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Abstract

We complete the classification of Mink4 solutions preserving N = 2 supersymmetry and SU(2) R-

symmetry parameterised by a round S2 factor. We consider eleven-dimensional supergravity and

relax the assumptions of earlier works in type II theories. We show that, using chains of dualities,

all solutions of this type can be generated from one of two master classes: an SU(2)-structure in

M-theory and a conformal Calabi–Yau in type IIB. Finally, using our results, we recover AdS5×S2

solutions in M-theory and construct a compact Minkowski solution with Atiyah–Hitchin singularity.
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1 Introduction

Some of the most physically relevant solutions in supergravity are those exhibiting a warped Minkowski

factor. From early on, the main reason for this is that Minkowski vacua of string and M-theory are

required to make contact with known particle physics phenomena in four dimensions, where one

should arrange for the co-dimensions to be compact. Another reason, which clearly gained consid-

erable traction with the advent of the AdS/CFT correspondence, is that all AdS solutions admit a

description in terms of a foliation of Minkowski over a non compact interval - namely the Poincaré

patch.

The most simple way to realise a Minkowski vacua from ten or eleven dimensions is to assume

that the compact internal space accommodates some holonomy group, specifically SU(3) or G2 for

compactifications of string theory or M-theory down to four dimensions respectively. Such solutions

preserve (at least) N = 2 supersymmetry and have been well studied in the literature [1–5], with a

resurgence of interest in the G2 case in recent years [6–9] (see also [10–13] for G2 arising in a heterotic

context). However, such manifolds support neither fluxes nor a warping of the Minkowski directions,

so it is reasonable to expect that they represent a rather small region of the space of possible solutions.

The inclusion of fluxes requires one to generalise the notion of holonomy group to structure group

(or G-structure) [14–17]. It is well known that no compact regular solutions of this type exist [18–20]

- indeed a necessary element of such constructions are localised singularities, namely O-planes and

their generalisations through string dualities, or lifts to M-theory (e.g. Atiyah–Hitchin singularities).

Most progress constructing compact solutions with fluxes has happened within another restrictive

ansatz, with the internal space assumed to be conformally a holonomy manifold [21–23], allowing

one to broadly use the same mathematical tools as before. At this point all Minkd solutions for

d > 1 (with the exception of Mink2 in eleven dimensions) have been classified (see [24–28] for eleven

dimensions, [29–36] for ten dimensions), however finding solutions beyond the ansatz of warped

holonomy has proved challenging - see [38,39] for success in this direction. The issue appears to be

one of tractability, so it would be helpful to have some additional guiding principle.

AdS solutions necessitate the inclusion of fluxes, early examples were also constructed by studying

warped holonomy manifolds (albeit now non compact) using the Freund-Rubin ansatz [40]. By now

the state of affairs for AdS solutions beyond this class is rather more developed than for Minkowski.

Many AdS solutions preserving 16 supercharges or more, when they exist, are either completely

known (see the cases of AdS7 [41], AdS6 [42] in IIA/M-theory AdS5 × S2 [43] in IIB1), or known

locally up to solving comparatively simple partial differential equations (see the cases of AdS6 [44,48]

and AdS4 [48] in IIB and AdS5×S2 in M-theory/IIA2 [46,49]). The exceptions are AdS2/3 (see [51–53]

1There is only the Zk orbifold of AdS5 × S5.
2see [47] for some explicit examples in IIA.
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for certain ansätze3), AdS4 in IIA/M-theory, and AdS5 with the requisite R-symmetry not realised

by a round S2 - but these will not be our focus here. Many cases with less supersymmetry are also

well studied, in particular, with the recent addition of [53], all AdSd solutions with d > 2 and at least

minimal supersymmetry have been classified (see [24,28,30,53–58,63], and the AdS6,7 classifications

above4) - broadly speaking these classes have been more successfully used to find solutions beyond

restrictive ansätze than their Minkowski counter-parts. The AdS/CFT obviously motivated these

classifications, but in addition to the extra impetuous this provided, these classifications benefit from

additional symmetry with respect to the Minkowski cases. One issue however, is most classifications

for AdS, while quite detailed, assume global AdS factors from the start, so are not particularly useful

for studying certain non conformal behaviors such as RG flows. For this reason it would be useful

to embed the AdS classes into a more general set up5.

Here and in the earlier works of [49], [50], the philosophy is to learn from the successes of the

AdS classifications and perform a Mink4 classification that assumes some additional symmetry so

as to enable a more detailed description than previous efforts. A good starting point for this is to

classify N = 2 that preserve an SU(2) R-symmetry in the form of a round S2 factor (see also [36]

where Mink3 × S3 are classified) - one can then try to break some of this (super)symmetry and

generate many more solutions in the spirit of [64]. An SU(2) R-symmetry is a necessary part of the

super-conformal algebra in d = 5, 6 and d = 4 with N = 2. As such a corollary to this classification

endeavor is that it provides an embedding of the known half-BPS AdSd solutions (with d > 4) into

a broader context still preserving SU(2)R. In [49], [50] such classifications where performed in types

IIA and IIB respectively, under a certain simplifying assumptions. The purpose of this work is to

complete this program by classifying solutions in eleven-dimensional supergravity and relaxing the

assumptions made in the earlier works.

The lay out of the paper is as follows: In section 2 we classify N = 2 Mink4 solutions in M-theory

that realise an SU(2) R-symmetry in terms of a round S2 factor in there internal space, which leaves

a five-manifold to be determined by geometric supersymmetry constraints. We find that there are

two classes of solution, we refer to as A and B. Class A is governed by an SU(2)-structure in five

dimensions while Class B is the M5-branes with SO(3) rotational invariance in it’s co-dimensions.

The physical fields of case B also solve the supersymmetry conditions of case A, however the Killing

spinor and G-structure vielbein are different, and this difference can become physical upon reduction

to IIA. Additionally we make some simple ansätze for Case A, specifically a conformal CY2 ansatz

and one where the internal space contains an additional squashed S3.

In section 3 we turn our attention to Mink4 × S2 in ten dimensions. We drop the assumption of

equal Majorana–Weyl spinor norm made in [49], [50] making the classification of type II completely

3Recently there was also [37] which makes no assumption beyond the existence of a time-like Killing vector.
4We don’t speak of d > 7 because such AdS solutions break SUSY, however see [60] for examples of AdS8.
5See [61] and [62] for some recent progress in this direction using exceptional field theory and consistent truncation

respectively.
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general. We find that all solutions that lie outside the existing classifications always have a U(1)×
U(1) flavour symmetry and can be generated from a “parent” system in M-theory (the case B

M5-brane) via chains of dualities.

Section 4 elucidates the connection between the different classes of solution contained in [49], [50].

We are able to show that all such Mink4×S2 solutions in type II can be generated from two master

systems using chains of dualities - a conformal Calabi–Yau system in IIB and the SU(2)-structure

in in M-theory (Case A).

Finally in section 5 we close with some simple examples contained within M-theory case A.

Specifically we establish how the N = 2 AdS5 class in M-theory is embedded in the SU(2)-structure

of case A and we point the way towards some compact Mink4 solutions with fluxes and Atiyah–

Hitchin singularities.

2 Mink4 × S2 in M-theory

In this section we will classify N = 2 supersymmetric warped Mink4 solutions in eleven dimensions

realising an SU(2) R-symmetry with a round S2.

2.1 The spinor ansatz

We are interested in supersymmetric solutions to eleven-dimensional supergravity with a warped

four-dimensional Minkowski factor. As such we decompose the metric as

ds2 = e2∆ds2(R1,3) + ds2(M7), (2.1)

where e2∆ is a function with support on M7 only and the four-form flux G is necessarily purely

magnetic. As we seek N = 2 solutions respecting the warped product R1,3 × M7, our eleven-

dimensional spinor will decompose as

ε =
2∑

a=1

(
ζa+ ⊗ χa + (ζa+)c ⊗ (χa)c

)
(2.2)

where ζa+ is a doublet of positive chirality Mink4 spinors, χa a doublet of seven-dimensional spinors

such that

||χa||2 = e∆, χaχa = 0, (2.3)

and c denotes Majorana conjugation. It is argued in [27], that it is possible to be slightly more

general than this, however we show in Appendix A that (2.2) is sufficient for our considerations. We

will also assume that our spinors χa are charged under an SU(2) R-symmetry, realised by a round

S2 factor in the internal geometry so that the metric and flux on M7 further decompose as

ds2(M7) = e2Cds2(S2) + ds2(M5), G = F4 + e2CVol(S2) ∧ F2, (2.4)
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i.e., as a foliation of S2 over M5, where e2C is a function depending on the coordinates on the

five-dimensional manifold. At the level of the spinors the SU(2) R-symmetry will be realised by

decomposing our doublet of spinors as

χa = ξa ⊗ η1 + ξ̂a ⊗ η2, (2.5)

where ξa and ξ̂a are two SU(2) doublets formed from the Killing spinors on S2, ξ, which obeys

∇µξ =
i

2
σµξ, (2.6)

where we used the Pauli matrices to represent the Clifford algebra on S2. As established in [49], the

doublets take the form

ξa =

(
ξ

ξc

)
, ξ̂a =

(
σ3ξ

σ3ξ
c

)
(2.7)

where σ3 is the 2d chirality matrix and ξc = σ2ξ
∗ is the Majorana conjugate. Plugging ε into the

the eleven-dimensional Killing spinor equation we get two independent systems of equations for

the seven dimensional spinors χ1 and χ2 respectively. However, given the doublet transformation

property under the spinorial Lie derivative

LKiξa =
i

2
(σi)abξ

b, LKi ξ̂a =
i

2
(σi)abξ̂

b, (2.8)

where Ki are the Killing vectors of SU(2), one finds that each system is implied by the other through

this map, provided a solution respects the SU(2) R-symmetry. As such it is sufficient to solve for

just one N = 1 sub-sector governed by for instance χ1, and impose that all physical fields of a

solution depend on the invariant forms of SU(2), then the second N = 1 sub-sector governed by χ2

is implied.

In the following section we shall establish a set of geometric conditions for the five-dimensional

submanifold M5, that are nessisary and sufficient for supersymmetry.

2.2 Supersymmetry conditions from seven to five dimensions

The N = 1 supersymmetry conditions for a warped product of R1,3 ×M7 with spinors of the form

ε = ζ+ ⊗ χ+ m.c. (2.9)

were studied in [25, 26], where necessary and sufficient geometric conditions were derived for the

preservation of supersymmetry in the particular case χχ = 0. In the convention of [28] these are

d(e2∆K) = 0, (2.10a)

d(e4∆J) = −e4∆ ?7 G, (2.10b)

d(e3∆Ω) = 0, (2.10c)

d(e2∆J ∧ J) = −2e2∆G ∧K (2.10d)
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where

e∆ = χ†χ, e∆Ka = χ†γaχ, e∆Jab = −iχ†γabχ, e∆Ωabc = −iχc†γabcχ, (2.11)

define an SU(3)-structure on the 7 dimensional internal space. In fact these geometric conditions

combined with Bianchi identity of G4 are necessary and sufficient conditions for a solution with

N = 1 supersymmetry to exist [65].

Since we seek a solution respecting the SU(2) isometry of S2, we can extract conditions on M5

from (2.10a)-(2.10d) by imposing (2.4) and that our seven-dimensional spinor takes the form

χ = e
∆
2 (ξ ⊗ η1 + σ3ξ ⊗ η2), (2.12)

where ηi and ∆ are independent of the S2 directions.

The first condition we encounter comes from the left hand expression in (2.3), which given (2.12)

yields

χ†χ = e∆(η†1η1 + η†2η2) + y3e
∆(η†1η2 + η†2η1). (2.13)

This is only consistent with e∆ = χ†χ being an SU(2) singlet if

||η1||2 + ||η2||2 = 1, Re(η†1η2) = 0. (2.14)

For similar reasons the right hand expression of (2.3) imposes

η1η2 = 0. (2.15)

Let’s see how the seven dimensional bi-linears decompose into products of two- and five-dimensional

ones. To do this we use the following gamma-matrix representation

γ
(7)
i = eCσa ⊗ I4, γ(7)

a = σ3 ⊗ σa, B7 = σ2 ⊗ σ1 ⊗ σ2. (2.16)

We also decompose the five-dimensional spinors in a common basis in terms of a unit norm spinor

η as

η1 = q1η, η2 = q2(i cosαη +
1

2
sinαwη), q2

1 + q2
2 = 1, (2.17)

which is the most general parametrisation consistent with (2.14), (2.15). To calculate the forms in

(2.11) we will make repeated use of the bilinear product identity[
ξ1 ⊗ η1

]
⊗
[
ξ2 ⊗ η2

]†
= (η1 ⊗ η2†)+ ∧ (ξ1 ⊗ ξ2†) + (η1 ⊗ η2†)− ∧ (σ3ξ

1 ⊗ ξ2†) (2.18)

where ± denotes the even/odd degree components of a form only, while the presence of σ3 depends

on our parametrisation of the gamma matrices (2.16). The bi-linears that follow from η are given

in [63] and read:

η ⊗ η† =
1

4
(1 + v) ∧ e−ij2 , η ⊗ ηc† =

1

4
(1 + v) ∧ ω2,

ω2 = w ∧ u, j2 =
i

2
(w ∧ w + u ∧ u), (2.19)
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where

v, w1 = Rew, w2 = Imw u1 = Reu, u2 = Imu (2.20)

defines a vielbein in five dimensions. And finally the bi-linears that follow from ξ are [49],

ξ ⊗ ξ† =
1

2
(1 + k3 − iy3Vol(S2)), ξ ⊗ ξc† = −1

2
(k1 + ik2 − i(y1 + iy2)Vol(S2)),

σ3ξ ⊗ ξ† =
1

2
(y3 + idy3 − iVol(S2)), σ3ξ ⊗ ξc† = −1

2
(y1 + iy2 − id(y1 + iy2), (2.21)

where yi are coordinates embedding S2 into R3 and ki are one forms dual to the Killing vectors of

SU(2) which may be parameterised as

ki = εijkyjdyk. (2.22)

The first thing we calculate is the one form

K = −q1q2e
C cosαdy3 + q1q2 sinαw1 + q2

2y3 cosα(cosαv − sinαw2)

+
1

2
(q2

1 − q2
2)(k3 + y3u2). (2.23)

The appearance of k3 here is opportune because dki = 2yiVol(S2) which means that the only way

to make K consistent with (2.10a) is to set the coefficient of k3 to zero - thus we can without loss

of generality take

q1 = q2 =
1√
2
, (2.24)

and then rotate the five-dimensional frame such that (2.23) becomes simply

K = −eC cosαdy3 + sinαw1 + y3 cosα v. (2.25)

In this frame the other forms become

J = eC(sinαdy3 ∧ w2 − v ∧ k3) + y3(sinαw2 ∧ V + e2CVol(S2))

+ cosαw1 ∧ w2 + u1 ∧ u2,

Ω = eCu ∧
(
i sinαv ∧ (k1 + ik2)− (cosαw1 + iw2) ∧ (y1 + idy2)

)
,

1

2
J ∧ J = e2C(sinαw2 ∧ v + y3(cosαw! ∧ w2 + u1 ∧ u2) ∧Vol(S2)

− eC
(
w2 ∧ u1 ∧ u2 ∧ dy3 + (cosαw1 ∧ w2 + u1 ∧ u2) ∧ v ∧ k3

)
+ cosαw1 ∧ w2 ∧ u1 ∧ u2 + y3 sinαw2 ∧ u1 ∧ u2 ∧ v (2.26)

where in simplifying the last of these we make use of the identity

k(i) ∧ dy(i) + y2
(i)Vol(S2) = Vol(S2). (2.27)
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We now plug (2.26) into (2.10a)-(2.10d) and factor out all dependence on S2. The result of this

operation is the following set of five-dimensional form constraints

sinαd(e2∆w) = sinαd(e−∆u) = d(e2∆+C) + e2∆v = dα = 0, (2.28a)

d(e∆(cosαw1 + iw2) ∧ u) = F4 = 0, (2.28b)

sinα(d(e2∆+2Cw2 ∧ v) + e2∆+2Cw1 ∧ F2) = 0, (2.28c)

d(e−2∆(cosαw1 ∧ w2 + u1 ∧ u2) + e−2∆ cosαF2 ∧ v = 0, (2.28d)

d(e4∆(cosαw1 ∧ w2 + u1 ∧ u2) = e4∆ ?5 F2. (2.28e)

Clearly the behavior is quite different depending on whether or not α = 0, so one should look at

these cases separately, which we now proceed to do in the next section. Note that solving these

conditions and the Bianchi identity for the flux, implies the rest of the equations of motion [34].

Before we move on let briefly examine the form of the SU(3)-structure in the internal six di-

mensions orthogonal to K. Any SU(3)-structure can be expressed in canonical form in terms of a

complex vielbein Ei as

J =
i

2

(
E1 ∧ E1

+ E2 ∧ E2
+ E3 ∧ E3)

,

Ω = E1 ∧ E2 ∧ E3. (2.29)

With a little effort, one can reverse engineer a complex vielbein by manipulating (2.26), we find

E1 = cosαw1 + iw2 + sinα(eCdy3 − y3v), E2 = u, E3 = (y1 + iy2)v − eCd(y1 + iy2),

where it is easy to confirm that this does indeed lead to a factorised metric M7 = S2 ×M5

K2 + EiE
i

= e2CVol(S2) + v2 + w2
1 + w2

2 + u2
1 + u2

2. (2.30)

We shall now proceed to classify the solutions that follow from the five-dimensional supersymmetry

conditions, (2.28a)-(2.28e) - there are two cases contained in sections 2.3 and 2.4.

2.3 Case A: α = 0, SU(2)-structure

In this case η1 and η2 are proportional to one another, specifically η1 = iη2, and so they define a

SU(2)-structure on M5,

ω2 = u ∧ w, j =
i

2
(u ∧ u+ w ∧ w). (2.31)

This means that we cannot find local expression for the vielbein u,w without any further assump-

tions. The purely geometric supersymmetry conditions are simply

d(e2∆+C) + e2∆v = 0, (2.32)

d(e∆ω2) = 0, (2.33)
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while those involving the flux read

d(e4∆j2)− e4∆ ?5 F2 = d(e−2∆j2) + e−2∆F2 ∧ v = 0. (2.34)

We have a solution whenever we solve (2.32), (2.32), (2.34) and the Bianchi identity of G is satisfied,

which requires

d(e2CF2) = 0, (2.35)

away from localised sources6. We can solve (2.33) without loss of generality by introducing a local

coordinate ρ such that

ρ = e2∆+C , v = −e−2∆dρ. (2.36)

Solutions in this class then take the form

ds2 = e2∆ds2(Mink4) + e−4∆
(
dρ2 + ρ2ds2(S2)

)
+ ds2(M4),

G = e−8∆ρ2Vol(S2) ∧ ?5d(e4∆j2) (2.37)

where M4 supports the SU(2)-structure, that given (2.33) is complex.

In the next subsections we shall make some assumptions about the form of the SU(2)-structure

to obtain more detailed classes.

2.3.1 Simple ansatz: warped SU(2)-holonomy

The easiest way to solve (2.33)-(2.34) is to impose that the part of the metric orthogonal to v has

warped SU(2)-holonomy, i.e.

e∆ω2 = ω̃2 = e∆j2 = j̃2, (2.38)

with ω̃2, j̃2 closed. The local form of the solution is then

ds2 = H−2/3ds2(R1,3) +H1/3

(
ds2(M4) +H

(
dρ2 + ρ2ds2(S2)

))
,

e2CF2 = cj̃2, H = 1 +
c

ρ
. (2.39)

with M4 any SU(2)-manifold. These solutions are all non compact and the warp factor is not

indicative of a simple brane set up. Following [74], this could be a KK6-M2 system or something

more exotic like the lift of a O6-D2 system.

2.3.2 Squashed S3 ansatz

Let’s consider the simple case where the SU(2)-structure is defined on a squashed S3 trivially fibered

over an interval y. Here we take the vielbein to be

v = −e−2∆dρ, w =
eC1

2
(ω1 + iω2), u =

eC2

2
ω3 + ieK−2∆+h(y)dy, (2.40)

6The inclusion of such sources would put delta-function sources on the left hand side of the equality.
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where C1, C2,K,∆ are warp factors which depend on ρ = e2∆+C and y only, h is an arbitrary

function of y and ωi are the right-invariant one-form defined on S3, which satisfies

dωi = −1

2
εijk ω

j ∧ ωk. (2.41)

Notice that this means we are enhancing the R-symmetry to SU(2)×U(1) as (ω1 + iω2) comes with

a phase eiψ, where ∂ψ is the U(1) of the Hopf fibration. From (2.33) we get the following three

equations:

∂ρe
C1+C2+∆ = ∂ρe

C1+K−∆ = 0, ∂ye
C1+C2+∆ = 2eC1+K−∆+h. (2.42)

These are solved by defining C1 and C2 in terms of two functions f(y) and g(y) such that

eC1 = e∆−K−h f

g
eC2 = eK−2∆+hg, g =

2f

f ′
. (2.43)

At this point, because it simplifies later expressions, we choose the arbitrary function h and use

diffeomorphism invariance in y to fix f as

eh = f ′, f = 2
√
y, (2.44)

without loss of generality. This fixes the metric as

ds2 = e2∆ds2(Mink4)+e−4∆

(
dρ2 +ρ2ds2(S2)+

e2K

y
dy2 +4ye2K(dψ+η)

)
+
e2∆−2K

4
ds2(S̃2) (2.45)

where η is a potential for the Kahler form on S̃2. The two conditions involving the flux in (2.34)

impose that

e−6∆+2K =
1

8
∂y(e

−2K), (2.46)

which allows one to define ∆ in terms of K. What remains of (2.34) just defines the flux F2, which

can be used to express the M-theory 4-form as

G =
ρ2

4

(
∂ρ(e

−2K)ω1 ∧ ω2 + ∂2
ρy(e

−2K)ω3 ∧ dy −
y

2
∂2
y(e−4K)ω3 ∧ dρ

)
∧Vol(S2).

All we need to do now is solve the Bianchi identity of the flux, which away from localised sources

leads to just one partial differential equation (PDE) in eK , namely

1

ρ2
∂ρ(ρ

2∂ρ(e
−2K)) +

y

2
∂2
y(e−4K) = 0. (2.47)

This bares a striking similarity to the PDE governing the intersecting D8-D6-NS5 brane system

of [73] - the only difference is the y factor. We also find deformations of this PDE in section C.2.2

of the appendix. Of course here this is only a formal similarity and the class of solutions currently

under investigation is unlikely to have any relation to a Mink6 class in massive IIA. At any rate, the

form of the metric in (2.45), and a relatively simple PDE governing the physical fields, makes this

class appear promising for finding compact solutions in M-theory7

7One might also wonder if AdS solutions exist here. We checked that all of the SUSY constraint for the most

general AdS5 solution one can embed in this class can be solved - but the flux always has a leg in the AdS direction

breaking the SO(2, 4) symmetry; moreover, the Bianchi identity is not satisfied.
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2.4 Case B: α 6= 0, the M5-brane

In this case α is non zero, however one can see that it actually factors out from all of the supersym-

metry conditions and in the end nothing physical depends on its specific value, as long as sinα 6= 0

(in which case we fall into the class of the previous section). The 1-form supersymmetry constraints

are

d(e2∆+C) + e2∆v = d(e2∆w) = d(e−∆u) = 0 (2.48)

which we can be solved without loss of generality by introducing local coordinates x1, x2, x3, x4 and

ρ = e2∆+C , (2.49)

such that the five-dimensional vielbein becomes

v = −e−2∆dρ, w = e−2∆(dx1 + idx2), u = e∆(dx3 + idx4), ρ = e2∆+C , (2.50)

which span an identity-structure - so we have completely local expressions for solutions in this class.

The rest of the supersymmetry conditions, that are not implied by the one-forms, involve the flux,

namely

d(e4∆u1 ∧ u2) + e4∆ ?5 F2 = 0, (2.51)

d(e2C+2∆w2 ∧ v) + e2C+2∆w1 ∧ F2 = 0, (2.52)

cosα(d(e−2∆(w1 ∧ w2) + e−2∆F2 ∧ v) = 0. (2.53)

The definition of F2 can be read from (2.51) where we can make use of (2.50) to take the Hodge

dual:

F2 = −ρ2e−2C
(
∂ρe
−6∆dx1 ∧ dx2 + ∂x2e

−6∆dρ ∧ dx1 + ∂x1e
−6∆dx2 ∧ dρ

)
. (2.54)

We then plug this back into (2.52) which imposes

∂x3e
2∆ = ∂x4e

2∆ = 0, (2.55)

so that ∂x3 , ∂x4 are necessarily isometries of the solution - this automatically solves (2.53) without

imposing any further restriction on α, then nothing physical depends on it. Thus the local form of

all solutions in this class is

ds2 = e2∆ds2(Mink6) + e−4∆
(
dx2

1 + dx2
2 + dρ2 + ρ2ds2(S2)

)
, (2.56)

G = −ρ2
(
∂ρe
−6∆dx1 ∧ dx2 + ∂x2e

−6∆dρ ∧ dx1 + ∂x1e
−6∆dx2 ∧ dρ

)
∧Vol(S2), (2.57)

where the Bianchi identity of G imposes that the warp factor obeys

1

ρ2
∂ρ
(
ρ2∂ρe

−6∆
)

+ ∂2
x1
e−6∆ + ∂2

x2
e−6∆ = 0 (2.58)

11



away from localised sources. This is a five-dimensional Laplace equation expressed in coordinates

that make the the SO(3) symmetry of it’s solutions manifest - thus this entire class of solutions

is nothing more than M5-branes with some rotational symmetry in their co-dimensions. It is easy

to check that the supersymmetry conditions (2.50)-(2.53) are actually compatible with the super-

symmetry conditions (2.32)-(2.34) of case A, which means that the physical solution of Case B can

actually be embedded in Case A by taking (2.50) to define the SU(2)-structure as in (2.31).

We shall see in the next section that all solutions in type II which have internal Killing spinors

with non equal norm, descend via dimensional reduction and T-duality, from this class.

3 Classes of solution in type II with non equal spinor norm

Supersymmetric type II solutions with Mink4 × S2 factors were partially classified in [49, 50]. Sim-

ilar to the M-theory classification of section 2, the starting point is a decomposition of the ten-

dimensional Majorana–Weyl Killing spinors of the form

ε1 = ζ+ ⊗ (ξ ⊗ η̃1 + σ3ξ ⊗ γ̂η̃1) + m.c., ε2 = ζ+ ⊗ (ξ ⊗ η̃2 ± σ3ξ ⊗ γ̂η̃2) + m.c., (3.1)

where ± is taken in IIB/IIA. Once more ξ is a Killing spinor on S2 obeying (2.6) and now ηi defines

a non-chiral spinor in four dimensions. The metric decomposes as

ds2 = e2Ads2(Mink4) + e2Cds2(S2) + ds2(M4), (3.2)

where e2A and e2C depend on the coordinates on M4 only. However, unlike the M-theory cases,

the classifications in ten dimensions [49, 50] are not completely general, as we will now explain. A

consequence of supersymmetry is that

d(e∓A(|η1|2 ± |η2|2)) = 0, (3.3)

which means we can define constants c± such that

|η1|2 ± |η2|2 = c±e
±A, (3.4)

c+ can be tuned to any positive constant without loss of generality, but tuning c− can have marked

physical effects - namely the physics of solutions with generic c− is quite different to the physics

when c− = 0, i.e. the case of equal spinor norm. In [49, 50] it is only the equal norm case that

is classified, so in this section we shall study the possible solutions in type II for generic c−, i.e.

non equal spinor norm. As we shall see, it will turn out that such solutions always exhibit two

uncharged U(1) isometries, so all type IIB solutions are contained in the classification of type IIA

up to a T-duality, and further, all type IIA solutions have the Romans mass set to zero - so descend

from our M-theory classification.

In the next section we shall study the unequal norm cases in type IIA.
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3.1 Non-equal norm in IIA

We begin our analysis in IIA, our goal here is not to give a detailed classification, rather we seek to

show that all solutions in this class descend from M-theory. This statement turns out to actually

be true for any warped Mink4 solution - so we will not actually assume an S2 factor here, merely a

decomposition of the metric of the form

ds2 = e2Ads2(Mink4) + ds2(M6), (3.5)

and likewise for the fluxes, with all physical feilds supported by M6 only.

In the conventions of [66], supersymmetry depends on the existence of a non-chiral IIA spinor

on warped Mink4 ×M6 that takes the form

ε = ζ+ ⊗ χ+ ζc+ ⊗ χc (3.6)

where ζ+ is a positive chirality spinor in four dimensions, χ a non-chiral six-dimensional spinor and

the c superscript labels Majorana conjugation8 such that εc = ε. Supersymmetry is then implied by

the following spinorial conditions on M6[
∂A+

eΦ

4

(
F0 + F2γ̂

(6) + F4 + i ?6 F6

)]
χ = 0, (3.7a)

[
∂Φ +

1

2
Hγ̂(6) +

eΦ

4

(
5F0 + 3F2γ̂

(6) + F4 − i ?6 F6

)]
χ = 0, (3.7b)

[
∇a +

1

4
Haγ̂

(6) +
eΦ

8

(
F0 − F2γ̂

(6) + F4 − i ?6 F6

)
γ(6)
a

]
χ = 0, (3.7c)

where Φ is the dilaton, γ̂(6) the chiral operator and where in (3.7c) we correct a typo appearing

in [66]. Here Fn labels the RR flux magnetically coupled to a space-filling brane

FRR = F + e4AVol4 ∧ ?6λ(F ) (3.8)

however, as we shall see shortly, the 0, 2, 4 forms will turn out to be purely magnetic so we need

not worry about this distinction for long. Using (3.7a) and (3.7c) it is possible to establish that

d(e−A|χ|2) = d(eAχ†γ̂χ) = 0, while (3.7b) implies that d(e2A−Φχχ) = 0, which one can use to fix

|χ|2 = c+e
A, χ†γ̂(6)χ = c−e

−A, χχ = ce−2A+Φ, χγ̂(6)χ = 0, (3.9)

where the final condition follows in general whenever (γ̂(6))T = −γ̂(6). c±, c are constants and we

set c+ = 2 without loss of generality, c− = 0 is the cases of equal internal spinor norms and c

parameterises the G-structure of the internal 6 manifold; in particular, c = 0 corresponds to an

orthogonal SU(2)-structure. Using the relations

(χ†γ(6)
a1,...anχ)∗ = (−1)

n
2

(n−1)χ†γ(6)
a1,...anχ, (χ†γ(6)

a1,...an γ̂
(6)χ)∗ = (−1)

n
2

(n+1)χ†γ(6)
a1,...an γ̂

(6)χ, (3.10)

8One can without loss of generality take B(10) = I ⊗ B(6) where B(6)B(6)∗ = I as the relevant intertwiner so that

ζc+ = ζ∗+ and χc = B(6)χ∗.
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which actually hold for Hermitian gamma matrices in any dimension, we find that the rank 2,3,6

forms which come from the bi-linear χ⊗ χ† and the rank 1,2,5,6 forms constructed from γ̂(6)χ⊗ χ†

are purely imaginary, while the rest are real. Using this fact, it is possible to show from the inner-

products of (3.7a)-(3.7b) with χ and γ̂(6)χ that

?6 F6 = F0χ
†γ̂(6)χ = 0, (3.11)

which come from the imaginary and real parts of the inner products respectively. Equal spinor norm

is equivalent to χ†γ̂(6)χ = 0 in this language, so it is clear that a non vanishing Romans mass is

only possible for equal spinor norm. As such all type IIA solutions with non equal spinor norm have

F0 = 0 so can be lifted to M-theory.

As we shall show later in section 3.3, the Mink4×S2 non equal norm solutions in IIA necessarily

descend from section 2.4 by dimensional reduction. In the next section we turn our attention to

type IIB solutions with non equal norm, as we shall see, this requires a more detailed analysis.

3.2 Non equal norm in IIB

In this section we study the Killing spinor conditions in IIB. Our goal is to establish that when the

spinor norms are not equal, there are always two flavour U(1) isometries - however, most of the

results in this section apply irrespective of the particular values of the norms.

In IIB we shall define our ten-dimensional Killing spinors as in 3.1, but redefine the 4d spinors

as

η̃1 =
1

2
(η1 + η2), η̃2 =

1

2
(η1 − η2). (3.12)

As we establish in Appendix B, supersymmetry imposes the following set of four-dimensional spinoral

14



constraints

∂Aη1 +
eΦ

4

[
− (f1γ̂ + ig3)η2 + (f3γ̂ + ig1)η1

]
= 0, (3.13a)

∂Aη2 − eΦ

4

[
− (f1γ̂ + ig3)η1 + (f3γ̂ + ig1)η2

]
= 0, (3.13b)

∂Φη1 −
1

2
(H3 + iH1γ̂)η2 + eΦ

[
− f1γ̂η

2 +
1

2
(f3γ̂ + ig1)η1

]
= 0, (3.13c)

∂Φη2 −
1

2
(H3 + iH1γ̂)η1 − eΦ

[
− f1γ̂η

1 +
1

2
(f3γ̂ + ig1)η2

]
= 0, (3.13d)

∂Cη1 − ie−C γ̂η2 − i

2
H1γ̂η

2 +
eΦ

4

[
− (f1γ̂ − ig3)η2 + (f3γ̂ − ig1)η1

]
= 0, (3.13e)

∂Cη2 − ie−C γ̂η1 − i

2
H1γ̂η

1 − eΦ

4

[
− (f1γ̂ − ig3)η1 + (f3γ̂ − ig1)η2

]
= 0, (3.13f)

∇aη1 −
1

4

(
(H3)a + i(H1)aγ̂

)
η2 +

eΦ

8

[
− (f1γ̂ − ig3)γaη2 + (f3γ̂ − ig1)γaη1

]
= 0, (3.13g)

∇aη2 −
1

4

(
(H3)a + i(H1)aγ̂

)
η1 − eΦ

8

[
− (f1γ̂ − ig3)γaη1 + (f3γ̂ − ig1)γaη2

]
= 0, (3.13h)

where f, g,H1, H3 are forms related to the NS and RR fluxes defined as in Appendix B while Φ, C,A

are function on M4.

From the six-dimensional zero-form conditions (B.5), imposing that the physical quantities are

SU(2) singlets leads to the following constaints for the four-dimensional spinors:

|η1|2 = |η2|2 = eA, η1†γ̂η2 + η2†γ̂η1 = 0,

η1†η2 = η2†η1 = c−e
−A, η1†γ̂η1 + η2†γ̂η2 = 0, (3.14)

Working a bit harder one can establish another scalar condition from the difference of

η2(2(3.13a)+2(3.13e)-(3.13c)) and η1(2(3.13b)+2(3.13f)-(3.13d)) 9, namely

η2γ̂η1 = 0. (3.15)

One can solve all of the scalar conditions with the following decomposition of ηi in terms of a single

spinor η, and complex functions a, b

e−
1
2
Aη1 = sin

(α
2

)
η + cos

(α
2

) (
aγ̂η + bηc

)
, e−

1
2
Aη2 = sin

(α
2

)
η − cos

(α
2

) (
aγ̂η + bηc

)
(3.16)

where

|η|2 = 1, η†γ̂η = 0, |a|2 + |b|2 = 1, e2A cosα = −c−, (3.17)

9We define η = (ηc)† where ηc = Bη∗ and the conventions for B are given in Appendix B.
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so that α parametrises the difference in norms of the spinors, which are equal only when cosα = 0.

As shown in [36, 44], the spinor η is sufficient to define an identity-structure on M4, which is

expressed in terms of the vielbein {v1, v2, w1, w2}

η†γaη = v1, η†γaγ̂η = iv2, ηγaγ̂η = w = w1 + iw2. (3.18)

The definition of w is such that ηc = 1
2wγ̂η , which we can use to fix the phase of b in (3.16) by

rotating the vector w, so we choose b to be real and expand a as

b = |b|, a = a1 + ia2. (3.19)

Let us now consider the vector

k = η2γaγ̂η1∂a, (3.20)

which can be rewritten as a one form in terms of the vielbein (3.18)

e−Ak = a
(
1 + cosα

)(
bv1 + (a1w1 − a2w2)

)
−
(

cosαw1 − iw2

)
. (3.21)

We will spend the bulk of this section proving that k is a Killing vector parameterising a U(1)×U(1)

flavour symmetry in the solutions. However let us first perform some consistency checks: we notice

that for generic values of α both the real and imaginary components of k cannot vanish, so k

necessarily defines 2 real and non zero vectors. The exception is when cosα = 0, which is the case

of equal spinor norm studied in [50] - here the number of isometries we find depends on the values

of a1, a2, b. In particular there is the following reduced isometry structure when the functions of the

spinor ansatz are tuned as follows

0 isometries: cosα = a1 = b = 0,

1 isometries: cosα = a1 = 0, b 6= 0,

which can happen because k is respectively zero or purely imaginary in these two cases only - so k

is consistent with the isometry structure of the known classes with equal spinor norm, a strictly non

vanishing for non equal norm, a promising sign we are on the correct track.

The first thing to establish is that k is an isometry with respect to scalar physical fields. To do

so one can take the sum of the inner products of (3.13a), (3.13b) with γ̂η2, γ̂η1 respectively and

repeat this operation for (3.13c),(3.13d) and (3.13e),(3.13f). This leads to the conditions

ka∂aA = ka∂aΦ = ka∂aC = 0 (3.22)

which means that A,C,Φ do not depend on the thk directions.

Now let’s prove that k is Killing with respect to the metric, i.e., that ∇(akb) = 0. A straightfor-

ward calculation leads to:

∇akb =
1

4
H3 abd(η1γdγ̂η1 +η2γdγ̂η2)+

eΦ

8
(?f1 +ig3)abd(η1γdγ̂η1−η2γdγ̂η2)+

eΦ

4
(f3 +i?g1)abdη2γdη1,
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and by the manifest anti-symmetry of the right hand side, it is immediate to notice that k is a

Killing vector. This expression can be further simplified, indeed, using the combinations of equations

(2(3.13a)+(3.13e)-(3.13c)) and (2(3.13b)+(3.13f)-(3.13d)), which read

∂(2A+ C − Φ)η1 +
1

2
H3η

2 − ie−C γ̂η2 +
eΦ

4

[
− (−f1γ̂ + ig3)η2 + (f3γ̂ − ig1)η1

]
= 0, (3.23)

∂(2A+ C − Φ)η2 +
1

2
H3η

1 − ie−C γ̂η1 − eΦ

4

[
− (−f1γ̂ + ig3)η1 + (f3γ̂ − ig1)η2

]
= 0, (3.24)

one may establish from the sum of η2γabγ̂(3.23) and η1γabγ̂(3.24), that

1

4
H3 abd(η1γdγ̂η1 + η2γdγ̂η2) +

eΦ

8
(?f1 + ig3)abd(η1γdγ̂η1 − η2γdγ̂η2) +

eΦ

4
(f3 + i ? g1)abdη2γdη1

= −2∂[a(2A+ C − Φ)kb] +
i

2
e−C(η1γabη

1 + η2γabη
2). (3.25)

We therefore arrive at

∇akb = −2∂[a(2A+ C − Φ)kb] +
i

2
e−C(η1γabη

1 + η2γabη
2). (3.26)

This expression is particularly useful because allows us to establish that the isometry group of k is

U(1)×U(1). To prove this we need to show that the Lie bracket [k, k] = 0 which is equivalent to

k
a∇akb ∈ R. (3.27)

Given our spinor decomposition and the definition of the four-dimensional vielbein in terms of a

single spinor η, one can show that

(η1γabη
1 + η2γabη

2) = −4ieAk[a(v2)b]. (3.28)

It is then a simple matter to calculate

k
a∇akb = −|k|2

(
∂b(2A− Φ + C)− eA−C(v2)b

)
, (3.29)

which is clearly real - so the isometry group of k is indeed U(1)×U(1).

The next task is to prove that U(1)×U(1) is a flavour symmetry - which means that the spinors

η1,2 are not charged under these isometries. This statement can be caste as the vanishing of the

spinoral Lie derivative along k, i.e.

Lkηi = ka∇aηi +
1

4
∇akbγabηi = 0. (3.30)

To prove this we will need the following algebraic relations, which can be demonstrated using

standard Fierz identity techniques:

kη1 = (η2η1)γ̂η1, kη2 = −(η2η1)γ̂η2, ieAv2η
2 = γ̂η1, ieAv2η

1 = γ̂η2, (3.31)
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where k and v2 must now be understood as gamma matrices (via Clifford map). Let us fix i = 1

(the discussion for i = 2 is specular) and start by evaluating the first term in (3.30). Contracting

(3.13g) with ka and using the first two relations of (3.31) one finds:

ka
(
∇aη1 − 1

4

(
(H3)a + i(H1)aγ̂

)
η2

)
+
eφ

8
(η2η1)

(
−(−f1γ̂ + ig3)γ̂η2 + (f3γ̂ − ig1)γ̂η1

)
= 0. (3.32)

Now we can substitute for the RR fluxes using (3.23) multiplied by γ̂. With some manipulations

one realises

ka
(
∇aη1 −

1

4
(?H3 + iH1)aγ̂η

2

)
− 1

2
(η2η1)

(
∂(2A+ C − Φ)γ̂η1 + ie−Cη2

)
= 0. (3.33)

The term ka(?H3 + iH1)a can be evaluated from the inner product of (3.13c) with η1 and (3.13d)

with η2, indeed this leads to

ka(?H3 + iH1)a = ka(f1)a = 0, (3.34)

note that this implies that when the norms are not equal, so that k defines two non vanishing Killing

vectors in general, H1 has no legs in the isometry directions, while H3 is parallel to both. We are

left with the expression

ka∇aη1 =
1

2
(η2η1)

(
∂(2A+ C − Φ)γ̂η1 + ie−Cη2

)
=

1

2

(
∂(2A+ C − Φ)kη1 − ie−C γ̂kη2

)
. (3.35)

Now we consider the second term in (3.30): using (3.26) one may write

(∇akb)γabη1 = −2(∂a(2A+ C − φ)kb − eA−Cka(v2)b)γ
abη1. (3.36)

Since ka is orthogonal to ∂a(2A+C−φ) and (v2)a, we can take γab = γaγb in the previous expression

and, using (3.31) we find

(∇akb)γabη1 = −2∂(2A+ C − φ)kη1 + 2ie−C γ̂kη2. (3.37)

Now one simply combines the contributions form (3.35) and (3.37) to establish that

Lkη1 = 0. (3.38)

It is easy to perform the same steps for Lkη2 and we therefore find that U(1) × U(1) is a flavour

symmetry.

The last step is to prove that also the fluxes are not charged under the isometries. Extrapolating

from the classification of [30], we know that the RR fluxes are defined in terms of bi-linears of ηi

and the NSNS 3-form. Since the spinors are uncharged, the same is true of the bi-linears and so

we need only establish that the NSNS 3-form is a U(1) × U(1) singlet. We begin by considering

η1(3.13a), η1(3.13c) + η2(3.13d), η2γ̂(3.13a), η2γ̂(3.13e); these, together with (3.34), allow us to

find the following relations:

ka(H1)a = ka(?H3)a = ka(f1)a = ka(?f3)a = ka(g1)a = ka(?g3)a = 0. (3.39)
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The first, with the Bianchi identity d(e2CH1) = 0 implies Lk(e2CH1) = 0. Now let’s consider the

equation of motions for the B-field, this implies the following equation

d(e4A+2C−2Φ ? H3) = e4A+2C(f1 ∧ ?f3 + ?g3 ∧ g1). (3.40)

Contracting this with k and using (3.39) we get that

ıkd(?H3) + d(ık ? H3) = Lk(?H3) = 0, (3.41)

which proves that H1 and H3 are singlets under U(1)×U(1).

We have now established that all Mink4 × S2 solutions in type IIB with non equal spinor norm

necessarily have a U(1) × U(1) flavour symmetry. In the next section we shall show that they all

actually follow from IIA via T-duality and can then be lifted to class B in M-theory.

3.3 Relation to the M5-brane

We have proved that all supersymmetric Mink4 × S2 solutions with non equal spinor norm have

an uncharged U(1)×U(1) isometry when they are in type IIB and can be lifted to M-theory when

they are in IIA. We shall now prove that they all descend from Case B in M-theory - which is the

M5-brane. First let us establish that Case B implies the IIA solutions.

Whenever one has a U(1) isometry in M-theory one can reduce down to type IIA along it. When

one reduces from eleven dimensions to ten, it is convenient to choose a frame such that

ea11 = e−
1
3

Φea10, a = 0, 1, ...9, e10
11 = e

2
3

Φ(dψ + C1) (3.42)

where ead is the vielbein in d space-time dimensions, ∂ψ is the isometry direction, Φ the dilaton

and C1 the potential of the RR 2-from in IIA. When one reduces, the gamma-matrix corresponding

to e10
11 then becomes the chirality matrix in IIA. The non equal norm condition in IIA, in the

conventions of section 3.1, is equivalent to χ†γ̂(6)χ 6= 0 and, up to an overall warping not relevant

for our discussion, the six-dimensional non-chiral spinor in IIA and seven-dimensional spinor in M-

theory are the same. The non equal norm condition in M-theory therefore reads χ†γ
(7)
m χ(e10

11)m =

Km(e10
11)m 6= 0. Therefore we can establish whether or not we reduce to a non-equal-norm class in

IIA by studying the M-theory one-form K defined in (2.25). Specifically, we generate non equal

norm in IIA whenever K has a leg in the isometry direction we reduce on.

There are two ways to get a round S2 factor in IIA via dimensional reduction of a parent

solution in M-theory. 1) The parent solution has a round S2 and a U(1) isometry orthogonal to this

to reduce on. 2) The parent has a U(1) fibered over S2, ie an S3 that may be squashed along the

Hopf fiber direction only. We can immediately rules out option 2) as in this case K ∼ dψ + η + ...,

with dη = Vol(S2), which can never solve the one-form condition d(e2∆K) = 0 - as such IIA non

equal norm must descend from Case A or B in M-theory. Here the only place10 the U(1) can lie

10The 1-form K generically has legs along, w1, dy3 and v. But dy3 contains no U(1) and the supersymmetry equation

for v in both M-theory classes is incompatible with it having a leg along a(n uncharged) U(1) isometry direction.
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IIBIIA

Case B

T 2 ↪→ M4,

↓
M2

:

T-duality

dimensional

reduction

Figure 1: Depiction of the chains of dualities leading to Mink4 × S2 classes in type II with non equal spinor

norm. The relative complexity of solutions at each step as one moves from M-theory to IIA to IIB can increase

considerably, with specific choices of U(1) the duality is performed on. However all solutions are governed by

the M5 Laplacian.

that will give rise to non equal norm in IIA is w1. As w1 is only turned on when sinα 6= 0, we

can realise all non equal norm solutions in type IIA through reduction from Case B in section 2.4,

which is simply the M5-brane class with SO(3) rotational symmetry in it’s co-dimensions, which is

rather remarkable. The local form of this solution is given in (2.56), where giving w1 a leg along

the reduction isometry is equivalent to making the local coordinate ∂x1 an isometry without loss of

generality11. Together with the two a prior U(1)’s in section 2.4 (packaged as part of a Mink6 factor

there) this gives three flavour U(1) isometries, which implies that two will always remain when we

reduce to IIA, just as we found for IIB.

We have shown that all non equal norm solutions in IIA descend from Case B in M-theory and all

such type II solutions come with a flavour U(1)×U(1) isometry. Naively, one might then conclude

that all the IIB solutions follow from IIA via T-duality - but there is another possibility to rule out.

Much like option 2) for the M-theory reduction, round S2 in IIB could follow by T-dualising on the

Hopf fiber of a squashed S3. Such a solution in IIB would necessarily have

H1 ∼ dψ ∧Vol(S2), (3.44)

but fortunately for us, this was already ruled out for non equal norm in the previous section by the

necessary condition ka(H1)a = 0.

We have shown that the parent or master class of all non equal norm Mink4 × S2 solutions in

type II is an M5-brane with SO(2)×SO(3) rotational symmetry in it’s co-dimensions. All solutions

11This is not the only way to form a U(1) to reduce on, in general one could take

x1 = ψ + c1x, x2 = c2ψ + x, dci = 0, (3.43)

and impose that ∂ψ is an isometry - however in IIA ci can be turned off with a coordinate transformation and rescaling

of gs. One can also form a U(1) of the metric and flux by expressing x1, x2, in polar coordinates, however this is not

an isometry of the G-structure, as (2.25) makes clear. Indeed such an isometry is charged, so reducing on it would

brake supersymmetry.
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in IIA and IIB are then generated from this by a chain of dualities depicted in Fig 1. However, we

should stress this does not mean that the type II classes are completely trivial - there are several

distinct ways to reduce to type IIA on a U(1) subgroup of the available U(1)×U(1)×U(1) uncharged

isometry, and yet further ways to T-dualise inside the residual U(1)×U(1) to get to IIB - the result

of this chain of dualities can potentially end up being quite complicated. Rather we would like to

stress that if one is interested in constructing a non equal norm Mink4×S2 solution in type II, this

is best done from the M5-brane perspective.

In the next section we shall provide master classes for the remaining Mink4 × S2 solutions in

type II, namely those with equal spinor norm.

4 Master classes for Mink4 × S2

In [49, 50], Mink4 × S2 solutions with equal spinor norm where classified. They fall into three

distinct classes characterised by the minimum number of uncharged U(1) isometries the internal

four-manifold M4 contain a priori12. Specifically one has

Case I: M4 = M2 × Σ2, Case II: S1 ↪→ M4,

↓
M3

Case III: T 2 ↪→ M4.

↓
M2

Class I has no a priori isometries on M4, for Class II one generically has a U(1) bundle over a

three-manifold, while generic solutions in Class III have a T 2 bundle over a two-manifold - they can

be found in sections 4.3, 4.4 and 4.5 of [49,50] for IIA and IIB respectively. Cases II and III contain

one and two constant parameters respectively - when they are set to zero one reduces to classes that

have local Mink5 × S2 and Mink6 × S2 factors. More surprising is that all solutions in class III, all

in IIB class II, and many in class II IIA, are governed by the same PDE’s irrespective of whether

or not these parameters are turned on - such generic solutions in these classes can be viewed as

parametric deformations of un-fibered Mink4×S1×S2 and Mink4× T 2×S2 solutions respectively,

where the first two factors share a common warping in each instance13.

The existence of parametric deformations raise an obvious question - is some sort of duality

at play? Two obvious candidates are formal U-dualities of the type in [69] and T-s-T transforma-

tions [70] - which are both solution generating techniques involving chains of string dualities and

coordinate transformations (specifically shifts between U(1) isometries) that do not commute with

these dualities. As we shall see this is enough to explain case III and case II in IIB, but case II in

IIA is more subtle.

12This is in turn related to which inner products of the two independent non-chiral four-dimensional spinors are

assumed to be non vanishing, see [49,50] for details.
13When this is true, locally, there is no difference between Mink4 × Tn and Mink4+n. However, for the parametric

deformations the warp factors are no longer the same and Tn becomes fibered over a base. As such it makes more

sense physically for only the Mink4 directions to be non compact in these cases.
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In the previous section we established that all solutions in type II supergravity with non equal

norm can be obtained from the M5-brane, by reduction and T-duality - so one can view the M5-

brane as a master class for all such solutions. In this section, in addition to explaining the origin

of the parametric deformations, we establish master classes for equal norm in type II. The first of

these is M-theory Case A in section 2.3, the second is class I in IIB - note that after imposing a

U(1) isometry in the M-theory class and reducing on it one end up in class I in IIA. We shall quote

these solutions in the next sub-sections for convenience. All other cases can be generated from these

via certain chains of dualities, as we shall show - the maps between solutions are also summarised

in Fig 2.

4.1 Master class in type IIB: case I in IIB

The master class in Type IIB has an NS sector that takes the local form

ds2 = e2Ads2(Mink4) + e−2A

(
1

f
(dx2

1 + dx2
2 + x2

2ds
2(S2))

)
+ ds2(Σ2),

ds2(Σ2) = e−2A(dx2
3 + dx2

4), B = g

(
Vol(S2) +

dx1 ∧ dx2

x2
2

)
, e−Φ = f, (4.1)

where e2A depends on all four-dimensional local coordinates xi, and f, g have support on Σ2 only.

The RR sector is generically non trivial, with F1, F3, F5 all turned on, and can be found in [50].

Solving the Bianchi identities of these fluxes (away from localised sources) requires the following

PDE’s to be solved

�2f = 0, �2(fg) = 0, �2 = ∂2
x3

+ ∂2
x4
, (4.2a)

∂2
x1

(e−4A) +
1

x2
2

∂x2(x2
2∂x2(e−4A)) + �2(e−4Af−1) +

1

x4
2

�2(fg2) = 0. (4.2b)

The six dimensions orthogonal to Mink4 in-fact support a conformal Calabi–Yau. Clearly by impos-

ing that one of ∂x3 , ∂x4 is an isometry of all fields and by T-dualising on it we end up with a local

Mink5×S2 class in IIA - this exhausts this class. If we make both isometries (and g constant) then

T-dualise on both we exhaust the Mink6 × S2 solutions in IIB, there is just the flat space D5 brane

with rotational symmetry in it’s condemnations. Of course a solution still has a U(1) isometries

when g is a polynomial of order one in (x3, x4) - when this is the case we can gauge transform such

that B respects the isometry, but has a leg in it. This generically leads to the U(1) becoming fibered

over the S2 in the T-dual - thus one can additionally generate classes of solution with Minkowski

factors and a squashed 3-sphere in this fashion.

4.2 IIA reduction of master class in M-theory: case I in IIA

Case I in IIA can be generated from M-theory by imposing a U(1) isometry within the SU(2)-

structure of the M-theory class in section 2.3 and reducing on it. This class is rather more compli-

cated than it’s IIB counter-part, with the six-dimensional space orthogonal to Mink4 supporting an
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orthogonal SU(2)-structure. The local form of the NS sector in this class is

ds2 = e2Ads2(Mink4) + e−4A+2Φ

(
dx2

2 + x2
2ds

2(S2)

)
+ e4A−2Φ

(
dx1 +B0e

−4A+2Φdx2

)2

+ ds2(Σ2),

ds2(Σ2) = e−2A(dx2
3 + dx2

4), B = x2
2e
−4A+2ΦB0Vol(S2), (4.3)

where e2A, eΦ, B0 each generically depends on all of the four-dimensional local coordinates xi. Su-

persymmetry additionally requires the following PDE’s to be solved

∂x2

(
e2A−2Φ

)
= ∂x1

(
e−2AB0

)
,

∂x2

(
x2

2e
−2AB0

)
= ∂x1

(
x2

2e
−6A+2Φ(1 +B2

0)
)
. (4.4)

The RR sector is rather involved, but can be found in [49], however there is no Romans mass.

Ensuring that the fluxes obey the correct Bianchi identities imposes another set of PDE’s

∂2
x3

(e2A−2Φ) + ∂2
x4

(e2A−2Φ) + ∂2
x1

(e−4A) = 0,

∂2
x3

(e−2AB0) + ∂2
x4

(e−2AB0) + ∂x1∂x2(e−4A) = 0,

∂2
x3

(x2
2e
−6A+2Φ(1 +B2

0)) + ∂2
x4

(x2
2e
−6A+2Φ(1 +B2

0)) + ∂x2(x2
2∂x2(e−4A)) = 0. (4.5)

One can generate the Mink5 × S2 and Mink6 × S2 cases in IIB and IIA respectively by imposing

that Σ2 contains isometry directions, that dB has no leg(s) in, and then T-dualising as before.

4.3 Generating case II

In this section we shall establish how Case II in IIA and then IIB are realised from Case I in IIB and

IIA respectively. The IIA case is a little subtle as generic solutions in this class are not in general

related to the their Mink5 sub-case by duality. In IIB things are more simple, indeed the generic

solutions are essentially the U-dual of the Mink5 sub-case.

4.3.1 Case II in IIA

It was already observed in [49] that when one T-dualises on the U(1) isometry of Case II in IIA,

one is mapped to a conformal Calabi–Yau class - this is contained in case I of IIB. To see this,

let us explicitly generate case II in IIA from it. We start with (4.1) and perform the coordinate

transformation

x1 → x1 − c0x4 (4.6)

the NS sector of case I in IIB then takes the form

ds2 = e2Ads2(Mink4) + e−2A

(
1

f

(
b2dx2

1 + dx2
2 + x2

2ds
2(S2)

)
+ dx2

3 +
1

b2
(
dx4 +

ba2√
f
dx1

)2)
,

B = gC2 −
a2
√
f

b
g
dx2 ∧ dx4

x2
2

, C2 = Vol(S2) +
dx1 ∧ dx2

x2
2

, (4.7)
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with the dilaton unchanged and where

b2 + a2
2 = 1,

a2
√
f

b
= c0. (4.8)

If we now impose that ∂x4 is an isometry, we have

f(x3, x4)→ g(x3), g(x3, x4)→ g(x3), A(x1, x2, x3, x4)→ A(x1, x2, x3) (4.9)

and the PDE’s governing the system become

∂2
x3
f = 0, ∂2

x3
(fg) = 0, (4.10a)

1

b2
∂2
x1

(e−4A) +
1

x2
2

∂x2(x2
2∂x2(e−4A)) + ∂2

x3
(f−1e−4A) +

1

x4
2

∂2
x3

(fg2) = 0, (4.10b)

i.e. exactly what one has for case II in IIA (cf. (5.59)- (4.60) of [49]). If we now T-dualise on ∂x4 ,

the Mink4 part of the metric is unchanged and the rest of the NS sector becomes

ds2
6 = e2Ab2

(
dx4 −

a2g
√
f

bx2
2

dx2

)2

+
e−2A

f

(
b2dx2

1 + dx2
2 + fdx2

3 + x2
2ds

2(S2)

)
,

B = gC2 +
a2b√
f
dx1 ∧

(
dx4 −

a2g
√
f

bx2
2

dx2

)
, e−ΦIIA =

f

b
e−A. (4.11)

which reproduces the case II NS sector in IIA presented in [49] - we have checked that the same

is true for the RR fluxes. After the T-duality the effect of (4.6) can no longer be turned off with

a coordinate transformation so generic (4.11) is a deformation of it’s c0 = 0 limit. However the

PDEs with c0 = 0 differ from the deformed case generically, due to the b−2 factor in (4.10b) that

appears only in the later - which means this procedure is not generically a duality. An exception

is if we assume that ∂x3 is also an isometry, then (4.10b) is the same for all values of c0. This is

because when ∂x3 is also an isometry the diffemorphism + T-duality procedure reproduces the effect

of performing a T-s-T transformation on the c0 = 0 limit of this case.

4.3.2 Case II in IIB

To generate case II in IIB one starts from case I in IIA. One first needs to make one direction in Σ2

an isometry to T-dualise on, we will take ∂x4 (∂x3 is physically equivalent). The NS sector (4.12) is

then locally mapped to

ds2 = e2Ads2(Mink4) + ds2(M6), B = x2
2e
−6A+2ΦB0Vol(S2), (4.12)

ds2(M6) = e2Ads2(S1) + e−6A+2Φ

(
dx2

2 + x2
2ds

2(S2)

)
+ e6A−2Φ

(
dx1 +B0e

−6A+2Φdx2

)2

+ e−2Adx2
3,

where ds2(S1) = dx2
4, Φ is now the IIB dilaton and all functions have support in (x1, x2, x3) only.

The supersymmetry PDE’s then become

∂x2

(
e4A−2Φ

)
= ∂x1

(
e−2AB0

)
,

∂x2

(
x2

2e
−2AB0

)
= ∂x1

(
x2

2e
−8A+2Φ(1 +B2

0)
)
. (4.13)
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The RR sector also gets mapped, we will not concern ourselves with the details (see (4.20) of [50] for

explicit expressions), other than the fact that only (F1, F3) are non trivial. The Bianchi identities

of these fluxes require

∂2
x3

(e4A−2Φ) + ∂2
x1

(e−4A) = 0,

∂2
x3

(e−2AB0) + ∂x1∂x2(e−4A) = 0,

∂2
x3

(x2
2e
−8A+2Φ(1 +B2

0)) + ∂x2(x2
2∂x2(e−4A)) = 0. (4.14)

This is locally the Mink5 limit of case II with no parametric deformation. One may then generate

generic solutions in this class via a formal U-duality that introduces a parameter c0 as we will now

demonstrate.

One begins by T-dualising on the three space-like U(1) isometries contained in Mink4 - which

maps to a solution in IIA with only (F4, H) non trivial. One lifts this solution to M-theory and

performs a formal boost along the M-theory circle with isometry ∂z

dt→ b1dt+ c0dz, dz → b2dt+ dz. (4.15)

Here c0, b1, b2 are all constants, c0 is the deformation parameter, while b1, b2 should be non zero and

satisfy −b1 + b2c0 > 0, but are otherwise arbitrary. After the boost, the M-theory circle becomes

fibred over dt and additional components are turned on in the 4-form flux. In addition, the warp

factors of the, now fibred, M-theory circle and time direction are modified. As such, when one

reduces to IIA the dilaton and warp factors of the metric are modified, and one now has non trivial

(F2, F4, H) fluxes. Finally one performs an additional three T-dualities within the R3 factor of the

solution to get back to IIB. After rescaling dt → −(b1 − b2c0)dt all dependence on b1, b2 drops out

of the solution and one finds the new metric and dilaton

dŝ2 =
e2A

κ⊥
ds2(Mink4) + κ⊥ds

2(M6), eΦ̂ = eΦ,

where the deformed physical fields are given hats, and un-hatted fields are the original ones in IIB

before the U-duality. We also introduce (κ‖, κ⊥) such that

κ‖ = c0e
4A−2Φ, κ2

‖ + κ2
⊥ = 1, (4.16)

to make contact with the notation of [50]. The deformed fluxes are given in terms of the original

ones and (κ‖, κ⊥) as

F̂1 = F1,

F̂3 = F3 − κ‖e−Φ ?6 H3,

Ĥ = dB + κ‖e
Φ ?6 F3,

F̂5 =

(
1 + ?̂

)
Vol(Mink4) ∧

(
e4A−Φκ‖

κ2
⊥

)
, (4.17)

25



where ?6 is taken on the unwarped M6 and ?̂ on the full ten-dimensional space. It is then not hard

to check that if we define e2Â, B̂0 such that

e2A = κ⊥e
2Â, B0 = κ⊥B̂0 (4.18)

and substitute un-hatted functions for hatted ones in (4.13), (4.14), (4.16) and (4.17) one precisely

reproduces the metric, dilaton, fluxes and PDE’s of section 4.5 in of [50]. Thus we have shown that

case II in IIB follows from case I in IIA by first T-dualising to IIB, then performing a U-duality.

4.4 Generating case III

In this section we show how Case III in type IIA and IIB can be generated from one of the mas-

ter systems. As this requires performing both a T-s-T transformation and U-duality, a detailed

description becomes rather protracted, so we will only sketch the procedure.

4.4.1 Case III in IIB

Case III in IIB can be generated from case I in IIB by first imposing that Σ2 = T 2 so that one has

two isometries to work with and setting

g = 0. (4.19)

Notice that this makes the dilaton constant and reduces (4.2b) to a Laplacian in four dimensions;

indeed, if we now T-dualise on both directions in Σ2 = T 2 we are mapped to D5-brane in flat space.

We can generate a double parametric deformation of the D5-brane system as follows

1. Formal U-duality on spatial Mink4 directions14.

2. T-dualise on ∂x4 and add an exact to the NS 2-form.

3. Shift x3 → x3 + γx4.

4. T-dualise on ∂x4 .

One needs to supplement this by rescaling the dilaton, Minkowski and local coordinates, but after

doing this carefully one is mapped to Case III in IIB.

4.4.2 Case III in IIA

Case III in IIA can be generated in a similar fashion. We again fix Σ2 = T 2 and T-dualise on both

U(1)’s therein. We are mapped to a Mink6 system studied in [73] (see also section 4.1 of [49]), with

non trivial NS and RR 0- and 2-form fluxes. We have checked that the following chain of dualities,

boosts and shifts maps this to section Case III in IIA

14A T-duality on each of the 3 spacial directions, lift to M-theory, boost along the M-theory circle, reduce back to

IIA, redo the spatial T-dualities to return to IIB.
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Case I

Case II

Case III

Case I

Case II

Case III

Case A Case B

M4 = M2 × Σ2:

S1 ↪→ M4,

↓
M3

:

T 2 ↪→ M4,

↓
M2

:

M7 = M5 × S2

IIA IIB

M-theory M-theory

γ2

γ3

γ′2

γ1

dimensional

reduction

γM5

Figure 2: Depiction of the chains of dualities leading to the various Mink4×S2 class in type II with

equal spinor norm. Cases A in M-theory and I in IIB (shaded grey) are the truly fundamental master

cases from which all else can be generated. Specifically γ1 represent a transformations where one

performs a diffeomorphism mixing the M2 and Σ2 factors in IIB case I, and introducing a parameter

c0. One then imposes an isometry and T-dualising on it. γ2, γ
′
2 represent the following: impose

Σ2 = T 2 in case I and T-dualise on both directions, lets call this case III0, - one then performs a

formal U-duality followed by a T-s-T transformation with T 2 - which generates a two-parameter

deformation of case III0 governed by the same PDE’s, i.e. case III. γ3 represents imposing an

isometry in the Σ2 factor of IIA case I, then T-dualising to get to IIB. One then performs a formal

U-duality on the spacial directions of Mink4. Finally, as explained in the end of section 2.4, the

physical fields (but not the spinor) of Case B can be obtained from Case A by specialising the

vielbein to a M5-brane solution with some rotational symmetry in the co-dimensions; this operation

in the figure is named γM5.
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1. Four T-dualities performed on the spatial Mink4 directions and one direction in T 2, say x4.

2. Lift to M-theory, boost along the M-theory isometry, reduce back to IIA.

3. Shift x3 → x3 + γx4.

4. Four more T-dualities once more on the spatial Mink4 directions and x4.

Along the way some additional rescaling of coordinates is required, but this gives the general idea -

i.e. Case III in IIA is generated by a combination of U-duality and T-s-T transformations.

5 Examples

In this section we give some simple examples that follow from case A in M-theory, we exclude case B

because it is merely the M5 brane - of course one AdS solution can be embedded here, AdS7×S4/Zk,
but as this just requires solving a simple Laplace equation, we omit the details. Another result that

is easy to establish is that there exist no Mink5 × S2 solution in M-theory that are not locally

Mink6 × S2. From which it follows that there also exist no AdS6 solutions in M-theory.

Here we shall focus on the following: In section 5.1 we show how N = 2 AdS5 solutions are

embedded in M-theory while in section 5.2 we provide some evidence that the squashed S3 ansatz

of section 2.3.2 likely contains compact Mink4 solutions in M-theory with non trivial fluxes.

5.1 N = 2 AdS5 × S2 in M-theory

AdS5 solutions preserving N = 2 in M-theory were classified in [46] (which was shown to be an

exhaustive class in [71]), in this section we will show how they are embedded within M-theory class

A.

The metric of these solutions is of the form

ds2 = e2λ

(
4ds2(AdS5) + y2e−6λds2(S2)

)
+

4

(1− y∂yD)
e2λ (dψ + V )2 ,

+
−∂yD
y

e2λ

(
dy2 + eD(dx̂2

1 + dx̂2
2)

)
, (5.1)

e−6λ =
−∂yD

y(1− y∂yD)
, V =

1

2
(∂̂̂x2

dx̂1 − ∂x̂1dx̂2), (5.2)

where D is a function of y, x1, x2 and ∂ψ is an isometry; this one together with the S2 factor realises

the SU(2)×U(1) R-symmetry of the N = 2 super-conformal algebra in four dimensions. Comparing

this with (2.37) we see that if one realise AdS as

ds2(AdS5) = e2rds2(Mink4) + dr2, (5.3)
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then one needs to fix

ρ = e2ry, e2∆ = e2λ+2r, v = −e−2λ(2dr + dy). (5.4)

In order to get a metric that actually respects the isometries of AdS, we need the radial component

to point along one of the vielbein that make up the SU(2) in such a way that the metric has no dr

cross terms, and has a common warp factor for all the putative AdS directions - the SU(2) structure

should also be charged under ∂ψ. After some work, one is able to establish that the following

four-dimensional vielbein satisfies all the SU(2)-structure conditions

u =

√
−∂yD
y

eλ+ 1
2
D(dx1 + idx2), w = 2eiψe−2λ

√
y

−∂yD

(
dr +

1

2
∂yDdy + i(dψ + V )

)
, (5.5)

and yields a metric diagonal in r provided that D satisfies the Toda equation

(∂2
x1

+ ∂2
x2

)D + ∂2
ye
D = 0, (5.6)

away from localised sources. The flux F2 that follows from this is then

F2 = e4λy−2
(

2(dψ + V ) ∧ d(y3e−6λ) + 2y(1− y2e−6λ)dV − ∂yeDdx1 ∧ dx2

)
, (5.7)

which reproduces the correct M-theory 4-form through G = e2CVol(S2)∧F2 and obeys the Bianchi

identity.

5.2 Towards compact Mink4 in M-theory with fluxes

The ansatz of section 2.3.2, contains a squashed S3 in addition to the Mink4 × S2 factor generic

to all solutions we considered. As such it is a prime candidate for solutions with a Taub-NUT or

Atiyah–Hitchin factor. Metrics with Atiyah–Hitchin singularities (which are the lift of O6 planes)

are a possible way to achieve compact Minkowski solutions in M-theory with non trivial fluxes. Here

we show that it is indeed possible to find metrics with such singularities inside section 2.3.2 with a

simple example.

The solutions in section 2.3.2 are defined in terms of a single undetermined function e−2K that

is governed by a relatively simple PDE in two variables (ρ, y), namely (2.47). The simplest way to

make progress with this PDE is by a separation of variables ansatz

e−2K = p(ρ)q(y). (5.8)

The PDE then reduces to two ODE’s of the form

1

ρ2
∂ρ(ρ

2∂ρp) + c1p
2 = 0, ∂2

y(q2) =
c1q

c+ y
, (5.9)

where c, c1 are constants. These ODE’s are still difficult to solve, so in principle one can proceed

numerically, however our aim is just to show the plausibility of finding compact solutions with non
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trivial fluxes in the squashed S3 ansatz, so let us just make the most brutal non trivial assumption

we can, namely

c1 = 0, p = 1. (5.10)

As a consequence of this

q = L
√
y − b (5.11)

for L, b constants. We necessarily have G = 0 while the part of the metric spanned by (ρ, S2)

becomes simply R3 or equivalently T 3. The metric for this solution is given (for L = 1) by

ds2 = ds2(Mink4) + ds2(T 3) +
dy2

(y + c)
√
y + b

+

√
y + b

4
ds2(S̃2) +

y + c

4
√
y + b

(dψ + η)2, (5.12)

i.e. a squashed S3 foliated over an interval - which is in fact bounded. One can check that close to

y = −b the metric exhibits an Atiyah–Hitchin singularity while as y approaches −c the warp factor

of S̃2 becomes constant and the remaining directions vanish regularly as R2 in polar coordinates

- thus if we assume −c < −b the interval is bounded between −c < y < −b and the manifold is

compact.

This example of course has no fluxes turned on, but it seems likely that, even within the sep-

aration of variables ansatz, it will be possible to find similar solutions, with G 6= 0, and where

T 3 → (ρ,Vol(S2)) with the metric warped in terms of ρ. It would be interesting to pursue this - but

such a detailed study is outside of the scope of this work.
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A Killing spinors in M-theory

In this appendix we derive some of the conditions that will be useful in section 2 and we prove that

the M-theory case with a G2 structure is actually a subcase of M-theory classification.

The eleven-dimensional supersymmetry condition can be written as

DM ε+
1

24
(3GγM − γMG) ε = 0. (A.1)

where G is defined in (2.1). The first step is to perform a decomposition from 11 to 4+7 dimensions

ε = ζ+ ⊗ χ+ ζ− ⊗ χc (A.2)
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where ζ+ is a four-dimensional spinor with positive chirality, ζc+ = ζ−, and χ is a seven-dimensional

one.

Evaluating (A.1) on Mink4 directions we get the following algebraic condition:(
e−∆∂ae

∆ γa−1

3
if +

1

6
F

)
χ = 0 (A.3)

while taking the internal index(
Da +

1

24
(3Fγa − γaF )− i

12
fγa

)
χ = 0. (A.4)

where we have chosen γ5 = iVol4. Multiplying (A.3) by γa/4 we can further simplify (A.4):(
Da +

1

8
Fγa −

i

6
fγa +

1

4
e−∆∂be∆ γa γb

)
χ = 0. (A.5)

From these conditions we can easily prove that f = 0, indeed contracting (A.3) by χ† and make

the difference with the conjugate of the same expression we get

χ†
(
e−∆∂ae

∆ γa−1

3
if +

1

6
F

)
χ− χ

(
−e−∆∂ae

∆ γa +
1

3
if +

1

6
F

)
χc

= 2i

(
e−∆∂ae

∆Im(χ†γaχ)− 1

6
Im(χ†Fχ)− 1

3
f

)
= −2i

3
fχ†χ = 0

(A.6)

since the bilinears of χχ† are real if they have degree 0, 1, 4, 5 and purely imaginary otherwise.

When χc = χ, we can only define a G2 structure on M7. From the sum and the difference of

(A.3) with its conjugate we have that Fχ = 0 and ∂a∆γ
aχ = 0. From the second condition we get:

(∂a∆γ
a)2χ = (∂a∆∂

a∆)χ = 0 (A.7)

which implies ∂a∆ = 0 since a sum of squares vanishes if an only if each individual term in the sum

does. Moreover from (A.4)

Daχ+Daχ
c = 2Daχ = 0 (A.8)

and then we can set F = 0. So the internal seven dimensional-manifold actually has G2 holonomy

and no warping factor on Mink4. Although such solutions may exist with M7=S2×M5 we need not

consider them explicitly; indeed there are no Killing spinors on S2 such that ξ = ξc, and there is

no invariant form on S2 that maps the Killing spinor to it’s Majorana conjugate - as such imposing

χc = χ makes χ contain two separable five-dimensional systems, one coupling to ξ and one to ξc

- this just imposes additional constraints on the five-dimensional system that follows from χc 6= χ,

so cases with G2 holonomy are special cases of the systems we consider in the main text. We thus

restrict ourselves to SU(3) structure case χ 6= χc.
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Now let’s analyse the zero-form constraints on M7:

∂a(χ
†χ) =Daχ

†χ+ χ†Daχ =
1

12

(
χ†γaFχ+ χ†Fγaχ

)
=

1

2
∂b∆

(
χ†γaγbχ+ χ†γbγaχ

)
= ∂a∆χ

†χ ,

(A.9)

from which we have

d(e−∆χ†χ) = 0 (A.10)

and so we can set, without loss of generality, ||χ||2 = e∆. Moreover, we can also calculate

∂a(χχ) = −1

6
(χγaFχ− χFγaχ) = −2∂a∆χ

†χ (A.11)

which implies

d(e2∆χχ) = 0. (A.12)

This equation tells us that the phase of χχ is constant and then we can set it to zero choosing the

following parametrisation:

χχ = ce−2∆ (A.13)

where c is a real constant.

Let’s analyse the two zero-form equations using our ansatz (2.12). The first condition in terms

of the five- and two-dimensional spinors reads:

1

2
(η†1η1 + η†2η2) +

y3

2
(η†1η2 + η†2η1) = e∆, (A.14)

to preserve the SU(2) R-symmetry the warp factor cannot depend on the coordinate on the sphere,

so me have

||η1||2 + ||η2||2 = 2e∆, Re(η†1η2) = 0. (A.15)

On the other hand (A.12) reads

− (y1 − iy2)η1η2 = ce−2∆ (A.16)

and then we must have

η1η2 = 0, c = 0. (A.17)

These considerably simplify the supersymmetry conditions, and in particular we can restrict to

(2.10), as we have done in the main text.

B Mink4 × S2 Killing spinor Conditions in type IIB

In this appendix we derive the four-dimensional Killing spinor conditions a supersymmetric solutions

of type IIB on Mink4 × S2×M4 must obey. In the conventions of [68] the type IIB supersymmetry
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conditions are

∂Φε1 −
1

2
Hε1 + eΦ

(
F1 +

1

2
F3

)
ε2 = 0, (B.1a)

∂Φε2 +
1

2
Hε2 + eΦ

(
− F1 +

1

2
F3

)
ε1 = 0, (B.1b)

(
∇M −

1

4
HM

)
ε1 −

eΦ

8

(
F1 + F3 +

1

2
F5

)
ΓM ε2 = 0, (B.1c)

(
∇M +

1

4
HM

)
ε1 −

eΦ

8

(
− F1 + F3 −

1

2
F5

)
ΓM ε1 = 0, (B.1d)

where εi are two positive chirality Majorana spinors. If we seek a solution that contains a Mink4

factor foliated over the internal space by a warp factor e2A, we can decompose the ten-dimensional

Clifford algebra as

Γµ = eAγ(4)
µ ⊗ I, Γa = γ

(4)
5 ⊗ γ(6)

a , µ = 0, . . . 3, a = 4, . . . , 9 (B.2)

and the ten-dimensional spinors as

εi = ζ+ ⊗ χi+ + m.c (B.3)

where ζ+, χ
i
+ are positive chirality spinors in four- and six- dimensions respectively, and (B.1a)-

(B.1d) become

∂Aχ1
+ +

eΦ

4

(
F1 + F3 + F̃5

)
χ2

+ = 0, (B.4a)

∂Aχ2
+ +

eΦ

4

(
− F1 + F3 − F̃5

)
χ1

+ = 0, (B.4b)

∂Φχ1
+ −

1

2
Hχ1

+ + eΦ

(
F1 +

1

2
F3

)
χ2

+ = 0, (B.4c)

∂Φχ2
+ +

1

2
Hχ2

+ + eΦ

(
− F1 +

1

2
F3

)
χ1

+ = 0, (B.4d)

(
∇a −

1

4
Ha

)
χ1

+ −
eΦ

8

(
F1 + F3 + F̃5

)
γ(6)
a χ2

+ = 0, (B.4e)

(
∇a +

1

4
Ha

)
χ2

+ −
eΦ

8

(
− F1 + F3 − F̃5

)
γ(6)
a χ1

+ = 0, (B.4f)

where F1, F3, H3 are purely magnetic and F̃5 is the magnetic component of F5.

Using (B.4e) and (B.4f) together with (B.4a)-(B.4d) multiplied by γa, we get the following

conditions on the zero degree bilinears:

|χ1
+|2 + |χ2

+|2 = 2eA, |χ1
+|2 − |χ2

+|2 = 2c−e
−A,

∂a(e
2A−Φχ2†

+χ
1
+)− e2A−Φ∂a(χ

1†
+χ

2
+) = ie3A(?F̃5)a − c−eA(F1)a.

(B.5)
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If we now assume we have an SU(2) R-symmetry parameterised by a round S2 factor in our solution

we have again to factorise the Clifford algebra, and we choose the following conventions:

γ
(6)
i = σi ⊗ I, i = 1, 2 γ

(6)
a+2 = σ3 ⊗ γa, a = 1, ..., 4

B(6) = σ2 ⊗B, B = B−1 = −B∗ = −BT , γ∗a = B−1γaB, (B.6)

where eC is the warping function for S2. Moreover, we have to decompose the spinors

χ1
+ =

1

2

[
ξ ⊗ (η1 + η2) + σ3ξ ⊗ γ̂(6)(η1 + η2)

]
,

χ2
+ =

1

2

[
ξ ⊗ γ̂(6)(η1 − η2) + σ3ξ ⊗ (η1 − η2)

]
, (B.7)

and the fluxes

F = f + e2CVol(S2) ∧ g, H = H3 + e2CVol(S2) ∧H1, (B.8)

one can then show that (B.4a)-(B.4f) is equivalent to (3.13a)-3.13h in the main text.

C Towards solutions for the general IIA case

In this appendix we will find a large ansatz that allows us to simplify Case I in IIA in such a way

to have a diagonal metric. In this case supersymmetry is implied by the following equations:

d(eAw) = 0, d(e2A+C−Φ) + e2A−Φv2 = 0, d(e−2A+Φ(v1 +B0v2)) = 0 (C.1a)

d(e−Φv1) ∧ w ∧ w = 0, d(e2C−Φ(B0v1 − v2)) ∧ w ∧ w = 0, B2 = 0. (C.1b)

In the present case equations (C.1) automatically give us a definition of a diagonal vielbein except

for the component v1, which we diagonalise by hand with the introduction of an arbitrary function

µ:

v1 = eΦ+µdx1, v2 = −e−2A+Φdx2, w1 = e−Adx3, w2 = e−Adx4. (C.2)

where x2 = e2A+C−Φ. The internal metric thus reads

ds2
6 = e−4A+2Φ(dx2

2 + x2
2ds

2(S2)) + e2Φ+2µdx2
1 + e−2A(dx2

3 + dx2
4). (C.3)

It turns out to be useful define the following functions:

f = e−2A+2Φ+µ, g = e2CB0. (C.4)

The other equations of (C.1) imply that f = f(x1, x2), g = g(x1, x2) and µ = µ(x1, x3, x4). Moreover

we have the following PDEs:

∂x1g = −x2
2∂x2f, (C.5a)

∂x2g = x2
2e
−µ∂x1(fe−4A−µ). (C.5b)
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The fluxes are

B2 =gVol(S2), (C.6a)

F2 =(∂x4e
µdx3 − ∂x3e

µdx4) ∧ dx1 − f−1∂x1e
−4Adx3 ∧ dx4, (C.6b)

F4 =B2 ∧ F2 + Vol(S2) ∧
(
x2

2f(∂x3e
−4A−µdx4 − ∂x4e

−4A−µdx3) ∧ dx2

−g(∂x4e
µdx3 − ∂x3e

µdx4) ∧ dx1 + (x2
2∂x2e

−4A + gf−1∂x1e
−4A)dx3 ∧ dx4

)
, (C.6c)

and the Bianchi identities for these fluxes impose the following PDEs:

∂x2(f−1∂x1e
−4A) = 0 (C.7a)

(∂2
x3

+ ∂2
x4

)eµ + ∂x1(f−1∂x1e
−4A) = 0 (C.7b)

f(∂2
x3

+ ∂2
x4

)e−4A−µ +
1

x2
2

∂x2(x2
2∂x2e

−4A) +
1

x2
2

∂x2g f
−1∂x1e

−4A = 0 . (C.7c)

We can notice that (C.7a) is just a restriction on the coordinate dependence of the physical fields,

while (C.5) can be used to define H. If this is the case, then we can define f from this consistency

equation
1

x2
2

∂x2(x2
2∂x2f) + ∂x1(e−µ∂x1(fe−4A−µ)) = 0 (C.8)

which is redundant whenever g gets defined rather than it’s derivatives.

At this point, solving these PDEs in full generality is hard; however, this class of solutions is large

enough to allow us to impose some further ansatz and still obtaining interesting intersecting-brane

systems.

The first thing that needs to be addressed is that the LHS of (C.5b) is independent of (x3, x4),

which means the RHS should also be, which is not true a priori. We can deal with this by making

an ansatz for e−4A, we find that

Case I : e−4A = f−1eµT (x2, x3, x4), (C.9a)

Case II : e−4A = f−1H(x1, x2)S(x3, x4)2, (C.9b)

eµ = S(x3, x4) (C.9c)

achieve the stated aims15. We will look at these cases separately in the following subsections.

C.1 Case I

Here (C.5a)-(C.5b) imply

g′(x1) = f1(x1), f = f0(x1) +
f1(x1)

x2
. (C.10)

15In principle one can add a generic function eµ0(x1) in front of the expressions for e−4A and eµ in the second case,

but it is easy to check that this can be reabsorbed into f by performing a change of coordinates. Another non-trivial

generalisation of the second case is to define e−4A = f−1[H(x1, x2)S(x3, x4)2 +T (x2, x3, x4)]. This case however seems

to require further assumptions which so far didn’t lead to something interesting.
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The first thing we need to do is solve (C.7a), which becomes

∂x2

[
1

(x2f0 + f1)
∂x1

(
eµx2

2T

x2f0 + f1

)]
= 0. (C.11)

The obvious way to make progress with this is to do one of the following

f0 = 0, f1 = 0, or f = c0 +
c1

x2
for ci constant. (C.12)

The first two of these turn out to be subcases of the last up to a redefinition of x1 so we without

loss of generality set

T =
T̃ (x2, x3, x4)

x2
2(c1 + c2x2)

, eµ = S̃(x1, x3, x4), f(x2) = c0 +
c1

x2
(C.13)

and then (C.7a) PDE’s becomes a Youm-like condition

∂x1S̃∂x2Ũ = 0. (C.14)

C.1.1 ∂x1S̃ = 0: Localised D4 and smeared D6-NS5 system

For this case T̃ is not particularly useful, instead we define

T = fU(x2, x3, x4), S̃ = S(x3, x4). (C.15)

We are then left with the PDE’s

�2S = 0, f�2U +
S

x2
2

∂x2(x2
2∂x2U) = 0 (C.16)

which define the system. The physical fields are defined by the solutions to these PDEs as

e2A =
1√
US

, e2Φ+2µ = f

√
U

S
, e−4A+2Φ = f

√
S

U
, e2CB0 = c1x1. (C.17)

Finally we note that the only dependence on x1 appears in the NS 2-form as B = f1x1Vol(S2),

which gives rise to

H = c1dx1 ∧Vol(S2), (C.18)

so ∂x1 is an isometry of any solution within this class. Comparing (C.17) and (C.3) with ( [72],

sections 4.2 and 4.5) we see that we have an ansatz for localised D4 stretched between D6-branes

and ending on NS5 branes that are both smeared along x1.
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C.1.2 ∂x2 T̃ = 0: Smeared D4-D6-NS5 system

Here we define

T̃ = U(x3, x4), S̃ = S(x1, x3, x4) (C.19)

and then the remaining PDE’s become

�2U = 0, �2S + U∂2
x1
S = 0, (C.20)

The physical fields are defined as:

e2A =
1√
fSU

, e2Φ+2µ =

√
fS

U
, e−4A+2Φ = f−3/2

√
S

U
, e2CB0 = c1x1 (C.21)

We thus have a system of D4-D6-NS5 branes where the NS5 is smeared along x1 while the D4 along

x2.

C.2 Case II

Here (C.5b) becomes

∂x2g = x2
2e
−µ0∂x1H (C.22)

The discussion turns out to be different if we consider the warping A to depend or not from x1.

C.2.1 ∂x1e
−4A = 0: Localised D4-NS5 smeared D6 system

To make e−4A independent of x1 we need to set

H = fλ(x2). (C.23)

We can solve the (C.5a) by introducing an auxiliary function h(x1, x2) such that

f = ∂x1h, g = −x2
2∂x2h. (C.24)

We are then left with the PDE’s

∂x2(x2
2∂x2λ) = 0, �2S = 0,

1

x2
2

∂x2(x2
2∂x2h) + λ∂2

x1
h = 0, (C.25)

to solve, with physical fields given by

e2A =
1

S
√
λ
, e2Φ+2µ =

∂x1h√
λ
, e−4A+2Φ =

√
λ∂x1h, e2CB0 = −x2

2∂x2h. (C.26)

When S = 1 this is simply the massless system of [73] describing localised D6-NS5 brane intersection

up to two T-dualities along dx3 and dx4. On the other hand when S 6= 0 but ∂x1h = 1 we have a D4-

D6 system where the D6 brane is smeared along x1, indeed its harmonic function is S = S(x3, x4),

while the harmonic function of the D4 factorise in λS. therefore we can interpret our solution as a

localised D4-NS5 smeared D6 system.
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C.2.2 ∂x1e
−4A 6= 0: “Massive” D4-D6-NS5 system

We now allow e−4A to depend on x1. Let’s absorb f−1 into H. From (C.7a) we can define f from

H up to an arbitrary function G(x1) 6= 0 (otherwise we will come back to the previous case)

f =
∂x1H

G
. (C.27)

Moreover condition (C.7b) imposes that this function has to be at least linear in x1, G = c1x1 + c2.

We then have that supersymmetry follows from the following two PDEs:

�2S = −c1S
2,

1

x2
2

∂x2

(
x2

2∂x2H
)

+
1

2
∂2
x1
H2 = c1

∂x1H
2

c1x1 + c2
. (C.28)

The fields are defined as:

e2A =
1

S
√
H
, e2Φ+2µ =

1√
HG

∂x1H, e−4A+2Φ =

√
H

G
∂x1H

∂x1(e2CB0) =
x2

2

G
∂x1∂x2H, ∂x2(e2CB0) =

x2
2

2
∂x1

(
∂x1H

2

G

)
.

(C.29)

We can see that for c1 = 0 this is equivalent to the previous case but with the T-dual of the massive

system of localised D6-NS5 of [73]; therefore for c1 = 0 we have a localised “massive” D4-NS5

smeared D6 system. When c1 6= 0 we have something more exotic which physical interpretation is

less clear, but the fluxes suggest a system of (possibly localised) D4-D6-NS5 branes.
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