is a finitely generated free group, and there is nothing to prove.
So from now on we may assume that C ¤ 1. Then, as G is non-abelian, either G1
orG2 must be non-abelian. Otherwise, �.G/ D �.G1/C �.G2/ � �.C / D 0, and
by Lemma 2.3, G must be abelian. Let T be the tree on which G acts naturally.
Then, as in the proof of Theorem 3.2, Case (I), one may distinguish three cases:

(1) G D UC , i.e., U has one orbits on E1 and E2.

(2) jG W UC j D p, i.e., U has p orbits on E1 and E2,

(b) jG W UG1j D p and G D UG2,
(c) G D UG1 D UG2.

Case (1). By hypothesis, G D UG1 and G D UG2 and therefore,

U ' .U \G1/ ?U\C .U \G2/:

In analogy to Case (I.1) of the proof of Theorem 3.2, we may chooseG1 to be non-
abelian. If G2 is abelian, then G2 must be cyclic, i.e., d.G2/ D 1. If d.G1/ D 2,
then d.G/ � 3, and the claim follows from Corollary 3.4. Thus, we may assume
that d.G1/ � 3. Again, by the Nielsen–Schreier theorem (and as d.G1/ � 3), one
has that d.U \G1/ > 1C d.G1/. AsG2 is abelian, d.U \G2/ D d.G2/. There-
fore, by Lemma 3.1 (a), one has

rkQ.U / � d.U \G1/C d.U \G2/ � 1

> d.G1/C d.G2/ � d.G/:

Thus, we may assume that G2 is non-abelian. From the Nielsen–Schreier theo-
rem one concludes that d.U \G1/ � 1C d.G1/ and d.U \G2/ � 1C d.G2/.
Therefore, by Lemma 3.1 (a),

rkQ.U / � d.U \G1/C d.U \G2/ � 1

� d.G1/C d.G2/C 1 > d.G/: (4.1)
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Normal subgroups in limit groups of prime index 97

Case (2, b). By (3.7), one has that

rkQ.U / � p � .d.G1/ � 1/C d.G2 \ U/: (4.2)

If G1 is abelian, then d.G1/ D 1. In this case G2 is non-abelian. If d.G2/ D 2,
then d.G/ � 3 and the claim follows from Corollary 3.4. So we may assume
that d.G2/ � 3. In particular, the Nielsen–Schreier theorem and (4.2) imply that
rkQ.U / � d.G2 \ U/ > 1C d.G2/ � d.G/.

So from now on we may assume thatG1 is non-abelian, i.e., d.G1/ � 2. IfG2 is
abelian, then d.U \G2/ D d.G2/ D 1. So if d.G1/ D 2, then the claim follows
by Corollary 3.4. Thus we may assume that d.G1/ � 3. Then, by (4.2) and the
Nielsen–Schreier theorem, one concludes that

rkQ.U / � p � .d.G1/ � 1/C 1

� d.G1/C 2 � .p � 1/

> d.G1/C 1 � d.G/:

So we may assume that G2 is non-abelian. In this case the Nielsen–Schreier theo-
rem implies that d.U \G2/ � 1C d.G2/. Then, by (4.2), one has

rkQ.U / � p � d.G1/ � p C d.G2/C 1

� d.G1/C d.G2/C .p � 1/

� d.G1/C d.G2/C 1 > d.G/:

Case (2, c). By (3.10), one has

rkQ.U / � d.U \G1/C d.U \G2/ � 1:

Then, the proof of Case (1) can be transferred verbatim in order to show that the
claim holds if one of the groups Gi , i 2 ¹1; 2º, is abelian. So we may assume
that G1 and G2 are non-abelian. Then the Nielsen–Schreier theorem and the same
argument which was used in order to prove (4.1) implies that rkQ.U / > d.G/.

For HNN-extensions one has the following.

Lemma 4.2. LetG DHNN�.G1; C; t/D hG1; t j tct�1D �.c/i be a non-abelian
limit group, where G1 is a free group of finite rank r and C is an infinite cyclic
group or trivial. Let U be a normal subgroup of G of prime index p. Then one has
rkQ.U / > d.G/, and, in particular, d.U / > d.G/.

Proof. If C is trivial, then G D G1 ? hti is a free group of rank r C 1, and there
is nothing to prove. Moreover, if r D 1, then �.G/ D 0, and G must be abelian
(see Proposition 2.3), which was excluded by hypothesis. Hence r � 2. Let T be
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98 T. S. Weigel and J. S. Gutierrez

the tree on which G acts naturally. Then one may distinguish three cases:

(1) G D UC .

(2) jG W UC j D p,

(a) U acts vertex transitively on T ,
(b) U has p orbits on V.T /.

Case (1). In this case one has U ' HNN�.U \G1; Cp; t / (cf. the proof of
Theorem 3.2, Case (II.1)). If r D 2, then d.G/ � 3, and the claim follows from
Corollary 3.4. Hence we may assume that r � 3. In this case the Nielsen–Schreier
theorem implies that d.G1 \ U/ > r C 1, and by (3.12), one concludes that

rkQ.U / � d.G1 \ U/ > r C 1 � d.G/:

Case (2, a). As in Case (1), we may assume that r � 3. Since jG1 W G1\U j D p
and G1 is a non-abelian free group, the Nielsen–Schreier theorem implies that
d.U \G1/ > r C 1: Hence, by (3.13),

rkQ.U / � d.U \G1/ > r C 1 � d.G/:

Case (2, b). As in Case (1), we may assume that r � 3. By (3.16) and the fact
that .p � 1/ � .d.G1/ � 1/ > 1, one concludes that

rkQ.U / � 1C p � .d.G1/ � 1/ > d.G1/C 1 � d.G/

completing the proof of the lemma.

As a consequence one concludes the following.

Theorem 4.3. Let G be a non-abelian cyclically pinched or conjugacy pinched
one-relator limit group (see [7]), and let U be a normal subgroup of G of prime
index p. Then d.U / > d.G/.

Proof. If G is a cyclically pinched one-relator group, then G ' G1 ?C G2 with
G1 and G2 free groups, and C being an infinite cyclic group being generated by
a cyclically reduced wordw 2 G1 andC is a maximal cyclic subgroup in eitherG1
orG2. Hence in this case, Lemma 4.1 yields the claim. IfG is a conjugacy pinched
one-relator group, thenG ' HNN�.G1; C; t/withG1 a free group, C and infinite
cyclic subgroup being generated by a cyclically reduced word w 2 G1, and either
C or �.C / is a maximal cyclic subgroup ofG1. Then, by Lemma 4.2, one has that
d.U / > d.G/ completing the proof.

Remark 4.4. It should be mentioned that there exist limit groups G satisfying
d.Gab/ Œ d.G/. In a post on mathoverflow the following example was given by
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H. Wilton in [21]. Let G1 D G2 D F2 be the free group of rank two, and let C1 D
C2 D hwi, wherew D a2ba�1b�1. Thenw is cyclically reduced, and Ci is a max-
imal cyclic subgroup of Gi for i D 1; 2, but Ci is not a free factor. By a result of
B. Baumslag (see [8, Corollary 3.6]), the corresponding doubleGDG1?C1DC2

G2
is a non-abelian limit group and has abelianization Gab isomorphic to Z3, i.e.,
d.Gab/ D 3. The canonical projection ˇWG ! .F2=hw

F2i/?.F2=hw
F2i/ is a sur-

jective group homomorphism. Thus, by hypothesis and Grushko’s theorem, one
has d.F2=hwF2i ? F2=hw

F2i/ D 4. Hence d.G/ D 4. Note that by Lemma 4.1,
rkQ.U / > 4 for any normal subgroup U of G of prime index p.

Remark 4.5. The group G D ha; bia2b2Dc2d2hc; d i is the fundamental group of
a closed non-orientable surface, and it is known that it is a limit group (see
[8, Section 3.1]). However, Gab ' Z3 � C2, where C2 D Z=2Z.
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